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Abstract

Combinatorial chemistry makes it possible to generate large families of potential
ligands at relatively low cost. Merging combinatorial chemistry strategies with structure-
based design principles opens the exploration of virtual libraries containing billions of
compounds. In chapters two through four of this thesis, I address the development of soft-
ware for structure-based design of combinatorial libraries. In chapters five through eight, I
identify inhibitors of four enzymes and address critical questions regarding design of com-
binatorial libraries.

I have developed three tools for the efficient construction and design of combinato-
rial libraries. UC_Select is an internet-based tool that allows synthetic chemists to select
reagents for a virtual library using common chemical nomenclature. Diversify is a pro-
gram that prepares virtual libraries from virtual reagents using in silico chemical reactions.
CombiDock is a version of the structure-based design program DOCK, optimized for
designing combinatorial libraries. Together, these tools c;m be used to rapidly propose
synthetically accessable combinatorial libraries that address optimization of bioavailabil-
ity, selectivity, and potency.

Chapter five describes identification of potent HIV-1 RT inhibitors with a novel
mechanism of action. Chapter five is remarkable for our discovery of inhibitors with a
novel mechanisms of action by direct our design efforts to a selected portion of RT. Chap-
ter six describes our identification of the first non substrate-analog inhibitors of T. foetus
HGXPRTase. This chapter emphasizes selection of potential inhibitors whose analogs can

be easily synthesized in a combinatorial fashion. We apply these library design tools to

vi
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human cathepsin D in chapter seven. Here we identify several potent inhibitors, in addi-
tion to demonstrating the superiority of structure-based design of combinatorial libraries
over diverse design of combinatorial libraries. Finally, in chapter eight, we identify potent,
selective, and medicinally suitable inhibitors of P. falciparum Plasmepsin II. This chapter
demonstrates the utility of including surrogates for medicinal suitability in the library
design process.

I have developed software tools which facilitate efficient construction and struc-
ture-based design of synthetically accessible combinatorial libraries. We used these tools
to investigate critical questions about the design of combinatorial libraries and to identify

potent and selective inhibitors of four medically apropos macromolecular targets.

vii



".’D.\Va

S N .

"\ " I
DRI L

it
RN B
o.'r:.'non \'umc.]\; L
ey
E\«m.,]
vt ] H,\drl)\\ o
E\“‘T-P!e 3
N \dllthe (
Tle |
.\dmx'\uh"
ple ).




Table of Contents

Chapter 1
“Introduction”
TIHE PAZE ...t 1
BibLIOIaphy .......ooviiiiieiiiie e et 11
Software Tool Development csee 16-170
Chapter 2

“UC Select: Development and Implementation of A

Common Nomenclature Method to Search Chemical Databases”

PIOIOZUE ...ttt sttt s s s et 16
THEE PAZE ...ttt e sttt et s sae e 18
ADSITACE ...ttt e e e 18
INETOAUCHION ...ttt sttt sb e st ese e 19
MEEENOMS. ..ottt ettt st b e st 23
Common Nomenclature SMARTS Definitions..........cccccoceeceeviennniniincneenennenn. 24
UC SEIECE ...ttt ettt et e s e s s e e e e e mnes 25
Example 1: Hydroxyethylamine Library ..........cccccccoiiininiininnnninincee 30
Example 2: Available Combinatorial Lead Library.............ccccccoviiniininininninnns 32
RESUILS ...ttt et a et 33
Example 1: Hydroxyethylamine Library .........cccocccooviniiniiinninnnncnene 33
Example 2: Available Combinatorial Lead Library...........ccccocoviiininnnnininnn. 35

viii



DISCUSSION .ottt ettt ettt e e e eeeeaea e eteeeeeeeaeeaaaaaae s e neeaaeeeesessasaaassaassnnsssnssnsesnnes 36

ACKNOWIEAZIMENLS. ......cooimiiiiiiiiie ettt e 41
BIBIOZIAPRY ...c.eeiiiiiiieii et 42
Chapter 3
“CombiDock”

PIOIOZUE ...ttt sttt s e s s e b e e te e s saeeaes 57
THEE PAZE ...ttt st 59

Part 1: “Structure-Based Combinatorial Docking and Library Design”

THIE PAZE ..ot 60
ADSITACT ...ttt e reeeaee 61
INETOUCHION ...ttt ettt s 61
MEEROMS.... .ottt ettt a e 63
DIOCK ...ttt st 63
COmMIDOCK ...t 63
TESE CASES ..eeneeeniiieiieeie ettt ettt e sttt e s r e st e e nt e e s are e s aneens 64
Combinatorial Docking and Library Design...........ccccccovverieninieienicenenne. 64
Retrospective Analysis of Experimental Results..........c..cccccocoviiininnnenne 67
ReSUlts & DISCUSSION .....eocuiiiiiiiiiiiicieciertcite ettt sttt 68
Combinatorial Docking of Benzodiazepine Library..........cc.cccocveieneenen. 68
Retrospective Analysis of Experimental Results.............coccoeeiiiiiininnn. 70
CONCIUSIONS ...ttt et b e b e 71
ACKNOWIEAZMENLS......c.eiuiiiiiiiiiiiiiieect ettt 71



Pat 2 “Screening a Data
T Page
ANl
Podacaon.

Menods E

Comh Dok o

Com™Dach \

Oven

i,

\



Bibliography ......cc.coooiiiiii e 72

Part 2: “Screening a Database of Combinatorial Libraries”

THIE PAZE ...ttt be e e ens 80
ADSITACE ...ttt ettt ettt ettt et b et et e e st e e aba e beeeaeeenns 81
INtrOAUCHION ..ottt 81
MEEROAS. ...ttt e reeens 86
CombiDock Version 1.0 ........coooiiiiriiiiieeteeeeee e 86
CombiDock Version 2.0 ........coouiiiiiiieiieiieeeeeece e 86
OVETVIBW ..ottt ettt sttt st san e st e s naesae e aaessnasaneas 86

Receptor Preparation..........ccccocuieieriiiieniinicnienecneeeeeeceseeeen 87

Ligand Preparation.............ccccooiiiiiiiiiiiiiiicceceeeceeeen 87

Docking Calculations..........ccccevuevieniiniinieniereceeneeeeeeee e 87

Look-Ahead Phase ..........cccccooviiiiiiniiiiiciieccee e 88

Side Chain Phase........cc.cccoviiiiiiiiiiiieeeeeeeeeee e 88

Combinatorial Library Database Generation..........c.cccceeeveervrennnee. 89

TESE CASES .ttt ettt ettt sttt et e bt e s e e e e ae e baenaaeeas 90
Retrospective Analysis of Experimental Results...........c..coccooiiiinininnn, 90
Screening a Database of Combinatorial Libraries .........c.ccccceiiinncnnnnnen. 90
RESUILS ...ttt sttt et e e e e e s e ennas 91
DIESCUSSION ...ttt ettt se e e sae e san e s en e s bt esmeeenens 96
CONCIUSIONS .....cetietieteeie ettt sttt ettt sab e et e st e et esaeesbeesate st e eseaenns 101
ACKNOWIBAZMENLS......c.eomiiiiiiiiiiiiiiictei e 101
Bibliography ....c.ccoceooiiiiiiiiiiiiiii s 102



s

Tehndd Desa
Bmple )
Ontimiz ez |
P.'\ ‘;\:;"

e
R\ R

J,\.m:zmon Lihm'\ L

P‘:"l.\ki‘{lde RC‘U“\_“

\ln




Chapter 4

“Diversify: Computer-Assisted Construction of Molecular Libraries”

TIUE PAZE ..ot s n 122
ADSITACE ...ttt sttt b ettt et b e et ettt et et h ettt et e e neeeneeenneeaeens 123
INETOAUCHION . ...c..eiiiiiiieiee ettt ettt et e e be e bt e snteansanas 123
MEROAS......eeinie et st 129
GENETAL.... ..ottt e st e n 129
Technical DEtails ........ccooviiiiiiiiiiiiceetetee ettt eas 131
EXaMPIE 1 ..ooceiiiiiii e 133
Optimization Library ..........ccccocoiiiiiiiiniiii e 133

Problem Formulation ............cccoceveeiiiienienieenieeeccseeeeeeieee 133

Reagent Selection...........ooeeviiiiiiiinicniiiciceeecrce e 135

Library ConstruCtion ..........coceevereereriieenierienirenrenereesreeeseeeee s 135

Library SCreening........ccceeeeieriieniereieeiee ettt 136

S0lvation SCOTING........coviiiiiiiiiiiicir e 138

EXAMPIE 2 ..ottt 139
Natural Product Library ........cccceeviiriiiniieiieeieeeeceeeeee e 139

RESUILS......eeeiieie ettt ettt ettt e bt e b e b e et s besneena 143
Optimization Library ..., 143
Polyketide ReSUILS........c..ccoouiriiriiiriieiiieece ettt 148
DISCUSSION ...ttt e s s e e san e s neee e e 152
Optimization Library ... 152
Polyketide Library ... 153

Xi



General Discussio
(st nio

e a4 vm
AnmldImenis..... ..

fxcdn Conformutional |
Exopy Comectioy

38

Expy Comectior

|
E.":Ei‘_:‘} C"”L\!!\‘;", !




GENETAL DISCUSSION ..vviiiriiiiieieeteeee et et ee e e e e e e e e e e e e e e e e esrerteeeaeessasesessesssesssssssans 155

CONCIUSIONS ...ttt sttt et et s et et e b as s enn e s naennens 156
ACKNOWIEAZIMENLS.......couiiiiiiiiieiiieieee ettt st st a et et sa et ens e 157
Appendix: Conformational ENtropy ...........ccccccereriririieniiseninieneie et 158
Entropy Correction Methods..........c..cocceieiiiiiiiiiiniiiinienteeneete et 158
Entropy Correction Results..........c.oooiiiiiiiiiiiccceeen, 159
Entropy Correction DiSCUSSION .........cccoiiiiiiiieiiinienieieeneee et 164
BibHOZIAPNY ... e 167
Drug Design Applications 171-299
Chapter 5

“A Novel Mechanism for Inhibition of HIV-1 Reverse Transcriptase”

PIOIOZUE ..ottt 171
THHE PAGE ..ottt ettt e aba s 173
ADSETACE ...ttt et et st e et e e et e e s b e e e naaeas 174
INETOAUCHION ...ttt ettt ettt ettt e b e s e e e anes 175
MEENOAS. ...ttt sttt ettt et st s te e neeeaee 176
Structure-Based Design ........c.cooviiiiiiiiiiniiee et 176
Similarity S€arches ... 177
Reagent SEIection..........c.cooiiiiiiiiiiiii e 177
CRhemiICalS........eiiiiiieeeee ettt et 178
GENETAL.....eiieieeeee ettt et 178

Xii



SVERNIN oo
Amensham Polymie
Revistant Mutants.
National Cancer I:';vr
RTDNA Binding
Ribonuclease H A

al Culture

I

.\!sghmxm OF Aty

Streety

re-Bused D,

.\Ic‘dxcmal Chenirae

~~~-u\n)n\

Lo ~
m,\..valedgmcm\




SYNRESIS ..eoiiiiiiiii e 178

Amersham Polymerase AsSay..........ccoccvererieerienenienieieseseeee e seeseeeseenesseenns 179
ReSiStant MULANES...........cocooiiiiiiiiiicereccrte ettt 180
National Cancer Institute Polymerase Assay.......c...ccccocerveerienenienienenieenieesienneans 180
RT/DNA BinNAiNg......c.coiiiiiiiriiieieenecectseseeeceie ettt 181
Ribonuclease H ASSaY ......cccooiiiriiiriiiiiceeneeccceeteese et 181
Cell CUIUTE ...ttt et 182
RESUIES ...ttt sttt e ae e st e et e e re e enaaan 182
DISCUSSION ...ttt sttt et eb e e e be e enee s 184
Mechanism Of ACHION.........ccceviiiiiiiiiiite ettt 185
Structure-Based Design ........ccoccecviriiiiiiiiiiiiiiiiciicre e 187
Medicinal Chemistry.........ccoeverieeiieriereere e et 188
CONCIUSIONS ...ttt st nenaee 189
ACKNOWIEAGIMENLS........couiitiiiieiieieeieee ettt et saenaeas 189
FAGUTES ...ttt et et a e e bbb e b neeeee 190
BIiblIOGIAPNY ..ottt 195
Chapter 6

“Rational Design of Novel Antimicrobials:

Blocking Purine Salvage in a Parasitic Protozoan”

PLOIOZUE ...ttt 199
THEIE PAZE ..ceeieeeeiiee s 201
ADSITACE ..ottt ettt ettt a ettt sbe et et e e b e st e sa e et e et et e e e e s e nenne 202

xiii

bt ¢\“*"k”:“ﬂ
““—,y'f"‘
e AT

Pl ‘”r"ﬂ

3"4 1uile suasl

1:‘9.‘.(" -
{-‘_«u‘ zjuﬂ‘
ana.-ﬂ"’;

e il

s e

Fag 1Y

-
(Y

P
iyt
L3 N3N

o e
i o
T artrns?
PRy
(AR

L
RYT S ag

.gg‘u’“l




NN e
\zznds end Methods
Stucture Analy i
Dovkingoooooo :
Sy and \'\r

Chemical

‘ Exzvme Source
Exnvme Ana
Kinene Andva
Cell Cultgre

LN & DI\\‘U\\h)n o

.'\\‘{I\e S}[Q

Stmc!ure-qucd Deys

““-"-\j.\é(’)n\

L. e
[

{ h;e ~~~~
, .



Materials and Methods........c..coceiiiiiiriiiininiceeee ettt 204
Structure ANAIYSIS......cccceviirieriiriirieeei ettt eae e ere s 204
DOCKING ...ttt sttt sa et eba 204
Similarity and Superstructure S€arches .............cccccecevivinenenencneeeresenens 205
CREMUCALS.....c..eeiiiieieieee ettt st a e e e e e beens 205
ENZYME SOUICE ..ottt ettt e 206
ENZYME ASSAY.....coiiiiiiiiiiiiiieeiteee ettt et e e e ee e nne s 206
Kinetic ANalYSiS......cocooiiiieiiiniiiiiieicieree ettt 206
Cll CUIUTE ...ttt sttt ettt et e eeeans 207

Results & DiISCUSSION .....coiuuiiiiiiiieiieeitee ettt sttt e s e e esnneean 207
ACHIVE STE@..ccuuiiiiiiiieeie ettt et s et e s st e e e ae s 207
Structure-Based DeSign .........cccevviiiiiiiiiiiiiiiiii e 208

CONCIUSIONS......eiuiiiieiteiicitet ettt e a e e see e st e s b e as 215

ACKNOWIEAZIMENLS.......oceiieiiiiiiieiee ettt sae et a e as 215

BibliOZTapRy .....c.couiiiiiiiieieeecec e s 216

Chapter 7

“Structure-Based Design and Combinatorial Chemistry

Yield Low Nanomolar Inhibitors of Cathepsin D”

PIOIOZUE ...ttt 218
TItle PAZE ... s 219
ATEWOTK ..ttt e e et et s e et e b e e s e e s e e e ae e ssn e e e e e e e beeeans 220

Xiv

e e



-
oW

iy

SR

ANTI e

TN L) ISP

Voo ivand Methods

Drrected Librany D
Drverse Librany [
Livan Suntheais

R Thoughne
Siztheas o Iniher

Caepan D Avey

& DE\(U\\]\\n )

S;\eﬂﬂu ’\F

pr‘ "I "x

Direcrad Libran D

D

e Libran ey

L;hrar} S\thew

IN g
[EIEVN

Ana Re
M Rewt

5\\\ \’ ( .l Cry
f“\\mn




INErOAUCHION ...ttt ettt s sae e 222
Materials and Methods...........c.couioiriniiiiiiie e 224
Directed Library Design ........ccccociiviiiiniiiiiiiiicctctcecseee e 224
Diverse Library Design.........cccooiviiiiiiiiiiiiiiiicncce e 226
Library Synthesis .........ccocoooiiiiiiiiiii e 227
High Throughput Cathepsin D ASSay ......cccccocieiiiriiiniiiniinicececceee e 229
Synthesis of INNIDItOTS .........c.coiiiiiiiiiiiiiceeetceee et 230
Cathepsin D ASSAY ....c.coiririiiiieii e 235
Results & DiSCUSSION ......coueiiiiiiiiiiiiiiciiiii et 235
SPeCific APPIOACH. .....ccuiiiiiiiiiiiiicr et s 235
Directed Library DeSign .......cocoviiiiiriiniiiiiiiiccciecrecie et s 238
Diverse Library Design.........cocooiiiiieiiiiniiiinicceceecereeee et 239
Library Synthesis and SCTEENING ..........ccccveririiiiiiiiiiiceee e 240
Assay Results........cooooiiiiiiiiii e 242
Second Generation Library ... 244
DISCUSSION ..ottt s st s b 247
CONCIUSIONS ..ottt ettt ettt et e ae st sb et e b s et e b e s st e b e satenee 249
ACKNOWIEAZIMENLS. ......couiiiiiiiiriieieeenee et s 250
Bibliography .......ccccociiiiririiiiiii e 251
EPIHOZUE ...ttt 256

XV



Chapter 8

“Single Digit Nanomolar, Low Molecular Weight, Non-Peptide Inhibitors

of Malarial Aspartyl Protease Plasmepsin I1”

PIOLOGUE. ...ttt et neene 257
THIE PAE ...t et e 258
ADSEITACE .....iiiiiitetie ettt sttt bbbt b s h e e et et e bt e s b e eneeeateeans 259
INEPOAUCHION ...ttt sttt sr e s s e e 259
Results and DISCUSSION ....c..oiiiiiiriiiiiiieiiciteee ettt sttt ettt e 262
CREIMUSITY ..ottt ettt ettt st e besaeeeesane e e eanens 262

Lead IdentifiCation.........c.ccovieiiiiiiieieicccece et 263
Iterative OptimiZation ...........ccocovviiiiiiniiciiiiiiec e 263
Library Rp.c.cccoveviciniiiiiiiicic e 265
LiADIary Rp..coeueueeriieciiccc s 269
Library Re..ucc oo 270
Library RAR G cvoiiii e 271
Library RARBREP | v 274
Screening for Pharmacokinetic Properties............ccooevieviiniriininieneceese e 276
CONCIUSIONS....c.eneietentitiieieteece ettt ettt ettt et b e st sbe e s e s e ese e s e e st esaessenseneeseeneanes 2717
Experimental SECHION .........c.ccoviiiiiiiiiiiiii s 278
Computational Methods.............ccoiiiiiiiiiiiieee e 278
Structure EXamination ...........ccoceveerienieniieniieniienie s 278

R Scaffold Generation ... 279

Xvi



Ry Reuger
D(\kiﬂg v

1 .
Clusteriny

Ry Reager: i
Ducking ot

Cluvtering

Livrary Sypes
Lihryny St
H:zh Throy,:

K: Detern

Ting! |

Tedahy
T,
“Con,
g




R, Reagent Selection and Preparation ............cccoceveeiieniieniiccieneeie, 281

Docking of R Side Chains ...........ccoccveiniiinecincnniinineeneceeeeeeas 282

Clustering of R Side Chains ...........ccooiiiiiiiiiiiicceceee 285

Rp Reagent Selection............cc.ocoiiiiiiiiiiiiiiicccceecee 286

Docking of Rg Side Chains ..........ccccccocviiiiiiiiiiicceccceee 286

Clustering of Rg Side Chains ...........ccccociiiiiiiiiiiicccccen 288

Calculation of ClogP Values..........cccceviriiiniiniiniiniencceeseeeeee e 288

Synthesis Methods ..........ccooiiiiiiiiiiicc e 288
Library Synthesis (method 1)......cccccoceiiiiiiniininiieeeeee, 288

Library Synthesis (method 2).........ccccoiiriiniiiniinineceeeeeeeeee 289

High Throughput Plasmepsin II Assay.......c.cccovieiinniniiniiniceninnieene, 289

K Determinations ............ccooiiiiuiniiiiiiiiiciceee e 290

Scaled-up Synthesis .........c.cooiriiiiiii 292

BIDHOZIAPRY ...c..coiiiiiiiiiiiiiii e 295
EDIIOZUE ...ttt et 299

Chapter 9

‘“Conclusions and Future Directions”

PrOIOZUE ...t 300
THHIE PAZE ..ot 301
BiblIOZraphy ....coeiiiiiie e 311
Appendicies . 312-389

XVii



b

fnin |l Addiona: F
Tile Pege
P-oteir Structure |
Taz Proterr, Process
Dock Veraon 400

X 2 UC Seleat

LCSelect Conde

Functiony! Grogp 3N
Fanctiomy (}ruu," R

IR Diveruny

Da:otru;turc\ N

Dx\emf) Code

.
e )
Tnd

Tin g C«,»mh;l)(\"k




Appendix 1: Additional Publications

THHE PAZE ...t 312
Protein Structure UnIiVETSe.........cocveiuiiiiiiiiiiiiiiniiiiectectetentet et 313
Tau Protein Processing Inhibition............cccoociiviiiiiiiiniiiciicece e 315
DOCk VErsion 4.0 .......cocooiiiiiiiiiiiiiieiieiectet ettt sttt ea 316
Appendix 2: UC_Select
UC_SEIECt COAE...ueeviiiiiiitieeeeeee ettt eeeeterrrae e e s e e e e e esses s sassasrssaranes 317
Functional Group SMILES ... 330
Functional Group Rooted SMARTS........cociiiiiiiiiieeceeeee e 332

Appendix 3: Diversify

AADSEIACT ..ceeeeeeeeeeeeeeeeeeeeeee ettt aeaseaaeeaeseeeaeannanann——aeaaaeas 340
DAtASTIUCIUIES ..eeeveeeieeeeeeeeteeeieeeeeeeeettaeeareseseeettnenesssessasssssssesessssesseenssnseseerensanes 341
DIVErSifY COAE ....coueemiiiieiieiiteteeteee et 343

Appendix 4: CombiDock

PN 111 v (o1 UROUUUO PR 370
DALASIIUCIUTES v.vvvveeeeeeee e e e e e eeseeessaeaeesesaeseeseeeseessernnnsannnaaeseseeeenees 371
Selected COMBIDOCK COAE .....uunneeeeeeee ettt ettt eeeeseeaeeanes 372

Xviil



Cthlerz
Tabie | Exampie N

Tihle 2 Preterred N

Tehie 3 Compnoer

Table 3 Comher,e
Tehie 3. H}Jnﬂ)c?:.
Tae s Funciongg ¢

Chapter 4

T

e ] ]\dlm [_:-”‘r‘xf

4‘ ! ’
Tenje 2 RL‘A\'[IHH Se.

Hhia 1 )
The s Conrnrm.x!;« '




List of Tables

Chapter 2
Table 1. Example SMARTS Build-up.......c.cocoiciiiiiiiiiiiiiiinceeeeeeen, 44
Table 2. Preferred SUPPLIETS ........ccocviiiiininiiiniccr e 45
Table 3a. Common Combinatorial Reactions............ccccceceeveeiininviniiniceneeenennen. 46
Table 3b. Combinatorial Linker Functional Groups........c..cccccocvvivieninnenieennnnenn. 46
Table 4. Hydroxyethylamine Reagent Search Results...........cccccociiiiiniiinnnnnn, 47
Table 5. Functional Group SMARTS ... 49
Chapter 4
Table 1. Isatin Library Transforms ..........cccoooiviiiiniiiniininecienesenseeseeeens 136
Table 2. Reaction Sequence COntrol.........c..cocevieiiiiiiiiniinieninecieereeee e 142
Table 3. Conformational Entropy Correction .............ccceeveruieieeineenneeneenieenneenns 144
Table 4. Polyketide Synthase Transforms ............c.cccooviiiiniiiiiiininniieeneceeee 149
Table 5. SNAC Synthesis ........ccociiiiiiiiiiiie e 149
Chapter 5
Table 1. Initial HIV-RT Inhibitors........ccccooiviiiiiiiiiiiiiicinicneeeeceeeeene 193
Table 2. Optimized Inhibitor Data.............ccocoooiiiniiiiiiice 194
Chapter 6
Table 1. Tritrichomonas foetus HGXPRTase Inhibitors ...........ccccceveeeiieennnnnnee. 209
Chapter 7
Table 1. Cathepsin D Inhibition...........ccccccoviiiiiiiiiiniicce, 243
Table 2. Cathepsin D Inhibitor Structures .............ccoooiiiiiiiiiinininiicceees 245

XiX



Table 3. Second Generation INNIDITOTS .......eeeeeeeeeeeeeeeeee e

Chapter 8

Table 1. Plasmepsin II Inhibitors

.........................................................................

XX



(hapter 2
Fizure 1 Network
Fizure 2 Evsentia!
Faure 3 Phvaic i
Fizire 3 Undewire

Fizore 3 Contlyor

F

89 Hydrony

Chapter 3. Part |

Frire Cnmhd)«\l.

Foren Comhl[)mk

Fiaure 3
qure 3 :
: 1,4-f\n/ud1..

Figu

red DI\U’}hU[It'n

Fiours ¢
e s Dlxmhuu« n.

Fiz,
fre g Ennchmcnt [

nl"ipler 3, Paru

I,

Sure | Comhll)m'k \
P

; .el.ComhxD(&‘k \
Fare 3,
sure 3a~h‘ExampI’c 1




List of Figures

Chapter 2
Figure 1. Network Diagram for UC Select ..........c..cocooeriiiiiinieninineneeieeeeeiens 25
Figure 2. Essential Functional Group Selection ............ccccceeivineneninienienieieenn 26
Figure 3. Physical Property Selection.........c..ccoceoeeviniiniiniiniiese e 27
Figure 4. Undesired Functional Group Removal..........c..ccocooviiiinninniinicciecn, 28
Figure 5. Conflicting Functional Group Removal ...........ccccoceviiviiiiniininiecinn, 29
Figure 6. Supplier Selection............ccccoiiiiiiiiiiiiiiicceeeece e 29
Figure 7. Search Result Display..........ccccoociiiiiiiiiniiiiiieeceeeee e 30
Figure 8. Supplier and Ordering Information ............cccccooeriiniinieniecncinieeieee. 31
Figure 9. Hydroxyethylamine Retrosynthesis............cccceveriiniiincniinnnnienieee, 33

Chapter 3, Part 1
Figure 1. CombiDock Algorithm..........cccccccoiiiniiiiiiiiniiiceceececeee e 74
Figure 2. CombiDock INUustration............ccccoiiiiiiiiiiiiiiniiiiececenecceeeenene 75
Figure 3. 1,4-benzodiazepine Library Retrosynthesis .........cccccoceeveverieenininnennen. 76
Figure 4. Distribution of Top-Scoring Molecules............cccoceniriiinininininnenene 77
Figure 5. Distribution of Exhaustive Libraries .............c.cccccooiviniininnnncnincnnne 78
Figure 6. Enrichment Diagram ............cccccociiiiiiiiiiiiicccceceeeeees 79

Chapter 3, Part2
Figure 1. CombiDock Version 1.0 Algorithm .........c.cccceovivininnininiincnieenene 106
Figure 2. CombiDock Version 2.0 Algorithm ...........cccoccoiiiiiiniiiiniiiinncnens 107
Figure 3a-h. Example Application of CombiDock Version 2.0 Algorithm......... 109

XX1



Figure 4a,b. Example Ligands with and without the Lipinski Filter................... 111

Figure 5. Hydroxyethylamine Retrosynthesis..........cccccocevvivriiniinvienenneenieene. 112
Figure 6. Example Scaffolds...........cccoceriiiiiiiiniiininieeeeeceeeee e 113
Figure 7a. Enrichment Graph............ccccooiiiiiiniiiceee e, 114
Figure 7b. Enrichment Factor Graph .............ccccoceiiiiiiiiinininnicceesee 115
Figure 8. Molecular Weight Distribution..........c..cccceciiiinininniniincieeieee, 116
Figure 9. Hydrogen-Bond Donor Distribution............cccocceceeienveenennienieeienne, 117
Figure 10. Hydrogen-Bond Acceptor Distribution ...........c.cccecevvieevieeveenieeneennne. 118
Figure 11. Small Library Ranking .........ccccoccoviiiiiniiniiniiieeeecceeseeee 119
Figure 12. Large Library Ranking ..........c.ccccocooiiiee 120
Figure 13. Library Ranking Correlation Diagram ...........c.cccccooenviniininncnncnene. 121
Chapter 4
Figure 1. Polyketide Biosynthesis ..........cccccccoviiiiininiininiiiniiiicece 128
Figure 2. Transform Classes ..........cccverereriiiieniinieeeieseneesee et 130
Figure 3. Trnasform Data StruCture ............ccecevinieriiienenieieneeeceseese e 132
Scheme 1. Isatin Analog SyNthesis........ccooeiiiriiriiniiinierteee e 134
Figure 4. Placement of the Isatin Anchor ............c.ccociiiiiniiniiiiie, 137
Figure 5. 6-deB Biosynthesis...........ccocceeviiniiiiiniininiiiicniiceieee e 141
Figure 6. Solvation Rescore of Chemical Scoring...........ccccoceviiiivinniincnicnncnn 145
Figure 7. Solvation Rescore of Force-Field Scoring ...........cccocoviviniiiinninnnn. 146
Figure 8. Optimization Library Hits ...........ccccooviiiiinine, 147
Figure 9. Meldrum's Acid Analogs.........c.cccoiiiiiniiinininiiniieicns 150
Figure 10. Selected Macrolactone Products............cccooecviiiinininiiiiininiiicns 151

XXii



Scheme 2. FCD3.

Fizure 11. Contor

Fgure 12 Smull N

Fizure 134b Sizn

Faure 14 Compu
(hapter §

Fizure ] Lizand .

Fizure 2 Ribony

r,
Plah L
Fizire 3 Retron NS

Chapter ¢

Fawe 1. Bindin - \p

Frue2 Compernyy,

Figere 3, Mt I

Faur
e d H_\pn\‘mzh::

Chapter 9

Lure .

e ] L'xhqm\m»}
F"'l A l
ST

U E~, H.\dr”\\("’h'

F

i
dure 3 Dlreclcd Lih.

Rure
¥ Dirgggey De.

sure § Dl\ erve DL
YR

Bure ¢

: Second Gene.
%Plers |




Scheme 2. FCDS52131 SUCIUIE ... eeeeeeeeeeesesesessss s 153

Figure 11. Conformational Entropy of n-Alkanes ..............ccccocoevvevvereereeneenennnnnen. 160

Figure 12. Small Molecule Conformational Entropy ...........ccccccoevueieieienennnn. 161

Figure 13a,b. Significance of the Entropy Correction ............ccecoevuveveerrericnennnen. 162

Figure 14. Comparison to a Heuristic Method............cccoceoeininiiinncnnieieene, 163
Chapter §

Figure 1. Ligand Design Approach..........c..cccocevviiiinininiininineseeieseeeevee 190

Figure 2. Ribonuclease H Inhibition..............ccccooioiiiinninininiiieseeeeee, 191

Figure 3. Retroviral SElectivity..........ccccviiiiiiiiiininiic e 192
Chapter 6

Figure 1. Binding Mode Models...........cccooiviniininiiiiinieneeneeceie e 210

Figure 2. Competitive Inhibition Data.............ccccccoiiniininininiee, 212

Figure 3. in vitro Inhibition............ocooiiiiiniiiicee e 213

Figure 4 Hypoxanthine Reversal of Inhibition ............cccccoccoviiininiinnnnnen. 214
Chapter 7

ATEWOTK ..ottt e e e be e s e ba e e ne s 220

Figure 1. Mechanism-Based Inhibitor Design.........c.ccccccovinvinninninnnninninen, 236

Figure 2. Hydroxyethylamine Retrosynthesis............cccocevieveriencieninienieeiennee. 236

Figure 3. Directed Library Design........cccccociieiniiniiiiniiiiineeeteeie e 238

Figure 4. Directed Design Library Componenets...........cccccocueeuerniennenneenieenennn. 241

Figure 5. Diverse Design Library Componenets .............ccccoceeveeinienennieneeneene. 242

Figure 6. Second Generation Library Componenets...........c..cccceevevrienveniennennenne. 246
Chapter 8

XXiil



Figure 1. Hydroxyethylamine ISOStere............ccccovevuineiininincnienineceeeie, 261

Figure 2. Synthetic Approach ...........c.ccoceiiiiiiiniii e, 263
Figure 3. Diverse RA Side Chains.......c.cccccooeriiiiiiiiinineeieeeeeee e, 266
Figure 4. Modeled RA Side Chains.........ccccoooviiiiiiiiiinienenceeteeeeieen, 267
Figure 5. Model of Initial Inhibitor............cccccooiiiiiiniiiec e, 268
Figure 6. Crystal Structure of Initial Inhibitor.................cocoiiiiiiie 268
Figure 7. Agy Analog Side Chains ..o 269
Figure 8. Diverse Rc Side Chains...........c.ooooiie 271
Figure 9. RAR¢ Side Chains ..., 273
Figure 10. RARgRP; Side Chains ..o 275
Figure 11. Crystal Structure of Plasmepsin IL............cccccoccniniiiininnininen, 279
Figure 12. Pepstatin in the Plasmepsin II Active Site...........coccoocveviininicninnnnnen. 280
Figure 13. Structure-based Design Strategies...........cccecerereevineiicneniencreenen. 281
Figure 14. Anchor and Grow Docking Method .............ccccceovviniiiiiiniencnnnenen. 284
Figure 15. Diverse and Modeled Rg Side Chains...............ccccoiiniiiininicnenen. 287

XX1V



Chapter 1: Introduction

by

A. Geoffrey Skillman
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Improving and extending human life has long been a cherished pursuit of society
and science. From their inceptions, the disciplines of medicine and pharmacology have
been intellectually and methodologically intertwined in this joint endeavor. From the 5th
century B.C., when Hippocratic physicians began deciphering the connections between
precieved physiological disorders, disease, and appropriate curatives, to the modern era,
where diesases are understood, diagnosed, and treated at a molecular level, physicians
have continued to prescribe pharmacologic treatmens to cure or palliate their patients(1).
‘While it must be appreciated that surgical, behavioral, dietary, and mechanical modes of
treatment are also major contributors to modern therapeutics, pharmacological methods
hold a fundamental role in the treatment of most medical maladies. Drugs and the pharma-

cological regimens they comprise will continue to play an important role in the care of

humans long into the twenty-first century.

A wide variety of agents acting by a myriad of mechanism can be considered phar-
macological therapeutics. These agents can be classified according to their pharmacody-
namic function, as defined by the target type and biological endpoint (beta-adrenergic
agonists or calcium channel blockers) or according to the medical divisions used to cate-
gorize diseases (antihypertensives or neuroleptics). Nucleic acids (gene therapy), whole

proteims (urokinase), peptides (insulin), small organic molecules (furosemide), molecular
eleme nts (oxygen), and even ions (potassium) are used as pharmacological agents in treat-
ing diseases(2). These agents can act in the body as enzyme inhibitors (methotrexate),
receptor agonists (albuterol) or antagonists (propanolol), channel blockers (nifedipine),
allosteric effectors including allosteric effectors of transcription factors (estrogen), or by

promoting or interrupting natural complexes(epoetin alpha)(2). Considering the vast



diversity of biological targets and pharmacological endpoints, the pharmacological targets
currently utilized can be classified into relatively few categories including; enzymes (pro-
teases in particular), transmembrane receptors, transcription factors, signal proteins
(kinases and phosphorylases), and structural elements. Finally, each of these agents may
be delivered by a variety of routes including: oral, intravenous, intranasal, intramuscular,
intrathecal, subcutaneous, inhaled, per rectum, topical, and transdermal, with different
pharmacokinetic properties and potencies in different formulations.
Initially drugs were almost solely natural products and were often delivered in
impure or partially purified forms. As chemistry developed as a field, the purification and
identification of small molecules, including natural products, became possible. Natural
products remain a rich source of medicinally important molecules including aspirin, mor-
phine, digoxin, cyclosporin, and lovastatin(3). Not only are natural products used as drugs,
but beginning around the turn of the century, they also began to serve as templetes for
develpment of synthetic and semi-synthetic analogs. Modern synthetic chemicsts con-
tinue to be educated and challenged through the synthesis of natural products(4). It is only
in the last sixty years that medicinal chemistry has flourished to the point of identifying
novel compounds with desired pharmacological properties and developing these “lead”
compounds via the planned synthesis of related molecules(5). Further, it has only been the
last twwenty years that computational chemistry has been able to make a large impact on the

design of small molecules with desired physical and biological properties(6, 7, 8, 9, 10,

11,12).

The design of small molecules with specific properties can be framed as a con-

strained optimization problem. The optimized function is the binding energy (AG), the dif-



ference in free energy between being bound to the receptor and being in aqueous solvent.
This optimization is constrained by the fundamental (and obvious) constraints that the
small molecule solutions to the problem are bound first by the structural principles of
chemistry and second by the complex biological systems in which they act. The biological
constraints include the concepts that the ideal molecule will be orally available, soluble,
non-toxic, non-teratogenic, not metabolized too rapidly or too slowly, not bind to serum
proteins, able to cross biological membranes, and, most importantly, able to carry out the
desired biological function.

Prediction of the biological function and potency of small molecules has long been
a pursuit of computational chemistry (vida infra). While recent work defining molecular-
structure surrogates for the ability to cross biological membranes has greatly enhanced our
ability to design compounds with this property, we have only a rudimentary understanding
of the molecular motifs which effect toxicity, metabolism, and oral availability(13). The

balance of the biological constraints are fulfilled only on an empiric basis, thus introduc-

ing much of the risk to drug development.

The constraints that chemistry places on the solutions are that they must be mole-
cules rather than collections of independent atoms. This constrains the topology, scale,
flexibility, and physical properties of the compounds based upon the finite number of sta-
ble hybridization, valence, charge, and bonding states of atoms. Chemistry further con-

strains the molecular solutions to the subset of molecules which can be synthesized by
known chemical reactions. Although the exact degree of this constraint is subject to small
variations in knowledge, technology, technique, and resources, from larger perspective, it

1s arigid constraint. Despite all of these constraints, it has been estimated that between



10°? and 102%° small molecules which fulfill all of these constraints are possible(14). Thus
it has become useful to generate models of some of these small molecules and use these
models to predict their physical and biological properties prior to the measurement of the
property or indeed even before the synthesis of the compound.

Prediction of molecular properties is an exceedingly broad topic. We will focus
first on prediction of properties of small organic molecules of pharmacological interest,
and focus even further on prediction of the interaction of those molecules with macromol-
ecules with known atomic-resolution structures. DOCK is one computer program for ana-
1y zing these interactions(15, 16, 17). In DOCK, the interactions of small molecules and
macromolecules are estimated using a molecular mechanics force field with the assump-
tions that bonds are unbreakable and all interactions are pairwise. The potential also
assumes all bond lengths and angles are fixed, and the torsion angles can be assumed to be
fixed or allowed to move. The current potential has two enthalpic terms and no entropic
term and takes no account of the thermodynamic cycle. The solvent electrostatic screening
is modeled using a 4r distance dependent dielectric constant. The final assumption is that

the charges are atom-centered point charges calculated using the method of Gasteiger(18).

Dock Score = Z(i,j) (AiAj/(l'ij)lz - BIBJ/(I'U)6 +332.0 qqu/4(l'U)2)
(for details see Meng et.al.(17))

Despi te these limitations, DOCK is still successful at screening databases of available
compounds to identify low micromolar inhibitors(19, 20, 21, 22, 23, 24). This utility
comes because DOCK is exceptional at identifying true negatives. DOCK can be used to
quickly eliminate all the compounds which simply have no chance of binding in a target
pocket. When screening the ACD, even if half of the small number of inhibitors are elimi-

nated (sensitivity 50%) it is acceptable because DOCK generally eliminates more than



99% of the non-inhibitors (specificity >99%). This high specificity is essential, because
the prevalence of inhibitors in the ACD database is very low. Even a two percent false pos-
itive rate would result in thousands of false positives, effectively swamping out the few
inhibitors and yielding very low hit rates in the final selections. Additional screening to
eliminate the false positives caused by systematic errors is extremely helpful. Compounds
which have large hydrophobic groups extending into the solvent, too many buried hydro-
gen bond clashes, bias caused by excessive polarization (multiple halides or multiple nitro
groups), and long chain aliphatics can be eliminated . Finally, clustering can be helpful so
only a single compound from each structural class is assayed initially(25).

After a typical molecular docking exercise, the best scoring 100’s to 1000’s of
compounds are examined, and between 20 and 100 compounds are purchased and
assayed. Screening assays are usually run at concentrations between 10 and 1000 uM,
resulting in “hit” rates (>50% inhibition in the single point assay) between 10 and 30 per-
cent. In many cases, the best inhibitor identified by an experienced computational chemist
has an ICs( or K between 1 and 10 uM. It is also common to follow-up the initial screen-
ing hits with similarity searches and further screening. In favorable cases, when the data-
base contains many similar compounds, these searches can yield significant increases in
binding potency (an order of magnitude or more). In addition, they are an outstanding

source of ideas for synthetic optimization of the hits. Despite its approximations, when
appliexd to the problem of database screening, DOCK is an outstanding example of the suc-
cessful application of computational chemistry to make practical and prospective predic-
tions about relevant biological interactions.

In the fall of 1994, the Kuntz group critically reviewed DOCK and the molecular
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docking field. The major limitations discerned at the time were: first, ligands were treated
as a single low-energy (CONCORD(26)) conformation; second, only one conformation of
the target macromolecule was considered (27); third, the scoring function only addressed
ligand-receptor enthalpy(17), neglecting entropy, solvation, and desolvation; and finally,
not enough molecules were being screened to consistently identify sub-micromolar inhib-
itors. To expand this final point, it was recognized that based on estimated random screen-
ing hit rates (1hit/5,000-10,000 compounds screened), even with a perfect calculation of
binding energy for each compound, it was likely that only a handful of low micromolar
inhibitors would be identified among the 100-200 thousand compounds in the ACD. This
illustrates the necessity to screen additional molecules in order to identify more potent
inhibitors.

Over the past five years, each of these problems has been addressed both within the
Kuntz group and in the general scientific community. Ligand flexibility has been
addressed by two contrasting philosophies. First, flexibase methods(28) represent each
ligand by a series of rigid low energy conformations. Second, ligand conformations can be
constructed to fit into a particular active site by either distance geometry methods(29) or a
variety of incremental growth algorithms(30, 31, 32, 33). Knegtel, Kuntz, and Oshiro
developed a method to assess areas of receptor structural variability from NMR or multi-
ple crystallographic structure and dock to this receptor ensemble(34). Other groups have
recently begun to address receptor side-chain and backbone flexibility(35). Further, multi-
ple methods are under development to adapt molecular dynamics techniques to simulta-
neously improve scoring functions and incorporate receptor flexibility for screening of

tens or hundreds of compounds(36, 37, 38). However, state of the art molecular docking
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continues to approximate the macromolecular target with a single rigid structure.

In 1994, the most common DOCK scoring function involved only two terms, a
coulombic potential and a van der Waals 6-12 potential with parameters adapted from
AMBER(17). Development of new scoring functions has been a topic of intense activity
over the past five years. Much of the work has gone into a myriad of empirical scoring
functions developed to optimize the fit of calculated and experimental AG’s for a series of
compounds(39, 40, 41). Although the initial fittings are often quite impressive, with aver-
age errors as low as 1 kcal/Mol, these methods often fail to produce such splendid results
when extrapolated to more potent compounds or when applied to a receptor not repre-
sented in the training set. There have also been significant developments in inclusion of
solvation terms into molecular mechanical force-fields, either by the Poisson-Boltzmann
approximation(42), or by the generalized-Born method(43, 44, 45). Although these meth-
ods have recently seen dramatic increases in speed, they still cannot be used to screen hun-
dreds of thousands of compounds; furthermore, it is not yet clear how accurate they are at
predicting binding energies across a diverse set of examples.

In 1994, initial attempts to increase the number of compounds being screened had
taken the form of de novo design programs(11, 39, 46, 47, 48, 49). These programs used a
variety of random (non reaction-based) changes to the chemical structures of molecules in
order to optimize their interactions with the receptor. De Novo design programs fell short
in two critical ways. First, the molecules they generated were often too complex to be syn-
thesized. Second, approximations in the scoring functions made it too risky that the newly
synthesized compound would not make the predicted interaction. These limitations made

the field ripe for the integration of small molecule combinatorial chemistry.
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Combinatorial synthesis has long been used in biological systems to build up bio-
logical polymers such as DNA, proteins, and polyketides. Recently, however, the synthesis
of drug molecules has been revolutionized by combinatorial chemistry methods(50). Com-
binatorial methods have effected all areas of synthesis including drug-like “priviledged”
libraries such as well known as receptor antagonist benzodiazepines and the mechanism-
based protease inhibitor (hydroxyethyl)amines. Libraries are now commonly synthesized
in both solid and liquid phases and in single compound as well as small mixture formats.
Regardless of the strategy, one must confront the fundamental problem that there are many
more potential compounds than can practically be synthesized.

The integration of structure-based design and combinatorial chemistry has been
extremely successful because the strengths and weaknesses of these two powerful tools
complement on another. Combinatorial synthesis methods allow a single chemist to syn-
thesize a remarkable number of compounds; however, the potential number of compounds
they could synthesize is expanded by an even greater number. Structure-based design
methods allow rapid approximation of the binding constant of many potential compounds
in a statistically significant population of compounds; however, in any individual case,
structure-based design has the potential to fail. When integrated, the computational meth-
ods offer the combinatorial chemist a means to assess an entire library of virtual com-
pounds and focus on a subset of those compounds enriched with the most interesting
compounds. The combinatorial synthesis of tens, hundreds, or even thousands of com-
pounds allow a computational chemist to make predictions on a statistically significant
number of compounds, where the approximations necessary for computational feasability

do not carry such a heavy impact. The complementary integration of combinatorial chem-
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istry and structure-based design is a successful means to inhibitor discovery and optimiza-
tion.

Combinatorial chemistry makes it possible to efficiently generate large families of
ligands. Merging combinatorial chemistry strategies with structure-based design princi-
ples allows the exploration of virtual libraries containing billions of compounds. We have
developed three tools for the efficient construction and design of combinatorial libraries.
UC_Select is an internet-based tool that allows synthetic chemists to select reagents for a
virtual library (Chapter 2). Diversify is a program that allows a computational chemist to
generate virtual libraries for molecular docking (Chapter 4). The final tool, CombiDOCK,
is a variation of the structure-based design program DOCK, which has been optimized for
designing combinatorial libraries (Chapter 3). We describe these tools and demonstrate the
application of structure-based design and combinatorial chemistry to the inhibition of
HIV-1 Reverse Transcriptase (Chapter 5), T. foetus Hypoxanthine-Guanine-Xanthine-
Phosphoribosyltransferase (Chapter 6), Cathepsin D (Chapter 7), and P. falciparum Plas-
mepsin II (Chapter 8). The tools described and demonstrated here can be used to rapidly

design inhibitors of medicinally important enzymes.
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Prologue to Chapter 2
At first blush, it is ironic that UC_Select, the most innovative program I have
developed as part of this thesis, came into being only after I relaxed my focus on pharma-
ceutical chemistry. On the other hand, perhaps it is fitting that the best idea was from an
integration of chemistry and computational knowledge, when my training has been based
on the premise that there are unique insights to be gained by working at the interface of

several fields.

After completing my oral exam in March of 1997, I decided to spend a month pur-
suing “fun” projects. I read The Essence of Program Design, a book about the philosophy
of computer program design principles, and Foundations of World Wide Web Program-
ming with HTML and CGI, a book about computer programs to generate interactive web
pages on the fly (Common Gateway Interface or CGI programs). Out of these *“fun” pur-
suits grew UC_Select, a program built with the Daylight CGI toolkits I'd originally heard
about one year earlier at the MUG 96’ conference during Dave Weininger’s presentation
of the “zero cost seat”. UC_Select is reagent selection software based on the needs and
shortcomings I'd seen through my experience working on the cathepsin D project with
Ellen Kick and on the HIV-1 reverse transcriptase project with Meg Stauber and Karl
Maurer. Finally, in late March 1997, I developed the program specifications, datastruc-
tures, and flow based on several long conversations with Meg Stauber, a synthetic chemist
whose input, friendship, and great blocking I will always appreciate. Happily, I can report
that UC_Select has been very well received in the medicinal chemistry community. We
have received electronic license agreements from 49 institutions, including academic insti-

tutions, such as Stanford University, University of California, San Diego, University of
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Copenhagen, University of Tokyo, and Erasmus University in Rotterdam as well as from
pharmaceutical companies such as Abbott, Glaxo Wellcome, Ontogen, Parke-Davis,

Pfizer, Smith Kline Beecham, and Boeringer Ingleheim.



Chapter 2

UC_Select: Development and
Implementation of A Common
Nomenclature Method to Search
Chemical Databases.

by
A. Geoffrey Skillman, Tasir Haque, and Irwin D. Kuntz

presented as “Recursive SMARTS for Synthetic Chemists.” at MUG9S, February 1998,
Santa Fe, New Mexico.
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Abstract

Combinatorial libraries have become an extremely efficient tool for identifying
compounds which have specific biological and physical properties. In order to take full
advantage of a combinatorial library, you must be able to describe each of the potential
molecules which practically can be synthesized in that library. UC_Select is a web-based
program which allows chemists to use common nomenclature to select chemical reagents
appropriate for a combinatorial library synthesis. We elucidate the utility of this tool in
two examples. First, we demonstrate selection of amine and acylating reagents for a
(hydroxyethyl)amine combinatorial library. A set of 426 primary amines and sets of 1,752
and 2,221 acylating agents compatible with the synthesis were identified from the Avail-
able Chemicals Database (ACD). Second, we use UC_Select to identify molecules which
can be easily derivatized using common combinatorial reactions. Each of the 5286 mole-
cules we identified in the ACD represents a potential combinatorial library. This “privi-
leged” subset of the ACD contains molecules which have the potential to be outstanding
lead compounds; therefore, we may wish to give them special attention in screening

efforts.

Introduction

A general problem in information science consists of: defining, collecting, and
organizing the pertinent information necessary to solve a problem; next, identifying the
people with the knowledge and skills to solve the problem; and finally, delivering the

information to them in a format they can understand and utilize by a means which they
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will find practical and efficient"). Today, collection and organization of data occurs on
computers, so the information must be stored by a means which is efficient for storage as
well as retrieval by computational methods. Too often, information systems are built to the
developer’s specification rather than the appropriate end user’s specification. Indeed, a sig-
nificant portion of solving an information problem can be determining who is most quali-
fied to use the information. Delivering the appropriate information to the wrong user can
be at least as deleterious as delivering incorrect information to the appropriate user. The
information must be made accessible to the final user by a method which allows them to
intuitively identify and retrieve the information by a procedure which parallels the way
they think about solving a problem. Finally, the information should be delivered in a for-
mat which is convenient for the end user to utilize and must include all details necessary to
solve the problem.

Definition of the scope and size of a virtual library based on a well-defined combi-
natorial synthesis is a problem which falls into this framework of information-based prob-
lem solving. The synthetic chemists familiar with the scope of the reactions used to make
the library are the best qualified to define the virtual library. Thus, the databases of avail-
able chemicals must be delivered to synthetic chemists in a format they understand, find
useful, and are willing to use. These databases of available compounds are large, contain-

ing hundreds of thousands of very heterogeneous compounds, each with accompanying

physical biological, medicinal, or commercial data®. Efficient storage of chemical infor-

mation is a long-standing problem which has been solved by linear string representations

of chemical compounds such as Wiswesser Line Notation (WLN)® or SMILES“",

These representations contain all of the atomic content and bonding connectivity of the
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molecules, and can be “read” directly as text by a practiced user. Further, the text represen-

tations can be canonicalized allowing unique representation as well as reliable data storage

and retrieval as well®.

Despite the advantages of these solutions, they are not an intuitive means for a syn-
thetic chemist to describe reagents. Chemical structures are formally described by IUPAC
nomenclature. However, this system is far too rigid and cumbersome for everyday use, so
chemists often speak of chemicals using the common nomenclature, from which the more
formal incarnation grew. Although common nomenclature allows for some points of ambi-
guity, its ease of use and flexibility make it central to the way synthetic chemists think
about reagent selection. Another avenue for chemists to designate molecules is through

Kekulé structural diagrams. Search methods based on this technique have been imple-

mented in both the xvMerlin® and ISIS-base(” search engine clients. While this is the
preferred method for identification of individual compounds, when searching for combi-
natorial library reagents it becomes quite time consuming, lacking in functional group
specificity and without an easy means to carry out complex, multi-functional group
searches. Further, these methods suffer because they are often not directly available in the
chemist’s laboratory and involve a moderate learning curve to become an efficient user.
The importance of convenient information access is emphasized by the anecdote that for
small libraries, many chemists prefer to select reagents from a chemical vendor catalog
rather than from a more thorough ISIS or Merlin search.

To overcome non-specificity of substructure searches derived from Kekulé dia-

grams, more complex search languages such as SMARTS have been developed(s).

SMARTS search strings are a superset of SMILES strings and include versatile search fea-
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tures such as atom and bond wildcards, boolean functions, as well as valence, charge, con-
nectivity, and stereochemistry specifications. SMARTS also contains two other features
which are essential for developing sophisticated searches. First, any search can define the
necessary environment of an atom (or functional group) as well as the atom (or functional
group) itself. Second, any SMARTS search string can be associated with a variable name.
These variables can then be used in subsequent SMARTS strings, being recursively
replaced before the search is carried out. These features allow complex search strings to be
devised, developed, and maintained in a reliable manner.

Here we describe the development of a search method based on common nomen-
clature. We have developed specific SMARTS strings for about seventy common func-
tional groups, atom types, steric definitions, and relative atomic positions. By identifying
and utilizing a “root atom” for each functional group, we have constructed the SMARTS
so that they can be easily combined with boolean functions or modified with relative posi-
tions of nearby functional groups. As a second level of abstraction, we have combined
these initial SMARTS to generate search strings for secondary functional considerations
such as “beta hydroxy carboxylic acids.” They have also been combined to form “meta”
functional groups such as “nucleophiles” or “hydrogen-bond donors.” These common
nomenclature SMARTS definitions can be used as the intuitive language for synthetic
chemists to search for combinatorial reagents.

In order to deliver this intuitive search method to synthetic chemists, we have

developed an internet based search tool. The internet provides a very low-overhead

method to distribute information to synthetic chemists®. Most chemists are familiar with

internet browsers and internet forms, which have been developed by third-party suppliers
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to be simple and comfortable interfaces. In our implementation, chemists define the search
using a simple HTML form on any computer with an internet browser and web connec-
tion. The chemist chooses the reagent by selecting its primary (and secondary) functional
groups from a list of common chemical nomenclature names. This simple interface has
been enhanced to improve the control the chemist has during reagent selection. In addition
to the primary and secondary functional groups, chemists can discard toxic, reactive, or
highly metabolized reagents. Chemists can limit the search using physical properties such
as molecular weight and rotatable bonds. After a search is defined and executed, pertinent
information is returned to the chemist’s browser so search results can be refined, utilized,
and recorded. By having the search defined locally by the chemist, but carried out cen-
trally, a single database can be maintained and searched by many chemists. We have
developed an internet-based search interface which allows synthetic chemists to select

chemical reagents for combinatorial libraries using common chemical nomenclature.

Methods

We have developed a recursive nomenclature to describe chemical reactions and
functional groups using an extended set of Daylight’s SMARTS search language. The
nomenclature allows simple descriptions of functional groups and secondary interactions.
However, when the nomenclature definitions are used to resolve these simple descriptions,
the results are complex SMARTS search keys which define the relevant chemistry in a
way which is both sensitive and specific. We have implemented these functional group

descriptors into a common-nomenclature based search method. UC_Select is an internet-

based (CGI)(1? implementation of our common chemical nomenclature search method
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which allows synthetic chemists to identify potential reagents for combinatorial libraries
using their internet browser.

Common Nomenclature SMARTS definitions

We developed a general SMARTS representation for chemical functional groups.
We desired these functional group definitions to be easily combined to describe boolean

searches as well as the chemical and steric environments of functional groups. Initially, we

analyzed a list of approximately 70 common functional groups(l D(es. carboxylic acid,
alcohol, isocyanate), developed a set of common components of functional groups (e.g.
hydroxyl, carbonyl), and identified the unique atoms which make up these structures (e.g.
carbonyl carbon, carbonyl oxygen). For each functional group we defined a root atom as
the atom which synthetic chemists refer to when identifying the relative positions of func-
tional groups in common nomenclature (e.g. the carbonyl carbon is the root of carboxylic
acids). SMARTS descriptions for each atom, component, and functional group were con-
structed in a hierarchical manner. The SMARTS for each functional group was defined as
the root atom plus its environment (see appendix 1 of this chapter). The SMARTS for rel-

ative positions (e.g. alpha, beta, gamma, ortho, meta, and para) were adapted from the

Daylight User Manual®. The atom root of the SMARTS definitions allow functional
groups to be combined for boolean searches (e.g. isocyanate or isothiocyanate), relative
positions (e.g. meta-chloro aniline), or steric environment (e.g. beta-branched ester) in a
systematic manner without excessive numbers of special cases (Table 1). Furthermore, the
construction of complex search keys from simple building blocks minimizes debugging
and maintenance of the definitions because corrections and updates need only be made in

one place.
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Figure 1: Network diagram for UC_Select. UC_Select is both a common gateway inter-
face (CGI) program related to the web server and a Merlin client program, related to the

Chemical database server.

UC_Select

UC_Select is a CGI program which is also a client program to Daylight’s Merlin

Server (figure 1)®. Merlin is an extremely efficient search engine for managing chemical

structures and information. UC_Select provides a synthetic chemist, via their web-

browser, a simple interface to large databases of compounds. UC_Select allows chemists

to build complex searches by filling out a simple HTML form('?. There are four phases to

UC_Select’s search process. First, an essential functional group is selected (generally the

functional group which will participate in the combinatorial reaction) (figure 2).
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Figure 2: Essential Functional Group Selection. This illustrates the initial portion of the
user interface as viewed within the Netscape browser. By selecting combinations of but-
tons and lists, the chemist builds the essential functional group as well as its chemical and
steric environment.

This first step allows the chemist to specify secondary interactions, such as nearby func-
tional groups and nearby steric environments, in the selection of an essential functional

group. Second, compounds are culled according to a series of physical properties, includ-

ing molecular weight, calculated logP(o/w)(&lz), number of rotatable bonds, number of
hydrogen bond donors, number of hydrogen bond acceptors, and number of formal
charges (figure 3). Third, compounds which contain medicinally less desirable functional
groups are eliminated by default, however, the chemist has the option to keep any of these

“bad” functional groups (figure 4). Fourth, the chemist selects functional
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Figure 3: Physical Property Selection.

groups not compatible with the particular synthesis of interest from a large list of gener-
ally acceptable functional groups (figure 5). These compounds with incompatible func-
tional groups are eliminated. Finally, based on more practical yet essential grounds,
compounds only available from undesirable suppliers or compounds which are too expen-

sive for a particular application are eliminated (figure 6).

Once the HTML form is filled out and submitted by the chemist, the web-server
passes the results of the form to UC_Select as a set of variables. UC_Select parses the

variables into a series of Merlin searches (SMARTS, SMILES, and parametric searches)
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Figure 4: Undesired Functional Group Removal.

and carries out the searches. While the searches progress, UC_Select sends updates on the
status of the searches back to the chemist via the chemist’s web-browser (figure 7). When
the search is complete, UC_Select sends the results to the chemist in one of several possi-
ble formats (selected by the chemist) which can include HTML links to ordering informa-
tion on the compounds and small depictions of each compound (figure 8). This program
brings the very powerful chemical search capabilities of Daylight’s Merlin server into the
hands of the user with the most knowledge about the synthetic problem at hand. The web-
based form interface allows complex information to be encoded by the chemist in a

nomenclature they already know while still taking advantage of many of the complex

28

o ———

o



z
;
|

Figure 6: Supplier Selection

|
_i

29




Figure 7: Search Results Display

search operations which make the Merlin system so useful.

Example 1: (Hydroxyethyl)amine Combinatorial Library

We demonstrate the use of UC_Select to identify groups of reagents for a combi-

natorial synthesis. We use a (hydroxyethyl)amine combinatorial library with three substit-

uent groups as an example(m. The synthesis requires a set of primary amines and two
similar (but not identical) sets of acylating agents. The synthetic method was analyzed to

determine functional groups which would interfere with or be degraded by each step of the

synthesis and these criteria were used to search the ACD version 95.1%). The groups of

acylating agents included carboxylic acids, acid halides, isocyanates, isothiocyanates,
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Figure 8: Supplier and Ordering Information

and sulfonyl halides as the primary functional groups. Molecules with multiple copies of
the essential functional group were eliminated. Reagents were selected from a list of those
available from “preferred” suppliers (Table 2) and a maximum price limit of $100 per
gram was set. The molecular weight of the side-chains were limited to 100-275 amu. In all
of the searches, compounds with the following reactive, toxic, degradable, or difficult to
model atoms or functional groups were removed: phosphoric acids; phosphonic acids; sul-
fonic acids; sulfonic esters; anhydrides; peroxides; azides; azos; atoms other than C, O, N,
S, F, Cl, Br, I, H, or B; four or more halides; two or more formal charges; two or more
nitro groups; a dipeptide; or a macrocycle.

For each search, additional functional groups which were not compatible with this

specific synthesis were also removed. For the primary amine search, compounds with
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alcohols, aldehydes, alkyl halides, amino acids, carboxylic acids, hydroxylamines, nitros,
phenols, and thiols were eliminated. For the acylating agent searches, compounds with
alcohols, aldehydes, amines, amino acids, hydroxylamines, nitros, or thiols were elimi-

nated. The acylating agents for the R, position also had alkyl halides and phenols

removed; however, these were allowed in the R3 reagent set. Results are given below.

Example 2: Available Combinatorial Lead Library

We used UC_Select to identify a subset of compounds from the ACD which have
analogs that could be synthesized by common combinatorial reactions. In this manner,
each molecule in the subset is a representative from a virtual combinatorial library. First,
we selected twenty common combinatorial reactions and analyzed the functional group
created in the product of the reaction (table 3). For instance, solid phase synthesis of pep-
tides forms an amide functional group. We compiled a list of the functional groups from
the common combinatorial reactions, which we’ll refer to as the “combinatorial linkers.”
Further, we desired that each molecule represent a non-trivial combinatorial library, so we
required that each molecule contain two rings each connected to a “combinatorial linker”
by a path containing seven or fewer atoms. In addition, molecular weights were limited to
100-450 amu’s. Molecules with reactive, unstable, and medicinally undesirable functional

groups were also eliminated. UC_Select was used to carry out this search in the ACD

95.1®, Approximately 14,500 compounds were identified which filled these search crite-
ria. Unfortunately, many of them were medicinally uninteresting. To eliminate these, the
additional criteria that at least one of the two rings be a heterocycle was applied. 5,286

available compounds were identified which fulfilled all of these search criteria. Not only
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are these compounds medicinally interesting, but they each represent a potential combina-

torial library.

Results

Example 1: (Hydroxyethyl)amine Combinatorial Library

The original synthetic scheme for (hydroxyethyl)amine inhibitors can be seen in

the retrosynthesis (figure 9)(14),

Figure 9
H H R/
Ra,n,N g N\n,n2 > Ni ONos + RyNH, 4+ R,CO,H + R;CO,H
(0] : (0] :
ph” pn”

1

Components employed to prepare the (hydroxyethyl)amine library. Isocyanates and sulfonyl chlorides,
which can be used to incorporate R, and Rj, provide ureas and sulfonamides, respectively.

The primary scaffold bound to solid phase first undergoes nucleophilic attach by a primary
amine with the loss of the O-nosyl leaving group. Here the nucleophilic attack requires
that the amines must not contain any facile leaving groups such as alkyl halides. Next, the
second variable point is added by acylation of the newly created secondary amine. This
constrains the second set of variable side-chains to not include strong nucleophiles. The
scaffold azide is then reduced to a primary amine, unmasking the final site of acylation
and requiring that the first two sets of side-chains not contain any easily reducible func-
tional groups. The third variable group is then added by acylation of the newly unmasked
primary amine. Finally, the library is acid cleaved from the solid phase with tri-floro-acetic

acid. This requires that all three sets of side-chains must be stable to mild acids. All of
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these constraints were considered when selecting reagents.

Initially all selections were made using the complete set of convenient suppliers
who combine to offer 127,310 unique reagents (table 2). However, because of reagent
costs, two major suppliers, Maybridge and SALOR were eliminated. This dramatically
reduced the number of unique reagents to 41,803. Later, these more expensive reagents
were again considered for more focused optimization libraries, where the likelihood of
finding potent molecules was higher. The molecular weight limit of 100-275 amu elimi-
nated 16,360 compounds, and a price limit of 100 US dollars per gram eliminated 87 addi-
tional compounds. No limits were placed on the charge, rotatable bonds, or number of
hydrogen-bond donors or acceptors in this group.

The R1 search was for primary amines without any constraints on nearby func-

tional groups or steric hindrance. The supplier selections and physical property constraints

(vida supra) left a pool of 25,356 compounds from the ACD 95. 1®_ The search for pri-
mary amines was carried out in two stages, first SMILES, then SMARTS. The fast
SMILES search for compounds containing aliphatic nitrogen identified 11,084 com-
pounds. When the specificity of the search was constrained to primary amines with
SMARTS, 1,420 compounds were identified, but 134 of these contained two or more pri-
mary amines and were eliminated. Undesired functional groups (those that are generally
undesirable as well as those which conflict with the reaction at hand) were then removed
from this set. The number of compounds removed for each functional group can be seen in
table 3. Note that these numbers are order dependent because some compounds which
were eliminated may have contained multiple undesired functional groups. However, the

final set of remaining reagents was not dependent on the search order. Four-hundred
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twenty-six primary amines which fulfilled all of the criteria for our combinatorial synthe-
sis were identified.

An individual search was carried out for each of the five acylating functional
groups in order to track their contributions separately. All searches began with the same
25,352 available compounds as were used in the primary amine search (vida supra).
Details of each search can be seen in table 4. 1,754 acylating agents compatible with the
synthesis at R2 were identified (1,308 carboxylic acids, 207 acid halides, 30 isocyanates,
105 isothiocyanates, and 104 sulfonylhalides). The addition of 227 phenols and 240 alkyl
halides allowed 2,221 compatible acylating agents at R3.

Example 2: Available Combinatorial Lead Library

UC_Select was used to select compounds from the ACD 95.12), Fourteen conve-
nient and reliable suppliers were used resulting in 127,310 compounds (table 2). The
molecular weight of the compounds (not including counter-ions) was limited to 100-450
amu, resulting in 111,704 compounds. One-hundred thirty seven compounds were elimi-
nated because they cost more than $100/gram. The initial search was for a ring atom sin-
gly bound to a non-ring atom, yielding 97,512 compounds. Next, the primary search was
carried out. First, the meta-functional groups “combi-linker” and “any connection” were
created. The “combi-linker” functional group is the boolean “or” of the products of 20
common combinatorial reactions (vida supra, table 3). The “any connection” meta-func-
tional group is a boolean *“or” of from O to 7 bridging atoms. The primary search was for a
ring atom with “any connection” to a “combi-linker” with “any connection” to an atom
from a second ring. When applied, 17,542 compounds fulfilled this primary search. The

final step was to eliminate compounds with the following undesired functional groups;
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phosphoric acid (20), phosphoric ester (19), acid halides (7), sulfonic acids (11), sulfonic
esters (28), anhydrides (38), peroxides (0), unusual atoms (11), azides (33), azo (30),
unbranched chains >4 atoms in length (680), four or more halides (1429), two or more for-
mal charges (3), aliphatic chains >7 in length (394), two or more nitro groups (156),
dipeptides (104), and macrocycles with >7 atoms (37). This left 14,542 compounds which
fulfilled all of the search criteria. When the additional constraint that at least one of the
rings be a heterocycle, the list was further reduced to 5,286. While UC_Select indepen-
dently carried out many sub-searches in this case, these data represent only two searches
by the user, the combi-linker library (14,542 members) and the heterocycle combi-linker

library (5,286 members), emphasizing the ease and efficiency of UC_Select.

Discussion

The development of the common chemical nomenclature search method described
here facilitates sophisticated chemical searching by synthetic chemists. Chemists regularly
describe chemical reagents for a combinatorial library using common nomenclature, so
they find this search technique natural and are willing to use it. Because chemists already
know common nomenclature and most are familiar with internet browsers, little training is
necessary and most chemists feel comfortable using UC_Select after a short period of
familiarization. The internet interface allows chemists to use UC_Select in a variety of
convenient locations including their laboratory desks and homes at no additional cost. By
giving better access to reagent information, better decisions can be made. Having the syn-
thetic chemist, rather than a computational chemist, define the scope of reagents yields a

much richer detail of reagent selection. The synthetic chemist is encouraged to think more
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systematically about reagent selection than if they were asked to explain selection criteria
to a computational chemist or if a computational chemist were to interpret the synthetic
scheme and select reagents. Further, if the chemist doing the synthesis selects reagents,
they can determine and incorporate information about how far they are willing to push a
particular synthetic reaction. For example, in the second set of acylating agents in the
(hydroxyethyl)amine inhibitors, although initially phenols and alcohols were excluded,
when a second chemist selected reagents with UC_Select, he was reluctant to eliminate
both alcohols and phenols, and eventually phenols were included in the library. By bring-
ing reagent database information to chemists in a convenient and intuitive form, specific
and sensitive sets of reagents are produced.

Although UC_Select is not the first example, it is too significant to not reiterate the
power of internet conduits to efficiently disseminate chemical information. The classic
model for chemical databases was to have a database server on one machine and client
software to connected to the server. In the new model, UC_Select acts as the client pro-
gram to the chemical database, but also interacts with a web-server to generate internet
access to the database. In the old model, for each new user, the client software had to be
installed and maintained on a local computer. In the new model, only one primary client
exists (UC_Select) and any internet browser can act as the secondary client, eliminating
the need for installation and maintenance of multiple client programs. Further, since the
browsers and web-servers are developed and supported by third-party suppliers, no devel-
opment of client software across multiple platforms is necessary. Not only does this make
it less expensive to maintain current searching capabilities, it greatly facilitates vast expan-

sion of accessibility to synthetic chemists (e.g. laboratory bench computers and home
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computers)(g). This new server-primary client-internet server-secondary client (browser)
paradigm raises significant licensing and access issues. In the old paradigm, licensing was
simply controlled through client software and a maximum number of clients for each
server. However, in the new paradigm, the chemical database server sees only one client,
and through it, any number of people receive information via their internet browsers.
When internet browsers are used as client software through CGI programs, such as
UC_Select, it creates a new paradigm in information access. Internet-based distribution of
chemical information and chemical calculations has the potential to have enormous impact
on the process of drug discovery.

Although science has always been based on building new ideas “on the shoulders”
of previous ideas, this is accentuated in the development of programs like UC_Select. Effi-
cient design of programs to widely distribute chemical information require integration of
many independent programing tools. Although integration may be problematic, incorpora-
tion of third-party expertise represented in their software is essential. UC_Select is based
around the fundamental new idea of atom-rooted functional group SMARTS to allow
development of a common chemical nomenclature search interface. The importance of
this development has been magnified by integration with third-party software. MDL pro-
vides the primary chemical information which UC_Select distributes. Internet browsers
running on a variety of platforms interpret and represent UC_Select HTML search forms

to the user. The HTTPd server interprets variables from the browser and executes

UC_Select while passing the appropriate variables as input“o). Daylight’s MERLIN
server carries out UC_Select’s SMILES, SMARTS, and numerical searches and returns

the results. Programs like UC_Select can be even further developed by integration of more
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recent commercial programs as demonstrated by Pat Walters(!'>). There are many browser
plug-ins which facilitate representation of chemical information through browsers such as
the ChemDraw plug-in for two-dimensional representation. Perl, the most popular CGI
programming language, also has several graphing utility functions which can be installed.
A discussion of Java applications is beyond the scope of this chapter, but suffice it to say
that it has enormous potential to impact the distribution of chemical information. The
impact of new developments in chemical information and drug design can be significantly
enhanced by incorporating them into an integrated system for information delivery.
Although the emphasis of this work has been on delivering reagent information to
synthetic chemists, it is important to recognize and develop the secondary information
their reagent searches represent. Development of a new synthetic scheme for a combinato-
rial library is a significant scientific achievement, often requiring chemical insight as well
as multiple person-years of work. As more and more combinatorial scaffolds are synthe-
sized, it becomes even more important to collect and archive the information in a way
which allows continued use and refinement. With UC_Select, a combinatorial library can
be thought of and cataloged as a series of molecular transformation, each associated with
the variables (search keys) which define a search for compounds compatible with the syn-
thesis. The search keys provide an excellent vehicle to define the scope of the library. This
has several far reaching implications and advantages. First, one can develop a database of
combinatorial libraries in this format, and when new reagent databases become available,
they can simply be passed over the search variables to yield the new reagents compatible
with each library synthesis. Second, when new chemical methods become available which

may, for instance, allow a functional group to be compatible with the synthesis that for-
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merly was excluded, the search can be modified simply by changing a single variable in
the search description. Finally, it should be noted that the way a chemist is willing to think
about a synthesis changes as a project moves along. For instance, while protecting incom-
patible functional groups is generally not acceptable in an exploratory library, the same
protecting schemes may be acceptable in a smaller library for refining a lead compound.
The scaffold plus reagent-selection key abstraction is a compact and efficient representa-
tion for archiving databases of combinatorial libraries.

The development of the Combi-linker meta-functional group, by boolean combina-
tion of the atom-rooted functional group SMARTS string, also merits further discussion.
The select set of compounds identified by applying the Combi-linker search key to a data-
base (vida supra) have some intriguing and desirable properties. First, all of these com-
pounds are nominally drug-like, having reasonable molecular weights, numbers of
rotatable bonds, formal charges, no common reactive or toxic functional groups, and being
available from a “preferred” set of reagent suppliers. More significantly, each of these
compounds would make an outstanding screening hit. Each compound in this subset may
be derivatized by reactions commonly used in combinatorial syntheses. In essence, each of
these 5,286 compounds represents an entire combinatorial library. Unfortunately, experi-
mental screening of only 5,286 compounds, much less computational screening of this
small set may not turn up any inhibitors because there may simply be no specific inhibitors
of a given target in so small a sample. However, the potential to rapidly optimize these
compounds should encourage us to pay special attention, perhaps through additional cal-
culations, to this subset of the database. The Combi-linker meta-functional group is one

demonstration of the power of being able to combine functional group SMARTS to
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describe and identify subsets of a database with complex sets of desirable properties.
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Tables

Table 1: Example Build-up Procedure for Functional Group SMARTS
definitions.

Variable SMARTS definition®
C_carbonyl [C;$(C=[$0O_carbonyl])]
hydroxyl [O;$([H1&-0,HO&-1])]
C_carboxylic_acid [$C_carbonyl;$(C[$Shydroxyl]); $(C[#6,#1])]
carboxylic_acid [$C_carboxylic_acid]
boolean search [$isocyanate,$isothiocyanate]
relative position [$analine;$([$ortho][$chloro]) |

a. For a full explanation of SMARTS definitions see the Daylight Manual ®.
Briefly for this example; [ ] indicate the description of a single atom, $( ) indi-

cates the description of an atom’s environment, g or & indicates a boolean and, ’

*

indicates a boolean or, ™ is the atom wildcard, D indicates the number of explicit

bonds, # indicates the atomic number, and any variable ($var) is recursively
replaced by the variable definition before searches are executed.
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Table 2: Preferred Suppliers Used in Reagent Selection

Preferred Suppliers

Aldrich
Fluka

Sigma

Cal Biochem

ICN

Pfaltz and Bauer

TCI America

Lancaster

ACROS Organics

Maybridge International
TransWorld

Maybridge?

SALOR?

a. Only used in the Available Combina-
torial Lead Library reagent selection.
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Table 3: A) Common Combinatorial Reactions

C-C Bond Formation C-X Bond Formation

Suzuki Amide

Heck Ester

Stille Urea, Thiourea

Wittig ( Horner-Wadsworth-Emmons) | Carbamate

Organometallics Mitsonobu

Reformansky Reductive Amination (Imine Forma-
tion)

Enolate Alkylation Alkylation:

Aldol Amines, Amides

Michael Addition Alcohols

Table 3: B) Combinatorial Linker Functional Groups

Functional Groups

|

amide

secondary amine

sulfonamide

urca

ester

ether

tertiary amine

carbamate

imino

hydrazone

thioether

thioamide

thiourea

thiocarbamate

thioester
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Table 4: Number of Compounds Removed From Each Pool According to Search

Type and Functional Group (25,356 compounds initially).

Functional | Primary | Carboxylic | Acid Iso- Isothio- | Sulfonyl
Group Amine Acid Halide | cyanate | cyanate | -halide
Final Total 426 1308 207 30 105 104
Found
SMILES 14,272 18,708 14,385 25,167 25,063 24,302
search
SMARTS 9,664 3,371 10,664 0 0 989
search
2 Copies of 134 493 23 19 10 0
Primary
Group
Alcohol 162 215 0 0 0 0
Thiol 13 25 0 0 0 0
Aldehyde 0 16 0 0 0 1
Carboxylic 467 N.R:2 0 N.R:2 N.R:2 N.R.2
Acid o
Nitro 14 140 11 18 14 12
Aniline N.R2 N.R.?® 1 97 137 8
Amine N.R.2 510 1 0 5 2
Phenol 40 185 0 0 0 2
Amino-Acid 100 192 1 15 13 0
Hydroxyl- 3 3 0 0 3 0
amine
Alkyl-halide 23 135 53 6 7 14
Phosphonic 9 0 0 0 0 0
Acid
Phosphonic 9 0 0 0 0 0
Ester
Phosphoric 12 11 0 0 0 0
Acid
Phosphoric 1 3 0 1 0 0

Ester
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Table 4: Number of Compounds Removed From Each Pool According to Search
Type and Functional Group (25,356 compounds initially).

Functional | Primary | Carboxylic | Acid Iso- Isothio- | Sulfonyl
Group Amine Acid Halide | cyanate | cyanate | -halide

Acid Halide 0 0 N.R.2 0 0 3
(Carboxylic)
Sulfonic 14 8 0 0 0 2
Acid
Sulfonic 0 0 0 1 0 2
Ester
Anhydride 0 3 1 0 0 0
Peroxide 0 0 0 0 0
Non-stan- 11 12 0 2 1 0
dard Atoms®
Azide 0 2 0 0 0 0
Azo 0 5 1 0 0 0
Four Halides 0 11 8 0 0 2
>2 Formal 0 0 0 0 0 0
Charges
dipeptides 0 0 0 0 0 0 i

a. N.R. = Not Removed.
b. Many of these compounds are pre-screened out of the ACD when the reagent database is being
constructed.
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Appendix 1: Functional Group SMARTS

Functional Group

Rooted SMARTS

amino_acid

[N][C;!$(C=*)][C;$(C=0);$(C['#6])]

dipeptide

O=CCNC(=0)CN

two_charges

[$charge].[$charge]

two_nitros

[$nitro].[$nitro]

unbranched_chain

[RO;D2][R0O;D2][RO;D2][RO;D2]

charge [$acid,$base]

acid [*&$(*=*)&$(*[$hydroxyl]),$malonic]
base [n,N&'D3&!$(N*=['#6])]

malonic [C;H1,H2;$(C([$Ccarbonyl])[$Ccarbonyl])]

four_halides

[$halide].[$halide].[$halide].[$halide]

long_chain [A;RO][A;RO][A;RO][A;RO][A;RO][A;RO][A;RO][A;RO]

macrocycle [r8,r9,r10,r11,r12,r13,r14,r15,r16,r17,r18]

nonstandardatom [V#1;142; 43,145, 146, 1 #7,#8; 1#9; 1#1 1;1#12;1#15;1#16;'#17,'#19;!
#20;'1#35;'1#53]

nucleophile [$alcohol,$primary_amine,$secondary_amine,$aniline,$phe-
nol,$azide,$hydrazine,$hydroxylamine,$peroxide,$thiol,$oxime]

alkyl [$Calkyl]

combi_any [$combi_fcn,$combi_linker]

combi_linker

[$amide,$secondary_amine,$sulfona-
mide,$urea,$ester,$ether,$tertiary_amine,$carbam-
ate,$imino,$hydrazone,$thioether,$thioamide,$thiourea,$thiocarb
amate,$thioester]

combi_fcn

[$ketone,$alde-
hyde,$primary_amine,$secondary_amine,$amide,$alkylating_ag
ent,$aniline,$alcohol,$phenol,$thiol, $isocyanate,$isothiocyan-
ate,$carboxylic_acid,$acid_halide,$hydrazine,$aryl_mono_BrlI]

mono_alkene

[$alkene;$!($alkene.$alkene)]

mono_alkyne

[$alkyne;$!(Salkyne.$alkyne)]

aryl_mono_Brl

[c;$(c[Br.,I])]
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Functional Group Rooted SMARTS
urea [$Nurea)
alcohol [$Oalcohol]
thiol [$Sthiol]
alkene [$Calkene]
alkyne [$Calkyne]
lactam [$Clactam]
amide [$Camide]
thioamide [$Cthioamide]
anhydride [$Canhydride]
aniline [$pseudo_amine;$(N[$aryl]);!S(N~[1#6])]

aniline_unsubstitut
ed

[$pseudo_amine;D1;$(N[$aryl]); ! S(N~['#6])]

azide [$Nazide]

triazine [$N1triazine,$N12triazine]

azo [$Nazo]

thiocarbamate [$Othiocarbamate,$Nthiocarbamate)
carbamate [$Ocarbamate,$Ncarbamate]

carbamic_acid

[$Ccarbamic_acid]

carbonate [$Ocarbonate]
thiourea [$Nthiourea]
carbonyl [$Ccarbonyl]
thiocarbonyl [$Cthiocarbonyl]

carboxylic_acid

[$Ccarboxylic_acid]

acid_halide

[$Cacid_halide]

acid_chloride

[$Cacid_chloride]

thioester [$Cthioester]
ester [$Cester]
lactone [$Clactone]
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Functional Group Rooted SMARTS
aldehyde [$Caldehyde]
ketone [$Cketone]

sulfonic_acid

[$Ssulfonic_acid]

sulfonic_ester

[$Ssulfonic_ester]

phosphonic_acid

[$Pphosphonic_acid]

phosphonic_ester

[$Pphosphonic_ester]

phosphoric_acid

[$Pphosphoric_acid]

phosphoric_ester

[$Pphosphoric_ester]

epoxide [$Cepoxide]
hydrazine [$Nhydrazine]
hydrazone [$Nhydrazone]
isocyanate [$Nisocyanate]
isothiocyanate [$Nisothiocyanate]
nitrile [$Chnitrile]

nitro [$Nnitro]

peroxide [$Operoxide]
phenol [$Ophenol]

primary_amine

[$Nprimary_amine]

secondary_amine

[$Nsecondary_amine]

tertiary_amine

[$Ntertiary_amine]

sulfide [$Ssulfide]

sulfone [$Ssulfone]
sulfoxide [$Ssulfoxide]
disulfide [$Sdisulfide]
alkylating_agent [$Xalkylating_agent]

alkyl_halide

[$Xalkyl_halide]

aryl_halide

[$Xaryl_halide]

ether

[$Oether]
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Functional Group Rooted SMARTS
thioether [$Sthioether]
acetal [$Cacetal]
ketal [$Cketal]
hemiacetal [$Chemiacetal]
hemiketal [$Chemiketal]
sulfonamide [$Ssulfonamide]
sulfonyl_halide [$Ssulfonyl_halide]
imino [$Cimino]
oxime [$Coxime]
dithioacetal [$Cdithioacetal]
organometallic [$Corganometallic]
oxalyl [$Coxalyl]
enamine [$Cenamine]
enol_ether [$Cenol_ether]
Sdisulfide [S;$(S([$Calkyl])S[$Calkyl])]

Xalkylating_agent

[$1g_halide;$(*[$Calkyl])]

Xalkyl_halide

[$halide;$(*[$Calkyl])]

Xaryl_halide [$halide;$(*[$aryl])]

Sthioether [S;$(S([$Calkyl])[$Calkyl])]

Oacetal [0;$(O[$Cacetal])]

Cacetal [C;H1,H2;$(C(O[$Calkyl])O[$Calkyl])]
Oketal [O;$(O[$Cketal])]

Cketal [C;HO;$(C(O[$Calkyl])O[$Calkyl])]
OEhemiacetal [0;$0ether;$(O[$Chemiacetal])]
OHhemiketal [O;$hydroxyl;$(O[$Chemiketal])]
OEhemiacetal [0;$0ether;$(O[$Chemiacetal])]
OHhemiketal [O;$hydroxyl;$(O[$Chemiketal])]
Chemiacetal [C;H1,H2;$(C(O[$Calkyl])[$hydroxyl])]
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Functional Group

Rooted SMARTS

Chemiketal

[C;HO0;$(C(O[$Calkyl])[$hydroxyl])]

Ssulfonamide

[S;$(S(=0)(=0)N)]

Ssulfonyl_halide

[S;$(S(=0)(=O)[$halide])]

Nimino [N;$(N=[$Cimino])]

Cimino [C;$(C=[N;!$(N~[$hetatm])])]

Ooxime [O;$(O[$Noxime])]

Noxime [N;$(N=[$Coxime])]

Coxime [C;$(C=N[$hydroxyl])]

Sdithioacetal [S;$(S[$Cdithioacetal])]

Cdithioacetal [C;$(C1SCCCS1)]

Corganometallic [C;$(CB),$(C[Mg][$halide]),$(C[Li]),$(C[Cu][Li]),$(C([Ag)#C
)i

Ooxalyl [O;$(0O=[$Coxalyl])]

Coxalyl [$Ccarbonyl;$(C[$Ccarbonyl])]

Cenamine [C;$(C=C[N;!$Nnitro])]

Oenol_ether

[0;$(OC=[$Cenol_ether])]

Cenol_ether

[C;$(C=C[$Oether])]

Oether [O;$(O([$CstdD[$Cstd])]

Nurea [N;$(N[$Curea])]

Curea [$Ccarbonyl;$(C(=0)(N)N)]

Oalcohol [$hydroxyl;$(O[C;!$(C=['#6])])]

Sthiol [$mercapto;$(S[#6;!$(C=['#6])])]
Nlactam [Namide;R]

Clactam [Camide;R]

Nthioamide [N;$(N[$Cthioamide])]

Cthioamide [$Cthiocarbonyl;$(CN);!$(C(N)(=S)['#6])]
Namide [N;$(N[$Camide])]

Camide [$Ccarbonyl;$(CN);!$(C(N)(=0)[!#6])]

53




Functional Group

Rooted SMARTS

Canhydride [$Ccarbonyl;$(CO[$Ccarbonyl])]

Nazide [N;$(N=[N+]=[N-])]

Nltriazine [N;$(N=N-N);D2]

N12triazine [N;$(N-N=N);D2,D3]

Nazo [N;D2;$(N=[N;D2]);'$(N[$hetatm]);!$(N=N[$hetatm])]

Ccarbamic_acid

[$Ccarbamate;$(C[$hydroxyl])]

Othiocarbamate [O;$(O[$Cthiocarbamate])]
Nthiocarbamate [N;$(N[$Cthiocarbamate])]
Cthiocarbamate [$Cthiocarbonyl;$(C(=S)(O)N)]
Ocarbamate [O;$(O[$Ccarbamate])]
Ncarbamate [N;$(N[$Ccarbamate])]
Ccarbamate [$Ccarbonyl;$(C(=0)(O)N)]
Ocarbonate [0;$(O[$Ccarbonate])]
Ccarbonate [$Ccarbonyl;$(C(=0)(0)0)]
Nthiourea [N;$(N[$Cthiourea])]
Cthiourea [$Cthiocarbonyl;$(C(=S)(N)N)]

Ocarboxylic_acid

[$hydroxyl;$(O[$Ccarboxylic_acid])]

Ccarboxylic_acid

[$Ccarbonyl;$(C[Shydroxyl]);$(C[#6,#1])]

Cacid_chloride

[$Cacid_halide;$(CCl)]

Cacid_halide

[$Ccarbonyl;$(C[$halide]);$(C[#6,#1])]

Clactone [$Cester;R]

Cthioester [$Cthiocarbonyl;$(C(=S)O[#6]);$(C[#6,#1])]
Cester [$Ccarbonyl; $(C(=0)O[#6]);$(C[#6,#1])]
Caldehyde [$Ccarbonyl;$([H1,H2]);!$(C-[$hetatm])]
Cketone [$Ccarbonyl; $(C([#6])[#6])]

Ssulfonic_acid

[S;$(S(=0)(=0)[$hydroxyl])]

Ssulfonic_ester

[S;3(S(=0)(=0)0™)]

Pphosphonic_acid

[P;$(P(=0)(=0)[$hydroxyl])]
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Functional Group

Rooted SMARTS

Pphosphonic_ester

[P;$(P(=0)(=0)0™)]

Pphosphoric_acid

[P;$(P(=0)(O)[$hydroxyl])]

Pphosphoric_ester

[P;$(P(=0)(0)0*)]

Oepoxide [O;$(O([$Cepoxide])[$Cepoxide])]
Cepoxide [C;$(C1COD)]

Nhydrazine [N;$(N-[N;D1]);!$(N=C)]

hydroxylamine [$pseudo_amine;$(N[$hydroxyl]);!$(N=*)]
Nhydrazone [N;$(N[N;D2]=C)]

Cisocyanate [C;$(C=[$Nisocyanate])]

Nisocyanate

[N;3(N(=C=0)*)]

Cisothiocyanate [C;$(C=[$Nisothiocyanate])]
Nisothiocyanate [N;$(N(=C=S)*)]

Nnitrile [N;$S(N#[$Chnitrile])]

Chnitrile [C;$(C#[N;D1])]

Nnitro [N;+0,+1;$(N(=0)~[O;HO0;-0,-1])]
Operoxide [O;$(O[$hydroxyl])]

Ophenol [$hydroxyl;$(Oc)]
Nprimary_amine [$amine;D1]

Nsecondary_amine | [$amine;D2]

Ntertiary_amine [$amine; D3]

ring [R]

amine [N;1S(N*=[#6]); !S(N~[#6]);!$(Na);!$(N#C); !$(N=C)]

pseudo_amine

IN;IS(N*=[1#6])]

Ssulfide [S;D2;$(S([#6])[#6])]
Ssulfone [S;3(S(=0)(=0)([#6D[#6])]
Ssulfoxide [S;D3;8(S(=0)([#6])[#6])]
Ccarbonyl [C;$(C=[$Ocarbonyl])]
Ocarbonyl [O;D1;$(0=C)]
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Functional Group

Rooted SMARTS

Cthiocarbonyl [C;$(C=[$Scarbonyl])]
Scarbonyl [S;D1;$(S=C)]

hetatm ['#6;$([N,O,S,F,Cl1,Br,LP])]
halide ['#6;$([F,Cl,Br,1])]
Ig_halide ['#6;$([Br.ID]
mercapto [S;$([H1&-0,HO&-1])]
hydroxyl [0;$([H1&-0,HO0&-1])]
Cstd [#6;!$(*=[!#6])]

Calkyl [C;1$(C=['#6])]
Calkene [C:$(C=0)]

Calkyne [C;$(C#O)]

Caryl [#6;a)

arene [c]

aryl [a]
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Prolog to Chapter 3

The fundamental power and problem with combinatorial chemistry are the vast
numbers of compounds which can be synthesized. By combining a relatively small num-
ber of reagents in a similar manner, when using a preoptimized synthetic scheme, a chem-
ist can synthesize thousands of compounds in a week or less. Unfortunately, this kind of
“productivity” grows very rapidly, making enumeration, much less structure-based screen-
ing, of all the molecules in a large combinatorial library computationally intractable. The
fundamental assumption, that for some parts of the calculation, the side-chains can be
treated independently, makes studying combinatorial libraries feasible. This assumption
has two effects. First, the combinatorial library is abstracted to a scaffold, with one or
more “attachment points,” and a series of sets of side-chains, one set associated with each
“attachment point.” Second, the calculations are split into a computationally inexpensive
linear phase, where side-chains are considered independently, and a computationally
expensive combinatorial phase, where the scaffold and side-chains are considered together
as product molecules. The critical strategy is to calculate as many properties as possible in
the linear phase and use them to limit the number of compounds which must be considered
in the combinatorial phase. Judicious yet purposeful use of this strategy has yielded a very
efficient method for screening combinatorial libraries.

In 1996 Yax Sun, with assistance from Todd Ewing and myself, implemented an
algorithm specifically for Docking combinatorial libraries (CombiDock v1.0) into a pre-
liminary version of the Dock 4.0 code. This algorithm and its application to the retrospec-

tive analysis of a library of (hydroxyethyl)amine compounds against cathepsin D are
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described in part 1 of this chapter. Despite not allowing translational, rotational, or tor-
sional minimization, Yax’s algorithm performed spectacularly in my hands. It was far
superior to Dock 4.0 and CombiBuild at selecting the cathepsin D inhibitors from the
1000 compound (hydroxyethyl)amine test library with a variety of scoring functions. This
outstanding performance encouraged me to develop CombiDock further.

Part 2 of this chapter describes several modifications to the algorithm which
increased its execution speed by more than two orders of magnitude. This faster algorithm
allows us to screen an entire database of large combinatorial libraries with CombiDock.
This calculation has allowed us to address several interesting issues surrounding scaffold
selection, side-chain selection, and the effects of applying filters for secondary properties,
such as molecular weight. More importantly, this is the first example of a technique which
can take advantage of the accumulated literature on the solid phase synthesis of “drug-
like”” combinatorial libraries. In the future, perhaps one will be able to search an “Available

Libraries Database” rather than the conventional “Available Chemicals Database.”
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Abstract

We have developed a strategy for efficiently docking a large combinatorial library
into a target receptor. For each possible scaffold orientation, all potential fragments are
attached to the scaffold, their interactions with the receptor are scored and factorial combi-
nations of fragments are made. To test its effectiveness, it is compared to two simple con-
trol algorithms. Our method is more efficient at selecting best scoring molecules and at
selecting fragments for the construction of an exhaustive combinatorial libraries. We also
carried out a retrospective analysis of the experimental results of a 10X10X10 exhaustive
combinatorial library. An enrichment factor of about 4 was found for identifying the com-

pounds in the library that are active at 330 nM.

Introduction

One of the most exciting new developments in medicinal chemistry in recent years
is combinatorial chemistry (1). The modular display of functional groups allows a large
number of compounds to be considered for synthesis. Coupled with automation technolo-
gies and high through-put screening, it offers great potential for the discovery of drug
leads. Nonetheless, even though billions of compounds can be proposed, it remains diffi-
cult to validate and assay such numbers of compounds. Typically, unless the library is
based on oligomeric units, only very small subsets of fragments are selected for actual
synthesis, in a process known as combinatorial library design. One of the challenges for
computational chemistry is to select optimum sets of functional groups that have the best
potential for the discovery of new leads for a given target.

The structure-based drug design method utilizes the information contained in
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receptor structures by analyzing how well potential lead compounds might bind to the
receptors (2). Since the number of protein structures available, computational methodolo-
gies, and computer resources are all improving at a rapid pace, it is inevitable that using
the information of target structures in drug design will become increasingly important. A
recent pioneer study of combining structure-based design and combinatorial chemistry
yielded encouraging results (3). In that study, structure-based calculations were done by
assuming fixed scaffold orientations and fragments were scored independently for each
attachment site. Using fixed scaffold orientations was possible in that case because of
experimental evidences and because of limited orientational and conformational freedom
for the scaffold. However, to be generally applicable to the combinatorial library design
problem, the structure-based design method has to be able to take into account the inter-
dependency of fragments at different binding sites, without prior knowledge of the scaf-
fold orientation. To do that, one must deal with the large number of combinations pro-
duced by combinatorial chemistry. If all the combinations are created and examined
individually, as in traditional database screening approach, then millions, even billions, of
compounds will have to be screened. Such numbers are far beyond present-day computa-
tional resources. In this work we report a method that could be used to carry out efficient
docking calculations for such large virtual combinatorial libraries.

In the second part of our study, we will use the combinatorial docking method to
analysis the experimental results obtained in the previous study (3). In that study, one
thousand molecules from a 10X10X10 exhaustive library were synthesized on solid sup-
port and assayed individually. It is not often that 1000 compounds are assayed at several

concentrations against a single target under the same experimental protocol. These experi-
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mental data offer us a unique opportunity to test objectively how well our computational
methods actually perform. We think this type of direct comparison over a large number of
compounds will have wide implications for the future work in the development of better

scoring functions and in the design of experiments.

Computational Method
DOCK. The basic DOCK algorithm has been described in detail elsewhere (4, 5).

Four steps are needed to carry out the calculation: 1) the negative-image of the receptor
active site is represented by a set of spheres; 2) internal distance matches between a subset
of spheres and a subset of ligand atoms are searched; 3) for every match, the ligand is jux-
tapositioned onto the active site; 4) a score is calculated for the ligand in that orientation.
For a single compound in a typical database screen against an enzyme target, up to 10,000
matches could be generated and up to 1,000 of them pass though the check for not bump-
ing with the receptor. These orientations are finally scored, using force field or empirical
functions to approximate interaction energies.

Combinatorial DOCK. The combinatorial docking strategy is a simple variation
of the basic DOCK algorithm (Figure 1, Figure 2). The site sphere generation is
unchanged as step 1. At step 2, only scaffold atoms are used instead of the entire ligand for
the generation of matches with the spheres. At step 3 and 4, once a scaffold is matched
onto the active site, all possible fragments are attached at all site positions, and scores are
calculated for the scaffold and all fragments. As a final step, combinations of fragments
are made and the best combinations are then checked for internal clashes and saved if no
clashes are found. It should be noted that this kind of fragment superposition algorithm

has been tried previously for non-combinatorial problems, such as directed database
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searching and conformational searching (6).

Although all combinations of fragments are, in theory, examined, the strength of
this method is that the combination process is reduced to the simple numerical additions of
the fragment scores at all sites. It is thus possible to use simple numerical techniques to
speed up the combinatorial process. Specifically, after scoring all fragments at each scaf-
fold orientation, the fragments are sorted according their scores and the combination pro-
cess can be terminated once it is determined that no combinations better than a user-
defined limit can be found. In addition, the internal clash checks, which are computation-
ally expensive, are only necessary for combinations that have good enough scores to be

eventually saved.

Test Cases

Part I. Combinatorial Docking and Library Design

We selected for our first test of the algorithm to dock a virtual library of benzodiazepine
derivatives (7) to dihydrofolate reductase (DHFR). We chose the benzodiazepine library
because of its historic role in combinatorial chemistry as one of the first nonoligomeric
combinatorial libraries (Figure 3). 1,4-benzodiazepine derivatives have been shown to
have a wide range of bioactivities (8). Partly because we do not have the crystallographic
structures for the natural benzodiazepine receptors, we have chosen dihydrofolate reduc-
tase as the target for the benzodiazepine library. Since the main purpose of the study is to
test the feasibility and efficiency of the combinatorial docking methodology, DHFR is a
good target because of its large and deep binding pocket. This binding site provides an

excellent test of the inter-dependency among fragments because the resulting “combined”
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molecules must fit properly into the pocket. This point will be discussed below.
We used the Available Chemical Directory (ACD) from MDL Information Sys-

tems, San Leandro, CA and found 308 acid chlorides (R), 305 amino acids (R,) and 404
alkylating agents (R3) that satisfy the synthetic requirements for building the virtual

library at the three attachment sites. The total number of all potential combinations is
about 36 million (308X305X404). A newly developed program, Diversify (9), using the
Daylight Toolkit (10), was used to prepare the fragments. The leaving atoms on the frag-
ment molecules were removed and tags identifying atoms connecting to the scaffold were
added. The Concord program (11) was used to generate three-dimensional structures and
the results were saved as mol2 files (12), with the connecting atom information stored in
the @<TRIPOS>SET field. Similarly, the scaffold, 1,4-benzodiazepine, was built and the
connecting atom information was also identified.

The combinatorial DOCK has been implemented in a new version of DOCK, ver-
sion 4.0 (5). The only new parameter required is the number of torsional positions to be
sampled, uniformly, for the connecting bond between the scaffold and each fragment. We
searched six torsional positions in our tests. The regular DOCK force field scoring method
was used with one modification. A positive score (penalty) of 0.5 kcal/mol was added for
all non-hydrogen atoms of ligands. This modification was made to avoid the largest frag-
ments always having the best scores. It is because that medicinal chemists favor potent yet
small compounds as starting leads.

As controls, two other methods were also tested: 1) random selection: fragments
were randomly selected from all available candidates; 2) single fragment docking: in this

strategy, fragments at different sites were assumed to be independent. Each fragment was
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attached to the benzodiazepine scaffold by itself and the resulting mono-substituted mole-
cule was docked. The best scoring fragments for each site were then selected as the best
candidates for the combinations.

Two steps are needed in docking and designing combinatorial fragment libraries.
The first step is to find the best scoring compounds made from all possible combinations
of potential fragments. If compounds are to be synthesized individually, no more library
design is needed. A completely exhaustive combination approach, i.e. making all possible
combinations from selected fragments at each sites, however, is a more efficient experi-
mental design for making equal number of compounds. If exhaustive combination is
desired, then fragments at each site have to be selected based on the results from the first
step. We will show the results obtained at both steps.

At the step one, i.e., finding the best scoring single molecules, the constraint of
using similar amounts of computer time meant that only 20 fragments could be used for
each site in the random selection method and single fragment method (still producing
8000 combinations!). It also limited that only one or two conformations per molecule
could be used. The conformations were generated by randomly assigning the torsional
angle connecting a fragment and the scaffold. To observe the dependency of the searching
results on the number of conformations used, calculations were done for both one confor-
mation per molecule and two conformations per molecule. Whenever combinations are
made, internal clashes were checked and molecules with internal clashes were removed,
typically about 10% of all combinations.

At the step two, i.e., constructing an exhaustive combinatorial library, the follow-

ing procedures were used for the selection of fragments: 1) combinatorial docking: frag-
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ments were ranked and selected according to the frequencies they appeared in the top 1000
scoring combinations. 2) random selection: 10 fragments were selected randomly. 3) sin-
gle fragment: fragments were ranked and selected according to docking scores of the

mono-substituted compounds, i.e., compounds with one fragment attached to the scaffold.

Part II. Retrospective Analysis of the Experimental Results of a Combinatorial Library
Structure-based library design has been used to design fragment libraries for a
hydroxyethylamine scaffold (13) targeting cathepsin D, an aspartyl protease. There are
three fragment attachment sites on the scaffold. In the previous study, ten fragments were
chosen for each site and incorporated in the final combinatorial synthesis (3). The result-
ing 1000 molecules were assayed for activity at 1 pM, 330 nM and 100 nM, with 67, 23,
and 7 compounds having inhibition greater than 50% at each concentration respectively.
Our goal in this work is to analyze in more detail the experimental results for the
compounds synthesized and assayed. This is a test for both the searching algorithm and
the scoring function. Since only 10 fragments were finally used at each site, fragment con-
formations can be sampled more extensively than in the initial designing process. A sys-
tematic dihedral searching method was used to generate fragment conformations. For
torsions with rotational barrier below 2 kcal/mol, according to AMBER force field (14),
dihedral angles were sampled every 60 degrees. When a double bond was involved, then
only the trans and cis forms were used. The conformational searches generated a total of
282, 152, and 225 molecular conformations for the 10 fragments at each site. We used the
same scaffold conformation from the previous work (3), which was determined by match-

ing the scaffold with the crystal structure of pepstatin in the complex with cathepsin D and
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torsional searching for the three undetermined dihedral angles (3).

Results and Discussion

I. Combinatorial docking of the benzodiazepine library to DHFR:

As mentioned before, the first step is to find the best scoring compounds from
combinations of all potential fragments. The distribution of scores for the top 500 scoring
molecules found with each method, together with the CPU time used to search for them,
are shown in Figure 4. Searching was limited, as described in the method section, for the
random selection method and the single fragment method so that each approach was given
roughly the same computer CPU time as the combinatorial docking. The average scores of
the top 500 scoring compounds are -25.6, -18.1, -15.7, respectively, for combinatorial
docking, random selection and single fragment methods. It is interesting that selecting
compounds based on one fragment at a time (single fragment method) is even worse than
a random selection. The reason for this is that single fragment method assumes indepen-
dence between fragments and it picked out similar fragments at all three positions that
when studied as the mono-substituted scaffold, dock very well into the binding pocket.
Once these fragments are put together in the same molecule, however, they interfere with
each other. This often results in either inefficient docking in which fragments interact with
the target weakly, or worse yet, one fragment bumps into the target and the combination
must be discarded.

Having found the best scoring individual compounds, we next considered the
design of an exhaustive combinatorial library. The goal is to select a small arbitrary num-

ber of fragments from all available fragments for each site to prepare the best library when
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the combinations are exhaustively made. In our test, we selected 10 fragments for each site
yielding a 10X10X10 format for a 1000 compound library.

Using the fragment selection method described previously, three 10X10X10 librar-
ies were constructed based on the results of the combinatorial docking and the two control
algorithms. To compare these three libraries of 10X10X10 molecules, 25 random confor-
mations were generated for each combination, again by randomly assigning connecting
torsions. It should be mentioned that even with 25 conformations docked for each mole-
cule, the conformational search is still quite limited. Conformations that had internal
clashes were discarded. For each molecule, i.e. each combination of fragments, the con-
formation with the best docking score was saved as the final score for the molecule. The
distributions of the scores are shown in Figure 5. As in the first step (Figure 4), combinato-
rial dock performed best, and random selection is better than single fragment approach.
The average scores for the three libraries are -18.9, -11.2, and -6.7. However, there are
now much more overlaps between the docking method and the two control algorithms.
The primary reason for this is that exhaustive combinations force the inclusion of many
not-so-good combinations. We should note, however, that this does not mean that we sug-
gest synthesizing individual best scoring combinations instead of using exhaustive combi-
natorial approach, for the reason that the current scoring functions are not yet reliable
enough to grant such an importance to their scores. In our test, we have attempted to sepa-
rate the searching algorithm from the scoring function to demonstrate the efficiency of
searching for a given scoring function. The reality, however, is that the quality of scoring
functions is critical to the quality of predictions. The quality of predictions will in turn

influence how the actual experiments should be optimally designed.
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The scaffold-based combinatorial docking method presented here is best suited
when there is a scaffold with fragments attached to it, even if it is a small scaffold. It also
has the limitation that the scaffold can not be too flexible. If there are only a few low-
energy conformations available for the scaffold, then these conformations could be treated
independently and results from difference conformations can be combined at the end. On
the other hand, it would be difficult if the scaffold has too many conformations, unless the
conformation or even the orientation of the backbone is restricted or known inside the tar-

get, such as in the hydroxyethylamine based library targeting cathepsin D case (3).

II. Retrospective analysis of the experimental results of a combinatorial library

Although non-internal-clashing conformations can be found for all 1000 mole-
cules in the library, in the context of the cathepsin D binding site, at least one non-internal-
clashing and non-external-bumping orientation was found for only 752 compounds, based
on the conformations we searched. Since some of the unsuccessful molecules showed
inhibition, we can only assume the error is in our modeling. The most likely source of this
problem is our limited ligand conformational searching and the neglect of receptor flexi-
bility. Our main goal in this part of the study is to test our scoring functions, i.e. how well
our calculated ranks relate to the experimental results. So for this analysis, we decided to
use only the 752 compounds that we could readily score. We use as a measure of the qual-
ity of the calculation the enrichment factor: the initial ratio between the percentage of hits
and the percentage of database used. As shown in Figure 6, when the experimental results
at 330 uM is used, the enrichment factor is about 4. A completely random ranking would

result in an enrichment factor of 1.
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Conclusion

We have implemented and tested a combinatorial docking strategy. We have shown
that it is able to find better scoring combinatorial molecules than the two control methods.
When completely exhaustive combinations are required, fragments selected based on the
results from the combinatorial docking also produced better scoring compounds. The
combinatorial docking method is fast enough to allow using structure-based library design
for general combinatorial chemistry problems when target structures are available. We
have also analyzed the experimental results from a previous combinatorial library. An

enrichment factor of 4 was obtained using the force field based scoring method.
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Figure 1: Combinatorial DOCK algorithm.
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Figure 2: Combinatorial DOCK illustration.
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Figure 3: 1,4-Benzodiazopine combinatorial library.
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Distribution of Top Scores
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Figure 4: Distributions of the top 500 scoring molecules from three different search-

ing methods. For the random selection method and the single fragment method, only one
conformation per combined molecule was generated for the short runs (solid lines), and
two conformations per combined molecule were generated for the long runs (dashed

lines). All calculations were done on 200 MHZ R4400 Indigo?2.
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Distribution of Combinatorial Library
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Figure 5: Distributions of the scores of the exhaustive combinatorial libraries. Num-
ber of compounds with the score of 10.0 includes compounds with the score of 10.0 or

higher.
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Exp. vs. Cal. for Ellman Compounds
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Abstract

Structure-based design can be successfully used to screen databases of small mole-
cules in order to identify compounds with specific biological activities. Recently, the inte-
gration of combinatorial chemistry and structure-based design has become a powerful tool
for identifying potent, non-peptide, small-molecule inhibitors of enzymes(1, 2). Previ-
ously we described a method for efficiently docking a single combinatorial library into a
target receptor(3). We describe a method for structure-based screening of a database of 45
large (1262 X 1262 X 1262) combinatorial libraries in approximately 96 hours of CPU
time on an SGI R10000 workstation. We have modified the algorithm to include two
stages of focusing on the most complementary compounds as well as a look-ahead mecha-
nism. This new algorithm is 2-3 orders of magnitude faster than our previous method and
allows both significant increases in conformational sampling and comparison of multiple
combinatorial libraries. We use the database screening data to demonstrate that screening
multiple libraries may be more helpful that screening one very large library. To indepen-
dently validate the method, we retrospectively analyze the selection of 23 330nM Cathep-
sin D inhibitors from a 10x10x10 compound combinatorial library. An enrichment factor
of greater than 12 (over random) was found with an execution time of less than three min-

utes.

Introduction

One fundamental goal of chemistry is to design molecules with specific physical

and biological properties. For over twenty years, chemists have been using simplified
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structural models to predict the properties of molecules(4). One of the first applications of
structure-based molecular design calculations was the screening of a database of known
compounds for those complementary to a crystal structure of the HIV-1 protease
enzyme(5). It is now common to screen computationally databases of available com-
pounds or potential (virtual) compounds to identify small molecules which interact with
macromolecular targets of known atomic resolution structure. These computations (data-
base mining) generally screen thousands to hundreds of thousands of small molecules(6,
7, 8, 9). The small molecules are modeled as a single low-energy conformation(10, 11,
12), a small collection of low energy conformations(13), or as completely flexible
ligands(14, 15, 16). The receptors are usually considered to be rigid in order to reduce
computational complexity (limited receptor flexibility now appears feasible in some
cases(17)). The six orientational and translational degrees of freedom between ligand and
receptor have been explored by a variety of methods. Some methods focus primarily on
structural features of the receptor(18), while others make use of potential chemical inter-
actions of the receptor(19, 20, 21). Despite outstanding results when screening databases
of available compounds(6, 7, 8, 9) all of these methods are approximate and may fail in
the limiting case of predicting whether or not an individual compound will have the
desired inhibitory properties before it is synthesized.

Recently, the synthesis of drug molecules has been revolutionized by combinato-
rial chemistry methods. Combinatorial synthesis principles have long been used in biolog-
ical systems for the synthesis of biological polymers such as DNA, proteins, and
polyketides(22). Bunin and Ellman demonstrated the first extension of combinatorial

methods to drug-like small molecules with the synthesis of a library of benzodiaz-
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epines(23). This was quickly followed by DeWitt et. al.’s work on Diversomers(24). In the
ensuing years, combinatorial methods have exploded with the synthesis of a variety of
drug-like libraries, including heterocycles, and mechanism-based inhibitors. One recent
review estimates that over 250 combinatorial libraries have been published and many more
remain proprietary(25, 26). Libraries are now commonly synthesized in both solid and lig-
uid phases and in single compound as well as mixture formats(22). Library synthesis has
become part of several different stages of drug-design. Although different nomenclatures
have been introduced for these stages, there are three principal strategies for using combi-
natorial libraries. First, large exploratory or screening libraries are generated and used to
identify initial inhibitors. Next, focused libraries can be synthesized to explore structures
around an initial hit. Finally, optimization libraries are constructed which carefully sample
molecular structures around a clinical lead in order to optimize the physical and pharma-
cological properties of the series. Regardless of the strategy, at each stage, one must con-
front the fundamental problem that there are often vastly more members of a library than
can practically be synthesized.

A fundamental step forward occurred when Kick, Roe and co-workers combined
structure-based design with combinatorial synthesis methods to generate two 1000 com-
pound exploratory libraries of the mechanism-based (hydroxyethyl)amine inhibitors of the
human aspartyl protease cathepsin D(22). They demonstrated that libraries designed by
structure-based methods produced a larger number of more-potent inhibitors than diverse
(or random) libraries of equal size. In a follow-up study, Haque, Skillman and co-workers
showed that not only could structure-based design and combinatorial methods be inte-

grated to identify potent inhibitors, but that pharmacokinetic properties could be opti-
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mized as well (see chapter 8)(2). In that design of (hydroxyethyl)amine inhibitors of the
essential malarial aspartyl protease Plasmepsin II, Haque et. al. used a more detailed con-
formational search and libraries which focused on one side-chain at a time to identify sin-
gle digit nanomolar inhibitors which also fulfil Lipinski’s “Rule of Five,” a structural
surrogate for the ability to cross membranes(27). Indeed, when rule of five compatible
Cathepsin D inhibitors were tested in a cell-culture tau protein processing assay, they
inhibited when equally potent non-rule of five compatible cathepsin D inhibitors were
unsuccessful(28).

The integration of structure-based design and combinatorial chemistry has been
extremely successful because the strengths and weaknesses of these two powerful tools
complement on another. Combinatorial synthesis methods allow a single chemist to syn-
thesize a remarkable number of compounds; however, the potential number of compounds
to be synthesized is an even greater number. Structure-based design methods allow rapid
assessment of the approximate binding constant of many potential compounds in a statisti-
cally significant population of compounds; however, in any individual case, structure-
based design, as implemented for rapid screening, has the potential to fail. When combina-
torial chemistry and structure-based design are integrated, the computational methods
offer the combinatorial chemist a means to assess an entire library of virtual molecules and
focus on a subset of those compounds enriched with the most interesting compounds.
Conversely, the combinatorial synthesis of tens, hundreds, or even thousands of com-
pounds allow a computational chemist to make predictions on a statistically significant
number of compounds. The complementary integration of combinatorial chemistry and

structure-based design is a successful tool for drug discovery and optimization.
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There have been several other examples of the integration of structure-based
design and combinatorial methods to help determine which set of compounds will be syn-
thesized from a larger virtual optimization library(29, 30, 31). However, most studies gen-
erally focus on one site of chemical variation at a time. Although there are many programs
which have been adapted and used to design optimization libraries with a single variable
position or a fixed scaffold orientation, there are few which address simultaneous explora-
tion of multiple variable points. Although the former have an important role in drug devel-
opment, they effectively avoid the combinatorial problem by focussing on only one point
of variation, thus limiting the scope of problems for which they are applicable. The
method of Roe was the first to examine multiple points of variation simultaneously(1). It
used a fixed orientation of the scaffold in the active site and a probabilistic method to
assess interactions between side-chains at different attachment points. In a second
paper(3), we extended this idea to allow systematic exploration of hundreds or thousands
of scaffold orientations in the active site. Further, by ranking the compounds by their opti-
mum potential complementarity to the macromolecular binding site, we were able to over-
come the combinatorial problem and examine the individual interactions among the side-
chains of each of the best molecules. In this paper, we describe improvements that allow

significant speed enhancement so that it becomes feasible to compare large numbers of

libraries, each containing ca. 10%-1010 discrete compounds. We improve the previous algo-
rithm with two “greedy” focusing steps and a look ahead procedure for scaffold placement
to greatly optimize the library docking process. We validate the algorithm’s continued per-
formance in retrospective analysis of mechanism-based cathepsin D inhibitors. Finally, we

demonstrate that this new algorithm can be used to screen a database of 45 large combina-
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torial libraries against the macromolecular target, human dihydrofolate reductase.

Methods

Combinatorial DOCK version 1.

The combiDOCK version 2.0 algorithm is an extension of our previously
described program (figure 1)(3). Both programs are based on the original DOCK proce-
dure(11, 12, 32). Briefly, in pre-calculations, many conformations of all of the side-chains
are generated and a negative image of the binding site of the target macromolecule is con-
structed from overlapping spheres(18). Scaffold orientations are generated using a clique
finding algorithm which matches sets of ligand atoms with sets of receptor site
spheres(32). For each scaffold orientation, all conformations of the side-chains are ori-
ented in the same reference frame as the scaffold and scored according to their comple-
mentarity to the receptor. Scores for all complete molecules are generated and ranked
using simple arithmetic operations. The best potential molecules are screened for intramo-

lecular clashes between side-chains, and those without internal clashes are saved.

Combinatorial DOCK version 2.

Overview (figure 2). The combinatorial libraries are defined by a chemically
unique scaffold with pre-determined sites of side-chain attachment. Lists of chemically
appropriate side-chains are maintained for each attachment site. Multiple orientations of
the scaffolds are generated and minimized in the active site using a small set of “probe”
side-chains. For the highest scoring scaffold orientations, all of the conformations of all of

the side-chains are attached to the scaffold and scored for complementarity to the target
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macromolecule. The side-chains are then ranked, and a list of the best scoring potential
molecules is generated by simple arithmetic summation of the score of the individual frag-
ment scores. These best-scoring potential molecules are screened for compliance with
physical property profiles as well as for intramolecular clashes. Compounds which pass all
of the filters are saved on a list of the best scoring individual molecules.

Receptor Preparation. The target is an atomic resolution structure of a macro-
molecules, generated by crystallography, NMR, or modeling(9). Crystallographic waters,
ligands, and often ions and cofactors are removed. A negative image of the binding site
made from overlapping spheres is created using the program SPHGEN(18). These spheres
are used to direct the scaffold and probe side-chain fragments into the active site. Thus the
spheres may be chosen to describe the entire site, or focus on a region of particular inter-
est. Additional information can easily be included by supplementing the sphere set with
atom centers from the crystallographic inhibitors, substrates, crystallographic waters, or
cofactors which have been removed(8).

Ligand Preparation. Each combinatorial library must be abstracted to a scaffold
with multiple attachment points, each associated with a set of available side-chains. Multi-
ple conformations of the scaffolds and side-chains are pre-generated using any conforma-
tional sampling program(33, 34, 35). For the work here, we have used Dock 4.0 to pre-
generate conformations(14). Multiple conformations of the “probe” side-chains, used in
the look ahead procedure (vida infra) are also generated. As the scaffold and side-chains
are read into CombiDOCK, the molecular weight, number of hydrogen-bond donor, and
number of hydrogen-bond acceptors are calculated and stored.

Docking Calculation. The docking procedure has ten steps, broken into two

87



phases: the look-
fold *look-aheaq
molecules are bu:
the scaffold: 2) a
4loms 10 negative
ecule1s seored ar
oronly the van dd

molecule are runk

woring scattold o
chain phase figur
drun-time. Side-
chain conformuty.,
tons of thyy side-
tons iwhere S=;
e beyt seoring
tlate the otal py
umber of h-\‘dr()g

Property filterg . ;

>1d€*€hajn5 ( ﬁQUrL

hegt m



phases: the look-ahead scaffold docking phase and the side-chain phase (figure 2, 3). Scaf-
fold “look-ahead” Phase: 1) a small set (usually 100’s - 1000’s) of “look-ahead” probe
molecules are built by attaching all combinations of the probe side-chain conformations to
the scaffold; 2) all of these molecules are oriented into the active site by matching ligand
atoms to negative-image site points (spheres) (figure 3B); 3) each orientation of each mol-
ecule is scored and minimized based on either the full AMBER intermolecular potential,
or only the van der Waals portion of the potential (figure 3C); 4) all orientations of each
molecule are ranked according to their complementarity to the active site and the N best
scoring scaffold orientations (without the probe side-chains) are passed on to the side-
chain phase (figure 3D). Here N is the scaffold greedy parameter which is set by the user
at run-time. Side-Chain Phase: 5) for each scaffold orientation, attach and score all side-
chain conformations; 6) for each side-chain, rank and select the M best scoring conforma-
tions of that side-chain; 7) for each attachment point, rank all M*S side-chain conforma-
tions (where S = number of side-chains and M is defined in step 6) (figure 3E, 3F); 8) for
the best scoring molecules, use simple arithmetic operations on the fragment values to cal-
culate the total potential score, molecular weight, number of hydrogen-bond donors, and
number of hydrogen bond acceptors; 9) if the compound passes all scoring and physical
property filters (vida infra) (figure 4A, 4B), check for intramolecular clashes between the
side-chains (figure 3G); 10) save the best scoring molecules without clashes on a list of the
best molecules (figure 3H). Steps 5-10 are repeated for each of the N scaffold orientations,
and steps 1-10 are repeated for each combinatorial library. By using a look ahead scaffold
optimization phase, two greedy “focusing” steps and three physical property filters and a

score filter in the linear phase of the calculation, the cost of the final combinatorial clash-
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checking phase is minimized. This method allows extremely efficient structure-based
screening of multiple combinatorial libraries.

Library Database Generation. To generate a database of combinatorial libraries
for software demonstration purposes, we first searched the available chemicals directory
(ACD)(36) for potential scaffold fragments. We searched for substituted ring structures
rich in the functional groups which can be used as chemical handles for synthesizing
derivatives (primary or secondary amines, acids, primary or secondary alcohols, ketones,
aldehydes etc.). 228 structures were identified and fifty representative compounds were
choose by clustered using Daylight’s fingerprints(37) and a complete linkage hierarchical
clustering algorithm(38). Two or three atoms for each scaffold were chose as attachment
points for side-chains based loosely on plausible chemistry. Two sets of test-case side-
chains were selected, a large set of 1262, and a smaller set of 100 (for comparison pur-
poses). The larger set of side-chains, 1262 acylating agents, was selected from the ACD
(with their respective acylating group removed), while the smaller set of side-chains, 100
peptide-like fragments, were generated by hand. This database represents a virtual library
of 36 billion compounds based on 45 different structural scaffolds. We emphasize that nei-
ther the scaffold library nor the side-chain libraries were selected to guide a drug design
application. Nevertheless, they are sufficient for the test cases demonstrated here (e.g. fig-
ure 6). The libraries in this database are similar to many heterocyclic libraries which have
appeared in the literature(22, 39) and contain compounds with appropriate physical prop-
erties (molecular weight, hydrogen-bond donors, hydrogen-bond acceptors, ClogPs).
These methods could be easily be extended to a database of libraries reflecting actual com-

binatorial synthesis.
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Test Cases

Part 1. Retrospective Analysis of the Experimental Results of a Combinatorial
Library. Kick, Roe, and co-workers previously reported the structure-based design of a
1000 compound library of mechanism based cathepsin D inhibitors (figure 5)(1). The
entire 10x10x10 library of (hydroxyethyl)amine inhibitors was assayed at UM concentra-
tion, and compounds with more than 60% inhibition were assayed at successively lower

concentrations as well. Sixty-seven, 23, and 7 inhibitors were identified with IC5,’s better

than 1mM, 330nM, and 100nM respectively. Here we used CombiDock to rank the 1000

compounds and examine where the 23 inhibitors with ICs less than 330 nM fall among

the 977 non-inhibitors. We used Dock 4.0 to generated 1284, 704, and 1070 molecular

conformations for the 10 fragments at sites Ry, R,, and R respectively. A single scaffold

conformation generated for design of the original library was used(1). For this example,
the probe-side chain option was turned off (with this very small library, its overhead was
too expensive) and all 251 scaffold orientations were passed on to the side-chain phase,
and the top-scoring 15 conformation of each side-chain were used to construct the final
molecules.

Part I1. Screening a database of Combinatorial libraries. The second test case
was molecular docking of a database of combinatorial libraries against dihydrofolate
reductase (accession number 4dfr). Dihydrofolate reductase was chosen because it is a
well understood enzyme, which binds both the inhibitor methotraxate and the cofactor
NADH, and because we, and other groups, have experience using it as a test case. Combi-

Dock was used to screen a database of 45 large combinatorial libraries, 18 with 3 attach-
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ment point, and 27 with two attachment points. The larger database was constructed with
1262 side-chains modeled by 59,864 conformations at each attachment point, (vida supra)

while the smaller database was constructed with 100 side-chains modeled by 5198 confor-
mations at each attachment point. For the larger database, 3.62x10'0 three attachment

point molecules with 3.86x 10'5 conformations in 18 libraries and 4.3x10 two attachment
point molecules with 9.68x10'% conformations in 27 libraries were screened, while for the
smaller database, 1.8x 107 three attachment point molecules with 2.53x10!'2 conformations

in 18 libraries and 2.7x 10> two attachment point molecules with 7.3x108 conformations in
27 libraries were screened. Two probe side-chains, phenyl and ethyl, were used in the
look-ahead scaffold docking phase. For each library, fifteen scaffold orientations were
passed from the look-ahead phase to the side-chain phase, and the top-scoring fifteen con-
formations of each side-chain were considered when constructing the best-scoring com-
plete molecules. Each database of libraries was docked twice, once with no physical
property limit, and once with a portion of Lipinski’s “Rule of Five” (molecular
weight<500, hydrogen-bond donors<$5, and hydrogen-bond acceptors<10) in place(27).
The ClogP portion of the Lipinski filter was not implemented because logP is not an addi-
tive property for the fragments used in this study. Since molecular weight and ClogP are
often correlated molecular properties(27), the partial Lipinski filter implemented here
remains useful. The 100 best scoring molecules from each scaffold were saved for a total

of 4500 molecules from each docking.

Results
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As in our previous work, CombiDock version 2.0 successfully identifies the known
Cathepsin D inhibitors. When the 1000 compounds were ranked by CombiDock 2.0,
nearly 80 percent of the 23 inhibitors are in the top 100 compounds (figure 7A). When
normalized by the number of inhibitors identified by a random search, the enrichment ratio
(CombiDock inhibitors/random inhibitors) extends to above 12 (figure 7B), a significant
improvement over our previous work. The more dramatic difference with the new algo-
rithm is the time the calculation requires. CombiDock version 2.0 completes the enrich-
ment calculation in only 160 seconds on an SGI R10000 workstation, over 2.5 orders of
magnitude faster than our previous version.

The dramatic increase in the speed of execution for CombiDock 2.0 allowed us to
screen a database of 45 large combinatorial libraries. The 45 library scaffolds were
screened four times against dihydrofolate reductase (4dfr). Two sets of side-chains, one
small (N=100) and one large (N=1262) were each screened twice, once with no physical
property filter, and once with a Lipinski filter(27) in place. The larger databases took an
average of approximately 96 hours of CPU time on an SGI R10000 workstation, broken
into about 3.5 hours per three attachment-point library, and about 1.3 hours per two attach-
ment-point library. Execution times for the small databases were much shorter. The best
score of any molecule and the ranking of the library for all four runs can be seen in Table
1. In each case, the best scaffolds display molecules with van der Waals scores ranging
from -50 to -73. These scores compare very favorably with the minimized van der Waals
score of -39 for the 2.5 nM crystallographic inhibitor methotrexate (40, 41). Some exam-
ple scaffolds along with their maximum scores can be seen in figure 6. These small hetero-

cyclic scaffolds are merely hypothetical library test-cases; none-the-less, they demonstrate
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the ability of CombiDock to carry out structure-based screening of an entire database of a
variety of combinatorial scaffolds and libraries.

Analysis of the screening of a database of large combinatorial libraries has
revealed several general principles. We first examine the range and ranking of scores of the
libraries for each of the four runs (figure 11,12). In general, scaffolds with three side-
chains scored better than those with two side-chains, and database runs constrained by the
Lipinski filter did not score as well as database runs with no constraints. Finally, databases
of very large combinatorial libraries (N=1262) scored better than the same scaffold data-
base with smaller libraries (N=100). Special attention should be paid to the large library
database run with the Lipinski filter, since this most closely resembles realistic a drug-
design application. Despite the generalizations noted above, in this particularly important
case (N=1262, Lipinski filter), scaffolds with only two side-chains are ranked favorably
compared with those containing three side-chains, despite the fact that they represent a
dramatically smaller number of the total compounds screened (figure 12).

Next, we examine the physical properties of the top 4500 compounds from each
database run, and the effect of the Lipinski filter on these properties. When the Lipinski fil-
ter was turned on, compounds with molecular weight >500 amu, hydrogen-bind donors >
5, or hydrogen-bond acceptors >10 were discarded on-the-fly during library screening.
The most dramatic effects of the filter can be seen in the molecular weight distributions
where without the filter, the best compounds are distributed in a flat bell curve from 300
amu to 900 amu, while with the filter, most of the best scoring compounds are just below
the 500 amu cutoff (figure 8). The library with more side-chains has an average molecular

weight of 661 before the filter and 491 after, while the library with fewer side-chains has
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an average molecular weight of 559 before the filter and 472 after. Although the Lipinski
filter has a large effect on the compounds selected, this limitation does not come at the
expense of good scores.

The effects of the Lipinski filter are not very dramatic for hydrogen-bond donor
distributions (figure 9). Even without the Lipinski filter, very few of the best scoring com-
pounds contain more than five donors (1.1 percent). The HBD filter may play a much more
significant role if the screening were to use a scoring function which favors hydrogen-
bonds, such as the empirical scoring function of Bohm(20). There is a significant effect of
the Lipinski filter on the much more common HBAs, particularly among the libraries with
1262 side-chains (figure 10). In this case, without the filter, more than 500 of the 4500 best
scoring molecules contain more than 10 HBAs. Interestingly, with the filter on, there is not
a dramatic increase in the number of compounds near the limit (as was seen with the
molecular weight distributions), rather, the mean of the distribution was lowered from 7.6
+/- 2.4 t0 5.7 +/- 1.8. Overall, only 3 percent of the best unconstrained compounds from
the 1262 side-chain database would survive the filter, while 30 percent of the best uncon-
strained compounds from the 100 side-chain database would survive the filter. Although
the Lipinski filter constraint does have some impact on the scores of compounds, the util-
ity of identifying compounds with a higher probability of being able to cross biological
membranes far outweigh this effect, particularly in light of the known approximations
used in evaluating compound affinities(11).

The final question we attempted to address using the screening data generated here
is whether side-chain or scaffold selection is more prominent in determining the score of

compounds. To gleen answers to this question from the data, we compared the ranking of
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the scaffolds with few (N=100) versus many (N=1262) side-chains, and the ranking of the
side-chains with one scaffold versus other scaffolds. We also examined the interplay of the
Lipinski filter with these effectors. The correlations of the ranks of the scaffold among all
four runs can be seen in figure 13. The results are complicated, an probably indicate (not
unexpectedly), that it is a balance of good scaffold selection and good side-chain selection
that generates good scores. Without the Lipinski filter, there is an excellent correlation
(CC=0.9) between the scaffold ranking with the artificially small set of side-chains and the
larger, more realistic set of side-chains, initially indicating that the scaffold selection may
be a dominate force. This hints at the potential that scaffolds may be compared to one
another using a relatively small number of side-chains at each position. Unfortunately, the
picture becomes more interesting when we examine the large libraries with the Lipinski
filter on, in which case the scaffold ranking does not correlate with any of the previous
cases. We propose that with the larger number of side-chains with which to optimize bind-
ing, the Lipinski filter can have a more reasonable effect on the optimal scaffold. By con-
trast, with only 100 side-chains, the scores may reflect a less specific binding where
effects of the Lipinski filter on suitable side-chains have less of an impact on scaffold
ranking (e.g. since no particular side-chain scaffold combination is outstanding, it is easier
to find a replacement combination with approximately the same score). This hypothesis
would explain both the lack of correlation between the scaffold ranking of the large
(N=1262) library between Lipinski on and off, as well as the much greater reduction in
scores caused by the Lipinski filter in the larger library database versus the small library
database.

To examine the importance of side-chains, we again focus on the most realistic
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case (N=1262, Lipinski filter on). When the 100 best compounds from each library in the
database are considered, the libraries display between 19 and 92 different side-chains.
Among the top scoring 4500 compounds (1800 with three side-chains, and 2700 with two
side-chains) 641 unique side chains were used out of a maximum possible 1262 (51 per-
cent). Each of these side-chains appears in an average of 4.5 scaffold lists. The best side-
chain score is -32.7, with an average score of -11.7 for all of the side-chains considered
here. The 4-guanidino-butyric acid side-chain appears on the most scaffolds (N=23), while
198 side-chains appear with only one scaffold. It appears that the more common side-
chains are those that are highly flexible or small, whereas the rare side-chains have fewer
rotatable bonds and often include one or more cyclic structures. The best scoring side-
chains do not necessarily appear with multiple scaffolds, in fact, of the six best scoring
side-chains, 4 occur with only 1 scaffold, while the other 2 occur with only 2 scaffolds,
perhaps indicating some specificity that is dependent on both the scaffold and the side-

chain.

Discussion

This is the first published example of the application of structure-based design to
screening a database of large combinatorial libraries. This example represents the logical
synthesis and extension of ideas from previous methods to 1) computationally screen a
database of individual compounds for those which might bind to a macromolecular target,
and to 2) computationally screen an individual combinatorial library for those members
which might bind to a macromolecular target. Comparison of an entire database of combi-

natorial libraries allows insights into the best scaffold for a target, the best side-chains for
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a target, and the best combinations of scaffolds and side-chains for a target (e.g. whole
individual molecules). These insights could be used to determine the size, number, and
content of exploratory combinatorial libraries synthesized to discover inhibitors of indi-
vidual macromolecular targets or entire classes of macromolecular targets. In addition to
these specific questions, which could be assessed for each system which the method was
applied to, molecular docking of a database of combinatorial libraries has allowed us to
address three questions which are fundamental to the design of combinatorial libraries.
These are: the effect of potential library size (three attachment sites versus two attachment
sites) on value of the library to databases screening; the effect of placing additional molec-
ular property constraints on the ligand screening process; and, the relative importance of
identifying an appropriate scaffold versus appropriate side-chains. Each of these issues is
discussed below.

A superficial analysis of the quality of a combinatorial library for screening can
place too much emphasis on the number of potential compounds in the library. Because of
the nature of combinatorics, the size of a potential combinatorial library is dominated by

the number of attachment points to the scaffold.

n = Number of Attachment Points
Library Size = [ (Number of Side-Chains),,

n=1

For example, the total number of compounds screened in this database of combinatorial
libraries would be dwarfed by the number of compounds in a single four-component

library which incorporated 1000’s of side-chains at each site. Despite this, the data pre-
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sented here indicates that screening additional libraries, even though they are insignificant
by strict numerical comparison, may produce significant contributions to the best mole-
cules. This is reflected by the data that, particularly with the Lipinski filter in place, some
of the libraries with only two attachment points are quite highly ranked, despite the fact
that they contain three orders of magnitude fewer compounds than the three attachment
point libraries which are ranked below them. One potential implication of this result is that
for ligand screening (whether experimental or computational), it may be more useful to
balance screening very large libraries with screening large number of moderate size librar-
ies. The balance must also consider that development costs and reagent costs can be much
larger for multiple small libraries than for a single large library. This consideration does
not impact computational screening to the same degree it does experimental HTS. When
screening combinatorial libraries, it is more useful to screen many large libraries rather
than a single extremely large library. It may be possible that a threshold exists for the opti-
mal number of compounds to be screened from a single library scaffold at least when
screening an exploratory library (or libraries) for modestly potent inhibitors.

A related issue, whose importance is magnified in light of the discussion of library
size, is the relative importance of side-chain selection versus scaffold selection. It is evi-
dent from the important libraries with only two side-chains that correct scaffold selection
is essential (vida supra). However, it appears that the data here support the idea that a good
scaffold is essential but not sufficient, and must be accompanied by appropriate side-
chains. This is not unexpected considering that, for molecules in most libraries, the side-
chains contain two-thirds or more of the atoms. Particularly when additional constraints

are placed on the problem (Lipinski filter), each side-chain makes important and specific
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contributions to the overall molecular properties.

Development of potential clinical lead molecules requires more than simple high
potency. Additional necessary properties include in vivo potency (ability to cross biomem-
branes), low-toxicity, favorable metabolism, and high oral bioavailability. Lipinski and co-
workers have developed a simple molecular structure surrogate for the ability to cross
membranes(27) which in our experience aids the development of molecules with in vivo
potency(2, 28). There is a natural conflict in the drug design process because, assuming
essential interactions are satisfied, larger molecules tend to be more potent(27). However,
with a few notable exceptions, very large molecules (> ca 500 amu) do not readily cross
biomembranes and are not orally bioavailable. By incorporating the Lipinski filter in our
ligand screening process, we benefit from integrating this downstream goal early in the
design phase rather than first driving optimization toward high potency ligands, then later
attempting to recover secondary properties. Gillett and co-workers have recently shown
the advantages of evaluating the molecular properties of product compounds rather than
reagents(42). Although it is easy to filter combinatorial libraries at the reagent level (see
chapter 2), combinatorial explosion makes filtering of products much more difficult.
Indeed, we are only able to filter product molecular properties by integrating the filters
with the search for potent ligands. In the same manner that focusing only on the best scor-
ing molecules allows us to avoid the combinatorial explosion in side-chain clash checking,
it allows us to examine product molecular properties without being overwhelmed by the
combinatorial explosion. Significant work is underway to develop additional molecular-
structure surrogates for other medicinal properties(43, 44) and in the future we will be

eager to incorporate these considerations into this early stage of ligand design.
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The utility of structure-based design of small molecules is often poorly under-
stood. Although it is easy to exaggerate its shortcomings (when it may fail to rank three

inhibitors with vastly different K;’s) or its merits (when it correctly ranks three inhibitors
with moderately different K;’s), a discussion of some reasonable expectations of structure-

based design is warranted. Let us consider how likely a good scoring compound from a
database screening is to be an inhibitor. First, we need an appropriate measure of the qual-
ity of our screen. Although the prevalence of hits in the 1000 compound cathepsin D
(hydroxyethyl)amine library is much higher than our general database, this remains our
“gold standard” for combinatorial screening. The implications developed below are lim-
ited by the transferability of structure-based screening performance from the mechanism-
based aspartyl protease inhibitor library to the general database of combinatorial libraries.
In the example presented here, when a “hit” was defined as a 330 nM inhibitor, Combi-
Dock was able to find 80% (18 of 23) inhibitors in the top 10% of the database. When con-
verted to likelihood ratios(45), these data indicate that a compound in the top 10% of a
screening is about 10 times more likely to be an inhibitor than without the test, and that a
compound not in the top 10% of a screening is about 4.5 times less likely to be an inhibitor
than without the screening. For the purpose of this example, we make the optimistic
assumption that, for the general database, 1 in 1000 compounds is a hit. If we now use
structure-based design methods to screen the database, compounds in the top 10% of the
database have about a 1% chance of being a 330nanomolar inhibitor, while those not in the
top 10% have only a 1 in 4500 chance of being a hit. This makes compounds in the top
10% 45 times more likely to be inhibitors than those not in the top 10%! Under these cir-

cumstances, one would expect to have to assay circa 65-70 compounds in order to have a
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50% chance of identifying an inhibitor with a K; of 330 nM or better. On the other hand,
assaying even 1000 compounds from the bottom 90% of the screening would only give
you a 20% chance of identifying a good inhibitor. Despite the limitations noted above, this

example simultaneously demonstrates both the power and limitations of structure-based

design.
Conclusions

We have presented the first example of structure-based screening of a database of
large combinatorial libraries. We’ve used this example to show that although identifying a :
good scaffold is essential for molecule design, it must also be complemented with appro- ‘
priate side-chains. Further, we’ve demonstrated that early inclusion of pharmacokinetic s
properties (Lipinski’s Rules) into the design process can dramatically alter library design,

particularly for large libraries such as those used for initial exploratory libraries.
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Figure Captions

CombiDOCK v1.0 Algorithm

Generate Match Combine
Receptor & Best
Spheres Orient Scaffold Fragments

r

Generate ) Attach All Score and
Side-Chain Fragments Rank

Conformations Fragments

Figure 1: CombiDock version 1.0 algorithm. In two preprocessing steps, a negative

image of the receptor site is generated with spheres, and multiple conformations of each
side-chain are generated (top and bottom boxes on the left). The calculation runs as a cycle
starting with orienting the scaffold in the active site by matching atom centers to sphere
centers (top center). Next, all of the pre-generated side-chain conformations at each
attachment point are attached to the scaffold in its new orientation in the active site (bot-
tom center). All of the side-chain conformations are scored and ranked (bottom right).
Finally, the best-scoring side-chains are combined to generate complete molecules and
these are checked for intramolecular clashes (top right). This process is repeated for 100s

to 1000s of scaffold orientations, and the best-scoring molecules are saved.
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CombiDOCK v2.0 Optimizations

Generate Match Combine
Receptor Best
Spheres Orient Scaffold Fragments

I

1. "Best" Conformations
2. Pharmakokinetics

1. Match Probes
2. Minimize
3. Select the "Best"

Generate Score and
Side-Chain é;tg::nheﬁtlls Rank
Conformations Fragments

Figure 2: CombiDock version 2.0 algorithm. The new algorithm includes new features

in two places in the cycle of library docking. There are three important changes in the
scaffold docking process and two important changes in the way fragments are ranked
before generating the complete molecules. In the scaffold docking, first, rather than dock-
ing the scaffold alone with no atoms attached, the user chooses a set of “probe” fragments
which are used during scaffold orientation. Second, each orientation of the scaffold (and
probe side-chains) are minimized. Third, rather than passing all of these minimized scaf-
fold orientations on to the library docking cycle, the user the N best-scoring orientations
are used, where N is a run-time parameter. In the side-chain conformation scoring and
ranking phase, first, for each side-chain, all the conformations are scored, but only the M

best-scoring conformations of each side-chain are passed on to the subsequent pharmaco-
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kinetic and clash filters. Second, before the whole molecules (products) are screened for

intramolecular clashes, the molecular weight, number of hydrogen-bond donor, and num-
ber of hydrogen-bond acceptors are calculated. Molecules which exceed user defined lim-
its in any of these categories are discarded. The library docking cycle is executed N times

(once for each scaffold orientation) and the best-scoring molecules are saved.
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Figure 3: CombiDock v2.0 Algorithm applied to screen a (hydroxyethyl)amine
library in the cathepsin D active site(46). A) Pepstatin bound to the active site. Note one
catalytic aspartyl is visible, the second is inferior and hidden. Portions of the flaps over the
active site are cut away. B) Sphere centers describing the position and shape of the active
site. C) 251 orientations of the scaffold in the active site. D) The eight best-scoring scaf-
fold orientations after minimization (with methyl “probe” side-chains). E) All side-c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>