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Abstract

Combinatorial chemistry makes it possible to generate large families of potential

ligands at relatively low cost. Merging combinatorial chemistry strategies with structure

based design principles opens the exploration of virtual libraries containing billions of

compounds. In chapters two through four of this thesis, I address the development of soft

ware for structure-based design of combinatorial libraries. In chapters five through eight, I

identify inhibitors of four enzymes and address critical questions regarding design of com

binatorial libraries.

I have developed three tools for the efficient construction and design of combinato

rial libraries. UC Select is an internet-based tool that allows synthetic chemists to select

reagents for a virtual library using common chemical nomenclature. Diversify is a pro

gram that prepares virtual libraries from virtual reagents using in silico chemical reactions.

CombiDock is a version of the structure-based design program DOCK, optimized for

designing combinatorial libraries. Together, these tools em be used to rapidly propose

synthetically accessable combinatorial libraries that address optimization of bioavailabil

ity, selectivity, and potency.

Chapter five describes identification of potent HIV-1 RT inhibitors with a novel

mechanism of action. Chapter five is remarkable for our discovery of inhibitors with a

novel mechanisms of action by direct our design efforts to a selected portion of RT. Chap

ter six describes our identification of the first non substrate-analog inhibitors of T foetus

HGXPRTase. This chapter emphasizes selection of potential inhibitors whose analogs can

be easily synthesized in a combinatorial fashion. We apply these library design tools to

vi
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human cathepsin D in chapter seven. Here we identify several potent inhibitors, in addi

tion to demonstrating the superiority of structure-based design of combinatorial libraries

over diverse design of combinatorial libraries. Finally, in chapter eight, we identify potent,

selective, and medicinally suitable inhibitors of P falciparum Plasmepsin II. This chapter

demonstrates the utility of including surrogates for medicinal suitability in the library

design process.

I have developed software tools which facilitate efficient construction and struc

ture-based design of synthetically accessible combinatorial libraries. We used these tools

to investigate critical questions about the design of combinatorial libraries and to identify

potent and selective inhibitors of four medically apropos macromolecular targets.
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Improving and extending human life has long been a cherished pursuit of society

and science. From their inceptions, the disciplines of medicine and pharmacology have

been intellectually and methodologically intertwined in this joint endeavor. From the 5th

century B.C., when Hippocratic physicians began deciphering the connections between

precieved physiological disorders, disease, and appropriate curatives, to the modern era,

where diesases are understood, diagnosed, and treated at a molecular level, physicians

have continued to prescribe pharmacologic treatmens to cure or palliate their patients(1).

While it must be appreciated that surgical, behavioral, dietary, and mechanical modes of

treatment are also major contributors to modern therapeutics, pharmacological methods

hold a fundamental role in the treatment of most medical maladies. Drugs and the pharma

cological regimens they comprise will continue to play an important role in the care of

humans long into the twenty-first century.

A wide variety of agents acting by a myriad of mechanism can be considered phar

macological therapeutics. These agents can be classified according to their pharmacody

namic function, as defined by the target type and biological endpoint (beta-adrenergic

agonists or calcium channel blockers) or according to the medical divisions used to cate

gorize diseases (antihypertensives or neuroleptics). Nucleic acids (gene therapy), whole

proteins (urokinase), peptides (insulin), small organic molecules (furosemide), molecular

elements (oxygen), and even ions (potassium) are used as pharmacological agents in treat

ing diseases(2). These agents can act in the body as enzyme inhibitors (methotrexate),

receptor agonists (albuterol) or antagonists (propanolol), channel blockers (nifedipine),

allosteric effectors including allosteric effectors of transcription factors (estrogen), or by

Promoting or interrupting natural complexes(epoetin alpha)(2). Considering the vast



diversity of biological targets and pharmacological endpoints, the pharmacological targets

currently utilized can be classified into relatively few categories including; enzymes (pro

teases in particular), transmembrane receptors, transcription factors, signal proteins

(kinases and phosphorylases), and structural elements. Finally, each of these agents may

be delivered by a variety of routes including: oral, intravenous, intranasal, intramuscular,

intrathecal, subcutaneous, inhaled, per rectum, topical, and transdermal, with different

pharmacokinetic properties and potencies in different formulations.

Initially drugs were almost solely natural products and were often delivered in

impure or partially purified forms. As chemistry developed as a field, the purification and

identification of small molecules, including natural products, became possible. Natural

products remain a rich source of medicinally important molecules including aspirin, mor

phine, digoxin, cyclosporin, and lovastatin(3). Not only are natural products used as drugs,

but beginning around the turn of the century, they also began to serve as templetes for

develpment of synthetic and semi-synthetic analogs. Modern synthetic chemicsts con

tinue to be educated and challenged through the synthesis of natural products(4). It is only

in the last sixty years that medicinal chemistry has flourished to the point of identifying

novel compounds with desired pharmacological properties and developing these “lead”

compounds via the planned synthesis of related molecules(5). Further, it has only been the

last twenty years that computational chemistry has been able to make a large impact on the

design of small molecules with desired physical and biological properties(6, 7,8,9, 10,

11, 12).

The design of small molecules with specific properties can be framed as a con

Strained optimization problem. The optimized function is the binding energy (AG), the dif



ference in free energy between being bound to the receptor and being in aqueous solvent.

This optimization is constrained by the fundamental (and obvious) constraints that the

small molecule solutions to the problem are bound first by the structural principles of

chemistry and second by the complex biological systems in which they act. The biological

constraints include the concepts that the ideal molecule will be orally available, soluble,

non-toxic, non-teratogenic, not metabolized too rapidly or too slowly, not bind to serum

proteins, able to cross biological membranes, and, most importantly, able to carry out the

desired biological function.

Prediction of the biological function and potency of small molecules has long been

a pursuit of computational chemistry (vida infra). While recent work defining molecular

structure surrogates for the ability to cross biological membranes has greatly enhanced our

ability to design compounds with this property, we have only a rudimentary understanding

of the molecular motifs which effect toxicity, metabolism, and oral availability(13). The

balance of the biological constraints are fulfilled only on an empiric basis, thus introduc

ing much of the risk to drug development.

The constraints that chemistry places on the solutions are that they must be mole

cules rather than collections of independent atoms. This constrains the topology, scale,

flexibility, and physical properties of the compounds based upon the finite number of sta

ble hybridization, valence, charge, and bonding states of atoms. Chemistry further con

Strains the molecular solutions to the subset of molecules which can be synthesized by

known chemical reactions. Although the exact degree of this constraint is subject to small

Variations in knowledge, technology, technique, and resources, from larger perspective, it

is a rigid constraint. Despite all of these constraints, it has been estimated that between



10° and 10” small molecules which fulfill all of these constraints are possible(14). Thus

it has become useful to generate models of some of these small molecules and use these

models to predict their physical and biological properties prior to the measurement of the

property or indeed even before the synthesis of the compound.

Prediction of molecular properties is an exceedingly broad topic. We will focus

first on prediction of properties of small organic molecules of pharmacological interest,

and focus even further on prediction of the interaction of those molecules with macromol

ecules with known atomic-resolution structures. DOCK is one computer program for ana

Iyzing these interactions(15, 16, 17). In DOCK, the interactions of small molecules and

macromolecules are estimated using a molecular mechanics force field with the assump

tions that bonds are unbreakable and all interactions are pairwise. The potential also

assumes all bond lengths and angles are fixed, and the torsion angles can be assumed to be

fixed or allowed to move. The current potential has two enthalpic terms and no entropic

term and takes no account of the thermodynamic cycle. The solvent electrostatic screening

is modeled using a 4r distance dependent dielectric constant. The final assumption is that

the charges are atom-centered point charges calculated using the method of Gasteiger(18).

Dock Score = Pij) (AA/(rº)”
-

BB/(rº)" + 332.0 qq/4(rù)”)
(for details see Meng et al.(17))

Despite these limitations, DOCK is still successful at screening databases of available

Compounds to identify low micromolar inhibitors(19, 20, 21, 22, 23, 24). This utility

Comes because DOCK is exceptional at identifying true negatives. DOCK can be used to

quickly eliminate all the compounds which simply have no chance of binding in a target

pocket. When screening the ACD, even if half of the small number of inhibitors are elimi

nated (sensitivity 50%) it is acceptable because DOCK generally eliminates more than



99% of the non-inhibitors (specificity >99%). This high specificity is essential, because

the prevalence of inhibitors in the ACD database is very low. Even a two percent false pos

itive rate would result in thousands of false positives, effectively swamping out the few

inhibitors and yielding very low hit rates in the final selections. Additional screening to

eliminate the false positives caused by systematic errors is extremely helpful. Compounds

which have large hydrophobic groups extending into the solvent, too many buried hydro

gen bond clashes, bias caused by excessive polarization (multiple halides or multiple nitro

groups), and long chain aliphatics can be eliminated. Finally, clustering can be helpful so

Only a single compound from each structural class is assayed initially(25).

After a typical molecular docking exercise, the best scoring 100's to 1000's of

compounds are examined, and between 20 and 100 compounds are purchased and

assayed. Screening assays are usually run at concentrations between 10 and 1000 puM,

resulting in “hit” rates (>50% inhibition in the single point assay) between 10 and 30 per

cent. In many cases, the best inhibitor identified by an experienced computational chemist

has an IC50 or Ki between 1 and 10 puM. It is also common to follow-up the initial screen

ing hits with similarity searches and further screening. In favorable cases, when the data

base contains many similar compounds, these searches can yield significant increases in

binding potency (an order of magnitude or more). In addition, they are an outstanding

Source of ideas for synthetic optimization of the hits. Despite its approximations, when

applied to the problem of database screening, DOCK is an outstanding example of the suc

Cessful application of computational chemistry to make practical and prospective predic

tions about relevant biological interactions.

In the fall of 1994, the Kuntz group critically reviewed DOCK and the molecular
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docking field. The major limitations discerned at the time were: first, ligands were treated

as a single low-energy (CONCORD(26)) conformation; second, only one conformation of

the target macromolecule was considered (27); third, the scoring function only addressed

ligand-receptor enthalpy(17), neglecting entropy, solvation, and desolvation; and finally,

not enough molecules were being screened to consistently identify sub-micromolar inhib

itors. To expand this final point, it was recognized that based on estimated random screen

ing hit rates (1hit/5,000-10,000 compounds screened), even with a perfect calculation of

binding energy for each compound, it was likely that only a handful of low micromolar

inhibitors would be identified among the 100-200 thousand compounds in the ACD. This

illustrates the necessity to screen additional molecules in order to identify more potent

inhibitors.

Over the past five years, each of these problems has been addressed both within the

Kuntz group and in the general scientific community. Ligand flexibility has been

addressed by two contrasting philosophies. First, flexibase methods(28) represent each

ligand by a series of rigid low energy conformations. Second, ligand conformations can be

constructed to fit into a particular active site by either distance geometry methods(29) or a

variety of incremental growth algorithms(30, 31, 32, 33). Knegtel, Kuntz, and Oshiro

developed a method to assess areas of receptor structural variability from NMR or multi

ple crystallographic structure and dock to this receptor ensemble(34). Other groups have

recently begun to address receptor side-chain and backbone flexibility(35). Further, multi

ple methods are under development to adapt molecular dynamics techniques to simulta

neously improve scoring functions and incorporate receptor flexibility for screening of

tens or hundreds of compounds(36, 37, 38). However, state of the art molecular docking

*
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continues to approximate the macromolecular target with a single rigid structure.

In 1994, the most common DOCK scoring function involved only two terms, a

coulombic potential and a van der Waals 6-12 potential with parameters adapted from

AMBER(17). Development of new scoring functions has been a topic of intense activity

over the past five years. Much of the work has gone into a myriad of empirical scoring

functions developed to optimize the fit of calculated and experimental AG's for a series of

compounds(39, 40, 41). Although the initial fittings are often quite impressive, with aver

age errors as low as 1 kcal/Mol, these methods often fail to produce such splendid results

when extrapolated to more potent compounds or when applied to a receptor not repre

sented in the training set. There have also been significant developments in inclusion of

solvation terms into molecular mechanical force-fields, either by the Poisson-Boltzmann

approximation(42), or by the generalized-Born method(43,44, 45). Although these meth

ods have recently seen dramatic increases in speed, they still cannot be used to screen hun

dreds of thousands of compounds; furthermore, it is not yet clear how accurate they are at

predicting binding energies across a diverse set of examples.

In 1994, initial attempts to increase the number of compounds being screened had

taken the form of de novo design programs(11, 39, 46, 47, 48, 49). These programs used a

variety of random (non reaction-based) changes to the chemical structures of molecules in

order to optimize their interactions with the receptor. De Novo design programs fell short

in two critical ways. First, the molecules they generated were often too complex to be syn

thesized. Second, approximations in the scoring functions made it too risky that the newly

synthesized compound would not make the predicted interaction. These limitations made

the field ripe for the integration of small molecule combinatorial chemistry.
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Combinatorial synthesis has long been used in biological systems to build up bio

logical polymers such as DNA, proteins, and polyketides. Recently, however, the synthesis

of drug molecules has been revolutionized by combinatorial chemistry methods(50). Com

binatorial methods have effected all areas of synthesis including drug-like “priviledged”

libraries such as well known as receptor antagonist benzodiazepines and the mechanism

based protease inhibitor (hydroxyethyl)amines. Libraries are now commonly synthesized

in both solid and liquid phases and in single compound as well as small mixture formats.

Regardless of the strategy, one must confront the fundamental problem that there are many

more potential compounds than can practically be synthesized.

The integration of structure-based design and combinatorial chemistry has been

extremely successful because the strengths and weaknesses of these two powerful tools

complement on another. Combinatorial synthesis methods allow a single chemist to syn

thesize a remarkable number of compounds; however, the potential number of compounds

they could synthesize is expanded by an even greater number. Structure-based design

methods allow rapid approximation of the binding constant of many potential compounds

in a statistically significant population of compounds; however, in any individual case,

structure-based design has the potential to fail. When integrated, the computational meth

ods offer the combinatorial chemist a means to assess an entire library of virtual com

pounds and focus on a subset of those compounds enriched with the most interesting

compounds. The combinatorial synthesis of tens, hundreds, or even thousands of com

pounds allow a computational chemist to make predictions on a statistically significant

number of compounds, where the approximations necessary for computational feasability

do not carry such a heavy impact. The complementary integration of combinatorial chem
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istry and structure-based design is a successful means to inhibitor discovery and optimiza

tion.

Combinatorial chemistry makes it possible to efficiently generate large families of

ligands. Merging combinatorial chemistry strategies with structure-based design princi

ples allows the exploration of virtual libraries containing billions of compounds. We have

developed three tools for the efficient construction and design of combinatorial libraries.

UC Select is an internet-based tool that allows synthetic chemists to select reagents for a

virtual library (Chapter 2). Diversify is a program that allows a computational chemist to

generate virtual libraries for molecular docking (Chapter 4). The final tool, CombiDOCK,

is a variation of the structure-based design program DOCK, which has been optimized for

designing combinatorial libraries (Chapter 3). We describe these tools and demonstrate the

application of structure-based design and combinatorial chemistry to the inhibition of

HIV-1 Reverse Transcriptase (Chapter 5), T. foetus Hypoxanthine-Guanine-Xanthine

Phosphoribosyltransferase (Chapter 6), Cathepsin D (Chapter 7), and P falciparum Plas

mepsin II (Chapter 8). The tools described and demonstrated here can be used to rapidly

design inhibitors of medicinally important enzymes.
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Prologue to Chapter 2

At first blush, it is ironic that UC Select, the most innovative program I have

developed as part of this thesis, came into being only after I relaxed my focus on pharma

ceutical chemistry. On the other hand, perhaps it is fitting that the best idea was from an

integration of chemistry and computational knowledge, when my training has been based

on the premise that there are unique insights to be gained by working at the interface of

several fields.

After completing my oral exam in March of 1997, I decided to spend a month pur

Suing “fun” projects. I read The Essence of Program Design, a book about the philosophy

of computer program design principles, and Foundations of World Wide Web Program

ming with HTML and CGI, a book about computer programs to generate interactive web

pages on the fly (Common Gateway Interface or CGI programs). Out of these “fun” pur

suits grew UC Select, a program built with the Daylight CGI toolkits I’d originally heard

about one year earlier at the MUG 96’ conference during Dave Weininger's presentation

of the “zero cost seat”. UC Select is reagent selection software based on the needs and

shortcomings I’d seen through my experience working on the cathepsin D project with

Ellen Kick and on the HIV-1 reverse transcriptase project with Meg Stauber and Karl

Maurer. Finally, in late March 1997, I developed the program specifications, datastruc

tures, and flow based on several long conversations with Meg Stauber, a synthetic chemist

whose input, friendship, and great blocking I will always appreciate. Happily, I can report

that UC Select has been very well received in the medicinal chemistry community. We

have received electronic license agreements from 49 institutions, including academic insti

tutions, such as Stanford University, University of California, San Diego, University of

16



Copenhagen, University of Tokyo, and Erasmus University in Rotterdam as well as from

pharmaceutical companies such as Abbott, GlaxoWellcome, Ontogen, Parke-Davis,

Pfizer, Smith Kline Beecham, and Boeringer Ingleheim.
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Chapter 2

UC Select: Development and
Implementation of A Common

Nomenclature Method to Search

Chemical Databases.

by

A. Geoffrey Skillman, Tasir Haque, and Irwin D. Kuntz

presented as “Recursive SMARTS for Synthetic Chemists.” at MUG98, February 1998,
Santa Fe, New Mexico.
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Abstract

Combinatorial libraries have become an extremely efficient tool for identifying

compounds which have specific biological and physical properties. In order to take full

advantage of a combinatorial library, you must be able to describe each of the potential

molecules which practically can be synthesized in that library. UC Select is a web-based

program which allows chemists to use common nomenclature to select chemical reagents

appropriate for a combinatorial library synthesis. We elucidate the utility of this tool in

two examples. First, we demonstrate selection of amine and acylating reagents for a

(hydroxyethyl)amine combinatorial library. A set of 426 primary amines and sets of 1,752

and 2,221 acylating agents compatible with the synthesis were identified from the Avail

able Chemicals Database (ACD). Second, we use UC Select to identify molecules which

can be easily derivatized using common combinatorial reactions. Each of the 5286 mole

cules we identified in the ACD represents a potential combinatorial library. This “privi

leged” subset of the ACD Contains molecules which have the potential to be outstanding

lead compounds; therefore, we may wish to give them special attention in screening

efforts.

Introduction

A general problem in information science consists of: defining, collecting, and

organizing the pertinent information necessary to solve a problem; next, identifying the

people with the knowledge and skills to solve the problem; and finally, delivering the

information to them in a format they can understand and utilize by a means which they
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will find practical and efficient"). Today, collection and organization of data occurs on

computers, so the information must be stored by a means which is efficient for storage as

well as retrieval by computational methods. Too often, information systems are built to the

developer's specification rather than the appropriate end user's specification. Indeed, a sig

nificant portion of solving an information problem can be determining who is most quali

fied to use the information. Delivering the appropriate information to the wrong user can

be at least as deleterious as delivering incorrect information to the appropriate user. The

information must be made accessible to the final user by a method which allows them to

intuitively identify and retrieve the information by a procedure which parallels the way

they think about solving a problem. Finally, the information should be delivered in a for

mat which is convenient for the end user to utilize and must include all details necessary to

solve the problem.

Definition of the scope and size of a virtual library based on a well-defined combi

natorial synthesis is a problem which falls into this framework of information-based prob

lem solving. The synthetic chemists familiar with the scope of the reactions used to make

the library are the best qualified to define the virtual library. Thus, the databases of avail

able chemicals must be delivered to synthetic chemists in a format they understand, find

useful, and are willing to use. These databases of available compounds are large, contain

ing hundreds of thousands of very heterogeneous compounds, each with accompanying

physical biological, medicinal, or commercial data”. Efficient storage of chemical infor

mation is a long-standing problem which has been solved by linear string representations

of chemical compounds such as Wiswesser Line Notation (WLN)(3) or SMILES(43).

These representations contain all of the atomic content and bonding connectivity of the
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molecules, and can be “read” directly as text by a practiced user. Further, the text represen

tations can be canonicalized allowing unique representation as well as reliable data storage

and retrieval as well".

Despite the advantages of these solutions, they are not an intuitive means for a syn

thetic chemist to describe reagents. Chemical structures are formally described by IUPAC

nomenclature. However, this system is far too rigid and cumbersome for everyday use, so

chemists often speak of chemicals using the common nomenclature, from which the more

formal incarnation grew. Although common nomenclature allows for some points of ambi

guity, its ease of use and flexibility make it central to the way synthetic chemists think

about reagent selection. Another avenue for chemists to designate molecules is through

Kekulé structural diagrams. Search methods based on this technique have been imple

mented in both the xvMerlin") and ISIS-base" search engine clients. While this is the

preferred method for identification of individual compounds, when searching for combi

natorial library reagents it becomes quite time consuming, lacking in functional group

specificity and without an easy means to carry out complex, multi-functional group

searches. Further, these methods suffer because they are often not directly available in the

chemist’s laboratory and involve a moderate learning curve to become an efficient user.

The importance of convenient information access is emphasized by the anecdote that for

small libraries, many chemists prefer to select reagents from a chemical vendor catalog

rather than from a more thorough ISIS or Merlin Search.

To overcome non-specificity of substructure searches derived from Kekulé dia

grams, more complex search languages such as SMARTS have been developed”.

SMARTS search strings are a superset of SMILES strings and include versatile search fea
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tures such as atom and bond wildcards, boolean functions, as well as valence, charge, con

nectivity, and stereochemistry specifications. SMARTS also contains two other features

which are essential for developing sophisticated searches. First, any search can define the

necessary environment of an atom (or functional group) as well as the atom (or functional

group) itself. Second, any SMARTS search string can be associated with a variable name.

These variables can then be used in subsequent SMARTS strings, being recursively

replaced before the search is carried out. These features allow complex search strings to be

devised, developed, and maintained in a reliable manner.

Here we describe the development of a search method based on common nomen

clature. We have developed specific SMARTS strings for about seventy common func

tional groups, atom types, steric definitions, and relative atomic positions. By identifying

and utilizing a “root atom” for each functional group, we have constructed the SMARTS

so that they can be easily combined with boolean functions or modified with relative posi

tions of nearby functional groups. As a second level of abstraction, we have combined

these initial SMARTS to generate search strings for secondary functional considerations

such as “beta hydroxy carboxylic acids.” They have also been combined to form “meta”

functional groups such as “nucleophiles” or “hydrogen-bond donors.” These common

nomenclature SMARTS definitions can be used as the intuitive language for synthetic

chemists to search for combinatorial reagents.

In order to deliver this intuitive search method to synthetic chemists, we have

developed an internet based search tool. The internet provides a very low-overhead

method to distribute information to synthetic chemists”. Most chemists are familiar with

internet browsers and internet forms, which have been developed by third-party suppliers
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to be simple and comfortable interfaces. In our implementation, chemists define the search

using a simple HTML form on any computer with an internet browser and web connec

tion. The chemist chooses the reagent by selecting its primary (and secondary) functional

groups from a list of common chemical nomenclature names. This simple interface has

been enhanced to improve the control the chemist has during reagent selection. In addition

to the primary and secondary functional groups, chemists can discard toxic, reactive, or

highly metabolized reagents. Chemists can limit the search using physical properties such

as molecular weight and rotatable bonds. After a search is defined and executed, pertinent

information is returned to the chemist's browser so search results can be refined, utilized,

and recorded. By having the search defined locally by the chemist, but carried out cen

trally, a single database can be maintained and searched by many chemists. We have

developed an internet-based search interface which allows synthetic chemists to select

chemical reagents for combinatorial libraries using common chemical nomenclature.

Methods

We have developed a recursive nomenclature to describe chemical reactions and

functional groups using an extended set of Daylight's SMARTS search language. The

nomenclature allows simple descriptions of functional groups and secondary interactions.

However, when the nomenclature definitions are used to resolve these simple descriptions,

the results are complex SMARTS search keys which define the relevant chemistry in a

way which is both sensitive and specific. We have implemented these functional group

descriptors into a common-nomenclature based search method. UC Select is an internet

based (CGI)(19) implementation of our common chemical nomenclature search method
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which allows synthetic chemists to identify potential reagents for combinatorial libraries

using their internet browser.

Common Nomenclature SMARTS definitions

We developed a general SMARTS representation for chemical functional groups.

We desired these functional group definitions to be easily combined to describe boolean

searches as well as the chemical and steric environments of functional groups. Initially, we

analyzed a list of approximately 70 common functional groups") (e.g. carboxylic acid,

alcohol, isocyanate), developed a set of common components of functional groups (e.g.

hydroxyl, carbonyl), and identified the unique atoms which make up these structures (e.g.

carbonyl carbon, carbonyl oxygen). For each functional group we defined a root atom as

the atom which synthetic chemists refer to when identifying the relative positions of func

tional groups in common nomenclature (e.g. the carbonyl carbon is the root of carboxylic

acids). SMARTS descriptions for each atom, component, and functional group were con

structed in a hierarchical manner. The SMARTS for each functional group was defined as

the root atom plus its environment (see appendix 1 of this chapter). The SMARTS for rel

ative positions (e.g. alpha, beta, gamma, ortho, meta, and para) were adapted from the

Daylight User Manual"). The atom root of the SMARTS definitions allow functional

groups to be combined for boolean searches (e.g. isocyanate or isothiocyanate), relative

positions (e.g. meta-chloro aniline), or steric environment (e.g. beta-branched ester) in a

Systematic manner without excessive numbers of special cases (Table 1). Furthermore, the

construction of complex search keys from simple building blocks minimizes debugging

and maintenance of the definitions because corrections and updates need only be made in

one place.
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Figure 1: Network diagram for UC Select. UC Select is both a common gateway inter
face (CGI) program related to the web server and a Merlin client program, related to the
Chemical database server.

UC Select

UC_Select is a CGI program which is also a client program to Daylight's Merlin

Server (figure 1)"). Merlin is an extremely efficient search engine for managing chemical

structures and information. UC Select provides a synthetic chemist, via their web

browser, a simple interface to large databases of compounds. UC Select allows chemists

to build complex searches by filling out a simple HTML form"). There are four phases to

UC_Select’s search process. First, an essential functional group is selected (generally the

functional group which will participate in the combinatorial reaction) (figure 2).
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Figure 2: Essential Functional Group Selection. This illustrates the initial portion of the
user interface as viewed within the Netscape browser. By selecting combinations of but
tons and lists, the chemist builds the essential functional group as well as its chemical and
steric environment.

This first step allows the chemist to specify secondary interactions, such as nearby func

tional groups and nearby steric environments, in the selection of an essential functional

group. Second, compounds are culled according to a series of physical properties, includ

ing molecular weight, calculated logP(o/w)”, number of rotatable bonds, number of

hydrogen bond donors, number of hydrogen bond acceptors, and number of formal

charges (figure 3). Third, compounds which contain medicinally less desirable functional

groups are eliminated by default, however, the chemist has the option to keep any of these

“bad” functional groups (figure 4). Fourth, the chemist selects functional
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Figure 3: Physical Property Selection.

groups not compatible with the particular synthesis of interest from a large list of gener

ally acceptable functional groups (figure 5). These compounds with incompatible func

tional groups are eliminated. Finally, based on more practical yet essential grounds,

compounds only available from undesirable suppliers or compounds which are too expen

sive for a particular application are eliminated (figure 6).

Once the HTML form is filled out and submitted by the chemist, the web-server

passes the results of the form to UC Select as a set of variables. UC Select parses the

variables into a series of Merlin searches (SMARTS, SMILES, and parametric searches)

|
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Figure 4: Undesired Functional Group Removal.

and carries out the searches. While the searches progress, UC Select sends updates on the

status of the searches back to the chemist via the chemist's web-browser (figure 7). When

the search is complete, UC Select sends the results to the chemist in one of several possi

ble formats (selected by the chemist) which can include HTML links to ordering informa

tion on the compounds and small depictions of each compound (figure 8). This program

brings the very powerful chemical search capabilities of Daylight's Merlin server into the

hands of the user with the most knowledge about the synthetic problem at hand. The web

based form interface allows complex information to be encoded by the chemist in a

nomenclature they already know while still taking advantage of many of the complex

1..{
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search operations which make the Merlin system so useful.

Example 1: (Hydroxyethyl)amine Combinatorial Library

We demonstrate the use of UC Select to identify groups of reagents for a combi

natorial synthesis. We use a (hydroxyethyl)amine combinatorial library with three substit

uent groups as an example"). The synthesis requires a set of primary amines and two

similar (but not identical) sets of acylating agents. The synthetic method was analyzed to

determine functional groups which would interfere with or be degraded by each step of the

synthesis and these criteria were used to search the ACD version 95.1°. The groups of

acylating agents included carboxylic acids, acid halides, isocyanates, isothiocyanates,

*---
*

* º*Cº
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Figure 8: Supplier and Ordering Information

and sulfonyl halides as the primary functional groups. Molecules with multiple copies of

the essential functional group were eliminated. Reagents were selected from a list of those

available from “preferred” suppliers (Table 2) and a maximum price limit of $100 per

gram was set. The molecular weight of the side-chains were limited to 100–275 amu. In all

of the searches, compounds with the following reactive, toxic, degradable, or difficult to

model atoms or functional groups were removed: phosphoric acids; phosphonic acids; sul

fonic acids; sulfonic esters; anhydrides; peroxides; azides; azos; atoms other than C, O, N,

S, F, Cl, Br, I, H, or B; four or more halides; two or more formal charges; two or more

nitro groups; a dipeptide; or a macrocycle.

For each search, additional functional groups which were not compatible with this

specific synthesis were also removed. For the primary amine search, compounds with
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alcohols, aldehydes, alkyl halides, amino acids, carboxylic acids, hydroxylamines, nitros,

phenols, and thiols were eliminated. For the acylating agent searches, compounds with

alcohols, aldehydes, amines, amino acids, hydroxylamines, nitros, or thiols were elimi

nated. The acylating agents for the R2 position also had alkyl halides and phenols

removed; however, these were allowed in the R3 reagent set. Results are given below.

Example 2: Available Combinatorial Lead Library

We used UC Select to identify a subset of compounds from the ACD which have

analogs that could be synthesized by common combinatorial reactions. In this manner,

each molecule in the subset is a representative from a virtual combinatorial library. First,

we selected twenty common combinatorial reactions and analyzed the functional group

created in the product of the reaction (table 3). For instance, solid phase synthesis of pep

tides forms an amide functional group. We compiled a list of the functional groups from

the common combinatorial reactions, which we’ll refer to as the “combinatorial linkers.”

Further, we desired that each molecule represent a non-trivial combinatorial library, so we

required that each molecule contain two rings each connected to a “combinatorial linker”

by a path containing seven or fewer atoms. In addition, molecular weights were limited to

100-450 amu's. Molecules with reactive, unstable, and medicinally undesirable functional

groups were also eliminated. UC Select was used to carry out this search in the ACD

95.1°. Approximately 14,500 compounds were identified which filled these search crite

ria. Unfortunately, many of them were medicinally uninteresting. To eliminate these, the

additional criteria that at least one of the two rings be a heterocycle was applied. 5,286

available compounds were identified which fulfilled all of these search criteria. Not only
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are these compounds medicinally interesting, but they each represent a potential combina

torial library.

Results

Example 1: (Hydroxyethyl)amine Combinatorial Library

The original synthetic scheme for (hydroxyethyl)amine inhibitors can be seen in

the retrosynthesis (figure 9)(4),

Figure 9

H H R.
"r"

-

ºr", => Nas ONos + R.NH 2 + R2CO2H + RaCO2H
O E O EPh’ Ph’

Components employed to prepare the (hydroxyethyl)amine library. Isocyanates and sulfonyl chlorides,
which can be used to incorporate R2 and R3, provide ureas and sulfonamides, respectively.

The primary scaffold bound to solid phase first undergoes nucleophilic attach by a primary

amine with the loss of the O-nosyl leaving group. Here the nucleophilic attack requires

that the amines must not contain any facile leaving groups such as alkyl halides. Next, the

second variable point is added by acylation of the newly created secondary amine. This

constrains the second set of variable side-chains to not include strong nucleophiles. The

scaffold azide is then reduced to a primary amine, unmasking the final site of acylation

and requiring that the first two sets of side-chains not contain any easily reducible func

tional groups. The third variable group is then added by acylation of the newly unmasked

primary amine. Finally, the library is acid cleaved from the solid phase with tri-floro-acetic

acid. This requires that all three sets of side-chains must be stable to mild acids. All of
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these constraints were considered when selecting reagents.

Initially all selections were made using the complete set of convenient suppliers

who combine to offer 127,310 unique reagents (table 2). However, because of reagent

costs, two major suppliers, Maybridge and SALOR were eliminated. This dramatically

reduced the number of unique reagents to 41,803. Later, these more expensive reagents

were again considered for more focused optimization libraries, where the likelihood of

finding potent molecules was higher. The molecular weight limit of 100–275 amu elimi

nated 16,360 compounds, and a price limit of 100 US dollars per gram eliminated 87 addi

tional compounds. No limits were placed on the charge, rotatable bonds, or number of

hydrogen-bond donors or acceptors in this group.

The R1 search was for primary amines without any constraints on nearby func

tional groups or steric hindrance. The supplier selections and physical property constraints

(vida supra) left a pool of 25,356 compounds from the ACD 95.1°. The search for pri

mary amines was carried out in two stages, first SMILES, then SMARTS. The fast

SMILES search for compounds containing aliphatic nitrogen identified 11,084 com

pounds. When the specificity of the search was constrained to primary amines with

SMARTS, 1,420 compounds were identified, but 134 of these contained two or more pri

mary amines and were eliminated. Undesired functional groups (those that are generally

undesirable as well as those which conflict with the reaction at hand) were then removed

from this set. The number of compounds removed for each functional group can be seen in

table 3. Note that these numbers are order dependent because some compounds which

were eliminated may have contained multiple undesired functional groups. However, the

final set of remaining reagents was not dependent on the search order. Four-hundred
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twenty-six primary amines which fulfilled all of the criteria for our combinatorial synthe

sis were identified.

An individual search was carried out for each of the five acylating functional

groups in order to track their contributions separately. All searches began with the same

25,352 available compounds as were used in the primary amine search (vida supra).

Details of each search can be seen in table 4. 1,754 acylating agents compatible with the

synthesis at R2 were identified (1,308 carboxylic acids, 207 acid halides, 30 isocyanates,

105 isothiocyanates, and 104 sulfonylhalides). The addition of 227 phenols and 240 alkyl

halides allowed 2,221 compatible acylating agents at R3.

Example 2: Available Combinatorial Lead Library

UC Select was used to select compounds from the ACD 95.1°). Fourteen conve

nient and reliable suppliers were used resulting in 127,310 compounds (table 2). The

molecular weight of the compounds (not including counter-ions) was limited to 100-450

amu, resulting in 111,704 compounds. One-hundred thirty seven compounds were elimi

nated because they cost more than $100/gram. The initial search was for a ring atom sin

gly bound to a non-ring atom, yielding 97,512 compounds. Next, the primary search was

carried out. First, the meta-functional groups “combi-linker” and “any connection” were

created. The “combi-linker” functional group is the boolean “or” of the products of 20

common combinatorial reactions (vida supra, table 3). The “any connection” meta-func

tional group is a boolean “or” of from 0 to 7 bridging atoms. The primary search was for a

ring atom with “any connection” to a “combi-linker” with “any connection” to an atom

from a second ring. When applied, 17,542 compounds fulfilled this primary search. The

final step was to eliminate compounds with the following undesired functional groups;
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phosphoric acid (20), phosphoric ester (19), acid halides (7), sulfonic acids (11), sulfonic

esters (28), anhydrides (38), peroxides (0), unusual atoms (11), azides (33), azo (30),

unbranched chains >4 atoms in length (680), four or more halides (1429), two or more for

mal charges (3), aliphatic chains >7 in length (394), two or more nitro groups (156),

dipeptides (104), and macrocycles with >7 atoms (37). This left 14,542 compounds which

fulfilled all of the search criteria. When the additional constraint that at least one of the

rings be a heterocycle, the list was further reduced to 5,286. While UC Select indepen

dently carried out many sub-searches in this case, these data represent only two searches

by the user, the combi-linker library (14,542 members) and the heterocycle combi-linker

library (5,286 members), emphasizing the ease and efficiency of UC Select.

Discussion

The development of the common chemical nomenclature search method described

here facilitates sophisticated chemical searching by synthetic chemists. Chemists regularly

describe chemical reagents for a combinatorial library using common nomenclature, so

they find this search technique natural and are willing to use it. Because chemists already

know common nomenclature and most are familiar with internet browsers, little training is

necessary and most chemists feel comfortable using UC Select after a short period of

familiarization. The internet interface allows chemists to use UC Select in a variety of

convenient locations including their laboratory desks and homes at no additional cost. By

giving better access to reagent information, better decisions can be made. Having the syn

thetic chemist, rather than a computational chemist, define the scope of reagents yields a

much richer detail of reagent selection. The synthetic chemist is encouraged to think more
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Systematically about reagent selection than if they were asked to explain selection criteria

to a computational chemist or if a computational chemist were to interpret the synthetic

scheme and select reagents. Further, if the chemist doing the synthesis selects reagents,

they can determine and incorporate information about how far they are willing to push a

particular synthetic reaction. For example, in the second set of acylating agents in the

(hydroxyethyl)amine inhibitors, although initially phenols and alcohols were excluded,

when a second chemist selected reagents with UC Select, he was reluctant to eliminate

both alcohols and phenols, and eventually phenols were included in the library. By bring

ing reagent database information to chemists in a convenient and intuitive form, specific

and sensitive sets of reagents are produced.

Although UC Select is not the first example, it is too significant to not reiterate the

power of internet conduits to efficiently disseminate chemical information. The classic

model for chemical databases was to have a database server on one machine and client

software to connected to the server. In the new model, UC Select acts as the client pro

gram to the chemical database, but also interacts with a web-server to generate internet

access to the database. In the old model, for each new user, the client software had to be

installed and maintained on a local computer. In the new model, only one primary client

exists (UC Select) and any internet browser can act as the secondary client, eliminating

the need for installation and maintenance of multiple client programs. Further, since the

browsers and web-servers are developed and supported by third-party suppliers, no devel

opment of client software across multiple platforms is necessary. Not only does this make

it less expensive to maintain current searching capabilities, it greatly facilitates vast expan

sion of accessibility to synthetic chemists (e.g. laboratory bench computers and home
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computers)”. This new server-primary client-internet server-secondary client (browser)

paradigm raises significant licensing and access issues. In the old paradigm, licensing was

simply controlled through client software and a maximum number of clients for each

server. However, in the new paradigm, the chemical database server sees only one client,

and through it, any number of people receive information via their internet browsers.

When internet browsers are used as client software through CGI programs, such as

UC_Select, it creates a new paradigm in information access. Internet-based distribution of

chemical information and chemical calculations has the potential to have enormous impact

on the process of drug discovery.

Although science has always been based on building new ideas “on the shoulders”

of previous ideas, this is accentuated in the development of programs like UC Select. Effi

cient design of programs to widely distribute chemical information require integration of

many independent programing tools. Although integration may be problematic, incorpora

tion of third-party expertise represented in their software is essential. UC Select is based

around the fundamental new idea of atom-rooted functional group SMARTS to allow

development of a common chemical nomenclature search interface. The importance of

this development has been magnified by integration with third-party software. MDL pro

vides the primary chemical information which UC Select distributes. Internet browsers

running on a variety of platforms interpret and represent UC Select HTML search forms

to the user. The HTTPd server interprets variables from the browser and executes

UC Select while passing the appropriate variables as input"). Daylight's MERLIN

Server carries out UC Select’s SMILES, SMARTS, and numerical searches and returns

the results. Programs like UC Select can be even further developed by integration of more
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recent commercial programs as demonstrated by Pat Walters"?). There are many browser

plug-ins which facilitate representation of chemical information through browsers such as

the ChemDraw plug-in for two-dimensional representation. Perl, the most popular CGI

programming language, also has several graphing utility functions which can be installed.

A discussion of Java applications is beyond the scope of this chapter, but suffice it to say

that it has enormous potential to impact the distribution of chemical information. The

impact of new developments in chemical information and drug design can be significantly

enhanced by incorporating them into an integrated system for information delivery.

Although the emphasis of this work has been on delivering reagent information to

synthetic chemists, it is important to recognize and develop the secondary information

their reagent searches represent. Development of a new synthetic scheme for a combinato

rial library is a significant scientific achievement, often requiring chemical insight as well

as multiple person-years of work. As more and more combinatorial scaffolds are synthe

sized, it becomes even more important to collect and archive the information in a way

which allows continued use and refinement. With UC Select, a combinatorial library can

be thought of and cataloged as a series of molecular transformation, each associated with

the variables (search keys) which define a search for compounds compatible with the syn

thesis. The search keys provide an excellent vehicle to define the scope of the library. This

has several far reaching implications and advantages. First, one can develop a database of

combinatorial libraries in this format, and when new reagent databases become available,

they can simply be passed over the search variables to yield the new reagents compatible

with each library synthesis. Second, when new chemical methods become available which

may, for instance, allow a functional group to be compatible with the synthesis that for
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merly was excluded, the search can be modified simply by changing a single variable in

the search description. Finally, it should be noted that the way a chemist is willing to think

about a synthesis changes as a project moves along. For instance, while protecting incom

patible functional groups is generally not acceptable in an exploratory library, the same

protecting schemes may be acceptable in a smaller library for refining a lead compound.

The scaffold plus reagent-selection key abstraction is a compact and efficient representa

tion for archiving databases of combinatorial libraries.

The development of the Combi-linker meta-functional group, by boolean combina

tion of the atom-rooted functional group SMARTS string, also merits further discussion.

The select set of compounds identified by applying the Combi-linker search key to a data

base (vida supra) have some intriguing and desirable properties. First, all of these com

pounds are nominally drug-like, having reasonable molecular weights, numbers of

rotatable bonds, formal charges, no common reactive or toxic functional groups, and being

available from a “preferred” set of reagent suppliers. More significantly, each of these

compounds would make an outstanding screening hit. Each compound in this subset may

be derivatized by reactions commonly used in combinatorial syntheses. In essence, each of

these 5,286 compounds represents an entire combinatorial library. Unfortunately, experi

mental screening of only 5,286 compounds, much less computational screening of this

small set may not turn up any inhibitors because there may simply be no specific inhibitors

of a given target in so small a sample. However, the potential to rapidly optimize these

compounds should encourage us to pay special attention, perhaps through additional cal

culations, to this subset of the database. The Combi-linker meta-functional group is one

demonstration of the power of being able to combine functional group SMARTS to
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Tables

Table 1: Example Build-up Procedure for Functional Group SMARTS
definitions.

Variable SMARTS definition”

C_carbonyl [C;$(C=[$O_carbonyl])]

hydroxyl [O;$([H1&-0,H0&-1])]

C_carboxylic acid [$C_carbonyl;$(C[$hydroxyl]);$(C[#6, #1])]

carboxylic acid [$C_carboxylic acid]

boolean Search [$isocyanate,$isothiocyanate!

relative position [$analine;$([$ortho][$chloro])

a. For a full explanation of SMARTS definitions see the Daylight Manual").
Briefly for this example; [ | indicate the description of a single atom, $( ) indi

cates the description of an atom's environment, ; or & indicates a boolean and, ,
:kindicates a boolean or, " is the atom wildcard, Dindicates the number of explicit

bonds, # indicates the atomic number, and any variable ($var) is recursively
replaced by the variable definition before searches are executed.
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Table 2: Preferred Suppliers Used in Reagent Selection

Preferred Suppliers

Aldrich

Fluka

Sigma

Cal Biochem

ICN

Pfaltz and Bauer

TCI America

Lancaster

ACROS Organics

Maybridge International

TransWorld

Maybridge"

SALOR"

a. Only used in the Available Combina
torial Lead Library reagent selection.
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Table 3: A) Common Combinatorial Reactions

C-C Bond Formation

Suzuki Amide

Heck Ester

Stille Urea, Thiourea

Wittig (Horner-Wadsworth-Emmons) || Carbamate

Organometallics Mitsonobu

Reformansky Reductive Amination (Imine Forma
tion)

Enolate Alkylation Alkylation:
Aldol

Michael Addition Alcohols

Table 3: B) Combinatorial Linker Functional Groups

Functional Groups

amide

secondary amine

sulfonamide

Ulrea

eSter

ether

tertiary amine

carbamate

imino

hydrazone

thioether

thioamide

thiourea

thiocarbamate

thioester

C-X Bond Formation

Amines, Amides
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Table 4: Number of Compounds Removed From Each Pool According to Search
Type and Functional Group (25,356 compounds initially).

Functional | Primary | Carboxylic Acid Iso- Isothio- Sulfonyl
Group Amine Acid Halide cyanate cyanate -halide

Final Total 426 1308 207 30 105 104
Found

SMILES 14,272 18,708 14,385 25,167 25,063 24,302
search

SMARTS 9,664 3,371 10,664 O 0 989
search

2 Copies of 134 493 23 19 10 O
Primary
Group
Alcohol 162 215 O O O O

Thiol 13 25 O () O O

Aldehyde () 16 O () O 1

Carboxylic 467 N.R.” O N.R.” N.R.” N.R.”
Acid

- - - - - -- *--

Nitro 14 140 1 | 18 14 12

Aniline N.R.” N.R.” ! 97 137 8

Amine N.R.” 51() 1 () 5 2

Phenol 40 185 O O O 2

Amino-Acid 100 192 1 15 13 0

Hydroxyl- 3 3 0 () 3 O
annline

Alkyl-halide 23 135 53 6 7 14

Phosphonic 9 () O () O O
Acid

Phosphonic 9 O O () 0 O
Ester

Phosphoric 12 11 O () O O
Acid

Phosphoric 1 3 O 1 O O
Ester
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Table 4: Number of Compounds Removed From Each Pool According to Search
Type and Functional Group (25,356 compounds initially).

Functional | Primary | Carboxylic | Acid Iso- Isothio- || Sulfonyl
Group Amine Acid Halide cyanate cyanate -halide

Acid Halide O O N.R.” O O 3
(Carboxylic)

-- *--

Sulfonic 14 8 () O O 2
Acid

Sulfonic O O O ! O 2
Ester

Anhydride () 3 1 O 0 O

Peroxide O () () 0 O O

Non-stan- 11 12 0 2 1 O
dard Atoms”

Azide O 2 O O O O

Azo O 5 1 () O O

Four Halides O 11 8 O O 2

>2 Formal () O 0 O O O
Charges

dipeptides O 0 O O O O

a. N.R. = Not Removed.

b. Many of these compounds are pre-screened out of the ACD when the reagent database is being
constructed.
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Appendix 1: Functional Group SMARTS

Functional Group Rooted SMARTS

amino acid [N][C;!$(C=*)][C;$(C=O);$(C[!#6])]

dipeptide O=CCNC(=O)CN

two charges [$charge].[$charge]

two nitros [$nitro].[$nitro]

unbranched_chain [R0:D2][R0;D2][R0;D2][R0;D2]

charge [$acid,Shase]

acid [*&$(*=*)&$(*[$hydroxyl]),Smalonic]

base [n,N&D3&!$(N*=[!#6])]

malonic [CH1, H2;$(C([$Ccarbonyl])[$Ccarbonyl])]

four halides [$halide]...[$halide]...[$halide]...[$halide]

long chain [A;RO][A;RO][A;R0][A;RO][A;R0][A;RO][A;RO][A;RO]

macrocycle [r8,r9,r10,r11,r12,r13,r14,r15, r16,r17,r18]

nonstandardatom [+1;!}{2;!#3; #5;!}{6;!#7;!#8;!}9;!#11;!#12;"H15;!#16;!}#17;!}#19;
#20. H35;!}53]

nucleophile [$alcohol,Sprimary_amine,$secondary amine,$aniline,$phe
nol,Sazide,$hydrazine,$hydroxylamine,$peroxide,$thiol,Soxime]

alkyl [$Calkyl]

combi any [$combi fen,Scombi linker]

combi linker [$amide,$secondary amine,$sulfona
mide,$urea,Sester,Sether, $tertiary amine,$carbam
ate,$imino,Shydrazone,$thioether, $thioamide,$thiourea,Sthiocarb
amate,$thioester]

[$ketone,$alde
hyde,$primary amine,$secondary amine,$amide,$alkylating_ag
ent,Saniline,$alcohol,Sphenol,Sthiol,Sisocyanate,$isothiocyan
ate,$carboxylic acid,Sacid halide,$hydrazine,$aryl_mono_Br■ ]

combi fon

mono_alkene [$alkene;$!($alkene.Salkene)]

mono alkyne [$alkyne;$!($alkyne.Salkyne)]

aryl_mono Bri [c;$(c[Br,I])]
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Functional Group Rooted SMARTS

Ulrea [$Nurea)

alcohol [$Oalcohol]

thiol [$Sthiol]

alkene [$Calkene]

alkyne [$Calkyne]

lactam [$Clactam]

amide [$Camide]

thioamide [$Cthioamide]

anhydride [$Canhydride]

aniline [$pseudo_amine;$(NI$aryl]);!$(N-[!#6])]

aniline unsubstitut
ed

[$pseudo_amine:D1;$(NI$aryl]);!$(N-[!#6])]

azide [$Nazide)

triazine [$N1 triazine,$N12triazine]

aZO [$Nazo]

thiocarbamate [$Othiocarbamate,$Nthiocarbamate]

carbamate [$Ocarbamate,$Ncarbamate]

carbamic acid [$Ccarbamic acid]

carbonate [$Ocarbonate]

thiourea [$Nthiourea)

carbonyl [$Ccarbonyl]

thiocarbonyl [$Cthiocarbonyl]

carboxylic acid [$Ccarboxylic acid]

acid halide [$Cacid halide]

[$Cacid chloride]acid chloride

thioester [$Cthioester]

eSter [$Cester]

lactone [$Clactone]
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Functional Group Rooted SMARTS

aldehyde [$Caldehyde]

ketone [$Cketone]

sulfonic acid [$Ssulfonic acid]

sulfonic_ester [$SSulfonic_ester]

phosphonic acid [$Pphosphonic acid]

phosphonic_ester [$Pphosphonic_ester]

phosphoric acid [$Pphosphoric acid)

phosphoric_ester ($Pphosphoric ester]

epoxide [$Cepoxide)

hydrazine [$Nhydrazine]

hydrazone [$Nhydrazone]

isocyanate [$Nisocyanate)

isothiocyanate [$Nisothiocyanate]

nitrile [$Cnitrile]

nitro [$Nnitro)

peroxide [$Operoxide)

phenol [$Ophenol]

primary_amine [$Nprimary_amine]

secondary amine [$Nsecondary amine]

tertiary amine [$Ntertiary amine]

Sulfide [$Ssulfide]

Sulfone [$Ssulfone]

sulfoxide [$Ssulfoxide)

disulfide [$Sdisulfide]

alkylating agent [$Xalkylating agent]

alkyl halide [$Xalkyl halide)

[$Xaryl_halide)aryl_halide

ether [$Oether]
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Functional Group Rooted SMARTS

thioether [$Sthioether]

acetal [$Cacetal]

ketal [$Cketal]

hemiacetal [$Chemiacetal]

hemiketal [$Chemiketal]

sulfonamide [$Ssulfonamide]

sulfonyl halide [$Ssulfonyl halide)

imino [$Cimino]

oxime [$Coxime]

dithioacetal [$Cdithioacetal]

organometallic [$Corganometallic]

oxalyl [$Coxalyl]

enamine [$Cenamine]

enol_ether [$Cenol ether]

Sdisulfide [S;$(S([$Calkyl])SISCalkyl])]

Xalkylating agent [$lg_halide;$(*[$Calkyl])]

Xalkyl halide [$halide;$(*[$Calkyl])]

Xaryl_halide [$halide;$(*[$aryl])]

Sthioether [S;$(S([$Calkyl])[$Calkyl])]

Oacetal [O;$(O[$Cacetal])]

Cacetal [CH1, H2;$(C(O[$Calkyl])O[$Calkyl])]

Oketal [O;$(O[$Cketal])]

Cketal [C;H0;$(C(O[$Calkyl])O[$Calkyl])]

OEhemiacetal [O;$Oether;$(O[$Chemiacetal])]

OHhemiketal [O;$hydroxyl;$(O[$Chemiketal])]

OEhemiacetal [O;$Oether;$(O[$Chemiacetal])]

OHhemiketal [O;$hydroxyl;$(O[$Chemiketal])]

Chemiacetal [C;H1, H2;$(C(O[$Calkyl])[$hydroxyl])]

52



Functional Group

Chemiketal

Sulfonamide

Sulfonyl halide

Nimino
—

00xime

Noxime

Coxime
- .
Sithioacetal

Cithioacetal
| Cºgnometallic

00xalyl



Functional Group ROOted SMARTS

Chemiketal [C;H0;$(C(OISCalkyl])[$hydroxyl])]
SSulfonamide [S;$(S(=O)(=O)N)]

Ssulfonyl halide [S;$(S(=O)(=O)($halide])]

Nimino [N;$(N=[$Cimino])]

Cimino [C;$(C=[N;!$(N-[$hetatm])]).]

Ooxime [O;$(O[$Noxime])]

Noxime [N;$(N=[$Coxime])]

Coxime [C;$(C=NI$hydroxyl])]
Sdithioacetal [S;$(S[$Cdithioacetal])]

Cdithioacetal [C;$(C1SCCCS1)]

Corganometallic [C;$(CB),S(C[Mg][$halide),S(C[Li),S(CICu][Li),S(C([Ag])#C
)]

Ooxalyl [O;$(O=[$Coxalyl])]

Coxalyl [$Ccarbonyl;$(C[$Ccarbonyl])]

Cenamine [C;$(C=C[N;!$Nnitro])]

Oenol_ether [O;$(OC=[$Cenol_ether])]

Cenol_ether [C;$(C=C[$Oether])]

Oether [O;$(O([$Cstd])[$Cstd])]

Nurea [N;$(NI$Curea])]

Curea [$Ccarbonyl;$(C(=O)(N)N)]

Oalcohol [$hydroxyl;$(OIC;!$(C=[!#6])))]

Sthiol [$mercapto;$(S[#6;!$(C=[!#6])])]

Nlactam [Namide:R]

Clactam [Camide;R]

Nthioamide [N;$(NI$Cthioamide)]

Cthioamide [$Cthiocarbonyl;$(CN);!$(C(N)(=S)[!#6])]

Namide [N;$(NI$Camide)]

Camide [$Ccarbonyl;$(CN);!$(C(N)(=O)||#6])]
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Functional Group Rooted SMARTS

Canhydride [$Ccarbonyl;$(COISCcarbonyl])]

Nazide [N;$(N=[N+]=[N-])]

N1triazine [N;$(N=N-N);D2]

N12triazine [N;$(N-N=N);D2,D3]

Nazo [N;D2;$(N=[N:D2]);!$(NI$hetatm]);!$(N=NI$hetatm])]

Ccarbamic acid [$Ccarbamate;$(C[$hydroxyl])]

Othiocarbamate [O;$(O($Cthiocarbamate])]

Nthiocarbamate [N;$(NI$Cthiocarbamate])]

Cthiocarbamate [$Cthiocarbonyl;$(C(=S)(O)N)]

Ocarbamate [O;$(OISCcarbamate])]

Ncarbamate [N;$(NI$Ccarbamate])]

Ccarbamate [$Ccarbonyl;$(C(=O)(O)N)]

Ocarbonate [O;$(O($Ccarbonate]).]

Ccarbonate [$Ccarbonyl;$(C(=O)(O)O)]

Nthiourea [N;$(NI$Cthiourea]).]

Cthiourea [$Cthiocarbonyl;$(C(=S)(N)N)]

Ocarboxylic acid [$hydroxyl;$(O[$Ccarboxylic acid])]

Ccarboxylic acid [$Ccarbonyl;$(C[$hydroxyl]);$(C[#6, #1])]

Cacid chloride [$Cacid halide;$(CCI)]

Cacid halide [$Ccarbonyl;$(C[$halide]);$(C[#6, #1])]

Clactone [$Cester;R)

Cthioester [$Cthiocarbonyl;$(C(=S)O■■ 6]);$(C[#6, #1])]

Cester [$Ccarbonyl;$(C(=O)C■ #6]);$(C[#6, #1])]

Caldehyde [$Ccarbonyl;$([H1,H2]);!$(C-[$hetatm])]

Cketone [$Ccarbonyl;$(C([#6])[#6])]

SSulfonic_acid [S;$(S(=O)(=O)($hydroxyl])]

Ssulfonic_ester [S;$(S(=O)(=O)C*)]

Pphosphonic acid [P;$(P(=O)(=O)($hydroxyl])]
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Functional Group Rooted SMARTS

Pphosphonic_ester [P;$(P(=O)(=O)C*)]

Pphosphoric acid [P;$(P(=O)(O)[$hydroxyl])]

Pphosphoric ester [P;$(P(=O)(O)O4)]

Oepoxide [O;$(O([$Cepoxide])[$Cepoxide))]

Cepoxide [C;$(C1CO1)]

Nhydrazine [N;$(N-[N:D1]);!$(N=C)]

hydroxylamine [$pseudo_amine;$(NI$hydroxyl]);!$(N=*)]
Nhydrazone [N;$(NIN;D2]=C)]

Cisocyanate [C;$(C=[$Nisocyanate])]

Nisocyanate [N;$(N(=C=O)4)]

Cisothiocyanate [C;$(C=[$Nisothiocyanate])]

Nisothiocyanate [N;$(N(=C=S)*)]

Nnitrile [N;$(N#[$Cnitrile])]

Cnitrile [C;$(C#[N:D1])]

Nnitro [N;+0.4-1;$(N(=O)-[O:H0;-0,-1)]

Operoxide [O;$(O[$hydroxyl])]

Ophenol [$hydroxyl;$(Oc)]

Nprimary_amine [$amine;D1]

Nsecondary amine [$amine;D2]

Ntertiary amine [$amine;D3]

ring [R]

amine [N;!$(N*=[!#6]);!$(N-[!#6]);!$(Na);!$(N#C);!$(N=C)]

pseudo_amine [N;1$(N*=[!}{6])]

SSulfide [S:D2;$(S([#6])[#6])]

SSulfone [S;$(S(=O)(=O)([#6])[#6])]

Ssulfoxide [S;D3;$(S(=O)([#6])[#6])]

Ccarbonyl [C;$(C=[$Ocarbonyl])]

Ocarbonyl [O:D1;$(O=C)]
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Functional Group Rooted SMARTS

Cthiocarbonyl [C;$(C=[$Scarbonyl])]

Scarbonyl [S;D1;$(S=C)]

hetatm [+6;$([N,O.S.F.CI,Br,I,P])]

halide [!}#6;$([F.CI,Br.I])]

lg_halide [!#6;$([Br.I])]

mercapto [S;$([H1&-0,H0&-1])]

hydroxyl [O;$([H1&-0,H0&-1])]

Cstd [#6;!$(*=[!#6])]

Calkyl [C;!$(C=[!#6])]

Calkene (C;$(C=C)]

Calkyne [C;$(C#C)]

Caryl [#6;a]

arene [c]

aryl [a]
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Prolog to Chapter 3

The fundamental power and problem with combinatorial chemistry are the vast

numbers of compounds which can be synthesized. By combining a relatively small num

ber of reagents in a similar manner, when using a preoptimized synthetic scheme, a chem

ist can synthesize thousands of compounds in a week or less. Unfortunately, this kind of

“productivity” grows very rapidly, making enumeration, much less structure-based screen

ing, of all the molecules in a large combinatorial library computationally intractable. The

fundamental assumption, that for some parts of the calculation, the side-chains can be

treated independently, makes studying combinatorial libraries feasible. This assumption

has two effects. First, the combinatorial library is abstracted to a scaffold, with one or

more “attachment points,” and a series of sets of side-chains, one set associated with each

“attachment point.” Second, the calculations are split into a computationally inexpensive

linear phase, where side-chains are considered independently, and a computationally

expensive combinatorial phase, where the scaffold and side-chains are considered together

as product molecules. The critical strategy is to calculate as many properties as possible in

the linear phase and use them to limit the number of compounds which must be considered

in the combinatorial phase. Judicious yet purposeful use of this strategy has yielded a very

efficient method for screening combinatorial libraries.

In 1996 Yax Sun, with assistance from Todd Ewing and myself, implemented an

algorithm specifically for Docking combinatorial libraries (CombiDock v1.0) into a pre

liminary version of the Dock 4.0 code. This algorithm and its application to the retrospec

tive analysis of a library of (hydroxyethyl)amine compounds against cathepsin D are
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described in part 1 of this chapter. Despite not allowing translational, rotational, or tor

sional minimization, Yax's algorithm performed spectacularly in my hands. It was far

superior to Dock 4.0 and CombiBuild at selecting the cathepsin D inhibitors from the

1000 compound (hydroxyethyl)amine test library with a variety of scoring functions. This

outstanding performance encouraged me to develop CombiDock further.

Part 2 of this chapter describes several modifications to the algorithm which

increased its execution speed by more than two orders of magnitude. This faster algorithm

allows us to screen an entire database of large combinatorial libraries with CombiDock.

This calculation has allowed us to address several interesting issues surrounding scaffold

selection, side-chain selection, and the effects of applying filters for secondary properties,

such as molecular weight. More importantly, this is the first example of a technique which

can take advantage of the accumulated literature on the solid phase synthesis of “drug

like” combinatorial libraries. In the future, perhaps one will be able to search an “Available

Libraries Database” rather than the conventional “Available Chemicals Database.”
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Chapter 3: Combidock

Part 1: Combinatorial DOCK: Structure-based Combinatorial

Docking and Library Design

by

Yax Sun, Todd J. A. Ewing, A. Geoffrey Skillman,

and Irwin D. Kuntz

Published in The Journal of Computer-Aided Molecular Design, November
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Abstract

We have developed a strategy for efficiently docking a large combinatorial library

into a target receptor. For each possible scaffold orientation, all potential fragments are

attached to the scaffold, their interactions with the receptor are scored and factorial combi

nations of fragments are made. To test its effectiveness, it is compared to two simple con

trol algorithms. Our method is more efficient at selecting best scoring molecules and at

selecting fragments for the construction of an exhaustive combinatorial libraries. We also

carried out a retrospective analysis of the experimental results of a 10X10X10 exhaustive

combinatorial library. An enrichment factor of about 4 was found for identifying the com

pounds in the library that are active at 330 nM.

Introduction

One of the most exciting new developments in medicinal chemistry in recent years

is combinatorial chemistry (!). The modular display of functional groups allows a large

number of compounds to be considered for synthesis. Coupled with automation technolo

gies and high through-put screening, it offers great potential for the discovery of drug

leads. Nonetheless, even though billions of compounds can be proposed, it remains diffi

cult to validate and assay such numbers of compounds. Typically, unless the library is

based on oligomeric units, only very small subsets of fragments are selected for actual

synthesis, in a process known as combinatorial library design. One of the challenges for

computational chemistry is to select optimum sets of functional groups that have the best

potential for the discovery of new leads for a given target.

The structure-based drug design method utilizes the information contained in
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receptor structures by analyzing how well potential lead compounds might bind to the

receptors (2). Since the number of protein structures available, computational methodolo

gies, and computer resources are all improving at a rapid pace, it is inevitable that using

the information of target structures in drug design will become increasingly important. A

recent pioneer study of combining structure-based design and combinatorial chemistry

yielded encouraging results (3). In that study, structure-based calculations were done by

assuming fixed scaffold orientations and fragments were scored independently for each

attachment site. Using fixed scaffold orientations was possible in that case because of

experimental evidences and because of limited orientational and conformational freedom

for the scaffold. However, to be generally applicable to the combinatorial library design

problem, the structure-based design method has to be able to take into account the inter

dependency of fragments at different binding sites, without prior knowledge of the scaf

fold orientation. To do that, one must deal with the large number of combinations pro

duced by combinatorial chemistry. If all the combinations are created and examined

individually, as in traditional database screening approach, then millions, even billions, of

compounds will have to be screened. Such numbers are far beyond present-day computa

tional resources. In this work we report a method that could be used to carry out efficient

docking calculations for such large virtual combinatorial libraries.

In the second part of our study, we will use the combinatorial docking method to

analysis the experimental results obtained in the previous study (3). In that study, one

thousand molecules from a 10X10X10 exhaustive library were synthesized on solid sup

port and assayed individually. It is not often that 1000 compounds are assayed at several

concentrations against a single target under the same experimental protocol. These experi
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mental data offer us a unique opportunity to test objectively how well our computational

methods actually perform. We think this type of direct comparison over a large number of

compounds will have wide implications for the future work in the development of better

scoring functions and in the design of experiments.

Computational Method
DOCK. The basic DOCK algorithm has been described in detail elsewhere (4, 5).

Four steps are needed to carry out the calculation: 1) the negative-image of the receptor

active site is represented by a set of spheres; 2) internal distance matches between a subset

of spheres and a subset of ligand atoms are searched; 3) for every match, the ligand is jux

tapositioned onto the active site; 4) a score is calculated for the ligand in that orientation.

For a single compound in a typical database screen against an enzyme target, up to 10,000

matches could be generated and up to 1,000 of them pass though the check for not bump

ing with the receptor. These orientations are finally scored, using force field or empirical

functions to approximate interaction energies.

Combinatorial DOCK. The combinatorial docking strategy is a simple variation

of the basic DOCK algorithm (Figure 1, Figure 2). The site sphere generation is

unchanged as step 1. At step 2, only scaffold atoms are used instead of the entire ligand for

the generation of matches with the spheres. At step 3 and 4, once a scaffold is matched

onto the active site, all possible fragments are attached at all site positions, and scores are

calculated for the scaffold and all fragments. As a final step, combinations of fragments

are made and the best combinations are then checked for internal clashes and saved if no

clashes are found. It should be noted that this kind of fragment superposition algorithm

has been tried previously for non-combinatorial problems, such as directed database
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searching and conformational searching (6).

Although all combinations of fragments are, in theory, examined, the strength of

this method is that the combination process is reduced to the simple numerical additions of

the fragment scores at all sites. It is thus possible to use simple numerical techniques to

speed up the combinatorial process. Specifically, after scoring all fragments at each scaf

fold orientation, the fragments are sorted according their scores and the combination pro

cess can be terminated once it is determined that no combinations better than a user

defined limit can be found. In addition, the internal clash checks, which are computation

ally expensive, are only necessary for combinations that have good enough scores to be

eventually saved.

Test Cases

Part I. Combinatorial Docking and Library Design

We selected for our first test of the algorithm to dock a virtual library of benzodiazepine

derivatives (7) to dihydrofolate reductase (DHFR). We chose the benzodiazepine library

because of its historic role in combinatorial chemistry as one of the first nonoligomeric

combinatorial libraries (Figure 3). 1,4-benzodiazepine derivatives have been shown to

have a wide range of bioactivities (8). Partly because we do not have the crystallographic

structures for the natural benzodiazepine receptors, we have chosen dihydrofolate reduc

tase as the target for the benzodiazepine library. Since the main purpose of the study is to

test the feasibility and efficiency of the combinatorial docking methodology, DHFR is a

good target because of its large and deep binding pocket. This binding site provides an

excellent test of the inter-dependency among fragments because the resulting “combined”



molecules must fit properly into the pocket. This point will be discussed below.

We used the Available Chemical Directory (ACD) from MDL Information Sys

tems, San Leandro, CA and found 308 acid chlorides (R1), 305 amino acids (R2) and 404

alkylating agents (R3) that satisfy the synthetic requirements for building the virtual

library at the three attachment sites. The total number of all potential combinations is

about 36 million (308X305X404). A newly developed program, Diversify (9), using the

Daylight Toolkit (10), was used to prepare the fragments. The leaving atoms on the frag

ment molecules were removed and tags identifying atoms connecting to the scaffold were

added. The Concord program (11) was used to generate three-dimensional structures and

the results were saved as mol2 files (12), with the connecting atom information stored in

the @-TRIPOS-SET field. Similarly, the scaffold, 1,4-benzodiazepine, was built and the

connecting atom information was also identified.

The combinatorial DOCK has been implemented in a new version of DOCK, ver

sion 4.0 (5). The only new parameter required is the number of torsional positions to be

sampled, uniformly, for the connecting bond between the scaffold and each fragment. We

searched six torsional positions in our tests. The regular DOCK force field scoring method

was used with one modification. A positive score (penalty) of 0.5 kcal/mol was added for

all non-hydrogen atoms of ligands. This modification was made to avoid the largest frag

ments always having the best scores. It is because that medicinal chemists favor potent yet

small compounds as starting leads.

As controls, two other methods were also tested: 1) random selection: fragments

were randomly selected from all available candidates; 2) single fragment docking: in this

strategy, fragments at different sites were assumed to be independent. Each fragment was
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attached to the benzodiazepine scaffold by itself and the resulting mono-substituted mole

cule was docked. The best scoring fragments for each site were then selected as the best

candidates for the combinations.

Two steps are needed in docking and designing combinatorial fragment libraries.

The first step is to find the best scoring compounds made from all possible combinations

of potential fragments. If compounds are to be synthesized individually, no more library

design is needed. A completely exhaustive combination approach, i.e. making all possible

combinations from selected fragments at each sites, however, is a more efficient experi

mental design for making equal number of compounds. If exhaustive combination is

desired, then fragments at each site have to be selected based on the results from the first

step. We will show the results obtained at both steps.

At the step one, i.e., finding the best scoring single molecules, the constraint of

using similar amounts of computer time meant that only 20 fragments could be used for

each site in the random selection method and single fragment method (still producing

8000 combinations!). It also limited that only one or two conformations per molecule

could be used. The conformations were generated by randomly assigning the torsional

angle connecting a fragment and the scaffold. To observe the dependency of the searching

results on the number of conformations used, calculations were done for both one confor

mation per molecule and two conformations per molecule. Whenever combinations are

made, internal clashes were checked and molecules with internal clashes were removed,

typically about 10% of all combinations.

At the step two, i.e., constructing an exhaustive combinatorial library, the follow

ing procedures were used for the selection of fragments: 1) combinatorial docking: frag

66



ments were ranked and selected according to the frequencies they appeared in the top 1000

scoring combinations. 2) random selection: 10 fragments were selected randomly. 3) sin

gle fragment: fragments were ranked and selected according to docking scores of the

mono-substituted compounds, i.e., compounds with one fragment attached to the scaffold.

Part II. Retrospective Analysis of the Experimental Results of a Combinatorial Library

Structure-based library design has been used to design fragment libraries for a

hydroxyethylamine scaffold (13) targeting cathepsin D, an aspartyl protease. There are

three fragment attachment sites on the scaffold. In the previous study, ten fragments were

chosen for each site and incorporated in the final combinatorial synthesis (3). The result

ing 1000 molecules were assayed for activity at 1 puM, 330 nM and 100 nM, with 67,23,

and 7 compounds having inhibition greater than 50% at each concentration respectively.

Our goal in this work is to analyze in more detail the experimental results for the

compounds synthesized and assayed. This is a test for both the searching algorithm and

the scoring function. Since only 10 fragments were finally used at each site, fragment con

formations can be sampled more extensively than in the initial designing process. A sys

tematic dihedral searching method was used to generate fragment conformations. For

torsions with rotational barrier below 2 kcal/mol, according to AMBER force field (14),

dihedral angles were sampled every 60 degrees. When a double bond was involved, then

only the trans and cis forms were used. The conformational searches generated a total of

282, 152, and 225 molecular conformations for the 10 fragments at each site. We used the

same scaffold conformation from the previous work (3), which was determined by match

ing the scaffold with the crystal structure of pepstatin in the complex with cathepsin D and
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torsional searching for the three undetermined dihedral angles (3).

Results and Discussion

I. Combinatorial docking of the benzodiazepine library to DHFR:

As mentioned before, the first step is to find the best scoring compounds from

combinations of all potential fragments. The distribution of scores for the top 500 scoring

molecules found with each method, together with the CPU time used to search for them,

are shown in Figure 4. Searching was limited, as described in the method section, for the

random selection method and the single fragment method so that each approach was given

roughly the same computer CPU time as the combinatorial docking. The average scores of

the top 500 scoring compounds are -25.6, -18.1, -15.7, respectively, for combinatorial

docking, random selection and single fragment methods. It is interesting that selecting

compounds based on one fragment at a time (single fragment method) is even worse than

a random selection. The reason for this is that single fragment method assumes indepen

dence between fragments and it picked out similar fragments at all three positions that

when studied as the mono-substituted scaffold, dock very well into the binding pocket.

Once these fragments are put together in the same molecule, however, they interfere with

each other. This often results in either inefficient docking in which fragments interact with

the target weakly, or worse yet, one fragment bumps into the target and the combination

must be discarded.

Having found the best scoring individual compounds, we next considered the

design of an exhaustive combinatorial library. The goal is to select a small arbitrary num

ber of fragments from all available fragments for each site to prepare the best library when
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the combinations are exhaustively made. In our test, we selected 10 fragments for each site

yielding a 10X10X10 format for a 1000 compound library.

Using the fragment selection method described previously, three 10X10X10 librar

ies were constructed based on the results of the combinatorial docking and the two control

algorithms. To compare these three libraries of 10X10X10 molecules, 25 random confor

mations were generated for each combination, again by randomly assigning connecting

torsions. It should be mentioned that even with 25 conformations docked for each mole

cule, the conformational search is still quite limited. Conformations that had internal

clashes were discarded. For each molecule, i.e. each combination of fragments, the con

formation with the best docking score was saved as the final score for the molecule. The

distributions of the scores are shown in Figure 5. As in the first step (Figure 4), combinato

rial dock performed best, and random selection is better than single fragment approach.

The average scores for the three libraries are -18.9, -11.2, and -6.7. However, there are

now much more overlaps between the docking method and the two control algorithms.

The primary reason for this is that exhaustive combinations force the inclusion of many

not-so-good combinations. We should note, however, that this does not mean that we sug

gest synthesizing individual best scoring combinations instead of using exhaustive combi

natorial approach, for the reason that the current scoring functions are not yet reliable

enough to grant such an importance to their scores. In our test, we have attempted to sepa

rate the searching algorithm from the scoring function to demonstrate the efficiency of

searching for a given scoring function. The reality, however, is that the quality of scoring

functions is critical to the quality of predictions. The quality of predictions will in turn

influence how the actual experiments should be optimally designed.
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The scaffold-based combinatorial docking method presented here is best suited

when there is a scaffold with fragments attached to it, even if it is a small scaffold. It also

has the limitation that the scaffold can not be too flexible. If there are only a few low

energy conformations available for the scaffold, then these conformations could be treated

independently and results from difference conformations can be combined at the end. On

the other hand, it would be difficult if the scaffold has too many conformations, unless the

conformation or even the orientation of the backbone is restricted or known inside the tar

get, such as in the hydroxyethylamine based library targeting cathepsin D case (3).

II. Retrospective analysis of the experimental results of a combinatorial library

Although non-internal-clashing conformations can be found for all 1000 mole

cules in the library, in the context of the cathepsin D binding site, at least one non-internal

clashing and non-external-bumping orientation was found for only 752 compounds, based

on the conformations we searched. Since some of the unsuccessful molecules showed

inhibition, we can only assume the error is in our modeling. The most likely source of this

problem is our limited ligand conformational searching and the neglect of receptor flexi

bility. Our main goal in this part of the study is to test our scoring functions, i.e. how well

our calculated ranks relate to the experimental results. So for this analysis, we decided to

use only the 752 compounds that we could readily score. We use as a measure of the qual

ity of the calculation the enrichment factor: the initial ratio between the percentage of hits

and the percentage of database used. As shown in Figure 6, when the experimental results

at 330 puM is used, the enrichment factor is about 4. A completely random ranking would

result in an enrichment factor of 1.
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Conclusion

We have implemented and tested a combinatorial docking strategy. We have shown

that it is able to find better scoring combinatorial molecules than the two control methods.

When completely exhaustive combinations are required, fragments selected based on the

results from the combinatorial docking also produced better scoring compounds. The

combinatorial docking method is fast enough to allow using structure-based library design

for general combinatorial chemistry problems when target structures are available. We

have also analyzed the experimental results from a previous combinatorial library. An

enrichment factor of 4 was obtained using the force field based scoring method.
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Figure 1: Combinatorial DOCK algorithm.
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Distribution of Top Scores
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Figure 4: Distributions of the top 500 scoring molecules from three different search

ing methods. For the random selection method and the single fragment method, only one

conformation per combined molecule was generated for the short runs (solid lines), and

two conformations per combined molecule were generated for the long runs (dashed

lines). All calculations were done on 200 MHZ R4400 Indigo2.
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Distribution of Combinatorial Library
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Figure 5: Distributions of the scores of the exhaustive combinatorial libraries. Num

ber of compounds with the score of 10.0 includes compounds with the score of 10.0 or

higher.
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Abstract

Structure-based design can be successfully used to screen databases of small mole

cules in order to identify compounds with specific biological activities. Recently, the inte

gration of combinatorial chemistry and structure-based design has become a powerful tool

for identifying potent, non-peptide, small-molecule inhibitors of enzymes(1, 2). Previ

ously we described a method for efficiently docking a single combinatorial library into a

target receptor(3). We describe a method for structure-based screening of a database of 45

large (1262 X 1262 X 1262) combinatorial libraries in approximately 96 hours of CPU

time on an SGI R10000 workstation. We have modified the algorithm to include two

stages of focusing on the most complementary compounds as well as a look-ahead mecha

nism. This new algorithm is 2-3 orders of magnitude faster than our previous method and

allows both significant increases in conformational sampling and comparison of multiple

combinatorial libraries. We use the database Screening data to demonstrate that screening

multiple libraries may be more helpful that screening one very large library. To indepen

dently validate the method, we retrospectively analyze the selection of 23 330nM Cathep

sin D inhibitors from a 10x10x10 compound combinatorial library. An enrichment factor

of greater than 12 (over random) was found with an execution time of less than three min

uteS.

Introduction

One fundamental goal of chemistry is to design molecules with specific physical

and biological properties. For over twenty years, chemists have been using simplified
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structural models to predict the properties of molecules(4). One of the first applications of

structure-based molecular design calculations was the screening of a database of known

compounds for those complementary to a crystal structure of the HIV-1 protease

enzyme(5). It is now common to screen computationally databases of available com

pounds or potential (virtual) compounds to identify small molecules which interact with

macromolecular targets of known atomic resolution structure. These computations (data

base mining) generally screen thousands to hundreds of thousands of small molecules(6,

7, 8, 9). The small molecules are modeled as a single low-energy conformation(10, 11,

12), a small collection of low energy conformations(13), or as completely flexible

ligands(14, 15, 16). The receptors are usually considered to be rigid in order to reduce

computational complexity (limited receptor flexibility now appears feasible in some

cases(17)). The six orientational and translational degrees of freedom between ligand and

receptor have been explored by a variety of methods. Some methods focus primarily on

structural features of the receptor(18), while others make use of potential chemical inter

actions of the receptor(19, 20, 21). Despite outstanding results when screening databases

of available compounds(6, 7, 8, 9) all of these methods are approximate and may fail in

the limiting case of predicting whether or not an individual compound will have the

desired inhibitory properties before it is synthesized.

Recently, the synthesis of drug molecules has been revolutionized by combinato

rial chemistry methods. Combinatorial synthesis principles have long been used in biolog

ical systems for the synthesis of biological polymers such as DNA, proteins, and

polyketides(22). Bunin and Ellman demonstrated the first extension of combinatorial

methods to drug-like small molecules with the synthesis of a library of benzodiaz
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epines(23). This was quickly followed by DeWitt et al.’s work on Diversomers(24). In the

ensuing years, combinatorial methods have exploded with the synthesis of a variety of

drug-like libraries, including heterocycles, and mechanism-based inhibitors. One recent

review estimates that over 250 combinatorial libraries have been published and many more

remain proprietary(25, 26). Libraries are now commonly synthesized in both solid and liq

uid phases and in single compound as well as mixture formats(22). Library synthesis has

become part of several different stages of drug-design. Although different nomenclatures

have been introduced for these stages, there are three principal strategies for using combi

natorial libraries. First, large exploratory or screening libraries are generated and used to

identify initial inhibitors. Next, focused libraries can be synthesized to explore structures

around an initial hit. Finally, optimization libraries are constructed which carefully sample

molecular structures around a clinical lead in order to optimize the physical and pharma

cological properties of the series. Regardless of the strategy, at each stage, one must con

front the fundamental problem that there are often vastly more members of a library than

can practically be synthesized.

A fundamental step forward occurred when Kick, Roe and co-workers combined

structure-based design with combinatorial synthesis methods to generate two 1000 com

pound exploratory libraries of the mechanism-based (hydroxyethyl)amine inhibitors of the

human aspartyl protease cathepsin D(22). They demonstrated that libraries designed by

structure-based methods produced a larger number of more-potent inhibitors than diverse

(or random) libraries of equal size. In a follow-up study, Haque, Skillman and co-workers

showed that not only could structure-based design and combinatorial methods be inte

grated to identify potent inhibitors, but that pharmacokinetic properties could be opti
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mized as well (see chapter 8)(2). In that design of (hydroxyethyl)amine inhibitors of the

essential malarial aspartyl protease Plasmepsin II, Haque et al. used a more detailed con

formational search and libraries which focused on one side-chain at a time to identify sin

gle digit nanomolar inhibitors which also fulfil Lipinski’s “Rule of Five,” a structural

surrogate for the ability to cross membranes(27). Indeed, when rule of five compatible

Cathepsin D inhibitors were tested in a cell-culture tau protein processing assay, they

inhibited when equally potent non-rule of five compatible cathepsin D inhibitors were

unsuccessful(28).

The integration of structure-based design and combinatorial chemistry has been

extremely successful because the strengths and weaknesses of these two powerful tools

complement on another. Combinatorial synthesis methods allow a single chemist to syn

thesize a remarkable number of compounds; however, the potential number of compounds

to be synthesized is an even greater number. Structure-based design methods allow rapid

assessment of the approximate binding constant of many potential compounds in a statisti

cally significant population of compounds; however, in any individual case, structure

based design, as implemented for rapid screening, has the potential to fail. When combina

torial chemistry and structure-based design are integrated, the computational methods

offer the combinatorial chemist a means to assess an entire library of virtual molecules and

focus on a subset of those compounds enriched with the most interesting compounds.

Conversely, the combinatorial synthesis of tens, hundreds, or even thousands of com

pounds allow a computational chemist to make predictions on a statistically significant

number of compounds. The complementary integration of combinatorial chemistry and

structure-based design is a successful tool for drug discovery and optimization.
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There have been several other examples of the integration of structure-based

design and combinatorial methods to help determine which set of compounds will be syn

thesized from a larger virtual optimization library(29, 30, 31). However, most studies gen

erally focus on one site of chemical variation at a time. Although there are many programs

which have been adapted and used to design optimization libraries with a single variable

position or a fixed scaffold orientation, there are few which address simultaneous explora

tion of multiple variable points. Although the former have an important role in drug devel

opment, they effectively avoid the combinatorial problem by focussing on only one point

of variation, thus limiting the scope of problems for which they are applicable. The

method of Roe was the first to examine multiple points of variation simultaneously(1). It

used a fixed orientation of the scaffold in the active site and a probabilistic method to

assess interactions between side-chains at different attachment points. In a second

paper(3), we extended this idea to allow systematic exploration of hundreds or thousands

of scaffold orientations in the active site. Further, by ranking the compounds by their opti

mum potential complementarity to the macromolecular binding site, we were able to over

come the combinatorial problem and examine the individual interactions among the side

chains of each of the best molecules. In this paper, we describe improvements that allow

significant speed enhancement so that it becomes feasible to compare large numbers of

libraries, each containing ca. 10°-10" discrete compounds. We improve the previous algo

rithm with two “greedy” focusing steps and a look ahead procedure for scaffold placement

to greatly optimize the library docking process. We validate the algorithm's continued per

formance in retrospective analysis of mechanism-based cathepsin D inhibitors. Finally, we

demonstrate that this new algorithm can be used to screen a database of 45 large combina
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torial libraries against the macromolecular target, human dihydrofolate reductase.

Methods

Combinatorial DOCK version 1.

The combiDOCK version 2.0 algorithm is an extension of our previously

described program (figure 1)(3). Both programs are based on the original DOCK proce

dure(11, 12,32). Briefly, in pre-calculations, many conformations of all of the side-chains

are generated and a negative image of the binding site of the target macromolecule is con

structed from overlapping spheres(18). Scaffold orientations are generated using a clique

finding algorithm which matches sets of ligand atoms with sets of receptor site

spheres(32). For each scaffold orientation, all conformations of the side-chains are ori

ented in the same reference frame as the scaffold and scored according to their comple

mentarity to the receptor. Scores for all complete molecules are generated and ranked

using simple arithmetic operations. The best potential molecules are screened for intramo

lecular clashes between side-chains, and those without internal clashes are saved.

Combinatorial DOCK version 2.

Overview (figure 2). The combinatorial libraries are defined by a chemically

unique scaffold with pre-determined sites of side-chain attachment. Lists of chemically

appropriate side-chains are maintained for each attachment site. Multiple orientations of

the scaffolds are generated and minimized in the active site using a small set of “probe”

side-chains. For the highest scoring scaffold orientations, all of the conformations of all of

the side-chains are attached to the scaffold and scored for complementarity to the target
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macromolecule. The side-chains are then ranked, and a list of the best scoring potential

molecules is generated by simple arithmetic summation of the score of the individual frag

ment scores. These best-scoring potential molecules are screened for compliance with

physical property profiles as well as for intramolecular clashes. Compounds which pass all

of the filters are saved on a list of the best scoring individual molecules.

Receptor Preparation. The target is an atomic resolution structure of a macro

molecules, generated by crystallography, NMR, or modeling(9). Crystallographic waters,

ligands, and often ions and cofactors are removed. A negative image of the binding site

made from overlapping spheres is created using the program SPHGEN(18). These spheres

are used to direct the scaffold and probe side-chain fragments into the active site. Thus the

spheres may be chosen to describe the entire site, or focus on a region of particular inter

est. Additional information can easily be included by supplementing the sphere set with

atom centers from the crystallographic inhibitors, substrates, crystallographic waters, or

cofactors which have been removed(8).

Ligand Preparation. Each combinatorial library must be abstracted to a scaffold

with multiple attachment points, each associated with a set of available side-chains. Multi

ple conformations of the scaffolds and side-chains are pre-generated using any conforma

tional sampling program(33, 34, 35). For the work here, we have used Dock 4.0 to pre

generate conformations(14). Multiple conformations of the “probe” side-chains, used in

the look ahead procedure (vida infra) are also generated. As the scaffold and side-chains

are read into CombiDOCK, the molecular weight, number of hydrogen-bond donor, and

number of hydrogen-bond acceptors are calculated and stored.

Docking Calculation. The docking procedure has ten steps, broken into two
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phases: the look-ahead scaffold docking phase and the side-chain phase (figure 2, 3). Scaf

fold “look-ahead” Phase: 1) a small set (usually 100's - 1000's) of “look-ahead” probe

molecules are built by attaching all combinations of the probe side-chain conformations to

the scaffold; 2) all of these molecules are oriented into the active site by matching ligand

atoms to negative-image site points (spheres) (figure 3B); 3) each orientation of each mol

ecule is scored and minimized based on either the full AMBER intermolecular potential,

or only the van der Waals portion of the potential (figure 3C); 4) all orientations of each

molecule are ranked according to their complementarity to the active site and the N best

scoring scaffold orientations (without the probe side-chains) are passed on to the side

chain phase (figure 3D). Here N is the scaffold greedy parameter which is set by the user

at run-time. Side-Chain Phase: 5) for each scaffold orientation, attach and score all side

chain conformations; 6) for each side-chain, rank and select the M best scoring conforma

tions of that side-chain; 7) for each attachment point, rank all M*S side-chain conforma

tions (where S = number of side-chains and M is defined in step 6) (figure 3E, 3F); 8) for

the best scoring molecules, use simple arithmetic operations on the fragment values to cal

culate the total potential score, molecular weight, number of hydrogen-bond donors, and

number of hydrogen bond acceptors; 9) if the compound passes all scoring and physical

property filters (vida infra) (figure 4A, 4B), check for intramolecular clashes between the

side-chains (figure 3G); 10) save the best scoring molecules without clashes on a list of the

best molecules (figure 3H). Steps 5-10 are repeated for each of the N scaffold orientations,

and steps 1-10 are repeated for each combinatorial library. By using a look ahead scaffold

optimization phase, two greedy “focusing” steps and three physical property filters and a

score filter in the linear phase of the calculation, the cost of the final combinatorial clash
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checking phase is minimized. This method allows extremely efficient structure-based

screening of multiple combinatorial libraries.

Library Database Generation. To generate a database of combinatorial libraries

for software demonstration purposes, we first searched the available chemicals directory

(ACD)(36) for potential scaffold fragments. We searched for substituted ring structures

rich in the functional groups which can be used as chemical handles for synthesizing

derivatives (primary or secondary amines, acids, primary or secondary alcohols, ketones,

aldehydes etc.). 228 structures were identified and fifty representative compounds were

choose by clustered using Daylight's fingerprints(37) and a complete linkage hierarchical

clustering algorithm(38). Two or three atoms for each scaffold were chose as attachment

points for side-chains based loosely on plausible chemistry. Two sets of test-case side

chains were selected, a large set of 1262, and a smaller set of 100 (for comparison pur

poses). The larger set of side-chains, 1262 acylating agents, was selected from the ACD

(with their respective acylating group removed), while the smaller set of side-chains, 100

peptide-like fragments, were generated by hand. This database represents a virtual library

of 36 billion compounds based on 45 different structural scaffolds. We emphasize that nei

ther the scaffold library nor the side-chain libraries were selected to guide a drug design

application. Nevertheless, they are sufficient for the test cases demonstrated here (e.g. fig

ure 6). The libraries in this database are similar to many heterocyclic libraries which have

appeared in the literature.(22, 39) and contain compounds with appropriate physical prop

erties (molecular weight, hydrogen-bond donors, hydrogen-bond acceptors, Clog■ ’s).

These methods could be easily be extended to a database of libraries reflecting actual com

binatorial synthesis.
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Test Cases

Part I. Retrospective Analysis of the Experimental Results of a Combinatorial

Library. Kick, Roe, and co-workers previously reported the structure-based design of a

1000 compound library of mechanism based cathepsin D inhibitors (figure 5)(1). The

entire 10x10x10 library of (hydroxyethyl)amine inhibitors was assayed at 1puM concentra

tion, and compounds with more than 60% inhibition were assayed at successively lower

concentrations as well. Sixty-seven, 23, and 7 inhibitors were identified with IC50's better

than 1mM, 330nM, and 100nM respectively. Here we used CombiDock to rank the 1000

compounds and examine where the 23 inhibitors with IC50 less than 330 nM fall among

the 977 non-inhibitors. We used Dock 4.0 to generated 1284,704, and 1070 molecular

conformations for the 10 fragments at sites R1, R2, and R3 respectively. A single scaffold

conformation generated for design of the original library was used(1). For this example,

the probe-side chain option was turned off (with this very small library, its overhead was

too expensive) and all 251 scaffold orientations were passed on to the side-chain phase,

and the top-scoring 15 conformation of each side-chain were used to construct the final

molecules.

Part II. Screening a database of Combinatorial libraries. The second test case

was molecular docking of a database of combinatorial libraries against dihydrofolate

reductase (accession number 4dfr). Dihydrofolate reductase was chosen because it is a

well understood enzyme, which binds both the inhibitor methotraxate and the cofactor

NADH, and because we, and other groups, have experience using it as a test case. Combi

Dock was used to screen a database of 45 large combinatorial libraries, 18 with 3 attach
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ment point, and 27 with two attachment points. The larger database was constructed with

1262 side-chains modeled by 59,864 conformations at each attachment point, (vida supra)

while the smaller database was constructed with 100 side-chains modeled by 5198 confor

mations at each attachment point. For the larger database, 3.62x10" three attachment

point molecules with 3.86x10° conformations in 18 libraries and 4.3x10' two attachment

point molecules with 9.68x 10" conformations in 27 libraries were screened, while for the

Smaller database, 1.8x 10' three attachment point molecules with 2.53x10% conformations

in 18 libraries and 2.7x10° two attachment point molecules with 7.3x10° conformations in

27 libraries were screened. Two probe side-chains, phenyl and ethyl, were used in the

look-ahead scaffold docking phase. For each library, fifteen scaffold orientations were

passed from the look-ahead phase to the side-chain phase, and the top-scoring fifteen con

formations of each side-chain were considered when constructing the best-scoring com

plete molecules. Each database of libraries was docked twice, once with no physical

property limit, and once with a portion of Lipinski’s “Rule of Five” (molecular

weight<500, hydrogen-bond donors<5, and hydrogen-bond acceptors<10) in place(27).

The ClogP portion of the Lipinski filter was not implemented because logP is not an addi

tive property for the fragments used in this study. Since molecular weight and Clogr’ are

often correlated molecular properties(27), the partial Lipinski filter implemented here

remains useful. The 100 best scoring molecules from each scaffold were saved for a total

of 4500 molecules from each docking.

Results
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As in our previous work, CombiDock version 2.0 successfully identifies the known

Cathepsin D inhibitors. When the 1000 compounds were ranked by CombiDock 2.0,

nearly 80 percent of the 23 inhibitors are in the top 100 compounds (figure 7A). When

normalized by the number of inhibitors identified by a random search, the enrichment ratio

(CombiDock inhibitors/random inhibitors) extends to above 12 (figure 7B), a significant

improvement over our previous work. The more dramatic difference with the new algo

rithm is the time the calculation requires. CombiDock version 2.0 completes the enrich

ment calculation in only 160 seconds on an SGI R10000 workstation, over 2.5 orders of

magnitude faster than our previous version.

The dramatic increase in the speed of execution for CombiDock 2.0 allowed us to

screen a database of 45 large combinatorial libraries. The 45 library scaffolds were

screened four times against dihydrofolate reductase (4dfr). Two sets of side-chains, one

small (N=100) and one large (N=1262) were each screened twice, once with no physical

property filter, and once with a Lipinski filter(27) in place. The larger databases took an

average of approximately 96 hours of CPU time on an SGI R10000 workstation, broken

into about 3.5 hours per three attachment-point library, and about 1.3 hours per two attach

ment-point library. Execution times for the small databases were much shorter. The best

score of any molecule and the ranking of the library for all four runs can be seen in Table

1. In each case, the best scaffolds display molecules with van der Waals scores ranging

from -50 to -73. These scores compare very favorably with the minimized van der Waals

score of -39 for the 2.5 nM crystallographic inhibitor methotrexate (40, 41). Some exam

ple scaffolds along with their maximum scores can be seen in figure 6. These small hetero

cyclic scaffolds are merely hypothetical library test-cases; none-the-less, they demonstrate
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the ability of CombiDock to carry out structure-based screening of an entire database of a

variety of combinatorial scaffolds and libraries.

Analysis of the screening of a database of large combinatorial libraries has

revealed several general principles. We first examine the range and ranking of scores of the

libraries for each of the four runs (figure 11,12). In general, scaffolds with three side

chains scored better than those with two side-chains, and database runs constrained by the

Lipinski filter did not score as well as database runs with no constraints. Finally, databases

of very large combinatorial libraries (N=1262) scored better than the same scaffold data

base with smaller libraries (N=100). Special attention should be paid to the large library

database run with the Lipinski filter, since this most closely resembles realistic a drug

design application. Despite the generalizations noted above, in this particularly important

case (N=1262, Lipinski filter), scaffolds with only two side-chains are ranked favorably

compared with those containing three side-chains, despite the fact that they represent a

dramatically smaller number of the total compounds screened (figure 12).

Next, we examine the physical properties of the top 4500 compounds from each

database run, and the effect of the Lipinski filter on these properties. When the Lipinski fil

ter was turned on, compounds with molecular weight >500 amu, hydrogen-bind donors >

5, or hydrogen-bond acceptors >10 were discarded on-the-fly during library screening.

The most dramatic effects of the filter can be seen in the molecular weight distributions

where without the filter, the best compounds are distributed in a flat bell curve from 300

amu to 900 amu, while with the filter, most of the best scoring compounds are just below

the 500 amu cutoff (figure 8). The library with more side-chains has an average molecular

weight of 661 before the filter and 491 after, while the library with fewer side-chains has
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an average molecular weight of 559 before the filter and 472 after. Although the Lipinski

filter has a large effect on the compounds selected, this limitation does not come at the

expense of good scores.

The effects of the Lipinski filter are not very dramatic for hydrogen-bond donor

distributions (figure 9). Even without the Lipinski filter, very few of the best scoring com

pounds contain more than five donors (1.1 percent). The HBD filter may play a much more

significant role if the screening were to use a scoring function which favors hydrogen

bonds, such as the empirical scoring function of Bohm(20). There is a significant effect of

the Lipinski filter on the much more common HBAs, particularly among the libraries with

1262 side-chains (figure 10). In this case, without the filter, more than 500 of the 4500 best

scoring molecules contain more than 10 HBAs. Interestingly, with the filter on, there is not

a dramatic increase in the number of compounds near the limit (as was seen with the

molecular weight distributions), rather, the mean of the distribution was lowered from 7.6

+/- 2.4 to 5.7 +/- 1.8. Overall, only 3 percent of the best unconstrained compounds from

the 1262 side-chain database would survive the filter, while 30 percent of the best uncon

strained compounds from the 100 side-chain database would survive the filter. Although

the Lipinski filter constraint does have some impact on the scores of compounds, the util

ity of identifying compounds with a higher probability of being able to cross biological

membranes far outweigh this effect, particularly in light of the known approximations

used in evaluating compound affinities(11).

The final question we attempted to address using the screening data generated here

is whether side-chain or scaffold selection is more prominent in determining the score of

compounds. To gleen answers to this question from the data, we compared the ranking of

:

:
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the scaffolds with few (N=100) versus many (N=1262) side-chains, and the ranking of the

side-chains with one scaffold versus other scaffolds. We also examined the interplay of the

Lipinski filter with these effectors. The correlations of the ranks of the scaffold among all

four runs can be seen in figure 13. The results are complicated, an probably indicate (not

unexpectedly), that it is a balance of good scaffold selection and good side-chain selection

that generates good scores. Without the Lipinski filter, there is an excellent correlation

(CC=0.9) between the scaffold ranking with the artificially small set of side-chains and the

larger, more realistic set of side-chains, initially indicating that the scaffold selection may

be a dominate force. This hints at the potential that scaffolds may be compared to one

another using a relatively small number of side-chains at each position. Unfortunately, the

picture becomes more interesting when we examine the large libraries with the Lipinski

filter on, in which case the scaffold ranking does not correlate with any of the previous

cases. We propose that with the larger number of side-chains with which to optimize bind

ing, the Lipinski filter can have a more reasonable effect on the optimal scaffold. By con

trast, with only 100 side-chains, the scores may reflect a less specific binding where

effects of the Lipinski filter on suitable side-chains have less of an impact on scaffold

ranking (e.g. since no particular side-chain scaffold combination is outstanding, it is easier

to find a replacement combination with approximately the same score). This hypothesis

would explain both the lack of correlation between the scaffold ranking of the large

(N=1262) library between Lipinski on and off, as well as the much greater reduction in

scores caused by the Lipinski filter in the larger library database versus the small library

database.

To examine the importance of side-chains, we again focus on the most realistic
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case (N=1262, Lipinski filter on). When the 100 best compounds from each library in the

database are considered, the libraries display between 19 and 92 different side-chains.

Among the top scoring 4500 compounds (1800 with three side-chains, and 2700 with two

side-chains) 641 unique side chains were used out of a maximum possible 1262 (51 per

cent). Each of these side-chains appears in an average of 4.5 scaffold lists. The best side

chain score is -32.7, with an average score of -11.7 for all of the side-chains considered

here. The 4-guanidino-butyric acid side-chain appears on the most scaffolds (N=23), while

198 side-chains appear with only one scaffold. It appears that the more common side

chains are those that are highly flexible or small, whereas the rare side-chains have fewer

rotatable bonds and often include one or more cyclic structures. The best scoring side

chains do not necessarily appear with multiple scaffolds, in fact, of the six best scoring

side-chains, 4 occur with only 1 scaffold, while the other 2 occur with only 2 scaffolds,

perhaps indicating some specificity that is dependent on both the scaffold and the side

chain.

Discussion

This is the first published example of the application of structure-based design to

screening a database of large combinatorial libraries. This example represents the logical

synthesis and extension of ideas from previous methods to 1) computationally screen a

database of individual compounds for those which might bind to a macromolecular target,

and to 2) computationally screen an individual combinatorial library for those members

which might bind to a macromolecular target. Comparison of an entire database of combi

natorial libraries allows insights into the best scaffold for a target, the best side-chains for
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a target, and the best combinations of scaffolds and side-chains for a target (e.g. whole

individual molecules). These insights could be used to determine the size, number, and

content of exploratory combinatorial libraries synthesized to discover inhibitors of indi

vidual macromolecular targets or entire classes of macromolecular targets. In addition to

these specific questions, which could be assessed for each system which the method was

applied to, molecular docking of a database of combinatorial libraries has allowed us to

address three questions which are fundamental to the design of combinatorial libraries.

These are: the effect of potential library size (three attachment sites versus two attachment

sites) on value of the library to databases screening; the effect of placing additional molec

ular property constraints on the ligand screening process; and, the relative importance of

identifying an appropriate scaffold versus appropriate side-chains. Each of these issues is

discussed below.

A superficial analysis of the quality of a combinatorial library for screening can

place too much emphasis on the number of potential compounds in the library. Because of

the nature of combinatorics, the size of a potential combinatorial library is dominated by

the number of attachment points to the scaffold.

n = Number of Attachment Points

Library Size = TI (Number of Side-Chains),
n = 1

For example, the total number of compounds screened in this database of combinatorial

libraries would be dwarfed by the number of compounds in a single four-component

library which incorporated 1000's of side-chains at each site. Despite this, the data pre

t
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sented here indicates that screening additional libraries, even though they are insignificant

by strict numerical comparison, may produce significant contributions to the best mole

cules. This is reflected by the data that, particularly with the Lipinski filter in place, some

of the libraries with only two attachment points are quite highly ranked, despite the fact

that they contain three orders of magnitude fewer compounds than the three attachment

point libraries which are ranked below them. One potential implication of this result is that

for ligand screening (whether experimental or computational), it may be more useful to

balance screening very large libraries with screening large number of moderate size librar

ies. The balance must also consider that development costs and reagent costs can be much

larger for multiple small libraries than for a single large library. This consideration does

not impact computational screening to the same degree it does experimental HTS. When

screening combinatorial libraries, it is more useful to screen many large libraries rather

than a single extremely large library. It may be possible that a threshold exists for the opti

mal number of compounds to be screened from a single library scaffold at least when

screening an exploratory library (or libraries) for modestly potent inhibitors.

A related issue, whose importance is magnified in light of the discussion of library

size, is the relative importance of side-chain selection versus scaffold selection. It is evi

dent from the important libraries with only two side-chains that correct scaffold selection

is essential (vida supra). However, it appears that the data here support the idea that a good

scaffold is essential but not sufficient, and must be accompanied by appropriate side

chains. This is not unexpected considering that, for molecules in most libraries, the side

chains contain two-thirds or more of the atoms. Particularly when additional constraints

are placed on the problem (Lipinski filter), each side-chain makes important and specific
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contributions to the overall molecular properties.

Development of potential clinical lead molecules requires more than simple high

potency. Additional necessary properties include in vivo potency (ability to cross biomem

branes), low-toxicity, favorable metabolism, and high oral bioavailability. Lipinski and co

workers have developed a simple molecular structure surrogate for the ability to cross

membranes(27) which in our experience aids the development of molecules with in vivo

potency(2,28). There is a natural conflict in the drug design process because, assuming

essential interactions are satisfied, larger molecules tend to be more potent(27). However,

with a few notable exceptions, very large molecules (> ca 500 amu) do not readily cross

biomembranes and are not orally bioavailable. By incorporating the Lipinski filter in our

ligand screening process, we benefit from integrating this downstream goal early in the

design phase rather than first driving optimization toward high potency ligands, then later

attempting to recover secondary properties. Gillett and co-workers have recently shown

the advantages of evaluating the molecular properties of product compounds rather than

reagents(42). Although it is easy to filter combinatorial libraries at the reagent level (see

chapter 2), combinatorial explosion makes filtering of products much more difficult.

Indeed, we are only able to filter product molecular properties by integrating the filters

with the search for potent ligands. In the same manner that focusing only on the best scor

ing molecules allows us to avoid the combinatorial explosion in side-chain clash checking,

it allows us to examine product molecular properties without being overwhelmed by the

combinatorial explosion. Significant work is underway to develop additional molecular

structure surrogates for other medicinal properties(43,44) and in the future we will be

eager to incorporate these considerations into this early stage of ligand design.
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The utility of structure-based design of small molecules is often poorly under

stood. Although it is easy to exaggerate its shortcomings (when it may fail to rank three

inhibitors with vastly different Ki's) or its merits (when it correctly ranks three inhibitors

with moderately different Ki's), a discussion of some reasonable expectations of structure

based design is warranted. Let us consider how likely a good scoring compound from a

database screening is to be an inhibitor. First, we need an appropriate measure of the qual

ity of our screen. Although the prevalence of hits in the 1000 compound cathepsin D

(hydroxyethyl)amine library is much higher than our general database, this remains our

“gold standard” for combinatorial screening. The implications developed below are lim

ited by the transferability of structure-based screening performance from the mechanism

based aspartyl protease inhibitor library to the general database of combinatorial libraries.

In the example presented here, when a “hit” was defined as a 330 nM inhibitor, Combi

Dock was able to find 80% (18 of 23) inhibitors in the top 10% of the database. When con

verted to likelihood ratios(45), these data indicate that a compound in the top 10% of a

screening is about 10 times more likely to be an inhibitor than without the test, and that a

compound not in the top 10% of a screening is about 4.5 times less likely to be an inhibitor

than without the screening. For the purpose of this example, we make the optimistic

assumption that, for the general database, 1 in 1000 compounds is a hit. If we now use

structure-based design methods to screen the database, compounds in the top 10% of the

database have about a 1% chance of being a 330nanomolar inhibitor, while those not in the

top 10% have only a 1 in 4500 chance of being a hit. This makes compounds in the top

10% 45 times more likely to be inhibitors than those not in the top 10%! Under these cir

cumstances, one would expect to have to assay circa 65-70 compounds in order to have a
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50% chance of identifying an inhibitor with a Ki of 330 nM or better. On the other hand,

assaying even 1000 compounds from the bottom 90% of the screening would only give

you a 20% chance of identifying a good inhibitor. Despite the limitations noted above, this

example simultaneously demonstrates both the power and limitations of structure-based

design.

Conclusions

We have presented the first example of structure-based screening of a database of

large combinatorial libraries. We've used this example to show that although identifying a

good scaffold is essential for molecule design, it must also be complemented with appro

priate side-chains. Further, we've demonstrated that early inclusion of pharmacokinetic

properties (Lipinski's Rules) into the design process can dramatically alter library design,

particularly for large libraries such as those used for initial exploratory libraries.
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Figure Captions

CombidOCK v1.0 Algorithm

Generate Match
|

Combine
Receptor . . & Best
Spheres Orient Scaffold Fragments ***

- * *

"...sº
*

sº
º º

Generate Attach All | Score and f.
Side-Chain Fragments Rank ---

Conformations Fragments
- ■ ººn

-

!---
Figure 1: Combidock version 1.0 algorithm. In two preprocessing steps, a negative *

|-4

image of the receptor site is generated with spheres, and multiple conformations of each º
side-chain are generated (top and bottom boxes on the left). The calculation runs as a cycle ---

starting with orienting the scaffold in the active site by matching atom centers to sphere

centers (top center). Next, all of the pre-generated side-chain conformations at each

attachment point are attached to the scaffold in its new orientation in the active site (bot

tom center). All of the side-chain conformations are scored and ranked (bottom right).

Finally, the best-scoring side-chains are combined to generate complete molecules and

these are checked for intramolecular clashes (top right). This process is repeated for 100s

to 1000s of scaffold orientations, and the best-scoring molecules are saved.
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CombidOCK v2.0 Optimizations
Generate Match Combine
Receptor . . & Best
Spheres Orient Scaffold Fragments

1. Match Probes 1. "Best" Conformations
2. Minimize 2. Pharmakokinetics
3. Select the "Best"

Generate Score and
Side-Chain #. Rank

Conformations Fragments

Figure 2: Combidock version 2.0 algorithm. The new algorithm includes new features

in two places in the cycle of library docking. There are three important changes in the

scaffold docking process and two important changes in the way fragments are ranked

before generating the complete molecules. In the scaffold docking, first, rather than dock

ing the scaffold alone with no atoms attached, the user chooses a set of “probe” fragments

which are used during scaffold orientation. Second, each orientation of the scaffold (and

probe side-chains) are minimized. Third, rather than passing all of these minimized scaf

fold orientations on to the library docking cycle, the user the N best-scoring orientations

are used, where N is a run-time parameter. In the side-chain conformation scoring and

ranking phase, first, for each side-chain, all the conformations are scored, but only the M

best-scoring conformations of each side-chain are passed on to the subsequent pharmaco
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kinetic and clash filters. Second, before the whole molecules (products) are screened for

intramolecular clashes, the molecular weight, number of hydrogen-bond donor, and num

ber of hydrogen-bond acceptors are calculated. Molecules which exceed user defined lim

its in any of these categories are discarded. The library docking cycle is executed N times

(once for each scaffold orientation) and the best-scoring molecules are saved.
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Figure 3: Combidock v2.0 Algorithm applied to screen a (hydroxyethyl)amine

library in the cathepsin D active site(46). A) Pepstatin bound to the active site. Note one

catalytic aspartyl is visible, the second is inferior and hidden. Portions of the flaps over the

active site are cut away. B) Sphere centers describing the position and shape of the active

site. C) 251 orientations of the scaffold in the active site. D) The eight best-scoring scaf

fold orientations after minimization (with methyl “probe” side-chains). E) All side-chain

conformations at the R1 attachment site are oriented, scored, and ranked according to their

score. F) The process described in E is repeated at the R2 attachment site and the R3

attachment site (the later is not shown). G) The best potential molecules are examined for

intramolecular clashes (clash highlighted in red). H) A ligand with no clash between the

R1 and R2 side-chains. Steps A-F are in the linear phase (O(3N)), while steps G and H are

in the expensive combinatorial phase (O(N*)).
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Figure 4: Example Ligands Constructed by Combidock in the cathepsin D active
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site. A) A large inhibitor selected without the Lipinski filter. The scaffold hydroxyl makes

excellent contact with the catalytic aspartyl groups. Side-chains make good interactions in

the S3, S2(partial), S1, S1’, and S2’ pockets and also make good contacts with the covering

flaps (cut-away). B) A smaller ligand selected with the Lipinski filter. Scaffold again

makes essential hydroxyl-aspartyl interactions. Smaller, less flexible side-chains fill the

S2, S1, S1’, and S2’ pockets.

2O
H H F*rº-ºr", Fº Na

-
ONos + R, NH2 + R2CO2H + RaCO2H

Figure 5: (hydroxyethyl)amine retrosynthetic scheme. The combinatorial library is

synthesized on solid support using a set of primary amine reagents to generate the R1 side

chain. A set of acylating agents is used to generate the R2 side-chains, and another set of

acylating agents is used to generate the R3 side-chains (after unmasking a second nucleo

phile in the scaffold).
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Example Scaffolds:
H3C O—R2

R.

N

-

=\ O O
Ri R3

-

R3 R2

Scaffold 1 Scaffold 34

R.

R N

1
sº

N
N

O O Bºº

Ra—O O—R2

Scaffold 28 Scaffold 43

Figure 6: Example scaffolds. These are four of the forty-five scaffold used in the library

database screening. Although they are not based on known combinatorial synthetic

schemes, they are similar in size and composition to small heterocyclic scaffolds presented

in the literature. Note scaffolds 1, 34, and 28 have three attachment points while scaffold

43 has only two. All of these scaffolds scored well in at least one of the four library data

base screenings.
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B Enrichment of 23 Cathepsin D Inhibitors from 1000 Compound Library23 hits at 330nM IC50 or better
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Figure 7: Enrichment of cathepsin D inhibitors from a 1000 member (hydroxy

ethyl)amine library. A) After using CombiDock to rank the library from 1-1000, the

cumulative percent of inhibitors (out of 23) identified in each portion the database is

shown (solid line). For comparison, the percent of compounds expected from a random

rank of the library is displayed (dashed line). Nearly 80 percent of the inhibitors are iden

tified in the top 10 percent of the database. B) The same data normalized by the number of

compounds expected from the random ranking. When considering the top 5-10 percent of

the database (as ranked by CombiDock) the number of inhibitors in increased by a factor

of between 10 and 12.
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Molecular Weight Distrubutions
Top 4500 compounds from each database run

4000 T i
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-1000

O
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Lipinski, S=100
S=1262

-

Lipinski, S=1262

500 600 700 800 900 1000

Molecular Weight (50 amw bins)

Figure 8: Molecular weight distribution. This histogram demonstrates the changes in

the molecular weight distribution of the best-scoring molecules from each library in the

database runs when the Lipinski filter is applied. The molecular weight cutoff was set at

500. Ligand potency, which is simultaneously being optimized, favors larger molecules so

a large number of compounds appear at or slightly below the molecular weigh cutoff

value.
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Hydrogen-Bond Donor Distributions
Top 4500 compounds from each database run
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Figure 9: Hydrogen-bond donor distribution. This histogram demonstrates the changes

in the hydrogen-bond donor distribution of the best-scoring molecules from each database

run when the Lipinski filter is applied. The hydrogen-bond donor cutoff in the Lipinski fil

ter was set at 5.
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Hydrogen-Bond Acceptor Distributions
Top 4500 compounds from each database run
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Figure 10 hydrogen-bond acceptor distribution. This histogram shows the changes in

the hydrogen-bond acceptor distribution of the best-scoring molecules from each library in

-acceptor cutoff in thethe database runs when the Lipinski filter is applied. The hydrogen

Lipinski filter was set at 10.

118



| º º

-40

:

;

figurt II: Small

|Wºmpound

idiºpºem■ ,

*M■ gothebes

Wºme Wil■

ºfºil.
Miº



Score Ranges for Small Libraries
Top 100 compounds from each S=100 library
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Figure 11: Small Library Ranking. These two graphs show the range of scores for the

top 100 compounds from each library in the database runs with 100 side-chains. Each ver

tical line represents the range of scores for a single library. The libraries are ranked

according to the best scoring compound in the library and libraries with two attachment

points are noted with a bold line. The top window contains the database screening with the

Lipinski filter while the lower window contains the database screening without the Lipin

ski filter.
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Score Ranges for Large Libraries
Top 100 compounds from each S=1262 library
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Figure 12: Large Library Ranking. This graph shows the range of scores for the top 100

compounds from each library in the database runs with 1262 side-chains. Each vertical

line represents the range of scores for a single library, ranked by the best-scoring molecule

in the library. The upper set of lines represent the run with the Lipinski filter while the

lower set represent the run without the filter. As in figure 11, the heavy lines represent

libraries with two attachment points while the lighter lines represent libraries with three

attachment points. The libraries in each run are ranked independently, so the two lines in

any rank may not correspond to the same scaffold.
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Correlation of Library Ranks Among the Four Runs

N=100
-

N=1262

No Lipinski Filter No Lipinski Filter

N=100 N=1262

Lipinski Filter Lipinski Filter

Figure 13: Library Ranking Correlation Diagram. This schematic diagram represents

the correlation of library ranking between the four database runs. Each run is represented

by one of the four rounded squares at each corner. The degree of correlation of the library

ranking between each run are represented by lines between the corresponding squares.

Solid lines represent high correlation, while dashed lines represent low correlation. The

number associated with each line is the correlation coefficient of an unconstrained linear

fit of library ranking from one database run plotted against the library ranking from

another database run (e.g. when each library is plotted as a point (x,y), where x is its rank

in the (N=100, No Lipinski filter) run and y is its rank in the (N=1262, No Lipinski filter)

run, the correlation coefficient of a line fit through the points is 0.90).
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Chapter 4

Diversify: Computer-Assisted
Construction of Molecular Libraries.

* :

-

~~
º



Abs

molec

using I

ular rea

multi-st

engine

ale prod

IWO exa■

lize this

entropy (

Synthesis

"ge of lar

“utically

*lationsh i

Shalmo,

cules with

*ionship

It is



Abstract

We describe a computational method to design and construct libraries of small

molecules. Diversify is a computer programs which generates products from reactants

using molecular transforms. The molecular transformations can be simple unimolec

ular reactions, complex multi-step enzymatic syntheses, combinatorial synthesis, or

multi-step single compound syntheses. The core of this program is a versatile chemical

engine which carries out “virtual” reactions on molecules and generates the appropri

ate products. We demonstrate the use of this transform-based “chemistry engine” in

two examples. First, we generate and dock a virtual lead optimization library. We uti

lize this library as an opportunity to investigate a method to calculate conformational

entropy of binding. Finally, we generate a virtual library of genetically engineered nat

ural products.

Introduction

Combinatorial chemistry and combinatorial biochemistry have revolutionized the

synthesis of medicinally relevant small molecules (1, 2). These new syntheses take advan

tage of large sets of available starting reagents which can be combined to form pharma

ceutically interesting products. One goal of medicinal chemistry is to understand the

relationship between the structure of a molecule and its physical and biological properties.

Small molecule combinatorial synthesis has been extremely successful in producing mole

cules with interesting biological properties (3, 4) which should shed further light on the

relationship between molecular structure and biological properties.

It is well known that the number of potential chemical compounds (chemical

space) which may exist through acts of nature or human endeavor is astoundingly large
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(5). The number of chemical compounds which can possibly be synthesized (potential

synthetic space) by conventional organic or biological synthesis, is orders of magnitude

Smaller than chemical space, yet remains quite large, and is ever increasing in size with

new methods and technologies. However, the numbers of compounds which have or can

be synthesized in a reasonable amount of time today (practical synthetic space) is still tens

of orders of magnitude smaller. Given the difficulty of developing synthetic methods and

adapting them to new synthetic schemes, it is important to take as much advantage of

known chemistries as possible. Not only is it important maximize understanding of practi

cal synthetic space, but it is also important to categorize and catalog compounds which

can be synthesized in a particular combinatorial library so that they are available for future

use in other applications.

Combinatorial chemistry’s increase in both the potential and real number of com

pounds explored by chemists has had a dramatic impact on the field of pharmaceutical

chemistry. Combinatorial chemistry, including both solid and liquid phase synthesis of

libraries of individual compounds as well as libraries of mixtures of compounds, has been

integrated into many stages of drug development. As this integration has taken place,

chemists have been challenged to develop methods to track chemical information about

their rapidly expanding repertoire of combinatorial chemistries, the scaffolds and frag

ments involved, and the products formed. The work described here attempts to encode the

essence of the chemical reactions in such a way that they can be used to maximize the

number and diversity of potential products described (high sensitivity) without including

any compounds which can't be practically synthesized (high specificity).

Combinatorial synthesis has had a particularly large impact on lead compound
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optimization and has caused facile analog library generation to be a critical property for

lead compounds. During the past decade, many computational approaches have been used

to identify lead compounds. DOCK, one of these methods, screens libraries of commer

cially available compounds to find small molecules which bind to a macromolecule (6, 7).

Although DOCK has successfully identified lead compounds with 1-10 puM IC50s (8-10),

it remains limited by the databases it searches. Here we will focus on expanding the scope

of the libraries screened by DOCK and improving the scoring function by which they are

evaluated.

There are many classes of computational methods for designing and manipulating

molecules. Historically, the most prominent class are retrosynthesis programs, which

examine complex molecules and help a chemist design a scheme for its synthesis (11-13).

The concept of a “transform” as an abstraction of a chemical reaction was developed along

with the retrosynthetic approach. Retrosynthesis programs use large knowledge bases of

chemical reactions and complex strategies for their application (14). A second class of

computational methods predicts reaction products when given reagents, solvents, cata

lysts, and reaction conditions (13, 15). These methods use molecular transforms based on

mechanistic steps rather than complete reactions. De novo design programs are a third

class of computational methods which modify small molecules inside a macromolecular

environment in order to maximize a binding function. A wide variety of de novo design

techniques have recently been applied to molecular design (16). De novo design methods

put an emphasis on finding structures which optimize a scoring function with only second

ary regard for the molecule's availability or synthetic accessibility. The first prosynthetic

application of transforms was in CONGEN, a program developed to assist structure eluci

dation (11). The Diversify chemical engine uses ideas from each of these methods, apply
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ing the ideas in a novel way to prosynthetic molecular design.

There are several other groups working on projects related to or involving chemi

cal engines. In 1997, Daylight released a programming library with molecular-manipula

tion functions similar to some of the subroutines in my program (17). Daylight’s chemical

engine combined with a very large reaction library has recently been implemented as part

of a genetic algorithm de novo design program (18). Alanex has independently developed

a chemical engine (19). Their system is primarily being used for synthesis planning rather

than modeling.

My chemical engine manipulates chemical structures according to a set of rules.

The primary program, Diversify, takes reagents and carries out chemical reactions (trans

forms) on them to generate the products. By fashioning the rules after the principles of

organic chemistry or biochemistry, molecules can be generated which are likely to be syn

thetically attainable. The chemical transforms are defined using common chemical

nomenclature, a syntax familiar to all organic chemists. Reactions can be carried out indi

vidually; exhaustively; sequentially, following a specific synthetic route; or in combina

tions of these. Diversify quickly and reliably reproduces many types of chemistry,

including ring closures, stereospecific and stereoselective transformations. An additional

step necessary to assure synthetically accessible products is selection of available starting

reagents for the chemical transformations. In chapter 2 (vida supra) we described

UC Select, a practical tool for this reagent selection process. These tools are used to aug

ment the number of compounds being theoretically evaluated while at the same time limit

ing the number of compounds which are not synthetically practical. We will explore two

applications where this selection of complete yet appropriate sets of starting materials,

encoding of reactions, and generation of products can be utilized to investigate the biolog
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ical and physical properties of small molecules. The first example is design of a lead opti

mization combinatorial library around isatin inhibitors of T. foetus hypoxanthine-guanine

xanthine phosphoribosyltransferase (HGXPRTase) (see Chapter 6). Based on the nine

isatin derivatives presented in Chapter 6, we chose a synthesis which combined the com

mercially available isatin hydrozone with a series of available benzaldehydes. After gener

ating a structural library, we used DOCK to screen this library against the crystal structure

of T. foetus HGXPRTase (20). The second example is analysis of a semi-synthetic

thioester N-acetylcysteamine (SNAC) polyketide natural product library. Although enzy

matically synthesized by repetition of simple chemistry, polyketides are an extremely

diverse class of natural products which include therapeutics such as erythromycin and lov

astatin (figure 1). Recently, both natural and genetically engineered polyketides have been

synthesized in vitro (21-23), allowing the prospect of designing polyketides. If this chemi

cal engine is used conservatively with chemically robust transforms, libraries of small

molecules are generated which are useful for docking, lead optimization, and synthetic

library design.

To optimize scientific efficiency, one must design experiments which both can

practically be carried out and which yield the maximum possible pertinent information. In

the field of medicinal chemistry, this means proposing compounds which are synthesiz

able and which test specific hypothesis about protein-ligand interactions. Here we describe

and demonstrate tools to efficiently construct libraries of compounds and generate bind

ing-mode hypothesis. These tools allow design of molecules which can be synthesized, are

associated with a predicted binding mode of the ligand to the receptor, and thus provide

strong hypotheses for experimental inquiry.
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Methods

General Considerations. My chemical engine uses generic reaction-like

rules, or transforms, in a prosynthetic manner. Given a starting material and a transform,

my program generates probable products. The most important commodities for a chemical

engine are molecules and transforms. Molecules in my program contain: atoms, connec

tivity, charge, the reactant(s) and transform(s) used to create them, a record of products

formed from them, and a unique identifier. The transforms for my chemical engine are

generic and do not necessarily include solvent or specific conditions (e.g. temperature, pH,

catalysts). Instead, their essential components are: a reactive-site substructure, a product

Substructure, an atom to atom mapping of the reactive-site substructure onto the product

substructure, and a list of functional groups not compatible with the reaction. Some

classes of transforms contain additional information as discussed below.

Transforms form the critical interface between synthetic chemistry and the chemis

try engine. Although transforms have been previously defined (12), I developed four

classes of transforms based on the relation of starting materials to products. These are the

replacement, division, connection, and polymerization transforms (figure 2). All of the

reactions explored to date can be accommodated by these classes. Connection transforms

are the most important class of transform for library construction. This is because they

generate a series of related products by joining a single reactant to a series of reagents.

Replacement and separation transforms play a slightly lesser role in library construction,

usually making minor changes in a molecules which allow it to undergo a connection

transform. Polymerization transforms are much less common than the other transform

classes.
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A. Replacement

r OACJ —- JN \

B. Division

O

Sºº-s
—x-

sº + Ho-TS

C. Connection

O
H2N-R -

+ 2 X- sºlº RC|

D. Polymerization

O

2 —x-sº HH

Figure 2: Transform Classes. The four classes of transforms are replacement, division,
connection, and polymerization. Transforms are abstractions from reactions and do not
represent a specific mechanism or technique. There are often several methods which could
be used to carry out the chemistry represented by a transform. Further, a series of trans
forms does not necessarily represent an efficient synthetic scheme, rather, a series of trans
forms is a method for generating structures. These classes have been sufficient to incode
much of synthetic chemistry including rearrangements and cycloadditions.

The series of reagents a connection transform joins to the single reactant are called

the “connection reagents.” Each connection transform has its own “connection reagents”,
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and selection of these reagents is a critical aspect of both transform generation and library

construction. There are two stages to “connection reagent” selection: selection of reagents

compatible with the transform's chemistry, and selection of a subset of those reagents

which will actually be synthesized. In the first stage, careful investigation of the reaction is

necessary to properly select side chains which are compatible with the connection chemis

try. In the second stage, component supplier, cost, and molecular weight can be used to

limit the initial number of “connection reagents.” Structural calculations, such as docking,

or non-structural calculations, such as diversity, can be used to select a subset of the “con

nection reagents” to be used in synthesis. An algorithm has been worked out to aid library

component selection.

Technical Details. The chemical engine is written in C using Daylight's pro

gramming libraries and takes advantage of Daylight's efficient structural searching rou

tines (17). Molecules in the chemical engine are represented by the chemically intuitive

and extremely compact SMILES format with implicit connectivity (24).

Transforms need to be in a format that makes it both easy to write new transforms

and easy to read what change a transform will make to a molecule. Transforms use a com

bination of SMILES and common chemical nomenclature, to represent the reactant and

product substructures (figure 3). Specifying the reaction site in transforms has been broken

down into primary effects (selectivity and specificity) and secondary effects (stereochem

istry, steric influence, electronic influence). Whenever possible, transforms are written in

the most general form to broaden their applicability.
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A. Chemical Reaction: Acid Halide Hydrolysis

O O

sº".
—P-

Sº".

B. Reactant Substructure [ $Cacidhalide] [$halide]

C. Atom to Atom Mapping

D. Product Substructure C O

Figure 3: Transform data structure. Each transform is designed to mimic a chemical
reaction (A). The essential elements of a transform are: the reactive-site substructure, writ
ten using common chemical nomenclature (B); the product substructure, written using
SMILES (D); and an implicit atom to atom mapping of the reactant substructure onto the
product substructure (C).

The utility of Diversify is enhanced by its computational environment. Diversify is

integrated into Daylight's database system, which is specifically designed to manage

chemical information (17). The output from UC Select reagent searches (see Chapter 2)

can be directly imported into Diversify. Furthermore, the Available Chemicals Database

(ACD), Comprehensive Medicinal Chemistry Database (CMC), and the Medicinal Drug

Data Report Database (MDDR) (25) have all been converted to Daylight format. Output

from the chemical engine can be read back into the database system for similarity search
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ing and clustering. Further, the SMILES products of Diversify can be converted into struc

tural databases for docking using a variety of methods (26, 27).

Examples
As mentioned above, we will now discuss two applications of Diversify. The first

example is a combinatorial library focused on optimizing a lead compound. We describing

the construction and docking of this library, including ligand conformational entropy loss

upon binding. The second example is a description of using Diversify to model a

polyketide synthase multienzyme system. To demonstrate the integration of synthetic and

biosynthetic transforms in Diversify, we model the syntetic preparation of starting materi

als for encorporation into the polyketide synthase.

Example 1: Optimization Library
Problem Formulation. Based on the promising HGXPRTase inhibitors identi

fied in chapter 6, we desired to design an optimization library. Having already explored

related compounds which were available for purchase through extensive similarity and

substructure searching, we sought methods to synthesize libraries of compounds based on

our most potent inhibitors. We considered both the phthalanhydride and isatin libraries and

developed proposed binding modes for each library to direct our initial efforts in library

design (see figure 1 b and c in Chapter 6).

For each library, we explored potential synthetic schemes which would allow

development of libraries to explore our structure-based binding models. The isatin library

contains a hydrazone, so condensation of the available hydrazine with aldehydes was one

potential scheme. In addition, we considered synthetic schemes using a Wittig reaction
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(with the isatin as either the Wittig reagent or the electrophile), reductive amination, aldol

condensation, thioether formation, Grignard reaction, or Palladium coupling reactions.

The phthalanhydride compound's simple amide linkage make it ideal for library develop

ment.

We also considered the medicinal properties of both lead series. Although the

phthalanhydride is perhaps the most stable anhydride available, it retains the potential to

acylate a variety of biological nucleophiles. In cell culture, TF1 inhibition of HGXPRTase

is reversible (Chapter 6), yet this does not completely eliminate the potential that TF1 may

acylate other cellular targets. The isatin lead compounds (compound 16 and 17 in Chapter

6 table 1) contain a moderately unstable hydrazone, and the isatins have only moderate

solubility in water. Although neither class of compounds is ideal, both have potential for

medicinal development.

Both the isatin and the phthalanhydride classes appear ripe for further develop

ment. We considered the isatin library first because of its familiarity to the collaborating

medicinal chemists. The synthetic scheme consisted of a condensation of substituted alde

hydes with the 3 hydrazine derivative of isatin.

Isatin Derivative Synthetic Scheme

X=5,6 member aromatic or heteroaromatic ring

We sought to integrate the chemical information and the structure-based model to

****
**.
avºr.

º
fºre º:

nºw

º

**

º
awº

*

****
nºn

134



m= -
º

T
~

!/? p■ ed

*-

_º allè■

sº V

■ Sl■ .

º,

*} po(ºt

L. Y

-*.|

t

W

- W

º \

-----

º

l,

" * -
**



predict which subset of the potential isatin library should be given the most synthetic

attention. Our goal was to enrich the number of HGXPRTase inhibitors in the synthesized

compounds by prioritizing the synthesis of compounds according to their score in the

structure based-design model. The ease of this exercise is a direct result of selecting com

pounds in the initial screening which were amenable to simple synthesis.

Reagent Selection. The program UC Select (Chapter 2) was used to identify

potential reagents for this optimization library from the ACD v97.2. The primary func

tional group necessary in the reagents was an aldehyde, and for the purpose of this library,

we limited the search to aldehydes alpha to a ring. The search was limited to compounds

with molecular weight of 100-450 daltons, calculated logP of -2 to 5, 0 to 5 hydrogen

bond donors, 0 to 10 hydrogen bond acceptors, 0 to 9 rotatable bonds, and 0 to 2 formal

charges (28). Compounds which contained phosphor based acids or esters, primary or sec

ondary amines, hydrazones, hydroxylamines, hydrazines, acid halides, sulfonic acid or

esters, anhydrides, peroxides, azides, azos, long (>7) unbranched chains, four or more

halides, metal atoms, two nitro groups, dipeptides, or macrocycles (n->=8) were elimi

nated. Finally, the search was limited to compounds available from Salor Chemical, TCI

U.S., Sigma, Fluka, Aldrich, Maybridge, CalBio, ICN, Indofine, Acros, Lancaster, Tran

Sworld, or Pfaltz & Bauer.

Library Construction. We used Diversify to create an imine by the combination

of each aldehyde selected with UC Select and the available hydrazine isatin derivative

(vida supra). The transform used for this in silico reaction (table 1) first identified the ter

minal nitrogen in the hydrazine moiety of the isatin and prepared it to form an intermolec

ular double bond. In each aldehyde derivative, the aldehyde group was identified and the
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Transform name Reactive atom set Product atom set

hydrazine NIN:D1] NN&= 1

aldehyde [$Caldehyde]=[$Ocarbonyl] *&=1X

Table 1: Isatin Library Transforms. Two half transforms were used to generate the
imine library from the hydrazine and aldehydes. The hydrazine transform identifies the
terminal nitrogen in the isatin hydrazine and creates a double bond to an “external”
fragment (identified by the numeral 1). The aldehyde transform identifies the carbonyl
carbon and carbonyl oxygen of the aldehyde, copies the carbon unchanged, removes the
oxygen, and completes the imine product by forming an “external” double bond to the
isatin hydrazine fragment prepared in the first half-transform (identified with the
matching numeral 1).

carbonyl oxygen was removed. The carbonyl carbon was then bonded to the terminal

nitrogen of the isatin molecule with a double bond. This resulted in the appropriate prod

uct molecule. After completion of the transform on the heavy atoms, the implicit hydro

gens were reassessed by Diversify to assure the appropriate charge and valence states

(assuming no change in tautomer).

The three dimensional structure of each product was generated using CONCORD

(26) as implemented in Syby■ version 6.4 (Tripos, St Louis, MO). The regular angles and

bond distances from CONCORD are more appropriate for the subsequent conformational

sampling in DOCK's incremental growth algorithm (vida infra) than methods which gen

erate bond angles and distances optimized for a specific conformation (e.g. distance geom

etry). Partial atomic charges were calculated for each product molecule using the method

of Gasteiger-Marsilli (29) as implemented in Sybyl 6.4.

Library Screening. The library was docked into the active site of T. foetus HGX

PRTase based on the structure of the complex of this enzyme to guanosine-mono-phos
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phate (GMP) (20). The incremental growth algorithm of Ewing et.al. (Ewing, T.J.A,

Skillman, A.G, Kuntz, I.D., submitted) was used with a fixed anchor to flexibly dock the

entire library to the rigid HGXPRTase receptor. Chemical matching (8) was used to match

and orient the isatin fragment on top of the crystallographic guanine (figure 4). This iden

tical anchor placement was used for each library member. The remaining side chains of

each product were built in one rigid fragment at a time. All torsional minima were sam

pled at each rotatable bond, and torsional minimization as well as rotational and transla

tional minimization of the growing molecular fragment were carried out at each step.

After each step of growth, the search was narrowed to a set of 25 good scoring and confor

mationally

Figure 4: Placement of the Isatin Anchor. The isatin anchor fragment (green) was ori
*d by overlaying the donor amide nitrogen, the acceptor amide oxygen, and the amide
**rbon of the isatin with those from the crystallographic GMP from the HGXPRTase
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active site.

diverse fragments. The calculation was repeated three times with different random seeds

for both chemical and force-field scoring. A single best conformation for each molecule

from each scoring function was saved for each run and was used in subsequent solvation

rescoring (vida infra). All of the compounds in the library were ranked according to their

best score among the three runs for both scoring functions. Neither the molecular mechan

ics scoring function nor the empirical scoring function in DOCK take account of the loss

of conformational entropy upon binding of the ligand to the receptor. Because the size of

the library is limited to about 700 compounds by the availability of compatible aldehyde

reagents, more detailed score evaluation was feasible. The standard methods of scoring

were corrected with a conformational entropy term (see appendix to this chapter).

Solvation Scoring. We also assessed the use of a new Generalized-Born/Surface

Area (GBSA) scoring function (30). The GBSA method is not a pairwise calculation and

thus is CPU limited in its current implementation, so the best scoring conformations from

force-field and chemical scoring were reminimized and scored under the GBSA method.

Six conformations of each molecule in the library (three from chemical scoring, three

from force-field scoring) were reminimized and rescored with the GBSA method. The

library compounds were reranked based on the best of the six solvation scores for each

compound and the top 4% of compounds were assessed visually in their proposed binding

mode in the active site.

Despite being known inhibitors, compounds 10, 12, 16, and 17 from Chapter 6,

which are members of this library, were not among the top scoring compounds. Since

these are known inhibitors, they were used to explore the implicit assumption in rescoring,
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that driving conformation construction with one scoring function will not inappropriately

bias the second scoring function. Compound 17, the most potent compound in the series,

was used as a test case. The standard DOCK 4.0 torsion sampling parameters were

replaced with sampling of every flexible bond at 30 degree increments. All conformations

of 17 in the HGXPRTase active site with a favorable score under force-field and chemical

scoring were generated and saved. All of these conformations were reminimized and res

cored with GBSA solvation scoring and compared to the scores obtained by only rescor

ing the single best pose from each scoring function.

Example 2: Natural Product Library

We use the polyketide example to demonstrate 1) Diversify can be used to model

biologically significant systems of reactions 2) Diversify can be used to model synthetic

schemes using multiple reactions in sequence, and 3) Diversify can be used to build large

combinatorial libraries by combining libraries of reactions in a synthetic scheme in addi

tion to combining libraries of reagents. Two recent experimental developments form the

basis for this example. First, the multienzyme reaction complex which synthesizes the

erythromycin precursor polyketide natural product has been cloned and the synthetic path

elucidated (21-23). Second, it has been shown that a variety of thiaminoacetyl (SNAC)

compounds can be fed to the bacteria and thus incorporated as starting materials into the

polyketide products (31).
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Synthesis of N-acetylcysteamine precursors from analogs of Meldrum's acid

We used UC Select (Chapter 2) to identify commercially available meldrum acid

SNAC precursors. Transforms for Diversify were written which mimic each of the possi

ble condensation and reduction reactions seen the they enzymatic synthesis of macrolac

tones. For condensations, three reactions were considered; malonyl-CoA condensation,

and methylmalonyl-CoA condensation (branched methyl with R or S stereochemistry).

For reduction, five reactions were considered; no reduction (ketone preserved), keto

reduction (hydroxyl with R or S stereochemistry), dehydration (trans double bond), and

enoyl-reduction (yields a methylene). For a 14-member macrolactone, such as erythromy

cin, the synthesis consists of six cycles of condensation and reduction (figure 5)

In order to model the genetic modification of the polyketide synthase enzyme sys

tem (PKS), control of reaction sequences was developed. The basic Diversify method was

extended to include reaction sequence input (table 2). Reaction sequence input allows the

user to control which reactions can be carried out at each step of the synthesis. In the

degenerate form, the input simply specifies the synthetic scheme (e.g. - the series of reac

tions used to generate the desired product). Thus to generate a single compound, such as

6-deB, the erythromycin precursor, a reaction sequence with only one reaction in each step

of the sequence can be used. In the more complex form, the sequence input can specify
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Keto-Reductase
Down
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Condensation
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O O OH

*pºs
Keto-Reductase
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O OH

**—

6-deb
Start: Propyl
1. Condensation Down
2. KetoReductase Down
3. Condenstion Up
4. KetoReductase Up
5. Condensation Down
6. No Reduction
7. Condensation Down
8. Enoyl Reduction
9. Condensation Up
10. KetoReductase Up
11. Condensation Up
12. KetoReductase Up
13. Transesterification

Figure 5: 6-deb Biosynthesis. Polymeric biosynthesis of the 6deB erythromycin core is
shown. 6-deB is generated by 6 cycles of condensation, each followed by a variable degree
of beta-keto reduction. Chain grown is terminated by a transesterification ring closure
which forms the macrolactone intermediate.
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Level Transforms Applied At Each Level

O pconup" pcondn"

1 krupº krdn"

2 pconup pcondn

3 nored" krup krdn krdhtrans' krdhere

4 pconup pcondn
5 nored

6 pconup pcondn

7 nored krup krdn krdhtrans krdher

8 pconup

9 krup krdn

10 pconup pcondn

11 krup krdn

12 teh

Table 2: Reaction Sequence Control. The transforms to be exhaustively applied at each
step in the synthetic sequence are listed by their step in the sequence and the transform
name. There is no limit on either the number of transforms in any single step or the total
number of synthetic steps. This reaction sequence was applied to the SNAC precursors in
order to generate the complete library. Footnotes: *"methylmalonyl condensation (two
Stereochemistries), “ketoreduction (two stereochemistries), “no reduction (ketone pre
served), 'ketoreduction followed by dehydration (trans isomer), *ketoreduction and dehy
dration followed by enoyl reduction (leaving a methylene), "transesterification.

multiple possible reactions at each step which can all be applied to generate a library of

products. For instance, in order to close the macrolactone ring, the initial reduction must

leave a hydroxyl group to form the lactone, so in the first round of reduction, only the two

ketoreduction transforms were applied while at other steps in the sequence all five possible
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reduction transforms were applied. The reaction sequence can contain as many reactions

at each step as necessary, and the reactions at each step are applied exhaustively to the

products from the previous reaction step to generate a “reaction-based” combinatorial

library.

Results

Optimization Library

Selection of synthetically and medicinally favorable aldehyde reagents for the

isatin derivative library (vida supra) from the ACD 97.2 yielded 761 potential reagents.

Eleven of these compounds were eliminated because of unanticipated unusual functional

groups or difficultly generating three dimensional structures with CONCORD (26). The

library was segregated into 721 neutral compounds and 29 charged compounds. We chose

to focus on the neutral compounds because of the difficulty of properly representing

atomic charges in this highly charged active site.

Although each compound started with the isatin anchor fragment overlaid on the

crystallographic position of the guanine, as the variable portion of each molecule grew,

significant shifting of the isatin group could take place. A variety of acceptable binding

modes were seen, however, very few formed the exceptional hydrogen bonds which could

be anticipated by the topological similarity between the hydrogen bonding patterns of

isatin and the crystallographic guanine. The approximation made in treating the receptor

as rigid may play a large part in this failure to observe excellent hydrogen bonding proper

ties since it fails to allow the protein to adjust to optimize these potential bonding interac

tions. Furthermore, it is known that the distant dependent dielectric approximation under
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emphasized hydrogen-bonds (Keith Burdick, personal communication). Despite the com

mon anchor throughout the library, the molecules explored much of the remaining binding

pocket, particularly in the region of the phosphate binding pocket.

# Rotatable Number of Mean standard

Bonds Examples TASconf (Kcal/M) deviation

2 290 1.21 0.37

3 132 1.61 0.60

4 135 1.81 0.67

5 79 2.42 0.79

6 35 2.54 0.80

7 14 2.42 0.67

8 7 2.84 1.03

Total 692 1.65 0.74

Table 3: Conformational Entropy Correction. Accumulated statistical data for calcula
tion of the conformational entropy penalty by the state counting method. This data is mol
ecules from the isatin optimization library.

Compounds in the library contained from two to twelve rotatable bonds resulting

in calculated conformational entropy penalties ranged from 0.42 Kcal/M to about 5 Kcal/

M. The calculated entropy penalties did not grow linearly with the number of rotatable

bonds as is presumed by many models (table 3). The penalty grew approximately linear

over a range of 2-5 rotatable bonds, but for 5 or more rotatable bonds, the mean conforma

tional entropy penalties were approximately constant. However, there was a very high

variance of entropy penalties for each set of compounds with the same number of rotatable

bonds. The difference in entropy penalties for the molecules was large compared to the

total scores of the compounds, and resulted in significant changes in the library rankings,

****

***, *.
****

****
****
**

****
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particularly amoung the top 30 compounds. For additional details about the conforma

tional entropy correction, please refer to the appendix.
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Figure 6: Solvation Rescore. Rank of 342 poses of the inhibitor 17 (chapter 6) docked to
HGXPRTase with chemical scoring compared to the rank when the poses are rescored and
minimized with GBSA scoring.

The GBSA method is too computationally expensive to use as a primary scoring

function. Instead, single point rescore calculations of receptor-ligand poses generated with

surrogate scoring functions are used. To determine whether chemical scoring or force-field

scoring provided a better surrogate for solvation scoring, and thus produced better struc

tures for solvation rescoring, we examined the known HGXPRTase inhibitor, compound

17, in detail. Figures 6 and 7 show a comparison of the chemical (figure 6) and force-field

(figure 7) scores versus GBSA rescores for all of the conformations generated by the
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Figure 7: Solvation Rescore. Rank of 219 poses of the inhibitor 17 (chapter 6) docked to
HGXPRTase with force-field scoring compared to the rank when the poses are rescored
and minimized with GBSA scoring. Note the significant difference in density of points in
the red box versus the blue box. This indicates that, in contrast to chemical scoring, rescor
ing and minimizing the 75 best force-field poses with GBSA identifies nearly all of the
best GBSA poses.

incremental growth docking with very high sampling. Figure 6 clearly shows there is no

correlation at all between chemical scoring and GBSA scoring in this system. In contrast,

rescoring and reminimizing the seventy-five best poses from force-field scoring generates

nearly all of the best scoring GBSA poses (figure 7). Of the four known inhibitors which

were in the library, only one, compound 10 from chapter 6, was found in the top ten per

cent of GBSA ranked compounds in the initial search. However, when all possible poses

of the ligands were rescored with GBSA rather than simply the single best force-field
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pose, the best GBSA pose identified had a much better score (they make up four of the top

six compounds). Unfortunately, it is not computationally feasible to test if the rest of the

library would benefit an equal amount from a similar detailed computation.

O—
O= OH OH

‘O

\. O— O

O O O O \,
HO =O

Compound 1 Compound 2 Compound 3

O

& /
\ N O O\} -~

O O O O

Compound 4 Compound 5 Compound 6

O

Compound 7

O

O O

O O

S.-o \ O

Compound 8 Compound 9 Compound 10

Figure 8: Optimization Library Hits. Ten aldehyde reagents identified by screening the
isatin-imine product library against HGXPRTase. Compounds 1 through 7 score well
under chemical and force-field scoring. In addition, Compound 5, 6, and 7 have good
GBSA scores. Compounds 8,9, and 10 are chemically interesting, and could lead to a sec
ond optimization library.

Several potential classes of inhibitors were identified with force-field, chemical,

and GBSA scoring functions, each corrected for conformational entropy. A variety of 2,5
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disubstituted benzaldehydes, similar to compound 10 from chapter 6 scored well. These

are promising candidates because in addition to having good scores, they have a similar

topology to a known inhibitor. However, a similar result might have been obtained by a

computationally less intensive topological similarity search. Seven compounds appear

among the top 30 compounds of both the chemical scoring and force-field scoring lists

(figure 8). Two of these compounds are 2,3,5 tri-substituted benzaldehydes, conservative

analogs of the lead compounds (1 and 2 of figure 8). An unusual bicyclic compound with a

Spiro-cyclohexane moiety is also on the hitlist (3 of figure 8). One biolobigically interest

ing compound is an 1,3-dimethyl-2,4,6-trioxohexahydropyrimidine-5-dimethylcarbalde

hyde (4 of figure 8). The three remaining compounds are four-cycle non-aromatic

hormone derivatives (5, 6, and 7 of figure 8). The molecular weights of these compounds

are between 500 and 550, which is slightly larger than optimal, but still acceptable for fur

ther exploration at this early stage of the development cycle. Not only do these final three

compounds occur on both the force-field and chemical scoring lists, but they are also in

the top 30 compounds reranked by GBSA solvation rescoring. The most chemically inter

esting compounds are a set of sulfonamide-linked two ring aldehyde derivatives (8, 9, and

10 of figure 8). These may pick up additional hydrophobic interactions, and they are also

favorable because the sulfonamide linkage offers a facile route to exploration of a library

in this additional pocket. In any future synthesis, these compounds should receive first pri

ority.

Polyketide Results. Ten transforms were generated including the transesterifica

tion ring closure to encode the basic macrolactone polyketide synthesis (table 4). Six addi

tional transforms were created to mimic polyketide auxiliary enzymes (e.g. methylations
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Transform Name” Reactive Atom Set Product Atom Set"

pconup NSC(=O) XXC1(=O)NSC(=O)(CQ @H]1C

pcondn NSC(=O) XXC1(=O)NSC(=O)(CGH]1C

pconshort NSC(=O) XXC1(=O)NSC(=O)C1

nored NSC(=O)CC(=O)C NSC(=O)**(=*)*

krup NSC(=O)CC(=O)C NSC(=O)*[CGH](O)*

krdn NSC(=O)CC(=O)C NSC(=O)*[CG, GH](O)*

krdhtrans NSC(=O)CC(=O)C NSC(=O)/C=C(X)/*

krdher NSC(=O)CC(=O)C NSC(=O)*C(X)+

te NSC(=O)************[O:D1] XXC1(=O)************O1

6-hydroxyl OC(=O)****[CG, GH](IC:D1])* OC(=O)****[CG G|1(*)*.O1

12, 10-hydroxyl O=CO*[CGH]([C;D1])* O=CO+[CG)]1(*)*.O1

Table 4: Polyketide Synthase Transforms. The three condensation transforms, five
reduction transforms, and three accessory transforms necessary to model basic macrolac
tone biosynthesis are presented. Each of these replacement transforms identifies the inclu
sion (reactive)atoms with a SMARTS string. These reactive atoms are mapped 1:1 with
the product atoms indicated in the product set SMILES strings. Footnotes: “see figure 8 for
description of transform names, "X is a non-standard SMILES lexicon indicating destruc
tion of the associated reactive atom.

Transform name Reactive atom set Product atom set

generate snac O=C1OC(C)(C)OC(=O)C1 O=C1OX(X)(X)S2C(=O)C1.C2CNC(=O)C

load enzyme O=C(O)CC(=O)SCCNC(=O)C X=X(X)*C(=O)SNXXX(=X)X

Table 5: SNAC Synthesis Transforms. Following the synthesis of used by Pohl and co
workers, an initial transform was created which generated the thiaminoacetyl precursor
(snac transform). A second transform which modeled loading of the SNAC precursor onto
the PKS via a thioester bond, with N representing the “enzyme” was also generated.
Together these transforms prime the PKS for library generation with the meldrum acid
analogs.
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and glycosylations) and metabolite formation (e.g. enolether formation, spiroketal forma

tion) which are important for biological activity (32). Two final transforms were generated

o O
\– Nºr ºf ox º'
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FCD6637 FCD42796 FCD6636 FCD52910

O o C
O O
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FCD2451.89 FCD181698

Figure 9: Meldrum’s Acid Analogs. These seventeen reagents are commercially avail
able and can be converted to the corresponding SNAC derivatives for incorporation into
polyketides. The extent of variability which can be tolerated by the PKS machinery is
broad, but has not yet been completely explored. Some of these compounds, particularly
the larger derivatives, may not be properly processed by the PKS.
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to prepare the SNAC precursors from available reagents and load them on the enzyme for

macrolactone generation (table 5) (31).

Hoz, *..

*

..*
oH.*

O : ...soº O OH

to. * * on HO ok

-* *- HO *.
--" - ”

“’, o
Br

Compound 38 Compound 4 3

Figure 10: Macrolactone Products. Four example products selected at random from the
macrolactone library are shown along with 6-deB, the related erythromycin precursor.
Compound 1 is a derivative or FCD6637, compound 2 is a derivative of FCD12078, com
pound 3 is a derivative of FCD161450, and compound 4 is a derivative of FCD6635.

The UC Select search for appropriate SNAC starting materials from the ACD

v98.2 identified seventeen Meldrum acid analogs (figure 9)(31). These were sucessfully

converted to macrolactone precursors using a two step linear synthetic and enzyme load

ing scheme which follows the method of Pohl et al. These precursors were taken forward

as a group to generate one large SNAC library containing 293,607 semi-synthetic virtual

151



s

º *

s

ºA. -

* > º

I is:

tº a

*:::
!".
# ***

$
º is,

-
. .

*
*…

t!. tº

+-



polyketides. This library contained 69,632 macrolactone erythromycin analogs (figure 10)

while the remaining 223,975 were linear derivatives.

Discussion

There are several points which warrant further discussion. We organize the discus

sion into segments pertaining to the optimization library and the polyketide library. First,

we demonstrate that when using the GBSA method to rescore molecular poses generated

with force field scoring, tens of poses are necessary to assure that the best GBSA scores

are found. Next, we briefly consider the effects of the entropy correction on library design.

Finally we discuss the versatility of Diversify, exemplified by modeling of the semi-syn

thetic polyketide synthesis.

Optimization Library. Figures 6 and 7 show conclusively that one should not use

chemical scoring in an attempt to enrich good solvation scoring conformations in this sys

tem. By contrast, there appears to be some weak correlation between force-field scoring

and solvation scoring. The best fifty conformations from force-field have much better sol

vation scores than any other set of force-field conformations. This demonstrates that, at

least for this system, using the top conformations from force-field scoring will generate

some of the best solvation scores.

Application of the conformational entropy penalty resulted in significant shifting

of the ranking of compounds. In particular, with torsional minimization, more flexible

compounds can be found disproportionately represented among the best scoring com

pounds. Although application of an entropy correction term moved many of these com

pounds out of the top 4 percent, some highly flexible compounds remained among the
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very best compounds. For instance, even after the entropy correction, ethyl 2-(2-

formylphenoxy)acetate (MFCD00052131, vida infra) was the third ranked compound,

with a corrected force-field score of -38.21 Kcal/M. The entropy penalty for this com

pound was calculated to be 2.86 Kcal/M. For a more detailed discussion of the entropy

correction method, please refer to the chapter appendix.

MFCD000521.31

yº
O

Sºº
O

UC Select was used to generate a library which had physical properties consistent

with the “rule of five” criteria for good pharmacokinetic profiles. Despite this, it must be

noted that the hydrazone functional group is not very medicinally desirable. An alternative

library, which can be explored in a similar manner are the products of a Wittig reaction

between the isatin and cinnamoyl derivatives. This library would have the much more

desirable olefin moieties to replace the hydrazone. However, we chose to explore the

hydrazone library first because no olefin derivatives have been synthesized or assayed.

Polyketide Library. We first sought to address the question of whether complex

enzymatic biosynthesis machinery such as the PKS could be described in the context of

the Diversify chemical engine. Although there are fragment based methods which could

be used to generate a macrolactone library (33), the elegance of the Diversify solution is

sº
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satisfying. By encoding only ten transforms (table 4), we were able to capture all of mac

rolactone synthetic machinery in a manner which can easily incorporate expanding knowl

edge about the selectivity of individual enzymes as well as allow incorporation of novel

staring materials of final decorations by accessory enzymes.

Further, the reaction scheme control structure allows streamlined expression of the

genetic variability in a format which parallels the organization of the biological system

and allows specification and creation of either individual molecules (figure 5) or libraries

of macrolactones (table 2). Diversify is a general chemical engine which can be applied to

complex enzymatic systems as well as organic synthesis.

The ability to generate libraries of macrolactones raises the question of the nature

and content of these libraries. Perhaps the most obvious result is that if all partial products

are considered, the vast majority of polyketides in the virtual library are not the cyclized

macrolactones generally considered, but acyclic polyketide polymers more reminiscent of

other biopolymers such as peptides and fatty acids or synthetic polymers such as peptoids

(34). Whether these agents can be developed into drug-like molecules will depend largely

on whether PKSs can be identified which allow sufficiently large derivatives of malonyl

CoA to be incorporated.

The reaction sequence method mimics not only the natural synthesis, but each

transform can be associated with individual genes in the polyketide synthase gene, so

when genes are shuffled, it can easily be modeled by shuffling the corresponding trans

forms in the reaction sequence. This parallel between the molecular-biology, chemistry,

and the library generation, makes sharing data between the fields simple and allows easier

interpretation of the results.
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This SNAC virtual library demonstrates the power of genetically designed macro

lactone libraries. Although the SNAC library itself is quite large, there were only seven

teen SNAC reagent precursors available in the ACD. One solution is to synthesize a single

SNAC which contains a functional group that can be derivatized in a combinatorial reac

tion either as a solid or liquid phase library synthesis. Although this chemical modification

would have the potential to greatly increase the numbers of compounds and diversity at

this single position, one should not overlook the variety of functionality which is modeled

and can be displayed all around the macrolactone ring using the genetic engineering, par

ticularly when glycosylation or secondary cyclizations are considered.

General Discussion. Generation of virtual libraries from available reagents is one

of the important bottlenecks in the computational design of combinatorial libraries. For an

individual reaction, it is feasible to generate a virtual library using simple scripts, however,

for frequent construction of libraries, a more general, less error-prone method is benefi

cial. The method presented here follows the logical sequence of the chemist's synthetic

scheme to generate virtual libraries. This approach has several advantages: first, the

method can be understood and used by the synthetic chemist; second, the method leads to

a natural transfer of synthetic information and constraints from a description of the synthe

sis to the virtual library construction; third, because Diversify is designed to model any

chemical reaction, it can handle chemical subtleties, such as stereochemistry, that pose dif

ficult special cases for library construction scripts; and finally, since Diversify is a com

plied C program which uses the Daylight substructure searching utilities, it is extremely

efficient at constructing virtual libraries.
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In combinatorial synthesis, it sometimes becomes advantageous to synthesize the

component pieces from related precursors. In later stages of compound optimization, this

may be easier than preforming modifications on the final product. For instance, in a partic

ular synthesis, a side-chain may be attached as an amine reagent. However, if available

amines do not provide the desired side-chain, one may wonder if synthesis of the amine

reagent from a primary halide may be beneficial. Diversify and UC Select can be used to

explore these reagent synthesis problems, and to help the chemist determine which route

of reagent synthesis may yield the most interesting products. This analysis can be carried

out before the chemist develops any reagent synthesis protocols. In this manner, Diversify

can help assess the best ways to expand the potential of a combinatorial synthesis which

has already been worked out.

Many proteins carry out chemical reactions. One method to compare and catalog

proteins is by examining the chemical reactions which they can carry out. The universe of

known proteins has been cataloged and compared along many lines including, underlying

genetic sequence, primary amino-acid sequence, structural motifs, and function. By creat

ing a system which can systematically describe chemical reactions, we can encode and

compare chemical reactions carried out by families of enzymes and use these same reac

tions as a metric to catalog proteins. Using Diversify's reaction descriptions to categorize

enzyme families may lead to new insights in the relations between protein structural fami

lies and their related protein functional families.

Conclusions

A chemical engine has been developed which simulates synthetic chemistry by

computationally manipulating molecules. The critical resources of a chemical engine are
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molecules and transforms. A simple method to identify appropriate, available reagents for

this chemical engine has been developed. Transform generation is flexible enough to allow

extension of the transforms to enzymatic reactions as well as general organic reactions.

The combination of appropriate library construction and structure-based screening allows

the selection of binding hypothesis which lead to strong inference(35) and thus rapid

advancement of molecular design projects.
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Appendix: Conformational Entropy

As with any structure-based design method, the results from DOCK are generally

limited by the scoring function used to evaluate ligand-macromolecule binding. The field

of binding free energy evaluation has many unanswered questions and many approximate

solutions exist (36). These solutions, or scoring functions, fall into two categories, empiri

cal estimates fitted to structural data and fundamental estimates (36). The empiric func

tions usually contain all of the terms pertinent to the Gibbs free energy, but are limited by

their training data, while fundamental functions are more general, but may wholly neglect

important terms in the free energy, such as desolvation or entropy. Recently, application of

generalized Born theory as well as Poisson-Boltzman theory to molecular docking has

incorporated many of the solvation and entropy terms formally into a fundamental scoring

function(30)(37). One prominent term still missing from this scoring function is confor

mational entropy. We briefly explore a simplistic state counting model for calculating con

formational entropy and compare it to experiment and to empirical scoring functions

before applying it to the isatin lead optimization library (see main text).

Entropy Correction Method. The standard methods of scoring were corrected

with a conformational entropy term. Because the size of the library is limited to about 700

compounds by the availability of compatible aldehyde reagents, more detailed score eval

uation is feasible. Neither the molecular mechanics scoring function nor the empirical

scoring function in DOCK take account of the loss of conformational entropy upon bind

ing of the ligand to the receptor. This conformational entropy term is often approximated

as a linear function of the number of rotatable bonds. Here we chose to calculate confor

mational entropy by simplistically enumerating and counting energetically accessible con

formations in vacuum. We used DOCK to enumerate all available torsion positions of all
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flexible bonds and generate an intramolecular score for each. The minimum scoring con

formation was found for each molecule, and all conformations which lay within 10Kcal/M

internal energy were counted. This total number, W, was assumed to be an approximation

of the number of states the molecule could assume in solution. From well known thermo

dynamic equations, one can derive a simple relationship between the conformational

entropy and W, the number of conformations in the free state when we assume that there is

only one bound conformation and that T=310.14% K.

AG= AH – TAS

S E Rln(W)

TAS= rtin(º) = 1.98cal/(MK) • 310.15K • ln(W)

TAS= 0.616Kcal/Me In(W)

Using this relationship, we calculated a conformational entropy loss upon binding

for each ligand. This conformational entropy penalty was added to the force-field and

chemical score of each molecule and the compounds were ranked by their new scores.

Entropy Correction Results. The conformational entropy calculated for ten n

alkane molecules is plotted against the number of rotatable bonds in figure 11. A linear fit

of the data points yielded

TASconf (Kcal/M) = 0.48 * Not + 0.27

with a correlation coefficient of 0.999. The slope of linear fits to three sets of experimental
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Figure 11: State Counting Validation. Conformational entropy of N-alkanes calculated
with the state counting method (black circles) versus number of rotatable bonds. These
data are consistent with experimentally derived (entropy of fusion) slopes for odd N
alkanes (dot-dash), even N-alkanes (long dash), and N-alkyl carboxylic acids (solid). The
conformational entropy method of Bohm is shown for comparison (short dashes).

entropy of fusion experiments are plotted for comparison (38). The data from this study is

intermediate between the experimental data for odd and even-alkanes and is very close to

the data for n-alkyl carboxylic acids. The method of Bohm, which also approximates this

n-alkyl data well is shown for comparison.

Conformational entropy of ligand binding calculated by counting states for the

library of isatins is presented in table 3 and figure 12. The mean and standard deviation of

the conformational entropies are plotted against the number of rotatable bonds. Although
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O
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Figure 12: Small Molecule Conformational Entropy. Means and standard deviations of
conformational entropy for the isatin library members are plotted against number of rotat
able bonds. Note first that the mean entropies fall below the N-alkyl entropy in a non-lin
ear fashion, particularly as the number of rotatable bonds grows. Second, note that the
standard deviations are large relative to the differences between the means, indicating that
the data cannot be sufficiently described by the single independent variable, Nrot, as many
approximations attempt. The linear approximation based on the N-alkyl compounds (long
dash) and from Bohm's method (solid) are presented for comparison.

the mean values are approximately linear for Nrot of 2 to 5, they fall significantly below

linear for higher numbers of rotatable bonds. Note, this library’s scaffold contained two

rotatable bonds, so no examples of one rotatable bond are shown. Two linear models of

conformational entropy are shown for contrast. First, the linear fit of the state counting

data for n-alkyl carboxylic acids is shown. Second, the linear approximation from the

scoring function of Bohm (39) is shown. The former fits the relatively rigid molecules

161



- ---! . . . . " *** *- * \
*-*

***
- :

- * --

s t
*

* " * .
t – r

*-



well, but greatly overestimates the more flexible molecules. The latter avoids over estimat

ing the most flexible molecules, but at a cost of greatly underestimating nearly all of the

compounds.
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Figure 13: Significant Entropy Correction. The maximum difference in entropy correc
tions between two compounds is shown (bar) along with the force field (A) and chemical
(B) scoring histograms for the entire isatin library. Entropy corrections have the potential
to significantly effect the ranking of compounds in the library using either scoring func
tion.

The relative size of the entropy correction term compared to the force-field and

chemical scores is shown in figure 13A and 13B respectively. The range of entropy correc
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tions among the library compounds is 0.42 to 5.02 Kcal/M, so the maximum difference in

correction between two molecules is 4.59 Kcal/M. Each figure contains a histogram of the

uncorrected scores from the library docking. In addition, a bar indicating the relative size

of the maximum difference in entropy correction is illustrated, assuming the units are the

same. This bar indicates the maximum possible shift in positions of one molecule in the

histogram relative to another. Even in the case of force-field scoring, which greatly overes

timated binding energies, the entropy correction factor make a significant contribution to

the overall score.

6

5 - -

4 ■
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3 |- • ce -

s2 - - + -

- :

0 . - 3 - 2 - o 1

TaeltaSconf (KCal/M) by method of Freire

Figure 14: Comparison to Heuristic Method. Entropy correction factors calculated by
the state counting method presented here versus the method of Freire. The method of
Freire uses the heuristic of “number of heavy atoms” as an approximation of filled volume
to make a linear correction to the entropy penalty (TASconf (Kcal/M) = 0.53 * Nrot - 0.124
* Nheavy). There is little correlation between the methods.

sºº

**
gº tº

163



-
~ *

º, *
C

1
-

*:

º * * -

a \ º, a4–

_* º

“ sº

-

- *.

(). '*.
* -

* *

4.



In a study of the binding properties of a series of HIV protease inhibitors, Bardi et

al. developed a method to estimate conformational entropy which included a term to cor

rect for the occupied volume (40). the method subtracted the empiric term 0.124 Kcal/M

for each heavy atom in the molecule from the conformational entropy term of 0.528 Kcal/

M per rotatable bond. To compare estimates, the conformational entropy for the library of

compounds generated by Bardi's method was plotted against the state counting method

presented here (figure 14). Little linear correlation can be seen between the two methods

as reflected in a correlation coefficient of 30.4 for a linear fit of the data.

Entropy Correction Discussion. Despite a very approximate estimate of the solu

tion phase conformational ensemble of the ligand and the assumption of only one bound

state, this model reproduces experimental entropy of n-alkyl systems very well. Both the

experimental and the calculated values show the well known linear relationship between

conformational entropy and number of rotatable bonds for n-alkanes (figure 11). This

result is surprisingly good and serves to validate our extension of the method to more

drug-like small molecules. However, when the state counting method is applied to the

small molecule library, intramolecular clashes (excluded volume) limit the number of low

energy conformations in molecules with many rotatable bonds (figure 12). As is shown by

the comparison to the linear approximation from applying the state counting to the n

alkanes or Bohm’s approximation, the data is inadequately described by a linear propor

tionality to the number of rotatable bonds. Furthermore, although the mean values can be

well approximated by a quadratic fit of the number of rotatable bonds, the large variance

within each set relative to the difference between consecutive means indicates that another

independent variable is needed to describe the data. Good estimates of the conformational

entropy of ligand binding requires one to take account of the intramolecular conforma
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tional restrictions particular to each molecule.

The free energy of binding is formally AG = AH-TAS. Although not formally sep

arable, it is a useful approximation to separate AS into multiple terms, one of which is

ASconf, the entropy cost of restricting the conformational entropy of the ligand upon bind

ing. Since it is generally understood that a bound ligand accesses fewer conformations

than when in solution, ASconf is always negative and the conformational entropy contrib

utes a “penalty” to the binding energy. Because it contains a natural logarithm of the num

ber of state and because the sign is the same for all compounds it is easy to assume this

term will not have a large effect on the ranking of ligands, and indeed, the error in neglect

ing this term may be small compared to other terms neglected in force-field scoring such

as the entropy or enthalpy of solvation. However, recent work on application of GB/SA to

the docking problem (30) has led us to consider conformation entropy. Figure 13 shows

not only that the conformational entropy “penalty” is significant relative to total docking

score, but that the difference in conformational penalties between ligands has the potential

to dramatically effect the relative ranking of compounds.

In the work of Bardi on HIV protease inhibitors (40), the conformational entropy is

estimated by a linear combination of the number of rotatable bonds (similar to the method

of Bohm) and the number of heavy atoms. The second term, which carries a negative coef

ficient, is meant to correct for the reduction in conformational space due intramolecular

clashes (occupied volume). Although it includes a surrogate term to estimate the constraint

on conformational space, the method does not correlate well with the direct state counting

method described here (Figure 14).

Both of these methods are a step forward from the estimates linear with the num

ber of rotatable bonds. The Bardi method is much faster, however it is limited by its heu
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ristic for occupied volume, which appears to be dramatically effected by the case under

consideration. This is best illustrated by examining the sign of the entropy correction cal

culated with the Bardi method, which predicts that conformational entropy will favor

binding for nearly all of these molecules. While the state counting method is slower, the

entropy correction term need only be counted once for a database of compounds since in

as much as the approximation of one bound conformation holds, the entropy correction is

independent of the target macromolecule.

The state counting method as presented here is limited by its rudimentary genera

tion of a conformational ensemble, however, there are a number of more rigorous intramo

lecular scoring schemes, particularly those which take account of ligand solvation, which

could be used to extend the state counting approach discussed here. Furthermore, the

choice of a 10 Kcal/Mol cutoff for counting states is arbitrary, and is made in the context

of a very simplistic internal energy. Despite these approximations, this method appears

more accurate than those which simply calculate a linear relationship between the confor

mational entropy and the number of rotatable bonds.

A rigorous method of ensemble construction and state counting has been success

fully applied to protein side chain conformations(41). However, like our method, attempts

to extend the method of Leach to small molecules has been limited by the accuracy of the

intramolecular energy and ground state (Brian Shoichet, personal communication). The

method we present is fast enough to be practical for databases of compounds, yet reliable

enough to reproduce experimental n-alkyl conformational entropy values. A more elegant

and thorough approach to constructing the conformational ensemble can only improve on

the results obtained here.
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Prologue to Chapter 5

Some projects are bigger than any individual investigator, and the “RT project”

(HIV-1 Reverse Transcriptase) presented in this chapter is one of them. This project's

inception dates to when I first began working in the Kuntz lab, nearly two years before I

started graduate school. Diana Roe did a large amount of initial work examining the RT

structure and identifying the binding sites described in this chapter. Todd Ewing and I did

many of the screening runs, using very early versions of Dock 4.0 (years before flexible

docking was implemented). After the initial inhibitor was discovered, Meg Stauber and

Karl Maurer, two post-docs from the Kenyon lab, spent virtually their entire post-doc

careers discovering just how hard Carbonyl-J was to work with. Eventually, Karl and I dis

covered the potent analog, Calcamine Orange, and Karl was able to design and synthesize

many additional analogs. Despite identifying many very potent compounds, this project

has been frustrated for over four years by a lack of profitable structural data for any RT

inhibitor complex. As an alternative, we turned to a variety of physical and biological

methods to investigate the mechanism of this class of RT inhibitors. We have used a com

bination of RNaseH inhibition, RT mutation studies, and Biacore DNA/RT binding to

show these compounds inhibit RT by a novel, but unknown, mechanism. All of these stud

ies were carried by out by our collaborators in the laboratories of Steve Hughes and Robert

Fisher. Finally, I want to mention that the compounds identified as inhibitors here are

reflective of the era in which they were identified. There has been a significant emphasis in

the past five years of the importance of identifying “drug-like” molecules early in the

design process. Although “drug-like” is a very elusive adjective, the compounds identified

here probably do not fit into that category (however amorphous). This highlights a funda
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mental dilemma. On one hand, by not selecting drug-like molecules early, we have discov

ered a series of potent HIV-1 RT inhibitors which act by a novel mechanism but probably

can’t be developed into medicinally useful analogs. On the other hand, if we had taken a

chance at being more selective early on, we might have not identified any inhibitors. The

optimal position for this “selectivity pendulum” remains unclear.
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Abstract
The Human Immunodeficiency Virus (HIV) epidemic is an important medical

problem. Although combination drug regimens have produced dramatic decreases in viral

load, current therapies do not provide a cure for HIV infection. We have used structure

based design and combinatorial medicinal chemistry to identify potent and selective HIV

1 reverse transcriptase (RT) inhibitors that work by a mechanism distinct from that of cur

rent HIV drugs. The best of these compounds (compound 4, 2 naphthalenesulfonic acid,

4-hydroxy-7-[[[[5-hydroxy-6-[(4-cinnamylphenyl)azo]-7-sulfo-2-naphthale

nyl]amino]carbonyl]amino]-3-[(4-cinnamylphenyl)azo], disodium salt) has an IC50 of

90nM for inhibition of polymerase chain extension, an Kd of 40nM for inhibition of DNA

RT binding, and an IC50 of 25-100nM for inhibition of RNaseH cleavage. The parent com

pound (1) was as effective against ten nucleoside and non-nucleoside resistant HIV-1 RT

mutants as it was against the wild-type enzyme. Compound 4 inhibited HIV-1 RT and

Murine Leukemia Virus (MLV) RT, but it did not inhibit T4 DNA polymerase, T, DNA

polymerase, or the Klenow fragment at concentrations up to 200nM. Finally, compound 4

protected cells from HIV-1 infection at a concentration more than 40 times lower than the

concentration at which it caused cellular toxicity.
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Introduction

Despite a worldwide effort, Human Immunodeficiency Virus (HIV) infection and

the subsequent Acquired Immunodeficiency Syndrome (AIDS) remain important medical

problems. Although the recent dramatic drop in the AIDS mortality rate and opportunistic

infections in the United States is a tribute to new drug therapies(1), the number of people

infected by HIV continues to increase(2). Current treatment of HIV infection in the United

States commonly involves three drugs: two nucleoside reverse transcriptase inhibitors

(NRTIs) and a protease inhibitor (PI)(3). These combination regimens can dramatically

decrease viral load.(3); however, despite these improvements, replication-competent HIV

can still be recovered from patients after 2 years of successful therapy(4).

Resistance has limited the prolonged efficacy of all HIV drugs so far developed.

HIV replication generates on average approximately one mutation each time the genome

is copied(5). This genomic diversity makes development of resistant strains almost certain

under conditions of selective (drug) pressure, high viral load, and rapid replication. Hecht

and co-workers recently reported the transmission of an HIV strain which was resistant to

four protease inhibitors as well as two reverse transcriptase inhibitors(6). The emergence

of multi-drug-resistant strains of HIV demonstrates the need for the development of new

drugs whose mechanism of action is distinct from those of known drugs.

Reverse transcriptase, an essential enzyme for HIV replication(7), has two enzy

matic functions, the polymerase (Pol) and the ribonuclease H (RNaseH). In the normal

viral replication cycle, RT converts viral genomic RNA into a double stranded linear

DNA. The success of both NRTIs and non-nucleoside reverse transcriptase inhibitors

(NNRTIs) in the treatment of HIV infection demonstrates that HIV-1 RT is a valid drug
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target.

All HIV-1 RT inhibitors which are either approved or in clinical trials bind to

either the NRTI binding site or the NNRTI binding site(8,9). Several other classes of RT

inhibitors have been identified including dyes, natural products, sulfated polysaccharides,

and small naphthalene sulfonic acids(10-12). Some of these compounds specifically

inhibit HIV-1 RT, while others inhibit a wide variety of polymerases(13-16). The mecha

nism of inhibition has not been established for most of these compounds. However, in gel

shift studies by Hizi(15, 17), a series of marine natural products appears to block RT

nucleic acid binding and RT Pol activity, but paradoxically, not RNaseH activity. In this

paper we use structure-based design, molecular similarity, and combinatorial medicinal

chemistry to identify and develop a chemically distinct class of compounds that inhibits

the nucleic acid binding, RNaseH activity, and polymerase activity of HIV-1 RT with low

nanomolar potency.

Materials and Methods

Structure-Based Design (Figure 1, Step 1). The DOCK algorithm has been

described in detail elsewhere(18-21). As a brief overview, concavities in the molecular

surface of a macromolecule are filled with atom-sized spheres to generate a negative

image of each potential binding site. Distances between sphere centers are matched to dis

tances between ligand atoms to produce thousands of potential ligand orientations within

the site. Each ligand orientation is evaluated based on steric and chemical complementar

ity to the target macromolecule in order to create a list of the molecules predicted to bind

to the target.
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To identify potential binding sites, we calculated a molecular surface(22) of the

RT-DNA complex(23) and generated 29 clusters of spheres. Three clusters (e.g., binding

sites) were selected based on their distance from the NNRTI binding site, functional sig

nificance, sequence conservation of nearby residues, crystallographic reliability, and geo

metric quality of the pocket.

A database of commercially available small molecules was prepared from the

ACD v93.2 (Available Chemicals Directory, Molecular Design Limited, San Leandro,

CA). Three-dimensional structures of each compound were obtained using CON

CORD(24), and partial charges were generated using the Gasteiger-Marseili(25) method.

Compounds were evaluated using the intermolecular van der Waals and electrostatic terms

from the AMBER force-field(26) as well as an empirical scoring function (Ewing T.J.A.,

and Kuntz, I.D., unpublished results). Compounds were selected for biological screening

based on: (i) force-field and empiric score (ii) dissimilarity to known non-nucleoside

inhibitors, (iii) visual inspection of their proposed binding mode, (iv) solubility and reac

tivity, (v) chemical diversity, (vi) toxicity, (vii) and ease of analog synthesis. Dissimilarity

was assessed using the connectivity metric described by Bemis(27).

Similarity Searches (Figure 1, Step 2). The ACD v95.1 (Available Chemicals

Directory, Molecular Design Limited, San Leandro, CA) was converted to Daylight for

mat(28). Searches were carried out with Daylight's connectivity measure of similarity and

the Tanimoto similarity metric(29). Daylight's Merlin search engine(28) was used to

probe the ACD for related structures.

Reagent Selection. A new program, UC Select (Skillman, A., Kuntz, I., UCSF,

San Francisco, CA), was used to identify reagents from the ACD that were both chemi
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cally compatible with analog synthesis (vida infra) and had appropriate medicinal proper

ties (i.e., solubility, molecular weight, non-toxicity, non-reactivity).

Chemicals. Compound 1 was purchased from Pfaltz & Bauer (Waterbury, CT).

Compound 2 was purchased from Sigma. While the ACD structure for 2 is asymmetric,

we found the correct structure is the symmetric compound shown in Table 1 (based on

mass spectrum, NMR, and HPLC characterization, data not shown).

General. L-SIMS and electrospray mass spectral analyses were performed by the

UCSF mass spectrometry facility, A. L. Burlingame, Director. MALDI spectra were per

formed on a PerSeptive Biosystems Voyager-DE instrument and were internally calibrated

by close proximity spotting. NMR spectra ('H, and "C) were taken on a GE 300 MHz

instrument. Centrifugation was performed at top speed on an International Clinical Centri

fuge.

Synthesis of compounds 3, 4, and 5 (Figure 1, Step 3). A sample of the aryl

amines, compound 3, 4-amino-benzoic acid (263.6 mg, 1.92 mmole); compound 4, 4-ami

nocinnamic acid hydrochloride salt (376.2 mg, 1.88 mmole); compound 5, 4-amino-3-

methylbenzoic acid (283.4 mg, 1.87 mmole) was slurried in 2 mL of water, and 1.25 mL

of 20% H2SO4 was added followed by a solution of NaNO3 (1 eqv. 122-125 mg) in 1 mL

water. The reaction was mixed with a pipette until 95+% of the precipitate dissolved (2-5

minutes) and was then added to 15 mL water. A saturated solution of Na2CO3 was added

until a pH of about 9 was reached (6 mL). A solution of compound 1 (0.5 eqv, approx 510

mg) fully dissolved in 10 mL warm water was added, followed by 3 mL sat Na2CO3 to

assure basicity, and the resulting solution was allowed to stir at room temperature for 2.5

hours after which time it was acidified with 20% H2SO4 to a pH of approximately 0 and
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diluted to 140 mL volume with water. The resulting precipitate was isolated by centrifuga

tion, washed with water, methanol or ethanol and then dried under vacuum overnight to

yield the desired products. Analytical data for Compound 3, -ion LRESMS found (MH-)

799, (MNa-) 821, "H NMR (300 MHz, DMSO) 615.81 (s, 2H) 12.5-13.0 (broads, 2 H)

9.53 (s, 2H) 8.21 (d, J– 8.7 Hz, 2H) 7.99 (d, J–8.1 Hz 4H) 7.82 (d, J– 8.1 Hz, 4H) 7.76 (s,

2H) 7.50 (s, 2H), ''C NMR (75 MHz, DMSO) 6 177.81, 166.88, 151.85, 146.14, 144.82,

143.50, 137.00, 130.84, 129.40, 128.65, 126.90, 125.04, 122.29, 117.91, 116.62, 116.35,

Compound 4, -ion LRESMS found (MH-) 851, (MNa-) 873, "H NMR (300 MHz,

DMSO) 615.94 (s, 2H) 12.08 (broad s, 2H) 9.58 (s, 2H) 8.20 (d, J– 8.4 Hz, 2H) 7.77 (m,

12H) 7.62 (d, J– 15.9 Hz, 2H) 7.51 (s, 2H)6.56 (d, J–15.9 Hz, 2H), "CNMR (75 MHz,

DMSO) 6 177.00, 167.34, 151.55, 144.25, 143.87, 143.71, 143.12, 136.72, 131.08,

129.37, 128.76, 128.16, 124.70, 121.05, 117.89, 117.37, 117.11, 115.89, Compound 5

ion LRESMS found (MH-) 827, (MNa-) 849, "H NMR (300 MHz, DMSO) 8 16.17 (s,

2H) 9.64 (s, 2H) 8.19 (d, J– 7.8 Hz, 2H) 8.09 (d, J– 7.5 Hz, 2H) 7.85 (s, 6H) 7.62 (d, J–

7.8 Hz, 2H) 7.57 (s, 2H) 245 (s, 6H), ''C NMR (75 MHz, DMSO) 6 177.77, 167.06,

151.77, 144.78, 144,07, 143.33, 136.92, 132.09, 130.14, 128.71, 128.55, 126.64, 125.17,

124.93, 122.39, 117.91, 116.20, 115.33, 56.09 (EtOH) 18.60 (EtOH) 16.72.

Amersham Polymerase Assay. Enzyme activity was measured with a scintillation

proximity assay(30), which uses a biotin/streptavidin bead capture system. RNA-depen

dent Pol activity was measured using purified HIV-1 RT (Worthington Biochemical, Lake

wood, NJ) and a synthetic 17mer/50mer RNA-DNA template/primer containing biotin at

the 5' end of the DNA. Inhibitors were dissolved in DMSO. The template-primer, buffer,
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dNTP, and inhibitor were incubated for 10 minutes at 37° C before the RT was added. The

final 100puL reaction mixture contained: 39nM of template-primer; buffer of 40mM Tris

HCl pH8.0/10mM MgCl2 / 60mM KCl / 10mM dithiothreitol; 75pM of each dNTP

except dTTP; 25p,M dTTP and 35p M tritium labeled dºTTP; 10p M inhibitor; and 2.01g

of RT. After three minutes incubation at 37°C, the reaction was quenched with 40p L of

0.56M EDTA. Then 10pull of streptavidin SPA beads (in suspension) was added and incu

bated at 37°C for 10 minutes. Finally, 850 pull of 10mM Tris Cl, pH7.4, 0.15M NaCl was

added. The signal was produced by biotinylated polymers that contained d”TTP binding

to the streptavidin beads and stimulating the scintillant. The amount of d”TTP polymer

ized was measured using a scintillation counter. Results for each concentration of inhibitor

were recorded as counts per minute relative to an uninhibited standard.

Resistant Mutants. The mutants were constructed using BspMI cassette mutagen

esis, as described previously (31, 32). The assay has also been previously described(33).

Briefly, RNA dependent DNA Pol activity was assayed using purified RT protein and a

poly(rC)-oligo(dG), 0.02m MidCTP 0.002mCi [o-"PldGTP, and a buffer of 25mm Tris

Cl, pH 8.0, 75mm KCl / 8.0mM MgCl2 / 2.0mM dithiothreitol / 10mM 3-[(3-cholami

dopropyl)dimethylammonio-1-propane-sulfonate (CHAPS) containing acetylated bovine

serum albumin at 100pg/mL. The assay mixture was incubated for 30 minutes, then the

reaction was stopped by the addition of 50 pull of a 10-mg /mL solution of sheared and

denatured salmon sperm DNA followed by 3.0mL 10% trichloroacetic acid (TCA). The

labeled polymer was collected by suction filtration on Watchman glass GF/C and counted.

NCI polymerase assay. The RNA dependent DNA polymerase activity was mea

sured with the method described above for resistant mutant assays.

fºr tº:

sº :
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RT-DNA binding. The oligonucleotides used for attachment to the surface plas

mon resonance surface (SPR) were synthesized with biotin at their 3' ends using TEG

CPG (Glen Research, Sterling, VA). The biotinylated plus strand oligonucleotide (5*-A

GCA GTG GCG CCC GAA CAG GGA CCT GAA AGC-3' biotin) was mixed with

equimolar minus strand (3'-GGGCTTGTCCCTGGACTTTCG-5°), heated to 95°C, and

allowed to cool to room temperature for annealing. This forms a DNA version of a primer/

template that contains sequences from the LTR of HIV-1.

SPR was performed with a BIAcore instrument manufactured by Biosensor AB

(Uppsala, Sweden) using methods described previously(34). The buffer used in the SPR

experiments was 0.15M NaCl - 10mM HEPES (pH 7.5) 5mm DTT - 0.05% Tween 20.

Binding experiments were initiated by passing buffer across an SPR sensor chip contain

ing a known amount of oligonucleotide for approximately 100 s at 5 pull/min, followed by

a 10 pull injection of buffer containing RT solution. Injection of the RT sample was fol

lowed by buffer for an additional 200 s. The chip surface was then regenerated with two

successive 5 pull pulses of 0.1% sodium dodecyl sulfate (SDS) - 3mm EDTA.

A standard curve relating the initial binding slope(35) of RT binding to 225 Reso

nance Units of primer/template was constructed by injecting solutions containing 0.5, 1,

2.5, 5, 10, 25, 50, 100, 250, and 500nM HIV-1 RT Solutions of 500nM HIV-1 RT were

incubated with different concentrations of inhibitor, and free HIV-1 RT was measured by

injection of the solution and determination of the resultant initial slope. The free HIV-1 RT

was plotted against inhibitor concentration, and the curve was fit using the solution affinity

model contained in the BIA software version 3.01 to obtain Kd's.

RNaseH assay. The assay for RNaseH activity has been described elsewhere(36,
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37).

Cell Culture. The viral replication assay has been described elsewhere(38). This

assay generates both an effective concentration for cell rescue from viral infection (EC50)

and a toxic concentration for cell death independent of viral infection (TC50). From these

EC50's and TC50's, a therapeutic index (T.I.) was calculated (TC50/EC50).

Results

We screened the ACD with DOCK at three binding sites. These three sites are

located (i) adjacent to the Pol active site, (ii) at the base of the thumb, and (iii) in the area

between the thumb and the minor groove of DNA. Ninety-two compounds were selected

for the three binding sites and screened for their ability to inhibit HIV-1 RT Pol activity.

Twenty-seven of the ninety-two compounds (29%) showed at least 5% inhibition in a

10puM assay and corresponding increases in inhibition at 30puM and 100puM. The best

compound from our initial screening was 1 with an IC50 of 5puM (Table 1, Figure 1), while

9-Chloro-Thiobenzimidazolone (9-Cl-TIBO) in the same assay conditions had an IC50 of

201M.

To demonstrate that 1 does not bind to the nucleoside or the non-nucleoside bind

ing site, we assayed it against a variety of HIV-1 RT drug resistant mutants including

seven NNRTI resistant single mutants (Y181L, Y188L, L100I, K103N, V106A, E138K

and P236L), two NRTI resistant mutants (L74V and M184V), and the AZT-21 mutant

(M41L, D67N, K70R, T215Y, and K219Q). Compound 1 was as effective against all ten

resistant mutants tested as against wild-type HIV-1 RT (data not shown).

Based on these results, we pursued similar available compounds and identified 2, a
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superstructure of 1. Compound 2 had an IC50 of 1.5puM versus HIV-1 RT Pol activity

(Table 1, Figure 1). In addition, the results obtained with compound 2 inspired the synthe

sis of a wide range of aryl diazo derivatives (Table 2, Figure 1). We also replaced the cen

tral urea with a variety of linkers including thiourea, oxalyl, squarate, chelidonate,

chelidamate, 2,6-pyridine dicarboxylate, and terephthalate groups. Finally, we modified

the linkers and aryl diazo groups together in a combinatorial fashion. The most potent

compounds contained urea linkers and carboxylic acid groups (3-5, Table 2). Inhibition of

HIV-1 RT Pol activity was measured by two independent methods. The Amersham assay

and the NCI assay agreed to within a factor of four for each molecule. Compound 4 was

the most potent compound with IC50s of 90nM and 24nM, respectively, in the two assays

(Table 2).

We explored the ability of each of the compounds to inhibit binding of HIV-1 RT

to DNA using a BIAcore assay. A prerequisite for this study is that the compounds do not

bind to the CM5 chip. Unfortunately, 5 bound to the surface of the chip so its Kd could not

be determined. We were, however, able to measure dissociation constants for 1, 2, 3, 4,

and 8-Cl-TIBO. 8-Cl-TIBO, the negative control, did not inhibit RT binding to DNA at

any concentration measured. Our initial compounds, 1 and 2, inhibited RT binding to

DNA with Ka's of 2p M and 0.54|1M, respectively (Table 1). The more potent compounds,

3 and 4, inhibited RT binding to DNA with Kä's of 105nM and 40nM, respectively (Table

2).

Compounds 4, 5 and 8-Cl-TIBO were tested for their ability to inhibit HIV-1 RT

RNaseH activity. Each compound was tested at concentrations of 25nM, 100nM, 500nM,

and 2000nM at a four minute time interval (Figure 2). 8-Cl-TIBO showed no RNaseH
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inhibition at concentrations up to 50mM (data not shown). Compounds 4 and 5 each dem

onstrated an IC50 between 25nM and 100nM (Figure 2,Table 2) showing that the two most

potent Pol inhibitors are also potent RNaseH inhibitors.

Having identified several potent inhibitors, we investigated their selectivity. Com

pounds 4 and 5 were tested for inhibition of two viral reverse transcriptases (HIV-1 RT and

MLV RT) and three prokaryotic DNA polymerases (T4 DNA Pol, T7 DNA Pol, and the

Klenow fragment). Compounds 4 and 5 showed significant inhibition of HIV-1 RT and

MLV RT at 200nM (Figure 3). Neither of the compounds showed inhibition of T7, T4,or

the Klenow DNA Pol activities at concentrations up to 200nM. Compounds 4 and 5 are

potent and selective inhibitors of retroviral RTs.

Finally, we tested our most promising compounds in a cell culture assay. The

EC50's of compounds 3, 4, and 5 are 8.8HM, 2.5puM, and 2.5puM, respectively (Table 3).

The corresponding toxicity measurements for compounds 3, 4, and 5 are >100puM,

112puM, and 120puM, respectively, with therapeutic indices of 10-50, indicating that these

compounds are not toxic to the cells at concentrations an order of magnitude higher than

their EC50's (Table 3).

Discussion

HIV infection and AIDS remain a major medical problem(2). The rapid develop

ment of resistance to current drug therapies serves to highlight the need for new therapies

which have independent mechanisms of action. We have used structure-based design prin

ciples to identify novel, potent, and selective inhibitors of HIV-1 RT. These inhibitors act

by a unique mechanism and are not susceptible to the resistance mutations which elimi
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nate the activity of NNRTIs or NRTIs. Three specific topics merit further discussion. First,

we consider the mechanism of action of these naphthylurea derivatives. Second, we exam

ine the utility of structure-based design in a system as challenging as HIV-1 RT. Finally,

we discuss the structural and medicinal properties of these compounds.

Mechanism of Action. Let us summarize the evidence that these compounds

inhibit HIV-1 RT by a novel mechanism. The BIAcore data (Tables 1 and 2) strongly sup

port the hypothesis that this series of compounds prevents HIV-1 RT from binding to DNA

duplexes. In sharp contrast, neither NNRTIs nor NRTIs inhibit such binding. Further, the

BIAcore data make the decisive prediction that the RNaseH activity of HIV-1 RT should

be inhibited by these compounds in a similar concentration range. The RNaseH data (Fig

ure 2) clearly show that compounds 4 and 5 inhibit HIV-1 RT RNaseH. Although NNRTIs

like Nevirapine can alter the specificity of RNaseH cleavage, they do not block RNaseH

activity(39). Furthermore, in our control, 8-Cl-TIBO had no effect on RNaseH activity

(data not shown). Thus, although the binding site and exact binding modes remain

unknown, we have shown that these compounds interact with HIV-1 RT and prevent its

binding to DNA.

The data presented here imply that these compounds prevent HIV-1 RT's normal

interaction with nucleic acid duplexes. The three most plausible mechanisms for this inhi

bition are 1) binding to RT in a mode competitive with the binding of the nucleic acid

duplexes, 2) binding to a secondary site and thereby preventing an essential conforma

tional change required for duplex binding, or 3) binding to DNA and interfering with its

interaction with HIV-1 RT.

The specificity data in Figure 3 show conclusively, not only that compounds 4 and
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5 are specific RT inhibitors, but also that they do not act by binding to DNA. If these com

pounds inhibited RT by binding to nucleic acids, they would inhibit the three DNA Pols in

addition to the two viral RTs. The enzymatic inhibition, DNA binding inhibition, and

selectivity of this class of compounds set them apart from all previously identified HIV-1

RT inhibitors.

Aspects of the structure of these compounds appears intriguingly similar to DNA

and they may bind to HIV-1 RT as DNA mimics. For example, in a planar conformation,

the inter-sulfate distance is within the same range as an inter-phosphate distance across a

base-pair. If this series bind to HIV-1 RT as DNA mimics, this would favor the hypothesis

that they are competitive inhibitors of nucleic acid binding. Further, if these compounds

prove to be examples of a broader class of DNA mimics, new analogs may bind specifi

cally to other DNA binding proteins such as retroviral integrases or host transcription fac

torS.

Although these compounds are all potent HIV-1 RT inhibitors in vitro, our data do

not exclude alternate modes of action in cell-based assays. For instance, unrelated aro

matic poly-sulfonic acids have been shown to inhibit GP-120 binding to CD-4(41). Com

pounds 3, 4, and 5 all inhibit HIV-1 replication in cell culture without causing cellular

toxicity. The EC50's of 3, 4, and 5 in culture are one to two orders of magnitude higher

than the corresponding in vitro measurements. This may be due to poor cell permeability,

cellular efflux pumps, or cellular modification of the compounds. Compounds 4 and 5 may

be present in concentrations more than 40 times their EC50 without generating cytotoxic

ity, and thus are suitable for further cell-culture study. We hope to investigate the effects of

this series of compounds on the replication of other viruses.
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The compounds with inhibitory properties closest to the series presented here are

the marine natural products Toxiusol and Peyssonol A and B(15, 17). Our compounds

potently inhibit HIV-1 RT Pol activity, RNaseH activity, and DNA binding. In contrast,

Peyssonols A and B do not inhibit HIV-1 RNaseH activity and Toxiusol has not been

reported to inhibit HIV-1 RNaseH activity. Furthermore, our compounds are selective for

retroviral RTs, whereas Toxiusol inhibits the Klenow fragment. It is clear that the naphth

ylureas presented here represent a new direction in RT inhibition.

Structure-Based Design. HIV-1 RT has presented a difficult crystallographic

challenge. However, the original RT-DNA structure(23) contained sufficient information

to allow DOCK to identify 27 diverse inhibitors of HIV-RT Pol activity including 1, which

was sufficiently potent (IC50 5puM) to merit further development. These results demon

strate that structure-based screening can be useful even with target structures whose reso

lution is >2.5 Å.

The NNRTIs encompass a wide array of chemical classes which all bind to the

same site and are associated with a characteristic sets of resistance mutants(8). In the

design phase, we biased binding site selection away from the non-nucleoside binding site

and biased compound selection away from known inhibitors. This biased design strategy

successfully identified 1, which was equally effective against wild-type HIV-1 RT and

HIV-1 RT mutants resistant to either NNRTI's or NRTI's. This evidence indicates that 1

does not bind to the non-nucleoside binding site and that structure-based design can be

used to specifically target or avoid a particular site on a large macromolecule such as HIV

1 RT.

Although our attempts to grow co-crystals have not yet been successful, the struc

!
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ture of a complex of any of these compounds bound to HIV-1 RT would provide a useful

starting place for design of potential drugs. Until such data are available, we are exploring

several hypothetical binding modes based on the structure of the HIV-1 RT/DNA com

plex(40). One promising binding site is a deep groove at the interface of the pó6 and p51

subunits near residues W406, Q507, and A508 of p56, and N418 of p51. However, the

binding site and exact binding modes of our compounds remain unknown (except that the

compounds do not appear to bind to the NNRT or NNRTI binding sites).

Medicinal Chemistry. Compound 2 and its analogs 3-5 are potent superstructures

of compound 1. Although the high degree of symmetry in the best inhibitors is somewhat

surprising, the larger compounds presumably are more potent because the additional

groups are able to explore interactions in pockets adjacent to the original binding mode.

On the other hand, it is not uncommon for analogs of low potency inhibitors (such as 1) to

explore alternative binding modes. Although we synthesized compounds with a wide vari

ety of central linkers and aryl diazonium side-chains (Figure 1), the compounds that are

most active against HIV-1 RT were the urea-linked compounds with acidic aryl diazo side

chains (3-5). All of these compounds are quite potent in vitro. In their current form, how

ever, this class of inhibitors has some drawbacks, including multiple formal charges, diaz

onium groups, and high molecular weights. When we replace the distal acids with an

isoelectric (and medicinally favored) tetrazole, it retains most of its activity (HIV-1 RT Pol

IC50=220nM, data not shown). However, we were not able to identify potent smaller or

non-sulfated molecules. In order for these compounds to be suitable for study in animal

models, further medicinal chemistry development will be necessary. Nevertheless, these

compounds are the first in a novel class of HIV-1 RT inhibitors.
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Conclusions

We have designed and developed a new class HIV-1 RT inhibitors which act by a

novel mechanism of action. Using a structure-based design strategy biased away from pre

viously known drugs and binding sites, we identified compounds that prevent HIV-1 RT

from binding to nucleic acids. This class of compounds are both potent and selective

inhibitors of viral reverse transcriptases and are not effected by any of the major HIV-1 RT

resistance mutants which were tested. These compounds and their mechanism of action

are distinct from any previously described class of HIV-1 RT inhibitors. These compounds

demonstrate that HIV-1 RT has a previously undescribed binding site which is capable of

supporting potent small molecule binding and inhibition. The naphthylurea compounds

identified here represent an exciting new direction in HIV-1 RT inhibitors.
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Figures
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Figure 1: Ligand Design Scheme. A biased structure-based design scheme (step 1) was

used to identify initial inhibitors. Similar compounds which were commercially available

were found (step 2). A series of analogs which were potent and selective HIV-1 RT inhibi

tors were synthesized.
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Figure 2: RNaseH Inhibition. HIV-1 RT cleavage of the RNA strand of an RNA-DNA

duplex is completely inhibited at concentrations of 2,0.5, and 0.1 puM and partially inhib

ited at 0.025 puM by compounds 4 and 5 (A).
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Figure 3: Selective inhibition of retroviral RTs. Inhibition of HIV-1 RT-e—, MLV
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. RT DNA
# Compound Structure ºf º

OH • 2Na+ OH
O

"| c. oo,* oo. 5000 | 2000

Ol OH •2Na+ OH JC
2 "O.O. i. Oor" 1500 || 540

"O3S \ } SO3

Table 1: HIV-1 RT polymerase and DNA binding inhibition data for two compounds iden

tified by Structure-based design. a=Amersham polymerase assay.
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Table2:HIV-1RTInhibitiondata.Inhibition
ofHIV-1RTby
compounds3-5ininvitropolymerase(twoindependentassays),RNaseH,andDNA bindingassays.Effectsof

compounds3-5oncellcultureHIV-1infection(EC50),cellulartoxicity(TC50),andTherapeuticIndex(TC50/EC50)
are showninthefinalthreecolumns.ND=NotDetermined,INC=

Incompatible,
T.I.=

TherapeuticIndex,
a=
AmershamAssay,
b=
NationalCancer InstituteAssay.
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Prologue to Chapter 6

Chapter 6 is a classic example of rigid molecular docking. We screened the Avail

able Chemicals Database (ACD) and identified weak inhibitors of the essential T. foetus

enzyme hypoxanthine-guanine-hypoxanthine-phosphoribosyltransferase (HGXPRTase).

Two significant advances were made during this docking exercise. First, we used ease of

analog synthesis as one of the criteria for compound selection. The impact of this bias was

seen in chapter 3 where one of the lead compounds was optimized with a simple synthetic

library. Second, we improved the inhibition of our lead compounds by an order of magni

tude using searches of the ACD for compounds similar to our initial hits. We show clearly

that simple topological similarity can be used to recover some of the compounds missed

(false negatives) by the original structure based design method. These two methods show

that we can better utilize the information from structure-based design, first by improving

our data-mining of the ACD and second, by integrating synthetic information into our

structure-based models, we can design compounds which are both easy to synthesize and

are potentially potent inhibitors.

While working in a scientific field where a significant portion of the highest quality

work is done in industry, it is easy to become influenced by industry’s appropriate fixation

on fiscal considerations. To balance this position, we in academia have the luxury (even

responsibility) to explore disease processes and treatments which are significant in many

aspects, yet which have either to large a risk or too small a monetary reward for a commer

cial interest. The study of parasitic diseases are an outstanding opportunity for academic

application of drug development methodology. This project satisfies some of these goals,

as it serves as a proof of concept for this nucleic acid scavenger protein as a relevant target
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in some protozoan parasites. Although T. foetus is not the highest profile parasite, it does

play an important role in Bovine health in Africa. More importantly, T. foetus is an excel

lent model system, and some of the inhibitors developed here also show selective inhibi

tion of the analogous enzymes in Giardia lamblia and Schistosoma mansoni, two

protozoan parasites which cause significant human morbidity and mortality. Before begin

ning my graduate training, I spent three months in India working in rural missions hospi

tals. It was there that I first saw the devastation parasitic diseases can wreak on those not

fortunate enough to afford sanitary living conditions. Although at the time I was struck by

how powerless I was, as a relatively uneducated cultural outsider, to affect positive

change, nearly a decade of medical and scientific education have done little to increase my

ability to effect change in rural India. Unfortunately, financial and cultural obstacles often

prevent appropriate prevention or treatment of parasitic diseases even when effective ther

apeutics exist.
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Chapter 6

Rational Design of Novel Antimicrobials:
Blocking Purine Salvage in a Parasitic

Protozoan

by

John R. Somoza, A. Geoffrey Skillman Jr., Narsimha R.
Munagala, C. M. Oshiro, Ronald M. A. Knegtel, Solomon

Mpoke, Irwin D. Kuntz, and Ching C. Wang

Reproduced with permission from
Biochemistry, April 1998, 37(16):5344-5348.

Copyright 1998, American Chemical Society
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ABSTRACT

All parasitic protozoa obtain purine nucleotides solely by salvaging purine bases and/

or nucleosides from their host. This observation suggests that inhibiting purine salvage

may be a good way of killing these organisms. To explore this idea, we attempted to block

the purine salvage pathway of the parasitic protozoan Tritrichomonas foetus. T. foetus is a

good organism to study because its purine salvage depends primarily on a single enzyme,

hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase) and could pro

vide a good model for rational drug design through specific enzyme inhibition. Guided by

the crystal structure of T. foetus HGXPRTase, we used structure-based drug design to

identify several nonpurine compounds that inhibited this enzyme without any detectable

effect on human HGPRTase. One of these compounds, 4-[N-(3,4-dichlorophenyl)carbam

oyl]phthalic anhydride (referred to as TF1), was selected for further characterization. TF1

was shown to be a competitive inhibitor of T. foetus HGXPRTase with respect to both gua

nine (in the forward reaction; Ki-13 HM) and GMP (in the reverse reaction; Ki-10 puM),

but showed no effect on the homologous human enzyme at concentrations up to 1 mM.

TF1 inhibited the in vitro growth of T. foetus with an EC50 of approximately 40 pm. This

inhibitory effect was associated with a decrease in the incorporation of exogenous guanine

into nucleic acids, and could be reversed by supplementing the growth medium with

excess exogenous hypoxanthine or guanine. Thus, rationally targeting an essential

enzyme in a parasitic organism has yielded specific enzyme inhibitors capable of sup

pressing that parasite's growth.

Introduction

Many pathogenic microorganisms are dependent on their hosts for key metabolites,

{

g -

202



1.



and it should be possible to exploit this dependency for the design of novel chemothera

peutic agents. For example, all of the parasitic protozoa (e.g. Plasmodium, Toxoplasma,

Leishmania, Trypanosoma, etc.) lack the ability to synthesize purine nucleotides de novo

(1). Instead, these organisms rely on Salvage enzymes to obtain purine bases and nucleo

sides from their host and convert them to the corresponding nucleotides. Thus, interfering

with purine salvage could be an effective way of killing these organisms.

We sought to demonstrate the feasibility of this approach by blocking purine salvage

in the parasitic protozoan Tritrichomonas foetus, an organism that can cause embryonic

death and infertility in cows (2). T. foetus is a good model system because its purine sal

vage pathway is well understood, and relies primarily on a single enzyme, hypoxanthine

guanine-xanthine phosphoribosyltransferase (HGXPRTase), to replenish its purine nucle

otide pool (3). HGXPRTase catalyzes the transfer of the ribose-5-phosphate moiety of o

D-5-phosphoribosyl-1-pyrophosphate (PRPP) to the N9 position of hypoxanthine, gua

nine, or xanthine to form the corresponding ribonucleotide.

Although mammals can produce purine nucleotides de novo, they also make use of

purine salvage pathways. This is an important caveat to the idea of targeting purine sal

vage for chemotherapeutic purposes, because mammals recycle hypoxanthine and guanine

using hypoxanthine-guanine phosphoribosyltransferase (HGPRTase), an enzyme that

shares 27% sequence identity with tritrichomonal HGXPRTase (4). Since a decrease in

human HGPRTase activity can lead to hyperuricemia (5), it is important to block the

pathogen's purine salvage pathway while leaving the corresponding mammalian pathway

untouched.

Our goal was to selectively inhibit the T foetus HGXPRTase. This should block the

main route of purine salvage, thus leading to growth arrest of the parasite. The only

203





known inhibitors of the purine PRTases at present are purine analogs, and they are weak

inhibitors with Ki values in the millimolar range (6). We decided that the most pragmatic

strategy to identify novel inhibitors of T. foetus HGXPRTase would be to use the three

dimensional structure of this enzyme to guide our search. Furthermore, since the structure

of the human HGPRTase has been also determined (7), this structure-driven approach

should make it easier to identify compounds that selectively inhibit the parasite enzyme.

MATERIALS AND METHODS

Structure Analysis. The crystal structure of the T foetus HGXPRTase was determined by

Somoza et al. (8) at 1.9 A resolution (PDB accession code 1HGX), and the crystal struc

ture of the human HGPRTase was determined by Eads et al. (7) at 2.5 A resolution (PDB

accession code 1HMP). The software packages O (9), Insight II (10), MIDAS PLUS (11),

Sybyl (12) and GEM (E. Fauman, unpublished work) were used for the display and analy

sis of the structures.

Docking. DOCK 3.5 (13, 14, 15) was used to screen the Available Chemicals Directory

(ACD) for potential HGXPRTase inhibitors (16). The docking process includes four pri

mary tasks: (a) creating a negative image of the putative binding site; (b) overlaying the

negative image with small molecules from a database; (c) scoring many orientations of a

molecule based on its complementarity to the protein; (d) ranking and reviewing the best

scoring orientations of the most complementary small molecules. The docking protocol

applied to this particular study was modified from the general method in the following

manner. First, chemical compounds were segregated into small, medium and large size

categories based on the number of heavy atoms in each compound (small: 10-20; medium:

21-29; large: 30-60). Matching and docking parameters were adjusted for each group of

;
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chemicals in order to achieve similar sampling of the binding site. Second, instead of cre

ating a negative image of the entire active site, the negative image was limited to the

region of the active site that interacts with the bound guanine and proximal part of the

ribose, and to parts of the active site that differ between the parasite and human enzymes

(total number of spheres=34). Finally, the bump filter was modified. This filter is gener

ally used to eliminate ligands which have too many atoms overlapping with the receptor.

In addition to using the bump filter in the standard way, the bump grid in this application

was modified to filter out molecules that had atoms extending out of the active site into

solvent.

Similarity and Superstructure Searches. A set of potential binding mode models was

proposed by running DOCK on the initial inhibitors from this study and saving multiple

orientations per compound. In some cases, potential binding modes were further refined

with steepest descent and conjugate gradient minimization using the TRIPOS force field

in Sybyl 6.2 (12). Superstructure and similarity searches of the ACD were used to identify

a large set of compounds which were chemically similar to the inhibitors found in the ini

tial DOCK screen (17, 18). These searches were carried out with Daylight's Merlin sys

tem (19), using a Tanimoto similarity metric and Daylight's hashed connectivity

fingerprints. We then assayed compounds from this set which tested specific aspects of our

pharmacophore models. In general, compounds with conservative changes were selected.

Chemicals. All of the chemical compounds used in the enzyme assays were purchased

from Sigma Chemical Co., the Sigma-Aldrich Library of Rare Chemicals (SALOR), Ald

rich Chemical Company, Inc., Menai or Maybridge. For the preliminary enzyme assays,

zº.
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[8-14C] hypoxanthine (52 mCi/mmol) was from Moravek Biochemicals and [8–14C] gua

nine (56 mCi/mmol) was obtained from ICN Radiochemicals. GMP PRPP, pyrophos

phate (PP) and the purine bases were purchased from Sigma Chemical Co. in the highest

purity available.

Sources of Enzymes. Recombinant T. foetus HGXPRTase was purified to homogeneity

from Escherichia coli strain Sø 606 transformed with the low-phosphate-inducible pBTf

prt expression plasmid (4). Recombinant human HGPRTase was purified from the same

strain of E. coli transformed with the pHAcprt expression plasmid by a previously

described procedure (20).

Enzyme Assays. For preliminary testing of the computer selected compounds, a radioac

tivity assay of HPRTase (using radiolabeled hypoxanthine as substrate) or GPRTase (using

radiolabeled guanine as substrate) activity was employed (21). In the initial screen, each

chemical compound was tested at 1 mM. Compounds exhibiting over 50% inhibition of

the enzyme activity were titrated to lower concentrations for determination of the IC50 val

ues. Chemical samples were dissolved in dimethylsulfoxide (DMSO) to a concentration

of 10 mM and tested in assay solutions of no more than 10% DMSO, which has no effect

on the enzyme activity. For kinetic analysis of the enzyme-catalyzed reactions, a spectro

photometric assay was performed as previously described (22).

Kinetic Analysis. Data on the initial rate of the enzyme catalyzed reaction were fitted to

equations 1-3 using kinetics analysis software and plotted based on weight-based linear

regression analysis (23, 24).
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For competitive inhibition

v = VmaxS / [Km (1 + I/Kis) + S ] (1)

For noncompetitive inhibition

v = VmaxS / [Km (1 + I/Kis) + S (1 + I/Kii)](2)

For uncompetitive inhibition

w = VmaxS / [Km + S(1 + I/Kii)] (3)

The best fit was determined in each case by the relative fit error and errors in the con

stants. The nomenclature is that of Cleland (25): v, initial velocity; Vmax, maximum

velocity; S, substrate concentration; Km, apparent Michaelis constant; Kis and Kii, slope

and intercept inhibition constants, respectively; I, inhibitor concentration.

In Vitro T. foetus Cell Culture. T. foetus kv 1 strain trophozoites were cultivated to mid

logarithmic phase in Diamond's TYM medium at 370 C (26), and inoculated into fresh

medium at a 10-fold dilution with resumption of the incubation. Time samples were taken

and the cell number in each sample was determined using a hemocytometer under a

microscope. The concentration of DMSO in the culture medium was maintained at or

below 1% in order to avoid any adverse effect on cell growth.

RESULTS AND DISCUSSION

The Active Site of T. foetus HGXPRTase. Figure 1 shows the active site of T. foetus

HGXPRTase with bound GMP. The phosphate, ribose, and purine base moieties of the

bound GMP interact with the protein through a network of hydrogen bonds. In addition,

~
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the purine base is inserted into a hydrophobic pocket, formed on one side by Tyr 156 and

on the other side by Phe 162 and Ile 104. The active site of HGXPRTase extends beyond

the region where the GMP is bound, and includes a loop formed by residues 46 through

49. This loop appears to interact with pyrophosphate (27).

Somoza et al. provided a detailed comparison of the active site of T. foetus HGX

PRTase with that of human HGPRTase (8). This comparison revealed significant differ

ences between the two active sites in the region that interacts with the C2 substituent of the

purine base. Differences in this region were expected because the parasite and mamma

lian enzymes have different substrate specificities. The parasite enzyme accepts hypoxan

thine, guanine, and xanthine as substrates with similar Km values (28), while the

mammalian enzyme accepts only hypoxanthine and guanine as substrates (29). The only

difference between these three purine bases lies in the identity of the C2 substituent.

Using the Structural Information to Identify Potential HGXPRTase Inhibitors. The

docking algorithm of Kuntz and co-workers (13, 14, 15) was used to screen the ACD for

compounds showing van der Waals and electrostatic complementarity with the active site

of T. foetus HGXPRTase. Since the HGXPRTase active site is large and shallow (approxi

mately 10A x 10A x 5A), we focused primarily on the region encompassing the GMP

binding site. This region is well defined by the electron density map and differs from the

corresponding region of the human HGPRTase.

Based on our computational screen, we assayed eighteen chemical compounds for

their ability to inhibit T. foetus HGXPRTase in vitro. The two most active compounds

from this initial screen are shown at the top of Table 1 (#1 and #2).

~
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Table1:

i i

p

Table1.
Inhibition
ofT
foetusHGXPRTase(Tf)andhumanHGPRTase(H■ )by

1Inciol-2-One
(1T1an1cannyeII)analog series.ThetwoactivechemicalcompoundsthatarosedirectlyfromthedockingscreenareshownatthetopofTable

1as
compounds
#1and#2.The remaining

16inactivecompoundsfromthedockingscreenthatshowednoeffectonTfoetusHGPRTase
upto1mMare:fromSigma;acyclogua nosine;phenolphthaleinmonophosphatedi-(cyclohexylammonium)

salt;
periodate-oxidized,borohydride-reducedguanosine;2',3'-o-p-ani sylideneguanosine;

fromSalor;

2-(3-carboxy-4-hydroxyphenyl)guinoline-4-carboxylic
acid;
4,6-phenoxathinedicarboxylic
acid;2-amino-6- benzylthiopurine;

5-amino-3-(4-bromophenyl)-4-oxothieno(3,4-D)pyridineazine-1-carboxylic
acidethylester;
2-(5-nitro-2-benzimidazolylimino)- 4.5-imidazolidinedione;4'-methyl-3-nitrosuccinanilic

acid;andfromMaybridge;
2-[(1,2,4)triazolo(3,4-C)-(1,2,4)benzotriazin-1-ylsulfanyl]acetic

acid;
2-[(carboxyethyl)sulfanyl]benzoic
acid,

4-[(anilinocarbothionyl)oxy]-2-oxo-1,2-dihydroquinoline;5-fluoro-2-(2-hydroxy-5-nitrophenyl)-2,3- dihydro-4(1H)-quinazolinone;O-3-[(6-chloro-3-carbonyl)pyridyl]-5-methyl-3-isoxazolecarbo-hydroximamide;2-[[3-amino-4-oxo-4H-(1,3,4)thiadia zolo(2,3-C)-(1,2,4)triazin-7-yl]-sulfanyl)acetic
acid. Thesestructurescontainan

indol-2-one(isatin)andaphthalicanhydridenucleus,respectively,eachattached
toa

nitro-substitutedbenzenering.Our modelingresultsledusto
hypothesizethatthe
indole-2-one(Figure1B)andthephthalicanhydride(Figure1C)filltheguaninebindingpocket,while
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the nitro-benzenes fill a hydrophobic groove near the ribose phosphate binding loop of

HGXPRTase. This hypothesis predicts competitive enzyme inhibition against guanine and

GMP by these two compounds, which was verified in subsequent studies (see below).

However, the precise mode of their bindings to the active site will have to be demonstrated

by further structural analysis.

Ivºr 150
-

Lys 134

II* 11

Plºt. I tº

Asp Ins

Thr I 11

Pyrophosphate
Binding Loop

Figure 1. The active site of T. foetus HGXPRTase based on the crystal structure of this
enzyme (8). Figure 1 top shows the bound GMP as seen in the crystal structure. Figures 1
bottom left and 1 bottom right show the results of our modeling of the phthalic anhy
dride (Table 1, compound #1) (bottom left) and the indol-2-one (isatin) (Table 1, com
pound #2) (bottom right) in the active site of T foetus HGXPRTase. The sidechains that
are shown are those that interact directly with the GMP Our modeling suggests that the
nitro-benzene moiety of each ligand interacts with Ile 105, Ile 109 and Met 111
(sidechains not shown for clarity).
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In order to improve the potency, selectivity, and aqueous solubility of the inhibitors,

we used superstructure and similarity searches of the ACD to identify compounds which

were chemically similar to the two initial inhibitors (#1 and #2 in Table 1). In the isatin

series, we attempted to identify compounds with single changes in either the isatin moiety,

the aromatic ring substituents, or in the linker. In the phthalic anhydride series, we

attempted to identify compounds with single changes in either the anyhydride, the aro

matic ring substituents, or in the linker. From this set of potential inhibitors, we assayed

22 compounds, which, according to our proposed pharmacophore, explored different

regions of the HGXPRTase binding site. Eighteen (82%) of these twenty two compounds

had IC50's below the 1 mM screening threshold, and ten (45%) inhibited HGXPRTase

with an equal or higher potency than the two original inhibitors. The best compounds

demonstrate IC50s more than an order of magnitude lower than those of the lead com

pounds (Table 1). Furthermore, several of these compounds showed significantly more

potent inhibition of the parasite HGXPRTase than of the mammalian HGPRTase (Table 1).

We chose one of the compounds shown in Table 1 for further characterization. 4-(N-

(3,4-dichlorophenyl)carbamoyl)phthalic anhydride (compound 8, referred to as TF1) was

selected because it was one of the more potent inhibitors of the T. foetus HGXPRTase

(IC50=50 puM). Furthermore, it did not inhibit human HGPRTase in our screen (IC50-1

mM), and it is sufficiently soluble in aqueous media to allow further testings in vitro.
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Figure 2. Kinetic data showing that 4-(N-(3,4-dichlorophenyl)carbamoyl) phthalic anhy
dride (TF1) is a competitive inhibitor of guanine, with a Ki of 13.23+2.03 uM, (A); and a
competitive inhibitor of GMP, with a Ki of 9.97+1.39 mM, (B) in the reverse reaction. Ki
is the abscissa intercept of the replot of slope versus concentration of the inhibitor.
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A steady-state kinetic analysis using equations 1-3 as described above showed that

TF1 is a competitive inhibitor of guanine in the forward reaction, with a Ki of 13 HM, as

well as a competitive inhibitor of GMP in the reverse reaction, with a Ki of 10 p.M (Fig. 2).

The residual errors for the fit of the data to the models for competitive, non-competitive

and uncompetitive inhibition were 5.3x10°, 2.8x10° and 1.8, respectively, for the forward

reaction, and 0.31, 14.8 and 2.6, respectively, for the reverse reaction. These results are

consistent with the modeling results, which predicted that the compound would bind to a

region of the active site that overlaps with the GMP binding site.
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Figure 3. Data showing the effect of 4-(N-(3,4-dichlorophenyl)carbamoyl) phthalic anhy
dride (TF1) on the in vitro growth of T. foetus. Based on these data, the IC50 of TF1 is
estimated to be approximately 40 p.m.

Having shown that TF1 is a competitive inhibitor of T. foetus HGXPRTase, we

explored the effect of this compound on the growth of T. foetus in in vitro culture. As
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shown in Figure 3, TF1 is a concentration-dependent inhibitor of T. foetus growth in cul

ture with an EC50 of approximately 40 uM. Furthermore, the inhibition of T. foetus growth

by TF1 could be reversed by increasing the concentration of hypoxanthine in the growth

medium (Figure 4). The growth inhibition was also associated with decreased incorpora

tion of exogenous radiolabeled guanine into the nucleic acid fraction of T. foetus (data not

shown). Overall, these data support the conclusion that TF1 inhibits the growth of T. foe

tus in culture by functioning as a competitive inhibitor of the parasite's HGXPRTase.
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Figure 4. Data showing that the inhibition of 150 puM TF1 on the growth of T. foetus can
be reversed by the addition of 1 mM exogenous hypoxanthine (Hx). (+):0 Hx + 150 puM
TF1; ( ):0.2 mM Hx + 150 puM TF1; ( ): 0.5 mM Hx + 150 puM TF1; ( ): 1.0 mM Hx
+ 150 mM TF1; (q):2.0 mM Hx + 150 p.m TF1; (O):2.0 mM Hx + 0 TF1; ( ):0 Hx + 0
TF1. Exogenous guanine reverses the growth inhibition caused by TF1 in a similar man
ner (data not shown).
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Conclusion

We have identified two novel classes of non-purine-analog competitive inhibitors of a

purine salvage enzyme. These inhibitors bind to the HGXPRTase approximately as well

as any of the enzyme's natural substrates, and inhibit the enzyme better than any other

compound that has been found so far (6). The success of this project confirms the conclu

sions from our previous studies (3), that T. foetus HGXPRTase is a good target for anti

tritrichomonal drug design, and that it is possible to use structure-based drug design to

identify compounds that inhibit this enzyme but do not substantially inhibit the mamma

lian homolog. It is likely that the approach taken in this work will have a broad applicabil

ity to the design of other antimicrobials.
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Prologue to Chapter 7

To me, the project presented in this chapter is a prototypical example of the great

benefits and huge pitfalls of collaborative work. This project was begun when Jon Ellman

(University of California, Berkeley) approached the Kuntz group with the proposal that we

should design a library of (hydroxyethyl)amine inhibitors of the aspartyl protease cathep

sin D. We designed a head-to-head comparison of a diverse library, which I designed, and

a structure-based (directed) library, which Diana Roe designed. Both 1000 compound

libraries were synthesized, characterized, and assayed by Ellen Kick. The organization

and communication necessary to manage this project was enormous and Ellen and I devel

oped a great friendship through literally hundreds of e-mails across the bay. In the end, the

project was quite successful, yielding the best non-peptide cathepsin D inhibitors known.

It was only after the final draft of the paper (to be submitted to Science) was written that I

discovered a systematic error had been made in constructing each of molecules tested in

designing the directed library. An extra methylene carbon had been added to the proximal

end of every side-chain before it was attached to the scaffold, yet despite this we had

achieved excellent results! The manner in which this mistake was resolved is a tribute to

the ethics of everyone involved. The entire directed library was reanalyzed. Rather than

using visual inspection (the norm), which might have been biased by our prior knowledge

of the system, Ellen and I selected compounds from the directed library using a clustering

of the best-scoring compounds. Finally, Ellen synthesized, characterized, and assayed a

second 1000 compound directed library. As you will see, the inhibition results from this

second library were also outstanding. It was a gratifying experience to participate in this

collaboration, and I am particularly grateful to my friends Ellen Kick and Diana Roe.
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by

Ellen K. Kick, Diana C. Roe, A. Geoffrey Skillman,
Guangcheng Liu, Todd J. A. Ewing, Yaxiong Sun, Irwin D.

Kuntz and Jonathan A. Ellman

Reproduced with permission from
Chemistry and Biology, April 1997, 4(4):297-307.

Copyright 1997, Elsevier Science Press

:

º

->

~

:

219



{

= ~~

| | 1
; : * * -|''S

l,
s

(7.



ºsº

220





Abstract

The identification of potent, small molecule ligands to receptors and enzymes is one of the

major goals of chemical and biological research. Two powerful new tools in these efforts

are combinatorial chemistry and structure-based design. Here we address how to join

these methods in a design protocol that produces libraries of compounds directed against

specific macromolecular targets. The aspartyl class of proteases, which play a role in

numerous biological processes, was chosen for demonstration of this effective procedure.

Using cathepsin D, a prototypical aspartyl protease, a number of low nanomolar inhibitors

were rapidly identified. Although cathepsin D is implicated in a number of therapeutically

relevant processes, potent nonpeptide inhibitors have not been reported previously.(1) The

libraries, synthesized on solid support, displayed nonpeptide functionality about the

hydroxyethylamine isostere, which targets the aspartyl protease class. Structure-based

design, using the crystal structure of cathepsin D complexed with the peptide-based natu

ral product pepstatin, was used to select the building blocks for the library synthesis. The

library yielded a "hit rate" of 6-7% at 1 Minhibitor concentrations with the most potent

compound having a Ki value of 73 nM. Potent, nonpeptide inhibitors (Ki = 9-15 nM) of

cathepsin D were rapidly identified by synthesizing and screening a small second genera

tion library. The success of these studies clearly demonstrates the power of coupling the

complementary methods of combinatorial chemistry and structure-based design. We

anticipate that the general approaches described here will be successful for other members

of the aspartyl protease class and for many other enzyme classes.
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Introduction

A cherished goal of chemists is to design and synthesize compounds with a spe

cific set of properties. This goal is particularly urgent in biological and medicinal chemis

try as a part of the drug discovery process. Two powerful new tools in this effort are

structure-based design (2-3) and combinatorial chemistry (4-5). Structure-based design

uses information gleaned from crystallographic and magnetic resonance experiments on a

target macromolecule, frequently an enzyme, to guide the selection or design of inhibitors.

Computation plays a major role (3-6). Combinatorial chemistry is based on general chem

ical transformations that allow different building blocks to be combined in high yield.

These transformations can be performed in parallel to synthesize libraries of related com

pounds rapidly and efficiently (4-5). Nonetheless, the discovery of a new lead compound

or the improvement of the properties of an existing lead are still demanding tasks. The

issue we address in this paper is how to join computational and combinatorial methods in

a design protocol that produces libraries of compounds directed against specific macromo

lecular targets.

Combinatorial approaches to ligand identification initially focused on biopolymer

libraries prepared by either chemical or biological methods (7). For these libraries, all

possible combinations of the building blocks are typically used since there are only four

natural nucleotide building blocks for nucleic acid libraries and 20 proteinogenic amino

acid building blocks for peptide libraries. Both the structures of the compounds and the

;

222



*

.

■ - ---
-

-

e- ~ *.

- *º *

C *
** -| 1

- - º -
* * * *

* - º
*-

º
º

- ****

- * -

× ".
-- -

tº. **

---

º

*

-

*-

*:
*



theoretical number of compounds in the library are determined by the length of the

biopolymer chain. Recently, considerable efforts have been directed toward the prepara

tion of libraries of compounds that encompass a wider spectrum of chemical transforma

tions, leading to compounds with a broader range of properties than found in peptides or

oligonucleotides (4-5). These new approaches introduce significant challenges in library

design.

A crucial element of any library design is the procedure for selecting which com

pounds to synthesize. This includes the choice of the scaffold, the basic reactions and the

nature of the building blocks. If the building blocks are readily available components such

as amines, aldehydes or carboxylic acids, the number of potential compounds to be con

sidered can be quite large. For example, combining three building blocks with thousands

of components at each position leads to over 1 billion compounds. While different strate

gies have distinct practical limits, typically one is prepared to synthesize only thousands of

spatially separate compounds and tens of millions of compounds in mixtures. Further

more, evaluation and deconvolution of a very large library become rate-limiting activities

(8). Thus, there would be significant advantages to a method of reducing the synthetic

effort to a small subset of compounds biased towards the desired properties.

How can the potential choices be efficiently reduced? Two standard strategies are

diversity selection and directed selection. Diversity approaches attempt to maximize the

sampling of chemical and biological properties given a fixed number of compounds (9). In

directed libraries the size and often the diversity of the library is reduced by selecting
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those building blocks that are predicted to have favorable interactions with the target, or by

eliminating candidates that are believed to have unfavorable interactions. A directed

library can be based on substrate preferences, information about known inhibitors, or, in

the work described here, an assessment of the potential interaction of specific functional

groups with the target. Both diversity and directed strategies permit a multistage attack

with secondary libraries generated from active compounds found in the first round.

The development of general and efficient approaches to identify small, nonpeptidic

inhibitors of proteases continues to be of interest because proteases have important roles in

therapeutically relevant processes (10-13). Proteases have also proven to be excellent tar

gets for structure-based approaches (14-15). Our target, cathepsin D, has been implicated

in breast cancer tumor metastasis, melanoma metastasis (16) and Alzheimer’s disease (17

18). Here we describe the efficient development of a combinatorial library with functional

ity selected using structure-based design. These studies resulted in the identification of

potent inhibitors of cathepsin D, that do not contain amino acids and have molecular

weights under 800 daltons.

Material and Methods

Directed Library Design

The structure-based design process began with coordinates for pepstatin in a com

plex with cathepsin D (20). The scaffold is identical to pepstatin on the P1-P3 side, but dif

fers on the P1-P3 side and cannot form the same hydrogen bonds with the enzyme (Fig.

.
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3a). Thus, we used the pepstatin positions for the P1-P3 side and systematically rotated the

three scaffold torsion angles on the P1-P3 side. Each rotation was followed by energy

minimization within the cathepsin D active site, using the AMBER (33) force field in the

program Sybyl, a molecular modeling software package from Tripos Associates, St.

Louis, MO. During minimization, the enzyme was kept rigid but full flexibility of the

scaffold was allowed. Both S and R epimers, structures 1 and 2, were modeled using

methyl groups for each of the R1-R4 groups. The conformational energies of the Repimers

were generally ca. 2 kcal higher than for S epimers, leading us to predict that the S epimers

would bind more tightly than the Repimers. All minimized conformations of S epimers

within a 2 kcal/mol range were collected and clustered into four families based on geomet

ric similarity (Fig. 3b). A benzyl group was added to each family at the R4 position. The

processed list of compounds from the ACD was passed through Sybyl to obtain Gasteiger

and Marsili partial atomic charges for each component (34-35). To reduce the computa

tional time for searching the components, compounds with more than 4 torsional bonds

were identified and removed. A new feature for our BUILDER molecular modeling pro

gram (24-25), called BUILDERopt (26), was used to position each of the R1, R2, and R3

components onto the scaffold and to perform a full conformational search for the torsion

angles of the substituent at 15 degree increments. In order to reduce the combinatoric

problem, the R1, R2, and R3 components were examined independently, but a probability

based clash grid was constructed to identify Ri and R2 conformations that might overlap.

For example, if an R1 conformation clashed with more than 50% of the R2 components,

that conformation was discarded. Each rotation was then examined for intramolecular

clashes with the scaffold and overlap with cathepsin D. Each accepted conformation was

.
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rigid-body minimized (36) and scored with a force-field grid (37). The total computer

time required to evaluate all torsion angles for all sidechains attached to four different

scaffold conformations was 16 hours on a Silicon Graphics Iris R4400. The fifty best scor

ing components for all families were merged for each of the three variable positions, and

sorted by overall lowest score. Components with cost above $35/gm were removed, leav

ing 34, 35, and 41 components at R1,R2 and R3, respectively. Each remaining component

was structurally fingerprinted (28) and hierarchically clustered (similarity cutoff = 0.63)

(38) using the Tanimoto similarity metric (29-30). For R1, R2, and R3, the ten best scor

ing components from unique clusters were selected for the directed library.

Diverse Library Design

Components from the original ACD list were clustered with the Jarvis-Patrick

algorithm (27) using the Daylight connectivity measure of similarity (28) and a binary

Tanimoto metric (29-30). In the Jarvis-Patrick method, two compounds are placed in the

same cluster if they; 1) are neighbors of one another, and 2) share at least p neighbors from

a list of q nearest neighbors, where p and q are adjustable parameters. The compound

nearest the cluster centroid was chosen as the cluster representative.

The RI (amine) components were clustered directly as the primary amines. The R2

and R3 acylating agents were each attached to a portion of the scaffold before clustering to

yield the proper chemical context at the linkage site. The first round of clustering yielded

47, 154, and 162 clusters using p■ q = 4/11, p■ q = 4/12, and p■ q = 4/12 for R1, R2, and R3,

respectively. The representative R2 and R3 components were clustered a second time (p/q

= 4/7 for R2 and p■ d = 4/7 for R3), resulting in 23 R2 and 35 R3 components. We note that
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it is not practical to condense a large number of compounds into an arbitrarily small num

ber of clusters because the cluster membership can become very diverse. Final selection of

ten compounds from each list was based upon: size, cost, availability, and synthetic feasi

bility. Additionally, we sought a balance of functional groups for each set of sidechains. A

comparison of the directed and diverse libraries (Figs. 4, 5) shows the much greater range

of functionality spanned in the diverse library.

Library Synthesis

We have previously reported the optimization of the solid-phase synthesis sequence

to prepare the hydroxyethylamine inhibitors and the demonstration of reaction generality

(23). Further testing was performed to establish that the different functionality to be dis

played at R1, R2 and R3 would be successfully incorporated into the potential inhibitors.

First, all the amines and acylating agents to be incorporated in both the diverse and

directed libraries were treated with trifluoroacetic acid for 2 h at room temperature to

ensure stability to the support-cleavage conditions, by far the harshest reaction conditions

in the synthesis sequence. Second, components that might pose difficulties on chemical or

steric grounds were evaluated by trial syntheses. Five amines and four carboxylic acids

that did not provide the expected final compound in high yields or purity were discarded.

The following amines and acylating agents were successfully tested in the synthesis

sequence: R1 = B, C, E, F, a, e, h, i, j, R2 = B, C, D, E, H, a, e, f, R3 = A, D, E, H, a, b, e,

g, h, i. The remaining components were assumed to be compatible with the synthesis

sequence.

The library synthesis was performed on polystyrene beads (20–40 mesh) prepared in

s
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our laboratory. The library was synthesized in a spatially separate array using a 96-well

filter apparatus. Transfer of the resin to the individual wells was performed using an

isopycnic mixture of N,N-dimethylformamide (DMF) and 1,2-dichloroethane. Incorpora

tion of R1 was carried out using 1.0 M free amine in N-methylpyrrolidinone (NMP) at 80

Cfor 36 h. Incorporation of R2 was carried out using stock solutions of 0.3 M carboxylic

acid, 0.3 M benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate

(PyBOP), 0.3 M 7-aza-1-hydroxybenzotriazole (HOAt), and 0.9 M iPrzEtN in NMP over

night. The coupling reactions were performed twice to ensure that complete coupling had

occurred. After azide reduction with SnCl2, PhSH and Et3N, incorporation of R3 was car

ried out as reported above for R2. Carboxylic acid R2 = E was coupled using O-(7-azaben

zotriazol-1-yl)-1,1,3,3-tetramethyl-uronium hexa-fluorophosphate (HATU) instead of

PyBOP due to formation of a precipitate under the standard coupling procedure. The iso

cyanate R2 = b was coupled at 0.3 M in NMP overnight, and the sulfonyl chlorides R2 = e

and R3 = c were coupled at 0.3 M in NMP that was 0.9 M in iPrzEtn. Cleavage of the

material from support was achieved by subjecting the resin to 95:5 trifluoroacetic acid :

H2O for 30 min, followed by rinsing the resin and concentration of the filtrates using a

Jouan 10.10 centrifugation concentrator. Toluene was added to form an azeotrope with tri

fluoroacetic acid during the concentration step. After concentration, the libraries were

stored at -20 C.

Compounds from each library, picked by random number generation, were analyzed

by mass spectrometry in a matrix of a-cyano cinnamic acid on a Perseptive Biosystems

MALDI instrument. For the diverse library the expected molecular ion peaks were
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observed for 46 of 49 compounds (poor ionization was obtained for the other three).

Molecular ion peaks were obtained for 44 of 49 compounds from the directed library. In

addition, the synthesis has been validated by the reasonable correlation of the approximate

IC50 values of the crude material from the libraries with purified material that was synthe

sized on large scale for a number of compounds (see Table 2).

High throughput Cathepsin D Assay

A fluorometric high through-put assay for activity toward human liver cathepsin D

(Calbiochem) was performed in 96-well microtiter plates (31). The peptide substrate (Ac

Glu-Glu(Edans)-Lys-Pro-Ile-Cys-Phe-Phe-Arg-Leu-Gly-Lys(Methyl Red)-Glu-NH2)

used in the assay has been previously reported (Km = 6 M) (20). The assay was per

formed in DYNATECH Microfluor fluorescence microtiter plates, and readings were

taken on a Perkin-Elmer LS-50B with an attached 96-well plate reader. The excitation

wavelength was 340 nm. A 340 nm interference filter (Hoya, U-340) for excitation and a

430 nm cut-off filter for emission were used. For the microtiter-based assays the substrate

concentration was 5 Mand the cathepsin D concentration was 3 nM in a 0.1 M formic acid

buffer (pH = 3.7). DMSO, 10%, was used to ensure complete dissolution of the inhibitors.

The fluorescent unit readings were taken at three time points within the linear region of the

substrate cleavage, and percent activity of the enzyme was determined by comparing the

change of fluorescent units (FU) for each well to the average change in FU for six control

wells without inhibitor. Each library was screened at approximately 1 Minhibitor with the

concentration based on the assumption that 50% of the theoretical yield was obtained for

each inhibitor. All wells that showed 350% cathepsin D activity were screened at subse
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quent three-fold dilutions. All active compounds that showed 360% enzyme activity at 1

M or lower inhibitor concentrations were assayed in duplicate.

Synthesis of Inhibitors

Several of the most potent compounds from the designed and diverse libraries were syn

thesized on 30 mg scale on the solid-support following the previously reported method

(23). These compounds were purified by column chromatography, and characterized by

'H NMR and either mass spectrometry or elemental analysis. The characterization data

are listed below after the appropriate compound code.

EHA. "H NMR (300 MHz, CDCl3) 62.43 (m, 2H), 2.55 (t, J = 7.2 Hz, 2H), 2.62-2.83 (m,

4H), 2.88 (dd, J = 2.3, 14.3 Hz, 1H), 3.27-3.36 (m, 2H), 3.48 (dd, J = 8.7, 14.3 Hz, 1H),

3.70 (d, J = 8.0 Hz, 1H), 3.85 (t, J = 7.2 Hz, 2H), 4.03-4.14 (m, 3H), 5.91 (s, 1H), 5.92 (s,

1H), 6.44 (dd, J = 1.6, 7.9 Hz, 1H), 6.52 (d, J = 1.6 Hz, 1H), 6.66 (d, J = 7.9 Hz, 1H), 7.03

7.26 (m, 9H), 7.70 (dd, J = 3.0, 5.4 Hz, 2H), 7.81 (dd, J = 3.0, 5.4 Hz, 2H). LRMS

(MALDI-TOF) O-cyano-4-hydroxycinnamic acid matrix: mass calcd. for C40H39N4O9

(MH") 719.2, found 718.7.

EHD. "H NMR (300 MHz, CDCl3) 62.43-2.54 (m, 2H), 2.76 (t, J = 7.6 Hz, 2H), 2.92

2.98 (m, 2H), 3.02 (dd, J = 1.9, 14.2 Hz, 1H), 3.34 (m, 2 H), 3.68 (dd, J = 8.9, 14.2 Hz,

1H), 3.82-4.01 (m, 3H), 4.19 (apparent q, J = 8.0 Hz, 1H), 4.40 (d, J = 14.3 Hz, 1H), 4.51

(d, J = 14.3 Hz, 1H), 5.91 (d, J = 1.5 Hz, 1H), 5.92 (d, J = 1.5 Hz, 1H), 6.45 (dd, J = 1.6,

7.9 Hz, 1H), 6.53 (d, J = 1.6 Hz, 1H), 6.66 (d, J = 7.9 Hz, 1H), 6.95 (s, 1H), 7.17–7.28 (m,

s
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5H), 7.49 (s, 1H), 7.71 (dd, J = 3.1, 5.5 Hz, 2H), 7.82 (dd, J = 3.1, 5.5 Hz, 2H).

MALDIMS: m/z 767.1 (M" + H). LRMS (MALDI-TOF) of cyano-4-hydroxycinnamic

acid matrix: mass calcd. for C38H35N3O3Cl3 (MH") 766.1, found 767.1.

EHJ. "H NMR (300 MHz, CDCl3) 62.37-2.56 (m, 2H), 2.63 (t, J = 6.8, 2H), 2.98-3.01

(m, 2H), 3.14 (d, J = 11.2, 1H), 3.41 (m, 2H), 3.82 (s, 3H), 3.86 (s, 3H), 3.76–3.90 (m,

4H), 4.33 (apparent q, J = 8.0 Hz, 1H), 5.87 (d, J = 1.3 Hz, 1H), 5.89 (d, J = 1.3 Hz, 1H),

6.45 (dd, J = 1.6, 7.9 Hz, 1H), 6.49 (d, J = 1.6 Hz, 1H), 6.63 (d, J = 7.9 Hz, 1H), 6.77 (d, J

= 9.2 Hz, 1H), 6.78 (d, J = 8.7 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.24-7.28 (m, 5H), 7.69

(dd, J = 3.0, 5.4 Hz, 2H), 7.79 (dd, J = 3.0, 5.4). LRMS (MALDI-TOF) o-cyano-4-

hydroxycinnamic acid matrix: mass calcd. for C39H39N3O3Cl (MH") 728.2, found 727.9.

EFA. "H NMR (300 MHz, CDCl3) 52.10-2.33 (m, 2H), 2.49 (t, J = 6.7 Hz, 2H), 247

2.86 (m, 7H), 3.17-3.33 (m, 2H), 3.58-3.69 (m, 2H), 4.02-4.14 (m, 3H), 5.90 (s, 2H), 6.38

(dd, J = 1.6, 7.9 Hz, 1H), 6.47 (d, J = 1.6 Hz, 1H), 6.67 (d, J = 7.9 Hz, 1H), 6.88 (dd, J =

2.0, 8.2 Hz, 1H), 7.02-7.26 (m, 10H), 7.29 (d, J = 8.2 Hz, 1H). LRMS (MALDI-TOF) o

cyano-4-hydroxycinnamic acid matrix: mass calcd. for C38H37N3O3Cl2 (MH") 718.2,

found 719.0.

FHA. "H NMR (300 MHz, CDCl3) 62.46 (m, 9H), 2.94 (dd, J = 2.3, 14.3 Hz, 1H), 3.33

(apparent q, J = 7.0 Hz, 1H), 3.46 (dd, J = 8.8, 14.3 Hz, 1H), 3.73 (d, J = 8.2 Hz, 1H),

3.89 (t, J = 7.3 Hz, 2H), 4.02-4.16 (m, 3H), 6.43 (d, J = 9.2 Hz, 1H), 6.98-7.26 (m, 11H),

s
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7.32 (d, J = 2.1 Hz, 1H), 7.70 (dd, J = 3.2, 5.4 Hz, 2H), 7.82 (dd, J = 3.2, 5.4 Hz, 2H).

LRMS (MALDI-TOF) O-cyano-4-hydroxycinnamic acid matrix: mass calcd. for

C39H36N4O7Cl2 (MH") 742.2, found 743.0.

fbb. "H NMR (300 MHz, CDCl3) 60.64-1.89 (m, 10H), 2.67 (t, J = 6.4 Hz, 2H), 2.79 (t, J

= 6.7 Hz, 1H), 2.86–2.96 (m, 3H), 3.26 (t, J = 6.4 Hz, 2H), 3.43 (t, J = 6.8 Hz, 1H), 3.77

3.87 (n, 5H), 4.06 (d, J = 7.2 Hz, 1H), 4.09 (d, J = 7.2 Hz, 1H), 4.63 (s, 2H), 6.45 (d, J =

9.2 Hz, 1H), 6.64-6.82 (m, 3H), 7.18-7.31 (m, 6H). FABHRMS: 613.2519 (M* + H,

C31H4N4O3S2 requires 613.2518).

fdb. 'H NMR (300 MHz, CDCl3) 60.87 (t, J = 6.8 Hz, 4H), 120-126 (m, 8H), 1.47-1.58

(m, 2H), 1.95–2.14 (m, 2H), 2.67 (t, J = 7.2 Hz, 2H), 2.90-3.01 (m, 2H), 3.34-3.55 (m,

2H), 3.64-3.90 (m, 2H), 3.79 (s, 3H), 4.08 (m, 2H), 4.63 (s, 1H), 6.40 (d, J = 9.0 Hz, 1H),

6.62-6.78 (m, 3H), 7.18-7.31 (m, 6H). FABHRMS: 600.2555 (M* + H, C31H42N3O3S2

requires 600.2566).

EHM. "H NMR (300 MHz, CDCl3) 62.48 (m, 2H), 2.60 (m, 2H), 2.94 (m, 2H), 3.03 (dd,

J = 1.7, 14.8 Hz, 1H), 3.37 (m, 2H), 3.68 (dd, J = 8.9, 14.2 Hz, 1H), 3.83-4.00 (m, 3H),

4.20 (apparent q, J = 8.2 Hz, 1H), 4.42 (d, J = 14.5 Hz, 1H), 4.51 (d, J = 14.5 Hz, 1H),

5.91 (s, 2H), 6.46 (dd, J = 1.6, 7.9 Hz, 1H), 6.53 (d, J = 1.6 Hz, 1H), 6.65 (d, J = 7.9 Hz,

1H), 6.76 (d, J = 8.8 Hz, 1H), 7.17 (dd, J = 2.6, 8.8 Hz, 1H), 7.20–7.26 (m, 5H), 7.40 (d, J

= 2.6 Hz, 1H), 7.71 (dd, J = 3.1, 5.4 Hz, 2H), 7.83 (dd, J = 3.1, 5.4 Hz, 2H). LRMS
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(MALDI-TOF) O-cyano-4-hydroxycinnamic acid matrix: mass calcd. for C38H35N3O3Cl2

(MH") 732.2, found 732.5. _2

*EHO. "H NMR (400 MHz, CDCl3, CD3OD) 62.47 (m, 2H), 2.62 (t, J = 7.1 Hz, 2H), ~,

2.86–2.99 (m, 3H), 3.32-3.41 (m, 2H), 3.68 (dd, J = 8.8, 14.4 Hz, 1H), 3.79 (d, J = 8.6 Hz,

1H), 3.88-3.95 (m, 2H), 4.19 (apparent q, J = 8.1 Hz, 1H), 4.38 (d, J = 14.7 Hz, 1H), 4.47

(d, J = 14.7 Hz, 1H), 4.83 (s, 1H), 5.92 (d, J = 1.4 Hz, 1H), 5.93 (d, J = 1.4 Hz, 1H), 6.45 |
(dd, J = 1.5, 7.9 Hz, 1H), 6.53 (d, J = 1.5 Hz, 1H), 6/67 (d, J = 7.9 Hz, 1H), 6.77 (dd, J = º
2.9, 8.8 Hz, 1H), 6.91 (d, J = 9.5 Hz, 1H), 7.03 (d, J = 2.9 Hz, 1H), 7.20–7.28 (m, 5H),

7.35 (d, J = 8.8 Hz, 1H), 7.72 (dd, J = 3.0, 5.4 Hz, 2H), 7.83 (dd, J = 3.0, 5.4 Hz, 2H).

sLRMS (MALDI-TOF) O-cyano-4-hydroxycinnamic acid matrix: mass calcd. for

C38H35N3O3Cl2 (MH") 732.2, found 732.3. .

EHR. "H NMR (300 MHz, CDCl3, CD3OD) 62.40 (m, 2H), 2.58 (t, J = 7.0 Hz, 2H),

2.82 (m, 2H), 2.98 (dd, J = 3.4, 14.1 Hz, 1H), 3.31-3.46 (m, 3H), 3.74-3.88 (m, 3H), 4.13

(m, 1H), 4.32 (d, J = 14.8 Hz, 1H), 4.41 (d, J = 14.8 Hz, 1H), 5.84 (s, 2H), 6.41 (dd, J =

1.6, 7.9 Hz, 1H), 6.49 (d, J = 1.6 Hz, 1H), 6.60 (d, J = 7.9 Hz, 1H), 6.74 (dd, J = 1.9, 8.3

Hz, 1H), 6.89 (m, 1H), 6.94 (d, J = 8.0 Hz, 1H), 7.07-7.22 (m, 6H), 6.67 (dd, J = 3.1, 5.4

Hz, 2H), 7.78 (dd, J = 3.1, 5.4 Hz, 2H). LRMS (MALDI-TOF) o-cyano-4-hydroxycin

namic acid matrix: mass calcd. for C38H36N3O3Cl (MH") 698.2, found 698.0.

EHS. "H NMR (300 MHz, CDCl3) 62.49 (m, 2H), 2.65 (t, J = 7.1 Hz, 2H), 3.02 (m, 2H),
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3.15 (d, J = 12.7 Hz, 1H), 3.41 (m, 2H), 3.75-3.99 (m, 4H), 4.36 (apparent q, J = 8.3 Hz,

1H), 5.90 (d, J = 1.5 Hz, 1H), 5.91 (d, J = 1.5 Hz, 1H), 6.47 (dd, J = 1.6, 7.9 Hz, 1H), 6.55

(d, J = 1.6 Hz, 1H), 6.66 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 9.3 Hz, 1H), 6.90 (s, 1H), 6.98 (s,

1H), 7.17–7.28 (m, 5H), 7.70 (dd, J = 3.1, 5.6 Hz, 2H), 7.82 (dd, J = 3.1, 5.6 Hz, 2H).

LRMS (MALDI-TOF) O-cyano-4-hydroxycinnamic acid matrix: mass calcd. for

C39H38N3O9Br (MH") 772.2, found 772.5.

FHO. "H NMR (400 MHz, CDCl3) 62.65 (t, J = 7.2 Hz, 2H), 2.82 (t, J = 7.6 Hz, 2H),

2.91 (m, 2H), 3.07 (dd, J = 2.2, 14.3 Hz, 1H), 3.34-3.49 (m, 2H), 3.63 (dd, J = 8.9, 14.3

Hz, 1H), 3.83 (d, J = 8.4 Hz, 1H), 3.94 (m, 2H), 4.20 (apparent q, J = 8.0 Hz, 1H), 4.38 (d,

J = 14.8 Hz, 1H), 4.46 (d, J = 14.8 Hz, 1H), 6.76 (dd, J 3.0, 8.9 Hz, 1H), 6.92 (d, J = 9.4

Hz, 1H), 7.00 (d, J = 8.2 Hz, 1H), 7.02 (d, J = 3.0 Hz, 1H), 7.15 (dd, J = 2.1, 8.2 Hz, 1H),

7.18-7.27 (m, 5H), 7.34 (d, J = 8.9 Hz, 1H), 7.73 (dd, J = 3.0, 5.4 Hz, 2H), 7.84 (dd, J =

3.0, 5.4 Hz, 2H). FABHRMS: m/e 756.1204 (M' + H, C37H33N3O3Cl4 requires

756.1202).

UHD. "H NMR (300 MHz, CDCl3) 62.29 (s, 3H), 2.38-2.57 (m, 2H), 2.68 (t, J = 7.2 Hz,

2H), 2.93 (m, 2H), 3.03 (dd, J = 1.6, 14.2 Hz, 1H), 3.34-3.48 (m, 2H), 3.71 (dd, J = 9.0,

14.2 Hz, 1H), 3.81-3.91 (m, 3H), 4.19 (apparent q, J = 8.1, 1H), 4.41 (d, J = 14.3, 1H),

4.50 (d, J = 14.3 Hz, 1H), 6.91-6.98 (m, 2H), 7.05 (d, J = 8.3 Hz, 2H), 7.17–7.28 (m, 5H),

7.50 (s, 1H), 7.67 (s, 1H), 7.71 (dd, J = 3.0, 5.5 Hz, 2H), 7.83 (dd, J = 3.0, 5.5 Hz, 2H).

LRMS (MALDI-TOF) O-cyano-4-hydroxycinnamic acid matrix: mass calcd. for
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C38H36N3O3Cl3 (MH") 736.2, found 736.3.

Cathepsin D Assay

The cathespin D assay for the compounds that had been fully characterized was performed

in a quartz cuvette with a Perkin-Elmer LS-50B spectrometer. The substrate concentration

was 2.5 Mand the cathepsin D concentration was 10 nM. Inhibition constants (Ki) were

determined from IC50 values taken from plots of Vi■ vo versus inhibitor concentration,

where Vo is the velocity in absence of the inhibitor and Vi is the velocity with inhibitor.

Since the substrate concentration is significantly below Km, the IC50 values were con

verted to Ki by the equation Ki = (IC50 - E/2), where E = enzyme concentration (39).

Results and discussion

Specific Approach

One powerful strategy to target an enzyme class is to incorporate a stable mimetic

or isostere of the transition state or of an intermediate of the enzyme-catalyzed reaction

(19). The libraries for potential cathepsin D inhibitors are based upon the well-known

hydroxyethylamine isostere (Fig. 1). For our initial libraries, the Pi side chain (Ra) is held

constant as the benzyl substituent, based on the X-ray crystallographic structure of cathep

sin D complexed with the natural peptide inhibitor pepstatin (20), and upon inhibition con

stants of peptide-based inhibitors (21-22).

Figure 1

~
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2 S-2N-> 2**** r"ºr" ºr "Sº"Y
o P, O P2, O R4 O O R4 O

1 2

Intermediate of Peptide Hydrolysis Hydroxyethylamine-Based Inhibitors

Mechanism-based inhibitor design.

In a pilot study both S and R epimers at the hydroxyl carbon (structures 1 and 2)

were prepared since both diastereomers have been found in potent inhibitors of other

aspartic acid proteases (19). Because inhibition at 1 Mwas only found with compounds of

scaffold 1 in the pilot study, further syntheses of libraries toward cathepsin D used only

scaffold 1. Computer modeling (see below) predicted that structure 1 (Fig. 1) would pro

vide the most potent inhibitors.

Figure 2

H H. R.
ºr"

-

"ºr", Fº Na
-

ONos + R, NH2 + R2CO2H + RaCO2H§ 2; O EPh’ Ph’

Components employed to prepare the libraries targeting cathepsin D. The same disconnections provide
scaffold 2. Isocyanates and sulphonyl chlorides, which can be used to incorporate R2 and R3, provide
ureas and sulphonamides, respectively.

The solid-phase synthesis, which we previously reported (23), introduces diversity

in three positions: a primary amine for the R1 substituent and acylating agents for the R2

and R3 substituents (Fig. 2). The library synthesis was designed to use commercially avail

able compounds for incorporation of the functionality at R1, R2, and R3. We began our

library design by extracting amines, carboxylic acids, sulfonyl chlorides and isocyanates

with MW 3 275 daltons from the Available Chemical Directory (ACD, version 93.2) from
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MDL Information Systems, San Leandro, CA. We eliminated compounds with function

ality obviously incompatible with our synthesis. The resulting list included approximately

700 amines and 1900 acylating agents, which would provide access to more than 1 billion

compounds. To reduce the number of compounds in a sensible way, we turned to a com

putational screening process.
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Figure 3

Asp 231 Asp33
G|V23

y &H O R.
*Y" Y&".

O R4 O
/

Ser80 |
y

(a)

Four conformational families

H QH R. "Šºš H QH j. H OH i.
R3 N N R2 Ryºvº Rºº- *...*,\!* sºv Y *i■ R2 Y N R2 *Y N” R2

O Bn O O Bri O Bn H, O Bh R,
fami fam4

BUILDERopt

(c)

Designing the combinatorial library with BUILDERopt: (a) Modeling the Scaffold. Coordinates and P
P3 conformations of the pepstatin inhibitor were used as the starting geometry for hydroxyethylamine scaf
fold. Methyl groups were placed at each of the scaffold's RI-R4 positions. (b) Scaffold Conformation. A
conformational search about the three torsion angles of the scaffold yielded 4 conformational families. A
Benzyl sidechain (Bn) was added to each of these families at the R4 position. (c) Evaluating library com
ponents. The program BUILDERopt performed a limited conformational search on all possible components
at each variable position (RI - R3) on each family, and scored the components by their potential interaction
with cathepsin D. The top scoring candidates for each family were merged.

Directed Library Design

We chose a structure-based screening process using a new feature for our

BUILDER molecular modeling program (24-25), called BUILDERopt (26) (see Materi
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als and Methods). To begin the design process the scaffold was modeled in the active site

with the assumption that the binding orientation of the scaffold would be similar to pepsta

tin. (Fig. 3a). A conformational search of the scaffold provided four conformational fami

lies of comparable energy that were based on geometric similarity (Fig. 3b).

BUILDERopt (26), was used to position each of the R1, R2, and R3 components onto the

scaffold and to perform a full conformational search for the torsion angles of the substitu

ent. In order to reduce the combinatoric problem, the R1, R2, and R3 components were

examined independently, but a probability-based clash grid was constructed to identify Ri

and R2 conformations that might overlap. For example, if an R1 conformation clashed with

more than 50% of the R2 components, that conformation was discarded. The fifty best

scoring components for all conformational families were merged for each of the three

variable positions. Components with cost above $35/gm were removed. The remaining

compounds were hierarchically clustered to maximize the diversity of the top ranking

compounds that were selected for library synthesis. For R, R2, and R3, the ten best scor

ing compounds from unique clusters were selected for each position.

Diverse Library Design

An alternative library based on molecular diversity, which was set at the same size

as the directed library, was prepared to provide a "hit" rate when structure-based methods

are not employed. The diverse library was designed to maximize the variety of functional

groups and structural motifs of the library components. The sidechains for this library

were selected by clustering the original list of components based on their similarity to

each other. Components were clustered with the Jarvis-Patrick algorithm (27) using the

Daylight connectivity measure of similarity (28) and a binary Tanimoto metric (29-30)
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(see Materials and Methods).

Library Synthesis and Screening

The directed and diverse libraries (1000 compounds each) were prepared using

diastereomer 1 of the hydroxyethylamine scaffold with the components used in library

syntheses shown in figures 4 and 5, respectively. Because the pilot study with R and S

epimers only showed activity at 1 Minhibitor concentration for the S epimers, only the S

epimers of the directed and diverse library were synthesized. All libraries were synthe

sized in a spatially separate format, and were screened in a high-throughput fluorometric

assay for inhibitory activity against cathepsin D (31).
;
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Figure 4

R1 substituent

C. Crºcº■ Cº. Cº. ºOº.
A s" C D E

Cl Cl

NH, I NH, NH,
~"S-wº, | NH, Kºrº

Cl F G H F | J

R2 substituent
H.C

O a-. Br OCl O O
W

o-k - “Yºu º'r-
OH

OH OH
ICI

OH
z

H,C
C C - Cl Cl

| A | O B O C D &_y E

O CI O O O oH P' OH

ºr-º- ºr "- crº-oº: <r,
Cl Cl

F G O H | C. J

R3 substituent
O O

J.º Cl O O OCl OHgº-ºº-oº-ºoººCI Cl Cl
A B C D O E

O
, ). OH 9 o OGº-Cr; Cº-ºo-º- ºrº

O. Cl O MeO Cl
CH, MeO

F G H I J

Directed library components are labeled with a letter code. EHA is defined as R1 = E; R2 = H, and R3 = A.
Lower case labels are used for the diverse library (Fig. 5).
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Figure 5

R1 substituent ()NH
O O 2 CH3

&rº, ºr cº- cº
a b C d e

NHO NH O 2
H2C * * H.C H2N*Cº “º "r" . . c. 25

f g h i • j

R2 substituent
CI O O

oºk recº H3Cs. O O 93
OH 3 of Hics-->" on Cl

CH, O H3Cso
a b C d e

O O O

O O CI 8 i■ or *Sºr" on OJ.J. Sy’ >OH H2C HN, O ºcºon
§ OH W S O N 3. Sº CH 3

f g h º i CH, j

R3 substituent
O

H.C. § 9 o Cl3.” OH
ºfs'■ OH S ºn tº SY YOH

°N- Yºon TCI NH \-d
S

a b C d “ e

O O
H3CCº-oººº... odºrº cº

H Hacso HAC ºpo CH3
O 3)

- -f g h i CH, J

Fig. 5. Diverse library components are labeled by lower case letter code as for the directed library. *The
-butyl ester of R1 = i was used in the coupling reaction. **The Boc protected amine of R3 = d was used in
he coupling reaction.

Diverse library components are labeled by lower case letter code as for the directed library. *The t-butyl
ester of R1 = i was used in the coupling reaction. **The Boc protected amine of R3 = d was used in the cou
pling reaction. These protecting gropus are removed during TFA:H2O cleavage.

Assay Results

At approximately 1 Mof crude compound, the directed library yielded 67 com

pounds that inhibited cathepsin D activity > 50%. Further dilution to 333 nM and 100 nM

inhibitor concentrations afforded 23 and 7 compounds, respectively, that inhibited cathep

sin D activity > 50% (Table 1). The data for the diverse library are also in Table 1. There

are many uncertainties that can influence the results of a high-throughput fluorescence
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assay, including the purity of each compound, the concentration of the compounds, and

the experimental errors associated with the microtiter fluorescence assay. From repetitive

experiments we estimate these errors to be approximately 30%, expressed as enzyme

activity.

Table 1: Number of compounds inhibiting cathepsin D

[Inhibitor] Directed Library Diverse Library"

100 nM 7" 1$

330 nM 23# 31

1 M 67 26

10 M 11/95+

Compounds which inhibit >50% of cathespin D activity at respective concentrations: "EAA, EFA, EHA,
EHD, EHI, EHJ, FHA. An additional six compounds provided 40-50% inhibition of cathepsin D. feAA,
EFA, EHA, FAA, FFA, FHA, EHB, EFD, EHD, EEF, EHF, FHF, EFH, EHH, FAH, FFH, EFI, EHI, EAJ,

EFJ, EGJ, EHJ, FHJ. An additional thirty compounds provided 40-50% inhibition of cathepsin D. #One

hundred compounds were selected by random number generation for testing at 10 M.Five compounds were
highly fluorescent at these concentrations, so that accurate assay data could not be obtained in these cases.

$fbb. I■ ba, fbb, fcb. Four compounds (fca, fab, fib, hhb) provided 40-50% inhibition of cathepsin D; with the

experimental error in the assay, this activity is similar to the activity for the three that are listed. "The diverse
library was not tested at 10 M.

In order to obtain accurate inhibition constants (K), several compounds judged to

be potent inhibitors based on the library screening were synthesized on a larger scale, puri

fied by chromatography, and characterized by NMR and mass spectrometry. The Ki val

ues were calculated from ICso determinations (Table 2). From the compounds that were

fully characterized, we obtained one compound from the directed library with a Ki below

100 nM, whereas the diverse library contained inhibitors that were 3-4 times less potent.
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Second Generation Library.

In the design of the directed library we selected against derivatives with a high

level of structural similarity by applying a clustering algorithm to the highest scoring com

ponents (see Directed Library Design). We re-examined these clusters to explore the

important structural elements of the most active compounds from the directed library. In

particular, we synthesized and screened a second generation library of thirty-nine com

pounds from the clusters for the R1, R2 and R3 positions that provided the most active

compounds (Fig 6). At 1 M92% of the compounds screened inhibited cathepsin D > 50%,

and 18% of the compounds at 100 nM inhibited cathepsin D >50%. Inhibition constants

were determined for selected compounds (table 3), providing several potent inhibitors (Ki

= 15 nM) of cathepsin D.
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Table 2

Inhibition constants for selected compounds
Inhibitor Cmp code Ki (nM)

C| Cl O
H OH EHD 73 + 9

êº O O

O

DKK. J. O R)-EHD >50-
00

C| orrºr- ( ) >
O / O O

Ph

O

MeO O
H QH EHJ 111 + 8... º.º.º.”

CI O 5 O O
Ph

O

o-º OHH

N-Orº" çº EHA 131 + 12
º

O

C|
O C|

& º EFA 171 + 25~Yºr
Ph

Cl

Cl
O O

H
º §D FHA 231 + 31N-Y **r-

-O_, 2 O O
Ph

º
H it', H fbb 356 + 31

MeO

H
º

&r, |-NY-S fdb. 595 + 66O
-

O
O #"

-- - - - - - -

Inhibition constants (Ki) were determined for several of the "hits" from the designed and diverse libraries.
The Ki values were determined from the IC50 values (see Materials and Methods).

245



º

■ º

º

t

*

| 1 ||
--

- - º• 'A-

. . )



Figure 6

R1 substituent Cl

O NH NH, C, NH, Cl NH

Cl

E CI F K Cl LCl

F NH NH, Cº-
NH. NH

■ crº-
NH2 [ >

Br [ X
Cl

M N O Cip Q

F NH,

F Me

R S T U V

R2 substituent
O O O

ºr’
OH

Cr; -Q. OHCl
F O H

R3 substituent

**. J. O O

OH
DCI

OH OH
Cºrº”

OHCl Cl MeO Cl

A D Meo J K

Cl O OO Cl OQrº
OH
j o_A. OH

ºr-
OH
ºr *

OHL C| M N CI O
Br O

O O O

ºr-º- “crº- ºr-º- cº
Me Me MeO

P Q R OMe S

Fig. 6. Components in each of the clusters (see Experimental Design) that contained the most active
sidechains, R = E, F: R* = F. H.; R* = A, D, J. Thirty-nine compounds incorporating these sidechains were
synthesized on resin as described previously, EFD, EHD, FFD, FHD, KFD, KHD, LFD, LHD, MFD, MHD,
NFD, NHD, OFD, OHD, PFD, PHD, QFD, QHD, RFD, RHD, SFD, SHD, TFD, THD, UFD, UHD, VFD,
VHD, EHA, EHJ, EHK, EHL, EHM, EHN, EHO, EHP, EHQ, EHR, EHS. The compounds were assayed at
333 nM, 100 nM and 33 nM in high-through put screening. The most active compounds were synthesized
on large scale and the K values were determined (Table 3).
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Table 3

Second Generation Library Inhibition Constants (Ki)
Inhibitor Cmp.code IC50(nM) K(n\M)

O

C|

DO.cº sº EHO 19 + 2 15Ph■
O

O

C| I. l H QH
C| oºr"r-ºr- (R)-EHO >5000

Cen’ O Oh Cl

C|
Cls. OH QH

O_, 2 O O
Ph

O

Cl C| OH QHJºy ^^ NY- EHM 14 + 2 9
-Oph” O O

O

O-o-º-º-
EHR 20 + 15 15

O-1
O

OMe

MeO H QH
Nº-Nºr- EHS 64 + 6 59

Br O / O O
Ph CH,

O. H QH 2
C| cºrº-fºr- O UHD 229 + 44 224O_. A O

Ph
-

Inhibition constants (Ki) were determined for selected compounds from the second generation library. The
Ki values were determined from the IC50 values shown (see Materials and Methods).

Discussion

Novel low nanomolar inhibitors of cathepsin D were identified rapidly using com

binatorial chemistry coupled with two different computational strategies. The diverse and
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directed libraries together yielded over 90 compounds active at 1 Mand 26 active in the

submicromolar range. The “hit rate” for activity at 1 Mis 6-7% for the directed library and

2-3% for the diverse library. When screening was performed at concentrations below 1 M,

there were seven times more “hits” in the directed library than the diverse library. The

most potent inhibitors from the directed library are 3-4 fold better than those in the diverse

library. It is clear from the results that the number and quality of the active compounds can

be increased by using relevant information about the target.

A strength of the structure-based procedure is that it leads directly to testable geo

metrical hypotheses. In this study there are three hypotheses: 1) S epimers are predicted

to bind better than the R epimers; 2) there are two energetically reasonable scaffold con

formations (family 1+2, family 3+4), which place R groups into different pockets; 3) all

the inhibitors are assumed to bind in approximately the same orientation as pepstatin. The

first hypothesis was directly tested in pilot experiments where no inhibitors based upon the

R epimer had activity at 1 M. In addition, the R epimer of one of the most potent com

pounds had a Ki no better than 5 Mwhile the Ki of the S epimer was 15 nM (Table 3). This

conclusion and the inhibitor orientations in the cathepsin D complex will be examined

crystallographically.

The computational approach outlined in this paper is most applicable when the

scaffold orientation can be restricted using information from structures of complexes. We

are developing methods (32) that will work even if the scaffold orientation is unknown or

uncertain. One of these methods docks scaffolds and sidechains simultaneously. Another
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docks sidechains separately and then links them. With these methods we overcome the

combinatorial explosion normally associated with generating all possible combinations in

advance. Ultimately, the complexities of combinatorial chemistry may require different

computational strategies for the design of the full range of oligomeric and small molecule

libraries.

The work presented here is seen as the first stage of a process in which active com

pounds are identified and then, in later stages, the activity is optimized. The optimization

criteria can include improved potency, selectivity, pharmacokinetic properties, or reduced

toxicity. Each of these issues appears amenable to library design. For example, com

pounds with five-six fold improved potencies were rapidly identified by synthesizing and

screening a small second generation library that explored variants of the most active com

pounds.

The success of the directed library toward finding potent inhibitors demonstrates

the power of coupling combinatorial libraries with structure-based design. Combinatorial

libraries allow a larger area of molecular space to be explored with the functionality

Selected by the structure-based design, removing the need to identify in advance a single

"best" target. Similarly, computational methods allow rapid examination of extremely

large virtual regimes (> 10" compounds) and focus the chemical efforts into productive

regimes.

Conclusion

The identification of potent, small molecule ligands to receptors and enzymes is

249



S.

*

*

º

4. --
---" º

º: * ,

A. º º
8.

| 1 *** * --

*

º
". ºil. -- * *

4–

:



one of the major goals of chemical and biological research. Two powerful new tools in

these efforts are structure-based design and combinatorial chemistry. In the present work

we have integrated these approaches to develop a general method for the rapid identifica

tion of potent enzymes inhibitors. We have demonstrated this method by identifying

potent, nonpeptide inhibitors (Ki = 9-15 nM) of cathepsin D, a prototypical aspartyl pro

tease that has been implicated in a number of therapeutically relevant processes, but for

which potent nonpeptide inhibitors have not previously been reported.(1)

The significance of this study is three fold. First, this general method should be

directly applicable to the rapid identification of potent inhibitors of the other members of

the aspartyl protease class. Moreover, with careful selection of the appropriate scaffold,

we anticipate that the general approaches described here will also be successful for many

other enzyme classes. Finally, the success of this work clearly demonstrates the power of

coupling the complementary approaches of combinatorial chemistry and structure-based

design.
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Epilogue to Chapter 7

Retrospectively, this first collaboration with the Ellman group produced two

important results. First, it reasserted a role for structure-based methods in the design of

combinatorial libraries. Second, the data obtained in this study provided an excellent tool

for retrospective analysis of subsequent methods. The thirteen Ki values reported here, the

crystal structure of EHO bound to Cathepsin D (Erickson, personal communication), and

the 23 compounds which inhibit Cathepsin D with IC50 of « 330nM provide an excellent

measure of the reliability of both scoring functions and structure-based design methods.

When considering these test cases, one must bear in mind that all of the side-chains in this

library are quite rigid compared to many of the side-chains in the potential virtual library.

Despite these minor drawbacks, this data set is an excellent measure of basic ability of

combinatorial algorithms to enrich hits in a database.

This paper was an attempt to compare structure-based design methods to diversity

design methods. However, Yvonne Martin has recently reported that when screening indi

vidual compounds from a database random selections of molecules is as good (identifies

the same number of inhibitors) as selection of a diverse set of molecules (Yvonne Martin,

ACS Meeting, March 1999, Anaheim, CA.). If this is true, then the diverse selection of

molecules used in this paper might be no better than a random selection.
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Prologue to Chapter 8

Chapter 8 is a combination of some of the most enjoyable elements from Chapters

6 and 7. In this chapter, we extend the combinatorial design and synthesis approach taken

in chapter 7 to another parasite target (chapter 6). In this instance, I designed a series of

(hydroxyethyl)amine combinatorial libraries (both diverse and structure-based), while Tas

Haque (of the Ellman group) synthesized, characterized, and assayed the libraries. Here

the target was plasmepsin II, an essential aspartyl protease of Plasmodium falciparum.

While Tas and I benefited from already having UC Select (chapter 1) to help with reagent

selection, this project suffered from being on the bleeding edge of Dock 4.0 development.

I am particularly grateful to Todd Ewing for his willingness to carry out minute-by-minute

bug-fixes and add several features to Dock 4.0 as this project worked its way through the

new code. Finally, I want to mention the important work of Chris Lipinski. He established

a set of molecular criteria necessary for small molecules to crossing biological membranes

(vida infra). With the help of these molecular criteria, early in the design process we iden

tified compounds with in vivo as well as in vitro potency. As in our cathepsin D project, it

was a pleasure working with the brilliant, careful, and diligent scientists from Jon Ell

man's group at University of California, Berkeley.
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Chapter 8: Single Digit Nanomolar, Low
Molecular Weight Non-Peptide
Inhibitors of Malarial Aspartyl

Protease Plasmepsin II.

by

Tasir S. Haque, A. Geoffrey Skillman, Christina E. Lee,
Hiromu Habashita, Ilya Y. Gluzman, Todd J. A. Ewing, Daniel
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Abstract

A number of single digit nanomolar, low molecular weight plasmepsin II asparty!

protease inhibitors have been identified using combinatorial chemistry and structure-based

design. By identifying multiple potent, small molecule inhibitors, it was possible to select

for compounds with desirable characteristics including enzyme specificity and minimal

binding to serum proteins. The best inhibitors identified have Kis of 2-10 nM, molecular

weights between 594 and 650 Da, between 3 to 15-fold selectivity towards plasmepsin II

over cathepsin D, the most closely related human protease, good calculated logP values

(2.86-4.56), and no apparent binding to human serum albumin at 1 mg/mL in an in vitro

assay. These compounds represent the most potent non-peptide plasmepsin II inhibitors

reported to date.

Introduction

Malaria is a parasitic disease that afflicts 300-500 million people worldwide, kill

ing 1-2 million annually, 1 It is estimated that up to 40% of the world's population lives

in regions where malaria is endemic. Plasmodium falciparum is the most dangerous form

of the four malaria parasites that infect humans, and is responsible for more than 95% of

malaria-related deaths. 2 Increasing resistance of Plasmodium falciparum to existing

therapies has heightened concerns about malaria in the international health community.

However, there has been little economic incentive for the development of new drug-based

antimalarial therapies. While quinine has been used for hundreds of years to treat

malaria, its use as an antimalarial agent is hindered by parasite resistance. Chloroquine,
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an inexpensive quinine-derivative first identified as an antimalarial agent in the 1930s, also

faces widespread resistance throughout the world. Other commonly used antimalarial

drugs such as mefloquine and Fansidar can provide effective treatment in cases of chloro

quine resistance, but parasites resistant to these alternative therapies have also been

reported. 3 Indeed, some P falciparum strains have been identified that are resistant to all

known antimalarial drugs. 4 The alarming spread of parasite resistance clearly indicates

that new strategies are necessary for finding safe and effective means of treating malaria.

The plasmepsin aspartyl proteases of P falciparum 5 are potentially new chemotherapeu

tic targets. Therefore, we used combinatorial chemistry and structure-based design meth

ods to rapidly identify potent and selective, low molecular weight aspartyl protease

inhibitors using several iterative focused libraries.

The Plasmodium parasite invades human erythrocytes and consumes up to 75% of

the hemoglobin present. 6 Three enzymes have been identified that digest hemoglobin in

an acidic parasite food vacuole; a cysteine protease, falcipain, and two aspartyl proteases,

plasmepsins I and II (Plm I and II). 5. The two plasmepsins have a high degree of

sequence homology to one another (73% identical), and are closely related in structure to

human cathepsin D (Cat D). However, neither of the plasmepsins is targeted by any of the

currently available antimalarial therapies. Of the two aspartyl proteases present in the

malarial acidic food vacuole, Plm II was chosen as a primary target because the crystal

structure was available, 7 and because sufficient quantities of expressed enzyme could be

obtained for high through-put screening of compound libraries. At the initiation of the

project, Plm I was only available via purification of parasite extract, whereas Plm II could

be expressed and obtained in larger quantities. 8 The high degree of sequence homology

of the two plasmepsins suggested that by targeting Plm II, both enzymes could ultimately
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be inhibited by the same compounds.

Our approach to obtaining potent Plm II inhibitors began by comparing the crystal

structures of Plm II and Cat D both complexed to the peptide-based natural product pep

statin. Plm II and Cat D have a significant sequence homology (35%), and have an even

higher sequence homology in the active site region. We had previously reported the suc

cessful identification of potent Cat D inhibitors by the design, synthesis, and screening of

a library of 1039 mechanism-based inhibitors incorporating the hydroxyethylamine isos

tere (Figure 1). 9 Due to the close similarity of Plm II and Cat D, we screened this library

against Plm II to identify lead compounds.

***r *"Sº"Y", "r"Sº"Y".
o P, O P2. O R4 O O Ra O

1 2

Intermediate of Peptide Hydrolysis Hydroxyethylamine-Based Inhibitors

Figure 1. Tetrahedral intermediate of hydrolysis and hydroxyethylamine isostere.

We next used six iterative libraries to optimize the Plm II inhibitors. First, each of

the three sites of variation (RA, RB, RC in Figure 1) was examined individually. By syn

thesizing these compounds in parallel, we were able to examine relatively large numbers

of side chains at each position. Two methods were used to select subsets of side chains

from the thousands of commercially available amines and acylating agents. One set of

side chains was selected by modeling side chains in the Plm II active site using the pro

gram DOCK 10-12 and the second set of side chains was selected by clustering to maxi

mize the diverse display of functionality. We have previously shown that modeling can be

more efficient at generating potent molecules; 9 however, by using both modeling and
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diversity clustering, we hoped to find compounds that would be anticipated to bind in the

active site (modeled compounds), while simultaneously investigating whether we could

identify side chains with unanticipated binding interactions (diverse compounds). The

final two library iterations involved the simultaneous variation of two or more sites around

the hydroxyethylamine scaffold to search for cooperative effects.

Results and Discussion

Chemistry

The hydroxyethylamine isostere has served as a particularly effective mechanism

based inhibitor of aspartyl proteases, where the tetrahedral intermediate of the peptide

bond cleavage is approximated by the stable hydroxyethylamine compound (Figure 1).

The isostere is also amenable to the introduction of a wide variety of side chains on both

sides of the secondary alcohol whose position corresponds to the scissile bond of the pep

tide substrate.

We had previously developed two solid-phase synthesis sequences to prepare

libraries of hydroxyethylamine-based inhibitors. In the first approach (Figure 2: Method

1), diverse functionality is introduced at three sites, RA, RB, and RC, using amines and acy

lating agents. (13) In the second approach, multiple side chains can also be introduced at

the P1 position using Grignard reagents, thereby allowing diverse functionality to be intro

duced at all possible sites of the inhibitor structure. (14) Both synthesis sequences were

used to prepare libraries targeting Plm II.
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H H F*rºpºrº, EX N3 ONOS + R1 NH2 + R2CO 2H + R3CO 2H
O O

Ph Ph
J

Components employed to prepare the libraries targeting cathepsin D. The same disconnections provide
scaffold 2. Isocyanates and sulphonyl chlorides, which can be used to incorporate R2 and R3, provide
ureas and sulphonamides, respectively.

Figure 2. Synthesis approaches toward aspartyl protease inhibitors. (13,14)

Lead Identification

A library of 1000 compounds (10 x 10 x 10 side chains at the three sites of varia

tion) targeting Cat D and a second 39 compound library optimized toward Cat D were

screened against Plasmepsin II using a fluorogenic peptide-based assay with an inhibitor

concentration of 1 M. (15) Of the 1039 compounds screened, 13 compounds showed

greater than 50% inhibitory activity against Plm II. Compounds 1 and 2, the most potent

of the 13 crude compounds, were prepared on larger scale, purified, and evaluated as rep

resentative lead compounds (Table 1). Both of these compounds were validated as submi

cromolar inhibitors of Plm II, as well as being potent Cat D inhibitors (Ki = 15 nM, 220

nM for 2 against Cat D and Plm II, respectively).

Iterative Optimization of Individual Sites

The two compounds described above were used to begin optimization against Plm

II. Initially, each of three possible sites of variation (RA, RB, and RC) was individually

optimized. This iterative approach allowed for the exploration of relatively large numbers

of side chains at each site without having to resort to the extremely large numbers of com

pounds that would be necessary if all sites were examined simultaneously. Subsequent
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Table 1. K; (nM
o "Rule of 5" i (nM)

Entry No. º mol. wt. Clogº." OH+NH N+O fulfillments Cat D Plm IIO

1 *...*&^ 692 5.86 2 11 1
-

300 + 22c.
Oa sº.

2 Hºº 698 37. 2 11 1 15 + 2" 220 + 6Jº-N->N

oº: Çº
o

o
O

3 º: cº
800 5.50 2 13 1

-
100 + 3- NJAQ.N N -

O
º

o
o

ooº...?.
4 jº.º.º. C. 752 2.78 2 12 2 4.3 + 0.5 4.8 + 0.6

O Soº
O -

O

Cl §
5 3.5.x...O. 650 2.99 2 10 3 1.9 + 0.6 4.0 + 0.4

6 : o

Yº O
o* ...?.

6 d.º.º.º.C. 649 2.86 3 10 3 1.3 + 0.2 3.0 + 0.3
H 6 o

ot

a 2.2%
7 jº.º.º. C 110 435 2 10 3 58 + 10 4.1 + 0.2

O O

o

a 2.9
8 ºx...O." 696 3.50 3 10 3 71 + 16 9.0 + 0.2

o º Oc.
O* ...?

9 3, ...x:.C. 622 4.00 2 9 3 5.8 + 0.6 2.0 + 0.1
6 : Oc.

Cl
º

10 3. Sº.C. 608 4.56 2 8 3 9.8 + 1.6 2.0 + 0.1
O oc.

11 d.º.º.º.C." 594 3.71 3 8 3 63 + 12 4.3 + 0.1
ô o

ClogP values calculated for the neutral compounds. "The K, for compound 2 was determined previously.”

libraries probed for cooperativity between two or more sites around the hydroxyethy

lamine core.

º
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Library RA. The first site examined was the RA side chain. The two other vari

able sites were fixed based on the structures of the lead inhibitors 1 and 2 (RB = 3,4-meth

ylenedioxyphenethylamine; RC = 3-phthalimidopropionic acid). A list of commercially

available acylating agents was generated by screening the Available Chemical Directory

(16) and selecting for characteristics such as chemical compatibility, molecular weight,

and cost. From this list, two sets of side chains were established for RA (Figures 3 and 4).

The diverse set was generated by clustering the acylating agents to explore a broad range

of functionality at the site (side chains A1-A44, Figure 3). More specifically, the selection

technique involved a complete linkage hierarchical agglomerative clustering of side chains

based on the atomic content and connectivity of each molecule. The modeled set of side

chains was designed to fit specifically into the enzyme active site. DOCK (10-12) was

used to model each acylating agent in the appropriate part of the crystallographic active

site of Plm II (side chains A45-A74, Figure 4). (7) Nearly all of the 50 highest-scoring

modeled side chains had molecular weights between 250 and 300 Da. Since low molecu

lar weight (MW) and potent inhibitors were desired, we selected the 18 highest-scoring

side chains with a MW between 250 and 300 Da and the 12 highest-scoring side chains

with a MW ~ 250 Da.

Upon screening the RA library, compound 3, one of the modeled compounds, had

significantly improved inhibitory activity compared to the lead compounds (Table 1). At

the RA site, this inhibitor incorporated side chain A52 (4-benzyloxy-3,5-dimethoxyben

zoic acid). A Ki of 100 nM was determined for analytically pure inhibitor 3 against Plm II,

a 2-3-fold improvement over the initially identified lead compounds (Figure 5 and 6). A

12-member library was prepared examining variants of sidechain A52 in an attempt to

determine the nature of

º
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Figure 3. Diverse side chains for library RA.

the increased affinity of 3 to the Plm II active site (Figure 7). The IC50 values of the entire

12-member library were at least 10-fold higher than inhibitor 3 towards Plm II. For exam

ple, the compound containing the RA = A52e (4-benzyloxy-3-methoxybenzoic acid) has a
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Ki of 3.7 M against Plm II, demonstrating that removal of just one of the methoxy groups
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Figure 4. Modeled side chains for library RA.

from the RA side chain results in significantly decreased affinity to the Plm II active site.
This was consistent with the modeled structure in which both methoxy groups make sig
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nificant interactions with the protein.

Figure 5. Model structure of A52 side chain.

S4 P. e.
-

--- Asp214 º
-

º
-

ºº
Figure 6. Crystal structure of compound 3/Plasmepsin II complex (Silva, in preparation).
The distal portion of A52 is truncated because it interacts with a crystal contact loop with
a symmetry related protein. Note the opening of the S1’ and S2’ pockets relative to figures
5 and 12.
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Figure 7. Modified A52 side chains for Library RA (A52-A521).

Library RB. In a similar fashion to the RA Library, we next examined the func

tionality at the RB site. The chemically compatible amine side chains were clustered to

maximize diversity and modeled in the Plm II active site to generate two lists of side

chains (Figure 15). It should be noted that some difficulty was experienced when trying to

model side chains into the Si' and S2’ pocket of Plm II in the pepstatin A/Plm II crystal

structure (the pocket for the RB and RC side chains). Because pepstatin A does not fill the

S1’ subsite, the site is somewhat collapsed in the crystal structure. When the hydroxyethy

lamine scaffold was modeled in the Plm II active site, there was close contact between the

enzyme and the scaffold near the attachment point of the RB and RC side chains. Although

the RB and RC side chains could be modeled in, they were highly constrained. We hypoth

º

-º
***
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esized that the enzyme might relax significantly to accomodate inhibitors, by opening the

"flap" loops that cover the aspartyl protease active site. Indeed, this hypothesis was sub

stantiated by the crystal structure of compound 3 bound to Plm II. (17) In that structure,

the closest contact across the SI'subsite (Y-carbon of V78 to Ç-carbon of F294) was 8.11 A

compared to only 5.4 Å in the pepstatin/Plm II complex. (7)

No novel RB side chains were identifed that showed significant improvement over

the lead compounds. Therefore, we carried the 3,4-methylenedioxyphenethylamine (RB =

B25) into subsequent libraries.

Library RC. The RC site was the remaining site to be examined. Due to the diffi

culty of modeling the RB and RC side chains, only a diverse set of side chains was selected

for inclusion into the library (Figure 8). Due to chemical compatibility considerations

with the reaction conditions used in the library synthesis, the list of diverse side chains for

RC differs from that used for the RA library. For example, compounds containing reduc

ible functionality were eliminated from the RC set because of the subsequent SnCl2 reduc

tion required to expose the RA amine coupling site.

After screening the RC library, several new side chains were identified as having

both good inhibitory potency against the enzyme and reduced molecular weight compared

to the RC side chain from the previously identified inhibitors. Compounds containing

these side chains were prepared on larger scale and purified for evaluation with Plm II. Of

the several new RC side chains examined in the crude assay, compound 4 containing the N

acetyl nipecotic acid side chain (C33) was the most potent, as well as the most promising

in terms of potential for future modification via the piperidine amine. Analytically pure 4

with a Ki of 4.8 nM is 20-fold more potent than compound 3 and marked our first single

digit nanomolar inhibitor to Plm II (Table 1).
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Figure 8. Diverse side chains for library RC.

Inhibitor Optimization by Combinatorial Evaluation at Multiple Sites

Library RARC. One of the initial goals of this project was to identify potent, low

molecular weight inhibitors of Plm II. The compounds identified above, while being

potent Plm II inhibitors, do not lie within our desired molecular weight upper limit of 650

Da based on known aspartyl protease drugs. In order to gain insight into the structure
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activity relationship of the Plm II inhibitors with the active site and also to identify low

molecular weight compounds, a library of 80 compounds was synthesized where both the

RA and RC positions were simultaneously varied (Figure 9). This library allowed us to

explore any cooperative effects between the RA and RC sites that might enhance the affin

ity of the inhibitors for the Plm II active site. While the scaffold weighs only 163 Da, the

inclusion of the 4-benzyloxy-3,5-dimethoxybenzoic acid side chain (A52; MW = 288 Da

as the free acid) in a potent inhibitor would make it difficult to achieve an overall molecu

lar weight goal of less than 650 Da. Therefore, a wide range of smaller RA side chains was

included in an attempt to identify new RARC side chain combinations resulting in smaller

inhibitors. Several phenoxyacetic acids that were present in or similar to the initially iden

tified lead inhibitors, were also included at RA (A75-A77).
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Figure 9. Side chains for Library RARC.

Upon evaluation against Plm II, several trends became clear. First, compounds

containing RC side chains related to cyclohexyl carboxylic or substituted acetic acids

tended to inhibit Plm II in the fluorogenic assay (C6, C13, C33 and C46, Figure 9), with

the N-acetyl nipecotic acid side chain (C33) being present in the most potent compounds.

Second, at the RA position, the 4-benzyloxy-3,5-dimethoxybenzoic acid side chain (A52)

as well as all three of the phenoxyacetic acids side chains (A75-A77) provided potent

inhibitors. Based on the crude assay data, accurate Ki determinations were performed on

analytically pure 5 in Table 1 (Ki = 4.0 nM). Inhibitor 5 is slightly more potent than 4, but
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with a significantly reduced molecular weight (650 Da) relative to 4 (752 Da). Compound

6, the aniline derivative of the 3-chlorophenoxyacetic RA side chain in 5, was individually

synthesized and evaluated to determine whether a hydrogen bond-accepting group in the

RA side chain would significantly affect the binding of the inhibitors. As demonstrated by

the Ki value of 3.0 nM for analytically pure 6, there is a slight improvement in inhibitory

potency upon changing the oxygen to nitrogen in the RA side chain.

Library RARBRCP1. The final library simultaneously examined all four sites

around the hydroxyethylamine scaffold (Figure 10). The isobutyl moiety (leucine equiva

lent) was included to attempt to identify smaller Plm II inhibitors. The RA position was

designed to explore several phenoxyacetic acids and cinnamic acids, where the cinnamic

acids provide a rigidified phenoxyacetic acid equivalent. At the RB position, both the 3,4-

methylenedioxyphenethylamine (B25) and the smaller 4-methoxyphenethylamine (B55)

were included. The RC collection is primarily focused on exploring isonipecotic acid

derivatives (C47, C48) and proline derivatives (C51, C52), cyclohexane carboxylic acid

(C49), and isobutyric acid side chains (C50). Nipecotic acid and isonipecotic acid were

selected for this position based on good activity of N-acetyl nipecotic acid (C33) as well as

by modeling the side chain into the crystal structure of 3 bound to Plm II. (17)
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The compounds containing the isobutyl Pi side chain were uniformly less potent in

the crude assay than the compounds containing the benzyl P1 side chain. The preference

for benzyl over isobutyl at the Pi site may be explained by the preferred cleavage site for

Plm II (-Phe-Leu-), (18) where the phenylalanine side chain would occupy the Pi pocket

Both RB side chains in the library resulted in potent inhibitors. The effectiveness

of the 4-methoxyphenethylamine (B55) was a moderate step towards our goal of reducing

the size of the Plm II inhibitors with no cost in binding affinity, as demonstrated by com

pounds 9 and 10 (Table 1). There was a preference for isonipecotic acids at RC, and either

A52 or phenoxyacetic acids at RA, especially the 3-chlorophenoxyacetic acid (A77). Of
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the numerous inhibitors identified in the final library, several of the more potent inhibitors

were selected for scale-up and purification for exact Ki determination (compounds 7-11,

Table 1). Analysis of the purified compounds revealed several small, highly potent Plm II

inhibitors (compounds 9-11, Table 1).

Screening Potent Inhibitors for Desired Characteristics

By employing an iterative library design, synthesis and evaluation sequence, multi

ple single digit nanomolar inhibitors were identified that displayed a significant level of

structural variety. This diverse set of inhibitors enabled selection of compounds based on

desirable characteristics distinct from potency.

First, we evaluated the most potent Plm II inhibitors for activity against the most

highly homologous human protease, cathepsin D. Plm II selectivity would be desired

from a therapeutic standpoint, since it may be undesirable to inhibit human cathepsin D.

While some of the most potent Plm II inhibitors, 4, 5, and 6, showed no selectivity for Plm

II over Cat D, several of the single digit nanomolar, low molecular weight inhibitors, 7, 8

and 11, showed up to 15-fold selectivity (Table 1). Comparison of the selective and non

selective inhibitors indicates that the piperidine-based side chains at the RC position are

likely the most important contributor to the observed selectivity.

A representative set of the most potent Plm II inhibitors (compounds 4, 10, and 11)

were also assayed in a buffer containing human serum albumin (HSA). Binding to serum

proteins could significantly reduce the effectiveness of the inhibitors in vivo as has been

observed for some HIV protease inhibitors. (19) At 1 mg/mL of HSA, the potency of

inhibitors 4, 10, and 11 was not effected, indicating that little if any binding to HSA occurs

(the fluorescence-based enzyme assay could not be performed at higher concentrations
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due to interactions between HSA and the enzyme or substrate). These results suggest that

HSA binding will likely not diminish inhibitor potency significantly, even at the high con

centrations of HSA found in serum (30–45 mg/mL).

The potent, Plm II inhibitors were also screened for desired calculated properties

thought to be important for pharmacokinetics, including calculated logP (ClogP) values,

number of hydrogen bond acceptors, and number of hydrogen bond donors (Table 1).

Desired ranges for these properties described by Lipinski based upon the evaluation of

compound databases include Clog■ ’ & 5, number of hydrogen bond donors < 5, number of

hydrogen bond acceptors < 10, and molecular weight & 500 Da. (20) A compound that

fulfills at least 3 out of the 4 criteria is in agreement with Lipinski's “Rule of 5." The most

potent and selective inhibitors, 7, 8, and 11, satisfy 3 out of the 4 criteria (Table 1).

Although the molecular weights of the most potent inhibitors (594-650 Da) are above Lip

inski's upper limit of 500 Da, it is significant that they are within the molecular weight

range of the currrently approved HIV protease inhibitors. (21)

Finally, the top Plm II inhibitors, compounds 9, 10, and 11, were determined to be

moderately more potent towards Plm I than Plm II enabling simultaneous inhibition of

both aspartyl proteases in the parasite digestive vacuole with a single inhibitor. These

inhibitors were also determined to have 1-2 HM IC50 values for inhibition of parasite

growth in cultured parasite-infected human erythrocytes.

Conclusion

By applying a rational and directed approach to the iterative design of a small

number of libraries, a diverse collection of potent, low molecular weight inhibitors of Plm

II were rapidly identified. The use of focused libraries made it possible to identify multi

277



- *

**.

ºn.”

■ º tº



ple potent inhibitors with some structural variety, allowing us to select a subset of the

potent inibitors that have additional desirable characteristics. For example, inhibitors 5, 6,

9, 10, and 11 stand out as being of low molecular weight (594-650 Da), having desirable

Clogh' characteristics (2.86-4.56 calculated values), having < 5 hydrogen bond donors,

having < 10 hydrogen bond acceptors, containing no chiral centers outside of the hydroxy

ethylamine core, and being made up of commercially available side chains. Inhibitors 7

and 11 also show approximately 15-fold selectivity over the most closely related human

aspartyl protease cathepsin D. In addition, there is no observable decrease in inhibitory

potency for compounds 4, 10, and 11 when assayed in buffer containing HSA at 1 mg/mL

(the HSA upper limit of the assay), suggesting that Plm II inhibition should not be dramat

ically effected at in vivo HSA concentrations. Notably, compound 11 has all of these

desired characteristics with a Ki of 4.3 nM. While in recent years several Plm II inhibitors

have been reported, (7,2022) the compounds discussed in this paper represent the most

potent and lowest molecular weight Plm II inhibitors to be reported. We are continuing to

examine related compounds in in vitro and in cell-based assays. Finally, we believe that

the lead identification and optimization protocols described in this report could success

fully be applied to rapidly identify potent, low molecular weight, and specific inhibitors to

any aspartyl protease.

Experimental Section

Computational methods:

Structure examination. To use a structure-based drug design approach to the optimiza

tion libraries, we first examined the crystal structure of a Plm II/pepstatin A complex from

Plasmodium falciparum (Figure 11). This crystal structure has a resolution of 2.7 Å and
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an R value of 0.195. There are two copies (“a” and “b”) of the protease in the unit cell,

each with a copy of pepstatin A bound in the active site. The unit cell also contained 122

crystallographic waters. The two copies of the protease are quite similar (0.92 Å oc

RMSD). We chose to use copy “a” for library screening based on the slightly lower B fac

tors and slightly better bond angles in its copy of pepstatin.

Figure 11. Two views of Plasmepsin II from Plasmepsin II/pepstatin A complex. Cata
lytic Aspartyl Groups shown in detail.

RA Scaffold generation. Based on previous modeling and crystallography of Cat D,

(9.23) we assumed that our hydroxyethylamine inhibitors would bind in a manner similar

to the crystallographic pepstatin (Figure 12).
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Figure 12. Truncated view of pepstatin A in the Plasmepsin II active site.

To model the RA side-chain, we truncated pepstatin A and modified the statine side chain

to a benzyl side chain (Figure 13: Library RA, Steps 1 and 2). This scaffold was mini

mized for 50 steps within a rigid Plm II active site under the AMBER (24) force field in

Sybyl 6.3 (25) (Figure 13: Library RA, Step 3). This scaffold orientation and conforma

tion was used as the basis for all RA library modeling.
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Figure 13. Structure-based Design Strategies.

Reagent Selection and Preparation (RA and RC libraries). The web-based program

UC_Select, (26) which incorporates Daylight toolkits (27) was used to select potential

reagents for each library from the Available Chemicals Directory (ACD). (16) A variety

of acylating agents were selected to generate the RA library, including carboxylic acids,

281





acid halides, isocyanates, isothiocyanates, and sulfonyl halides. Compounds were limited

to a 100-300 Da molecular weight range. Compounds with acid halides, anhydrides, azos,

sulfonic acids, >1 nitro, epoxides, azides, >4 halides, peroxides, macrocycles, metals, or

boron were eliminated by default. Furthermore, compounds with aldehyde, alkyl halide,

amine, hydroxylamine, thiol, or multiple acylating functionalities were eliminated. Sup

pliers were limited to Aldrich, Fluka, Sigma, Calbiochem, ICN, Pfaltz & Bauer, TCI

America, Lancaster, Acros Organics, Maybridge International, and Trans World. Final

lists included 3458 carboxylic acids, 224 acid halides, 103 isocyanates, 150 isothiocyan

ates, and 158 sulfonyl halides. Each of these side chains was converted to the appropriate

amide derivative using a Daylight toolkit program, (26,27) then Cartesian coordinates were

generated for each side chain using distance geometry. Each side chain was then trans

formed into the orientation of the scaffold and attached by overlaying the appropriate

amide of the scaffold with the amide-like bond of the side chain. This resulted in the gen

eration of 4086 unique scaffold side chain compounds.

Similarly for the RC library, a molecular weight range of 30–275 Da was used.

Acylating agents were identified using the screening methods listed above for the RA site,

with the additional elimination of side chains containing alcohol, nitro, or phenol groups.

Docking of RA side chains (RA library). The “anchor and grow” algorithm implemented

in DOCK (28) was used to model each scaffold and side chain from the virtual library in

the Plm II active site (Figure 14). For each side chain, the scaffold, in its minimized pose

(scaffold orientation and conformation), was used as the "anchor". The benzyl side chain

and the RA side chain were “grown” from this scaffold in the following manner (Figure 13:

Library RA, Step 4). First, the molecule's flexibility was pre-analyzed. Each side chain

was broken into rigid fragments separated by flexible bonds and a list of preferred torsion
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angles for each flexible bond was determined. The molecule was divided into layers start

ing with the anchor fragment. The first layer contains the rigid fragments which attach to

the anchor fragment at each “growth point”. The second layer contains subsequent rigid

fragments which attach to fragments from the first layer. Additional layers were generated

until the entire molecule had been analyzed. Second, the molecule was "grown" into

place. The rigid anchor was placed in its minimized pose (vide supra). The fragments

from the first layer were placed in each of their acceptable torsion positions. These partial

molecules were scored (vide infra) and minimized using the six degrees of freedom asso

ciated with the pose as well as torsional degrees of freedom from the current layer and the

two previous layers. The list of partial molecules was ranked according to score and

RMSD from the best scoring partial molecule, and the top 25 partial molecules were used

as starting positions for subsequent layers of growth. For each additional layer, all tor

sions of that layer were again generated, minimized, and ranked. At each layer, the top 25

fragments were saved for further growth. This greedy method resulted in 25 final confor

mations. The best scoring molecule was saved for comparison with other molecules in the

database. For this study, scores consisted of the intermolecular van der Waals and electro

static terms as well as intramolecular van der Waals and electrostatic terms excluding 1,2

and 1,3 terms from the AMBER force field. (24)
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Figure 14. Anchor and Grow Docking method applied to the RA library. Modified pepsta
tin scaffold in green. A) The first (proximal) rigid layer is torsionally sampled. The best
scoring conformations are selected and passed to subsequent sampling. B) Torsion sam
pling of the second layer based on the best conformation of the first layer.

The best scoring compounds from the DOCK runs were divided into two catego

ries based on molecular weight (“large” = Da 250-300 and “small” = Da 100–249). The

100 best scoring compounds were examined on graphics and evaluated based on confor
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mation and hydrogen-bond formation. The best 74 compounds were clustered using Day

lights connectivity structure measure, (27) a Tanimoto similarity metric, and a complete

linkage hierarchical clustering algorithm. This minimal clustering used an intra-cluster

similarity of 0.85 which generated 64 total clusters with 55 singletons. The best scoring

compound in each cluster was considered the cluster representative and clusters with

members predicted to bind in different binding modes were separated into individual clus

ters. Each remaining molecule was assessed graphically. Compounds were eliminated if

they had large hydrophobic groups extending into solvent, extended aliphatic chains, no

heteroatoms, no hydrogen-bonds, amino-acid subunits, or hydrogen-bond clashes. There

were 30 “large” compounds and 5 “small” compounds remaining. The top scoring 25

“large” compounds and the 5 “small” compounds were selected for synthesis. We sought

twenty additional “small” compounds. The next 250 best scoring compounds were then

analyzed. Sixty-nine of them had RA side chains with a MW ~ 250 Da. These compounds

were assessed graphically with the same criteria used above, and thirty-one additional

compounds were selected. The top twenty of these were selected for synthesis.

Clustering of RA side chains (RA and RC libraries). All unique RA side chains were

clustered to identify a representative set of 50 compounds. The structure of each reagent

was encoded in a binary fingerprint using the Daylight connectivity method. (27) An all

by-all similarity-distance matrix was calculated using a Tanimoto similarity metric. (27)

Complete-linkage hierarchical clustering was carried out until only 50 clusters remained.

This corresponded to a minimum internal cluster similarity of 0.1659 and no singletons.

One compound for each cluster was chosen as a representative of that cluster. A similar

clustering method was applied to side chains for the RC site in the RC library, using a mod

ified list of acylating agents (as discussed above).
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RB and RC scaffold generation (RB and RC libraries). Similarly to the RA library, the

scaffold for RB and RC libraries was generated by starting with the crystallographic struc

ture of pepstatin A bound to Plm II. Pepstatin A was truncated as shown in Figure 13

(Libraries RB and RC, Step 1). A hydroxyethylamine scaffold was then built and leucine

and serine side chains were attached at the RB and RC side chain positions respectively

(Figure 13: Libraries RB and RC, Step 2). These side chains were minimized in a rigid

receptor similarly to the RA scaffold (Figure 13: Libraries RB and RC, Step 3). The side

chains were then truncated and the resulting fragment orientation and conformation was

used as the scaffold for all RB and RC libraries.

RB reagent selection (RB library). Similarly to RA and RC reagents, RB reagents were

selected using the UC Select program. Primary amines were selected from the ACD 95.1.

In addition to the defaults used in RA and RC selection, compounds with alcohol, aldehyde,

alkyl halide, amino acid, carboxylic acid, hydroxylamine, nitro, phenol, thio, phosphoric

acid or ester and phosphonic acid or ester functional groups were eliminated. Suppliers

were limited as with the RA and RC reagents. Furthermore, reagents were limited to a

molecular weight range of 30–275 Da. This selection process generated a list of 473

potential amine side chains for the RB library.

Docking of RB side chains (Rb library) (Figure 15). For each RB reagent, RC was fixed

with the 3-phthalimidopropionic acid side chain (C2, Figure 15) Molecules were gener

ated by attaching the appropriate RB side chain and the RC = C2 side chain to the support.

Docking was started with the rigid scaffold anchor described above. The RB and RC side

chains were grown in layer by layer as described for the RA library (Figure 13: Libraries

RB and RC, Step 4).
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Figure 15. Diverse (B1-B30) and modeled (B31-B54) side chains for Library RB.

The 100 top-scoring compounds were examined visually and clustered as described
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above. Sixteen of these top scoring compounds had already been used in the initial

screening libraries. After removing compounds which did not pass the criteria described

for the RA library, the top 47 compounds were selected for synthesis.

Clustering RB side chains (Rb library) (Figure 15). The 473 RB reagents were clustered

in a manner similar to the RA and RC reagents. The 50 RB clusters, however, contained 13

singletons, with only 71 reagents in the largest cluster. The minimum internal similarity

among the 50 clusters was 0.36.

Calculation of Clogh” Values. A SMILES string for each compound in its neutral form

was generated. Structures were made from each SMILES with the PRADO utility and

checked visually for accuracy. (27) Finally, we used the Clogr’ program to calculate an

octanol/water partition coefficient for each compound based on its SMILES string. (27)

Synthesis methods:

Library synthesis (Method 1). Libraries RA and RB were synthesized on solid support as

reported previously (Figure 2). (13) Side chains with questionable stability were tested by

exposure to trifluoroacetic acid for 1 h at room temperature (equivalent to extreme cleav

age conditions). Side chains with questionable acylation/amine displacement characteris

tics were checked via incorporation into minimal hydroxyethylamine test compounds.

Compounds were then cleaved from support and validated by TLC and MALDI-MS.

Libraries were synthesized in a spatially separate array in a 96-well format, using com

mercially available Merrifield resin (Novabiochem). Note that libraries derived from

docked and/or diverse side chains often contained several components less than the num

ber listed in the computational methods, since some of the selected side chains were either

back-ordered or no longer available. Efforts were made to replace such side chains with
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other side chains from the same diverse cluster whenever possible. Acylating side chains

containing alcohols or phenols were incorporated into libraries RA and RB using 0.3 M

side chain, 0.3 M dicyclohexylcarbodiimide (DCC), 0.3 M N-hydroxysuccinimide

(HOSu) and 0.9 M. iPrzEtn in N-methylpyrrolidinone (NMP) for a minimum of 4 h. Sev

eral side chains (particularly cinnamic acid derivatives and N-phthaloyl-3-alanine) were

coupled using 0.3 MO-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluoro

phosphate (HATU) instead of PyBOP due to observed precipitation in the PyBOP cou

pling solution. Random compounds from each library (10-15% of total library) were

checked by MALDI-MS for presence of desired molecular ion peak. The desired molecu

lar ion peak was observed in 90-100% of the compounds checked.

Library synthesis (Method 2). The RC, RARC and RARBRCP libraries were synthesized

on solid support as recently reported. (14) The Pi side chain is incorporated by Grignard

addition to a support-bound pyrrolidine amide (Figure 2). After diastereoselective reduc

tion of the resulting ketone, nosylation and azide displacement of the secondary alcohol,

and removal of the primary alcohol protecting group and subsequent nosylation, the sup

port-bound scaffold segment is provided. Modifications of coupling conditions similar to

those used in Method 1 (vide supra) were also applied to libraries synthesized using

Method 2.

High through-put Plm II assay. Compounds were tested for inhibitory activity against

Plm II in 96-well microtiter plates using a fluorometric high through-put assay. (29) The

fluorogenic substrate used in the assay was DABCYL-GABA-Glu-Arg-Nle-Phe-Leu-Ser

Phe-Pro-EDANS. (30) The assay was performed in Microfluor "W" (DYNEX Technolo

gies, Inc.: Chantilly, VA) fluorescence microtiter plates, and readings were obtained on a

*
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Perkin-Elmer LS-50B fluorometer with an attached 96-well plate reader. An excitation

wavelength of 336 nm and emission wavelength of 490 nm were used, with a 430 nm

emission cutoff filter in place. Typical substrate concentrations of 1 Mand Plm II concen

trations of 1.25-2.5 nM were used. Assays were performed in a 0.1 M sodium acetate

buffer (pH = 5.0) containing 10% glycerin, and 0.01% Tween-20. All libraries were ini

tially assayed using crude products at 1 Minhibitor concentration and assuming a 50%

overall yield. Active compounds were further diluted and assayed. Inhibitors were dis

solved in a DMSO stock solution prior to addition to the buffer. Assays were performed in

5% DMSO to ensure dissolution of the inhibitors.

Ki Determinations

The Plm II assays for the fully characterized compounds were performed in a quartz

cuvette (Starna Cells, Inc.: Atascadero, CA) with a Perkin-Elmer LS-50B spectrometer

(Excitation = 336 nM, Emission = 490 nM). The substrate (Bachem California, Inc.: Tor

rence, CA) used was as reported for the high-throughput assay. A 0.1 M sodium acetate

buffer (pH = 5.0) with 10% glycerin and 0.01% Tween-20 was used with a final concentra

tion of 0.6 - 0.7 nM Plm II. The Plm II pro-enzyme is stored in H20 and activated in the

sodium acetate buffer (pH = 5.0) described above. In a typical assay with a final volume

of 600 pull, to 545 pull of buffer is added 30 pil of inhibitor in DMSO, followed by 15 pull of

Plm II stock (buffer). The mixture is incubated at 25 Cfor 4.5 minutes followed by the

addition of 10 pull of substrate stock (buffer). The change of fluorescence intensity was

recorded as a function of time. Assays were performed in duplicate or triplicate at five -

six inhibitor concentrations for each Ki determination. Data were fitted by nonlinear

regression analysis to the equation derived by Williams and Morrison. (31)
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The Km for the substrate was determined to be 0.75 puM by using a Lineweaver-Burke plot

(the Km was previously determined by Goldberg and coworkers to be 0.96 puM). (8) The

variables S, Et and It are the concentrations of substrate, active enzyme, and inhibitor,

respectively.

The Plm II assays containing human serum albumin (HSA) were performed using

the same conditions described above except the to the sodium acetate buffer was added 1

mg of HSA (nondenatured from Calbiochem: San Diego, CA) per 1 mL of buffer. Control

experiments performed with only enzyme and substrate excluding inhibitor, in buffer with

HSA concentrations above 1 mg/mL resulted in a constant or even decrease in fluores

cence intensity over a 20-minute time period. This is presumably due to HSA interacting

with either the enzyme or substrate.

The human liver cathepsin D (Calbiochem: San Diego, CA) assays were performed

in a similar fashion to the Plm II assays. The same substrate that was used in the Plm II

experiments was employed for the cathepsin D assays. A 0.1 M formic acid buffer (pH =

3.7) was used with a final concentration of 0.7 nM cathepsin D. In a typical assay with a

final volume of 600 pull, to 560 pull of buffer is added 20 pull of inhibitor in DMSO, fol

lowed by 10 pull of cathepsin D stock (0.05% Triton X-100 in H20). The mixture is incu

bated at 25 C for 4.5 minutes followed by the addition of 10 pull of substrate stock

(DMSO). The Km was determined to be 0.87 puM using a Lineweaver-Burke plot.
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Plasmodium falciparum-infected erythrocyte assay. Assays of inhibitory activity in

cultured parasite-infected human erythrocytes were performed as previously described.

(18)

Scaled-up synthesis of inhibitors. Selected inhibitors were synthesized on larger scale

for purification and exact Ki determinations. Compounds were typically synthesized on a

20–30 mg scale on solid support, using the previously described library synthesis Method

1 (Figure 2). The compounds were then cleaved from support and purified by silica gel

flash chromatography to yield the desired pure compounds. Special care was taken to

promptly remove residual acid and immediately purify compounds containing the 4-ben

zyloxy-3,5-dimethoxybenzoic acid side chain, as moderate loss of the terminal benzyl

group was observed under the 1:1 trifluoroacetic acid: 1,2-dichloroethane cleavage condi

tions.

Compound 1. IH NMR (400 MHz, CDCl3), 6 (ppm) 2.10 (m, 1 H), 2.25 (s, 3 H), 2.29 (s,

3 H), 2.40-2.81 (m, 3 H), 2.95 (m, 3 H), 3.38 (m, 2 H), 3.64 (m, 1 H), 3.82 (m, 3 H), 4.30

(m, 1 H), 4.45 (m, 2 H), 5.91 (m, 2 H), 6.41-6.57 (m, 2 H), 6.63 (d, J = 7.8 Hz, 1 H), 6.72

(bd, J = 7.1 Hz, 1 H), 7.02 (d J = 7.5 Hz, 1 H), 7.13-7.30 (m, 8 H), 7.72 (m, 2 H), 7.83 (m,

2 H). FAB-HRMS: calculated for C40H42N3O8 (M+H,) = 692.29719, observed =

692.29892. Anal. (C40H41N3O8.0.5H2O) C, H, N.

Compound 2. IH NMR (300 MHz, CDCl3/CD3OD), 6 (ppm) 2.40 (m, 2 H), 2.58 (t, J =

7.0 Hz, 2 H), 2.82 (m, 2 H), 2.98 (dd, J = 3.4, 14.1 Hz, 1 H), 3.31-3.46 (m, 3 H), 3.74-3.88

(m, 3 H), 4.13 (m, 1 H), 4.32 (d, J = 14.8 Hz, 1 H), 4.41 (d, J = 14.8 Hz, 1 H), 5.84 (s, 2

H), 6.41 (dd, J = 1.6, 7.9 Hz, 1 H), 6.49 (d, J = 1.6 Hz, 1 H), 6.60 (d, J = 7.9 Hz, 1 H), 6.74

(dd, J = 1.9, 8.3 Hz, 1 H), 6.89 (m, 1 H), 6.94 (d, J = 8.0 Hz, 1 H), 7.07-7.22 (m, 6 H), 7.67
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(m, 2 H), 7.78 (m, 2 H). FAB-HRMS: calculated for C38H37N3O8Cl (M+H,) = 698.22692,

observed = 698.22560. Anal. (C38H36N3O8Cl) C, H, N.

Compound 3. IH NMR (400 MHz, CDCl3), 6 (ppm) 2.47 (m, 2 H), 2.57 (t, J = 7.2 Hz, 2

H), 2.85 (d, J = 7.9 Hz, 2 H), 2.93 (m, 1 H), 3.21 (m, 1 H), 3.51 (m, 1 H), 3.64 (s, 3 H),

3.75 (m, 1 H), 3.83 (s, 3 H), 4.12 (m, 2 H), 5.75 (bs, 1 H), 5.91 (dd, J = 1.5, 3.1 Hz, 2 H),

6.43 (d, J = 7.7 Hz, 1 H), 6.53 (m, 3 H), 6.65 (d, J = 7.8 Hz, 1 H), 7.07-7.39 (m, 12 H),

7.72 (m, 2 H), 7.84 (m, 2 H). FAB-HRMS: calculated for C46H46N3O10 (M+H+) =

800.31832, observed = 800.31861. Anal. (C46H45N3O10) C, H, N.

Compound 4. LH NMR (400 MHz, CDCl3) 6 (ppm) 1.04 (bs, 1 H), 1.27 (m, 1 H), 1.41

1.70 (m, 1 H), 2.03 (d, J = 2.9 Hz, 3 H), 2.25 (m, 1 H), 2.36 (m, 1 H), 2.67 (m, 2 H), 2.83

(m, 2 H), 3.00-3.14 (m, 2 H), 3.70–3.95 (m, 3 H), 3.85 (s, 6 H), 4.28 (m, 1 H), 4.55 (bd, J

= 14.0 Hz, 1 H), 5.04 (s, 2 H), 5.91 (s, 2 H), 6.45 (d, J = 7.7 Hz, 1 H), 6.55 (d, J = 1.7 Hz,

1 H), 6.61 (d, J = 9.4 Hz, 1 H), 6.70 (d, J = 7.9 Hz, 1 H), 6.91 (d, J = 3.1 Hz, 1 H), 7.24

7.34 (m, 8 H), 7.46 (d, J = 6.6 Hz, 2 H). Anal. (C43H49N3O9.0.8H2O) C, H, N.

Compound 5. IH NMR (400 MHz, CDCl3) 6 (ppm) 1.35-1.80 (m, 5 H), 2.03 (d, J = 3.9

Hz, 3 H), 2.20 (m, 1 H), 2.36 (m, 1 H), 2.65 (m, 2 H), 2.80-2.95 (m, 4 H), 3.35-3.50 (m, 2

H), 3.77 (m, 1 H), 4.20 (dd, J = 8.0, 8.9 Hz, 1 H), 4.39 (d, J = 14.8 Hz, 1 H), 4.47 (d, J =

14.8 Hz, 1 H), 4.48 (m, 1 H), 4.96 (bd, 1 H), 5.91 (s, 2 H), 6.44 (m, 1 H), 6.54 (m, 1 H),

6.71 (d, J = 7.8 Hz, 1 H), 6.79 (d, J = 7.0 Hz, 1 H), 6.92 (s, 1 H), 7.00 (m, 1 H), 7.15-7.27

(m, 5 H). Anal. (C35H4ON3O7Cl) C, H, N.

Compound 6. 1H NMR (400 MHz, CDCl3) 6 (ppm) 1.26 (m, 1 H), 1.40-1.62 (m, 3 H),

1.82 (bs, 1 H), 2.05 (s, 3 H), 2.20 (m, 1 H), 2.36 (m, 1 H), 2.67 (m, 2 H), 2.80–2.99 (m, 4

H), 3.45 (m, 2 H), 4.17 (dd, J = 7.6, 16 Hz, 1 H), 4.45 (m, 1 H), 4.53 (bd, J = 13 Hz, 1 H),

4.86 (bd, J = 29 Hz, 1 H), 5.93 (s, 2 H), 6.44 (m, 2 H), 6.56 (m, 2 H), 6.73 (m, 2 H), 6.98
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(dd, J = 4.4, 9.6 Hz, 1 H), 7.08 (t, J = 8.0 Hz, 1 H), 7.17-7.32 (m, 5 H). Anal.

(C35H4N4O6Cl·1.3H2O) C, H, N.

Compound 7. IH NMR (400 MHz, CDCl3) 6 (ppm) 1.18-145 (bm, 1 H), 1.64-1.87 (bm,

4 H), 2.02 (m, 1 H), 2.24 (bs, 3 H), 2.66 (m, 2 H), 2.83 (m, 2 H), 3.03 (d, J = 7.2 Hz, 2 H),

3.09 (d, J = 13.4 Hz, 1 H), 3.45 (m, 1 H), 3.47 (m, 3 H), 3.75 (s, 6 H), 3.77 (m, 1 H), 4.27

(m, 1 H), 5.04 (s, 2 H), 6.66 (d, J = 9.1 Hz, 1 H), 6.81 (d, J = 9.4 Hz, 2 H), 6.92 (s, 2 H),

6.94 (d, J = 8.6 Hz, 2 H), 7.18-7.35 (m, 8 H), 7.46 (d, J = 6.6 Hz, 2 H). Anal.

(C42H51N3O7) C, H, N.

Compound 8. IH NMR (400 MHz, CDCl3) 6 (ppm) 1.19 (bd, 1 H), 1.34 (bd, 1 H), 1.50

(bq, 1H), 1.90-2.20 (m, 4 H), 2.43 (m, 2 H), 2.67 (m, 2 H), 3.00-3.11 (m, 4 H), 3.43 (m, 3

H), 3.74 (s, 3 H), 3.79 (m, 1 H), 3.85 (s, 6 H), 4.30 (m, 1 H), 5.04 (s, 2 H), 6.88 (m, 4 H),

6.94 (s, 2 H), 6.95 (d, J = 8.5 Hz, 2 H), 7.15-7.34 (m, 7 H), 7.46 (d, J = 7.2 Hz, 2 H). Anal.

(C41H49N3O7.0.9F3CCO2H) C, H, N.

Compound 9. 1H NMR (400 MHz, CDCl3) 6 (ppm) 1.40 (m, 1 H), 1.67-1.95 (m, 4 H),

2.02 (m, 1 H), 2.23 (s, 3 H), 2.62 (t, J = 7.0 Hz, 2 H), 2.83-3.02 (m, 6 H), 3.34-3.46 (m, 2

H), 3.76 (m, 2 H), 4.19 (dd, J = 8.9, 8.9 Hz, 1 H), 4.38 (d, J = 14.8 Hz, 1 H), 4.46 (d, J =

14.8 Hz, 1 H), 5.12 (bs, 1 H), 5.90 (s, 2 H), 6.44 (dd, J = 1.6, 8.0 Hz, 1 H), 6.53 (d, J = 1.6

Hz, 1 H), 6.70 (d, J = 7.8 Hz, 1 H), 6.78 (dd, J = 2.0, 8.0 Hz, 1 H), 6.91 (t, J = 2.2 Hz, 1

H), 6.99 (d, J = 6.0 Hz, 2 H), 7.16-7.27 (m, 6 H). Anal. (C34H4ON3O6Cl) C, H, N.

Compound 10. IH NMR (400 MHz, CDCl3) 6 (ppm) 1.35 (m, 3 H), 1.52 (m, 1 H), 1.68

(bq, 2 H), 1.84 (m, 2 H), 2.27 (bs, 1 H), 2.64 (m, 2 H), 2.82–2.95 (m, 5 H), 3.04 (q, J = 7.4

Hz, 1 H), 3.39-3.47 (m, 2 H), 3.75 (s, 3 H), 3.77 (m, 1 H), 4.20 (dd, J = 8.7, 8.7 Hz, 1 H),

4.38 (d, J = 14.8 Hz, 1 H), 4.46 (d, J = 14.8 Hz, 1 H), 5.11 (bs, 1 H), 6.80 (m, 3 H), 6.93

(m, 3 H), 6.99 (d, J = 8.8 Hz, 2 H), 7.18-7.28 (m, 5 H). Anal.

º
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(C34H42N3OsCI-2F3CCO2H) C, H, N.

Compound 11. IH NMR (400 MHz, CDCl3) 6 (ppm) 1.18 (m, 1 H), 1.38 (m, 1 H), 1.50

1.85 (m, 2 H), 2.17 (m, 1 H), 2.54-2.70 (m, 4 H), 2.87–2.98 (m, 4 H), 3.19 (bd, J = 13.0

Hz, 1 H), 3.42-3.60 (m, 2 H), 3.72 (s, 3 H), 3.73-3.80 (m, 1 H), 4.19 (dd, J = 8.6, 8.6 Hz, 1

H), 4.41 (d, J = 15.0 Hz, 1 H), 4.48 (d, J = 15.0 Hz, 1 H), 5.18 (bs, 1 H), 6.79 (m, 4 H),

6.96 (m, 5 H), 7.15-7.25 (m, 5 H). Anal. (C33H41N3O3Cl2.0.7F3CCO2H) C, H, N.

Compound 12. IH NMR (400 MHz, CDCl3) 6 (ppm) 2.45 (m, 1 H), 2.60 (m, 2 H), 3.01

(d, J = 7.0 Hz, 1 H), 3.12 (d, J = 8.5 Hz, 2 H), 3.74 (m, 1 H), 3.86 (m, 3 H), 3.93 (s, 3 H),

4.25 (m, 1 H), 5.21 (s, 2 H), 5.91 (d, J = 3.8 Hz, 2 H), 6.43 (d, J = 7.9 Hz, 1 H), 6.51 (s, 1

H), 6.64 (d, J = 7.8 Hz, 2 H), 6.87 (d, J = 8.4 Hz, 1 H), 7.17–7.28 (m, 8 H), 7.36 (m, 4 H),

7.70 (m, 2 H), 7.81 (m, 2 H). Anal. (C45H43N3O9) C, H, N.
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Epilogue to Chapter 8

Several interesting results related to our work on the plasmepsin II protein have

recently developed. First, the complete genome of Plasmodium falciparum has recently

been sequenced and several new proteases were identified which may be involved in

hemoglobin degradation (Daniel Goldberg, personal communication). Eventually, these

proteases may help clear up some of the confusing cell-culture data we have seen with our

inhibitors. Second, during this compound, a compound which is not a protease inhibitor,

yet which is extremely potent against malaria parasites in cell culture was identified. Work

to optimize this compound and identify its molecular target is underway. Finally, during

this project, we also developed several potent cathepsin D inhibitors which also fulfill the

Lipinski criteria. Although these compounds are not significantly more potent than those

previously identified, they work much better in cell culture. Our collaborator, Gary Lynch,

has recently shown that several of these potent, Lipinski compatible cathepsin D inhibitors

are capable of preventing neurofibrillary tangle development in a rat brain-culture model

of Alzheimer’s disease (see appendix 1, part 4).
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Prologue to Chapter 9

I ask that my reader now indulge me as I summarize, criticize, second guess, and

speculate about each of the projects in my thesis and the lessons I learned participating in

them. I have attempted, however unsuccessfully, to keep my summaries to a minimum. In

each case I attempt to offer both scientific and procedural criticisms which I hope would

lend aid to those who might find themselves working on similar projects. Finally, for each

project, I attempt to point out specific technical advances which would improve the design

tools, or specific experiments which would yield decisive results. I took some latitude in

expressing these opinions (without preliminary data) and one should consider them a per

sonal wish-list rather than a specific directive on how to proceed.
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Combinatorial chemistry makes it possible to efficiently synthesize large libraries

of ligands. Merging combinatorial chemistry strategies with structure-based design princi

ples allows the exploration of virtual libraries containing billions of compounds. We have

developed three tools for the efficient construction and design of combinatorial libraries.

UC Select is an internet-based tool that allows synthetic chemists to select reagents for a

virtual library (Chapter 2). Diversify is a program that allows a computational chemist to

generate virtual libraries for molecular docking (Chapter 4). CombiDock is a variation of

the structure-based design program DOCK, which has been optimized for designing com

binatorial libraries (Chapter 3). We described these tools and demonstrated the application

of structure-based design and combinatorial chemistry to the inhibition of HIV-1 Reverse

Transcriptase (Chapter 5), T. foetus Hypoxanthine-Guanine-Xanthine-Phosphoribosyl

transferase (Chapter 6), Cathepsin D (Chapter 7), and P falciparum Plasmepsin II (Chap

ter 8). The tools discussed here can be used to rapidly design potent inhibitors of

medicinally important enzymes.

Chapter 2 described UC Select, an internet-based common nomenclature interface

to help synthetic chemists specifically and sensitively select reagents for combinatorial

synthesis. UC Select is an excellent basic tool and has been well received by chemists in

academia as well as industry. UC Select allows rapid design of libraries which can actu

ally by synthesized from available reagents. This facilitates direct proposal of testable

hypothesis by computational chemists designing combinatorial libraries.

Although its simplicity contributes to the utility of UC Select, it is also one of its

drawbacks. UC Select would benefit from further development of its post-selection

library analysis. Simple histograms and graphs of physical properties such as molecular
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weight, log P or rotatable bonds would help chemists address questions about the compo

sition of the results of their UC Select search. Further development of hitlist tailoring

functions based on these properties could also be beneficial. In the future, a Java applet

should be developed to allow the user to actively refine the physical property profiles of

their final hitlists. Although search parameters are stored by UC Select at the server site,

and although the user can save and re-read compound hitlists, one flaw in UC Select is

that the user cannot save and recall search parameters on their local disk. This function

will be essential for UC Select to be used in the context of generating and updating a data

base of combinatorial libraries. Finally integrating UC Select with structure generation

algorithms, such as CONCORD or Daylight's Rubicon, would allow MOL2 or PDB for

mat structures to be downloaded directly. UC Select is a useful tool for chemists to select

reagents for combinatorial libraries. Additional features would help advanced users, how

ever, a basic non-intimidating version of the interface should always be available for nov

ice or computationally-wary users.

CombiDock, an efficient algorithm for structure-based design of combinatorial

libraries was described in chapter 3. CombiDock was validated by demonstrating greater

than 12 fold enrichment of cathepsin D inhibitors among a hydroxyethyl(amine) combina

torial library. CombiDock’s efficiency has allowed us to carry out the first example of

screening a database of large combinatorial libraries. These initial experiments have

shown the dramatic effect of Lipinski's “rule of five” on scaffold selection. Additionally,

we have shown that some two component libraries score as well as three component

libraries even though they contain orders of magnitude fewer members. CombiDock was

designed primarily to screen multiple large libraries. For small or single component librar
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ies, particularly when the scaffold orientation is known (see chapters 7 and 8), a more

detailed treatment of conformational flexibility, including torsion minimization is compu

tationally feasible and can be achieved with Dock 4.0. Although it is tempting to try to

include detailed conformational minimization in a program for library database screening,

such as CombiDock, this is currently not computationally feasible.

In the future, additional experiments to investigate the relative importance of side

chain versus scaffold selection in library design should be carried out. This endeavor

would be greatly enhanced by implementation of a scoring function without the depen

dence on size seen with force-field scoring. The GBSA method of Zou(1) fulfils this role,

but unfortunately, it is not separable into molecular fragment terms. In addition, because

of the need to reproduce and expand individual library dockings from a database screen

ing, further advancement will also necessitate implementation of a minimization method

not dependent on random number generation. Furthermore, as was first stated by Brian

Shoichet nearly nine years ago, the Dock algorithm, and the CombiDock algorithm as

well, are inherently parallel, and could easily benefit from even minimal parallelization.

Finally, the body of published synthesis of combinatorial libraries has grown dra

matically(2, 3) and construction of a database of available combinatorial libraries (ACL)

from the ACD using UC Select and Diversify could greatly enhance the utility of Combi

Dock. I believe the culmination of these improvements should be an effort to use Combi

Dock to generate the small molecule equivalent of structural genomics(4, 5) (e.g. an

ongoing screening all available combinatorial libraries against targets from every struc

tural class). This endeavor will complement the efforts to describe and characterize all
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binding sites(6, 7, 8), and will provide a starting place for ligand design efforts against

newly identified gene targets based on their homology to targets which have already been

Screened with CombiDock against the continuously-expanding ACL.

A critical bottleneck in any combinatorial library design is manipulation of the

reagents and scaffolds to form whole molecules or fragments appropriate for screening.

Diversify, the program presented in chapter 4, is a Daylight toolkit(9) solution to library

construction, but it is also a general chemical engine capable of modeling both synthetic

and biosynthetic chemistries. Diversify benefits and is limited by its Daylight dependen

cies. The two most significant flaws in Diversify are that it modifies molecules in a graph

based rather than a conformation based representation and that it has a limited number of

transforms. Diversify is currently a helpful tool, but could be made invaluable by imple

mentation of 3D structure manipulation. The underlying datastructures are capable of Sup

porting cartesian coordinates so this would not be an insurmountable task. Although

generation and validation of an individual Diversify transform takes only a few minutes

for someone familiar with SMILES and SMARTS, encoding the thousands of reactions

available to synthetic chemists remains a daunting project. This could be alleviated by

acquisition of one of the available reaction databases, such as SPRESI(9). As part of a

larger suite of programs, Diversify can allow a scientist to efficiently address questions

about combinatorial libraries. Finally, out of obligation to my original vision and the inspi

ration for Diversify's implementation, I must mention that Diversify could be incorporated

into a de novo design program. Diversify could act as the mutation function, modifying or

joining molecular fragments according to the rules of organic synthesis.
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The second portion of my thesis described application of structure-based design to

identify novel inhibitors of four medicinally important targets; HIV-1 RT, Tritrichomonas

foetus HGXPRTase, Human Cathepsin D, and Plasmodium falciparum Plasmepsin II.

Three of these targets (RT, HGXPRTase, and Plasmepsin II) are relevant to infectious dis

eases (viral or parasitic), while the fourth (Cathepsin D) has been implicated in Alzhe

imer's disease and may also have a role in metastatic melanoma.

In the first application, we identified a series of naphthyl sulfonic acid urea inhibi

tors of HIV-1 RT. This project was a “classic” application of DOCK to screen a rigid rep

resentation of the ACD, with only subsequent use of combinatorial libraries for

optimization. Through the work of several experimental collaborators, we showed that this

class of molecules inhibits RT by a novel mechanism of action, preventing nucleic acid

binding and RNase H activity in addition to the polymerase activity inhibited by all cur

rently approved RT inhibitors.

This project was hampered by a lack of meaningful structural information about

our compounds binding to RT and by the poor medicinal and solubility properties of our

lead compound. If this project was repeated today, it is unlikely that the same series of

compounds would be selected for development naphthyl sulfonic acids are not drug-like

molecules. Structural information could still provide great benefits to this project, since

we only have hypothetical models of compound binding. For the future, we proposed RT

mutants which should differentiate among our hypothetical binding modes. In addition,

the recent development of GBSA scoring(1) may assist binding mode analysis of these

highly charged compounds. Knowledge of the binding mode and binding site would allow
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investigation of novel classes of compounds which bound to the same site and thus might

share some of the same-very interesting-inhibitory qualities. Despite starting with a crystal

structure of only 3.0A resolution, we successfully identified a class of molecules with a

novel mechanism of inhibition of HIV-1 RT. These compounds may provide a starting

point for medicinally interesting new sets of HIV-1 RT inhibitors.

The T. Foetus HGXPRTase is an model system for protozoal parasites, including

G. lamblia and S. mansonii and inhibiting it may lead to new treatments for the prevalent

human diseases caused by these organisms. In the first phase of identifying HGXPRTase

inhibitors we used DOCK 3.5 to screen a rigid representation of the ACD. In the second

phase of our approach, we used two procedures novel to our group. First, we proposed

binding mode hypothesis by flexibly redocking the inhibitors. We tested these hypothesis

using similarity and substrate searching to identify available analogs which could differen

tiate between specific binding hypothesis. This strategy, yielded over an order of magni

tude improvement over our initial leads as well as narrowing our possible binding

hypothesis. Second, we selected compounds to be assayed based partially upon the ability

to generate combinatorial libraries from the compound. This resulted in straightforward

design of two follow-up libraries (one presented in chapter 4), resulting in more than a ten

fold improvement in binding. Despite these advances, the best compounds are only mod

erately potent. Our best binding models predicted the inhibitors bind to the guanine site,

and indeed our compounds are competitive inhibitors with respect to guanine in the for

ward reaction and GMP in the reverse reaction. However, they are not competitive inhibi

tors with respect to PRPP as predicted by the same models. Like the HIV-1 RT project,

this project is in need of validation by experimental structural data. Tragically, the data for
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one of the compounds bound to the homologous giardial enzyme was collected to high

resolution, but never solved. This lack of structural validation makes designing optimiza

tion libraries (vida supra) highly speculative. It is unfortunate that there is not a more

accessible, less committing experiment to validate computationally predicted binding

modes than protein x-ray crystallography and protein NMR. In the future, multiple bind

ing mode hypothesis creation and cross validation should be integrated into structure

based design software such as DOCK. Not only should this aid in selecting initial com

pounds, but it may also make strong predictions about which chemical modifications

might elucidate a structure-activity relationship.

The final two application projects targeted a human and a malarial enzyme respec

tively. They are very similar and represent a progression of methods in structure-based

library design. Both targets are homologous aspartyl proteases and both inhibitor libraries

were based on the hydroxyethyl(amine) scaffold. The first paper was a landmark work

showing that a structure-based design (work of Diana C. Roe) identified more potent

inhibitors than diverse design (my work). This result came at a time when some felt that

combinatorial chemistry, high-throughput screening and diverse library design would ren

der structure-based design obsolete. Although it has subsequently been shown that the

Jarvis-Patrick clustering algorithm I used is not the most effective method(10), the diverse

library achieved astoundingly good results (<300nM inhibitor in the first round library)

which only served to emphasize just how well the structure-based library design per

formed.
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All 1000 compounds in the structure-based library were assayed against human

cathepsin D, yielding 23 potent inhibitors. Identifying the 23 inhibitors from among the

1000 designed compounds has been an excellent test case for novel library design algo

rithms. However, some significant biases of this test case should be acknowledged includ

ing: first, the side chain binding sites, upon which the 1000 compounds were

differentiated, was quite hydrophobic, while the scaffold binding site, which was common

to all ligands, was quite polar, giving undue emphasis to modeling of hydrophobic effects

while electrostatic information could be misleading; second, based on a requirement of the

CombiBuild protocol, each side-chain has four or fewer rotatable bonds, and thus all of

the molecules are relatively rigid; finally, all 30 side-chains in the 1000 compounds scored

well in Diana's structure-based screening, so ranking these 1000 may indicate the addi

tional discriminating power relative to the original method, rather than the absolute dis

criminating power of a new method.

For the second project in this series, we started by assaying the 1000 compounds in

the designed library against a related aspartyl protease, plasmepsin II. This project came

later chronologically and benefited from more mature library design tools and we devel

oped potent and selective inhibitors of both cathepsin D and plasmepsin II which also

passed the Lipinski criteria for crossing biological membranes. Although both of these

projects were successful, they both emphasized a frustrating weakness in our screening

protocol. After the initial design, we did not have the means to contribute very much addi

tional information. The best subsequent structural insight came by hand building analogs

in a crystal structure of our initial lead. Although higher level computational methods

could be used to calculate detailed binding energies, these calculations all take much too
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long to be practical in an ongoing design setting. In the future, in order to give further

insight into molecular optimization, DOCK would benefit from a more detailed scoring

function as well as automated binding mode SAR analysis. The GBSA scoring method of

Zou et al. (1) may address a portion of this issue, but it remains unproven in this arena.

We have implemented a suite of software tools which allow efficient design and

execution of experiments involving combinatorial libraries. UC Select helps one design

virtual compounds which can be expediently synthesized. Diversify reliably generates the

modified library representation necessary for screening. Finally, DOCK and CombiDock

screen libraries of compounds to identify those most complimentary to the binding site.

Furthermore, they generate binding mode hypothesis for each compound. Together, these

tools can be used to design synthetically accessible, potent, and selective inhibitors of

medicinally important targets. These library design experiments and the inhibitors they

identify yield insights into our understanding of how small molecules bind to macromo

lecular targets and how modifications of these small molecules may alter binding.
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A Rapid Method for Exploring the Protein Structure
Universe

Published with Malin M. Young and Irwin D. Kuntz in Proteins, February 15,
1999, 34(3):317-332.

We have developed an automatic protein fingerprinting method for the evaluation

of protein structural similarities based on secondary structure element compositions, spa

tial arrangements, lengths, and topologies. This method can rapidly identify proteins shar

ing structural homologies as we demonstrate with five test cases: the globins, the

mammalian trypsinlike serine proteases, the immunoglobulins, the cupredoxins, and the

actinlike ATPase domain-containing proteins. Principal components analysis of the simi

larity distance matrix calculated from an all-by-all comparison of 1,031 unique chains in

the Protein Data Bank has produced a distribution of structures within a high-dimensional

structural space. Fifty percent of the variance observed for this distribution is bounded by

six axes, two of which encode structural variability within two large families, the immuno

globulins and the trypsinlike serine proteases. Many aspects of the spatial distribution

remain stable upon reduction of the database to 140 proteins with minimal family overlap.

The axes correlated with specific structural families are no longer observed. A clear hier

archy of organization is seen in the arrangement of protein structures in the universe. At

the highest level, protein structures populate regions corresponding to the all-alpha, all

beta, and alpha/beta superfamilies. Large protein families are arranged along family-spe

cific axes, forming local densely populated regions within the space. The lowest level of
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Novel Cathepsin D Inhibitors Block the Formation of
Hyperphosphorylated Tau Fragments in Hippocampus

Submitted to The Journal of Chemical Physics with Xiaoning Bi, Tasir S.
Haque, Jun Zhou, Bin Lin, Tina Lee, Irwin D. Kuntz, Jonathan A. Ellman,

and Gary Lynch.

Lysosomal disturbances may be a contributing factor to Alzheimer's disease. We used

novel compounds to test if suppression of the lysosomal protease cathepsin D blocks pro

duction of known precursors to neurofibrillary tangles. Partial lysosomal dysfunction was

induced in cultured hippocampal slices with a selective inhibitor of cathepsins B and L.

This led within 48 hours to hyperphosphorylated tau protein fragments recognized by anti

bodies against human tangles. Potent, nonpeptide cathepsin D inhibitors developed using

combinatorial chemistry and structure-based design blocked production of the fragments

in a dose dependent fashion. Threshold was in the submicromolar range with higher con

centrations producing complete suppression. The effects were selective and not accompa

nied by pathophysiology. Comparable results were obtained with three structurally distinct

inhibitors. These results support the hypothesis that cathepsin D links lysosomal dysfunc

tion to the etiology of Alzheimer's and suggest a new approach to treating the disease.
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Docking Flexible Molecules with DOCK4.0

Submitted to the Journal of Computer-Aided Molecular Design
with Todd J. A. Ewing and Irwin D. Kuntz.

An incremental construction strategy for docking flexible molecules to a macro

molecular site is developed. The search algorithm is developed to optimize speed and

accuracy while maintaining simplicity of control. It is tested with a panel of 15 testcases,

created from 12 unique crystallographic complexes whose ligands vary in size and flexi

bility. For all testcases, at least one docked position is generated within 2 Angstroms of

the crystallographic position. For 7 of 15 testcases, the top scoring position is also within

2 Angstroms of the crystallographic position. The algorithm is fast enough to successfully

dock a few testcases within seconds and most within 100 seconds. The search algorithm is

also tested with a database of 51 molecules docked to two of the crystallographic

testcases. The software is fast enough to reliably rank the database of compounds within

15 seconds/molecule. The search algorithm is incorporated into version 4.0 of the DOCK

suite of molecular modeling software.
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Appendix 2: UC Select Program

UC Select Perl 5.003 Code:

#!/usr/bin/per■
#

a DIVERSIFY. UC Select 101
#

# 9/98 - fixed SETHITLIST, ADDSUPPLIER, and SUPPLIERS so they work
# together properly, includes a separate hitlist for suppliers
# followed by a union of the hitlists
g

* Perl merlin client for the design of combinatorial libraries.
#

# 12/96 ags
g

* Copyright 1999 A.G. Skillman, I.D. Kuntz. Regents of the University of California
#

* This is a prototype program to demonstrate reagent searching using a
* c gi script to parse common chemical nomenclature into daylight
# scarch commands. ALTHOUGH COMMON NOMENCLATURE IS A VERY USEFUL WAY TO
# COMMUNICATE CHEMICAL INFORMATION, IT IS NEITHER ENTIRELY SYSTEMATIC
N()R

* UNIQUE, Subtle problems with the ambiguities of common nomenclature can be
* found in the definitions used here. However, we feel that the utility of
* common nomenclature in the majority of cases justines its use

* Programming Notes
# 0. This is basically a C program written in Perl to take advantage of
*the great string functions.
# 1. Most of the variable are held in a $global hash. This is both
#convicnicnt and burdensomc.
# 2. This program has overgrown its initial design and little foresight
*was used in limiting the scope of variables (sorry)
* * The surl path variable defines the directory where reagent and
*order can be executed.
* 4. All of the complex parsing unique to this program can be found in
#the subroutine GETINPUT Most of the other routines are generic
#Merlin-client routines or CGI 1/0 routines
* 5. This program runs under Perl 5 003 with DayPerl installed.
* 6. The graphical output is dependent on having the standard “day.cgi”
#directory in the server's path
* 7. The functional groups in the form and those in the vhindings are not
# linked in a direct way. This is unfortunate because these will
* probably be changed often, and are critically dependent on one
it. another

# 8 wbindings don't work with merlin, so they are implemented here with
g string manipulations (see readme daylight for more info).
#9 in PRINTFORM there are some widths of 2000%. It is not clear why
* this number needs to be so hight, but it is necessary for the
# browsers i've tried it would be reasonable i■ this caused problems
s for some other systems, but can be adjusted easily
#10. Thanks to Jeremy Yang for getting me started with Merlin clients &
# Daylight for use of their software at UCSF
t

* 6/98 ags.

use DayPerl,

s = 1.
STRUE = 1;
SFALSE = 0.
Surl path = “http://yorick ucsf.edu:8000/cgi-bin".

program c

assif no input send forms as

insenv ('CONTENT_LENGTH".) eu"),
&PRINTFORM,
exit 1,

}

###set things up & read parameters she

&INITIALIZE,

&GETINPUT,

###if simple save hitlist, do it and quitºhs

i■ ($global (“save hit")) {
&SAVEHITLIST(g molecules),
exit 1,

}

###primary searching sequence ºn

&CHECKINPUTC■ global (“essential smiles"). Sglobal (“essential_smarts").
$global (“had double_smarts")),

&OPENDATABASE;

***till the hitlist either from file or using supplierssºn

&SETHITLIST■ (ºmolecules),

&SUPPLIERS($global (“supplier type")),

###do fast scarches first sorted 2 name 5 fcd=&#

&SORTEDCULLS,

&NAMESEARCH($global (“essential_name"));

&FCDSEARCH(Sglobal (“■ ci number”));

###do slow smilcs & smarts searchcs ###

&PRIMARYCHEMICAL($global (“essential smiles"), $global (“essential_smarts”).
$global (“essential_smarts buttonl"}, $global (“smiles]").
$global (“essential smarts button2"), $global (“smiles2"),
$global (“essential_smarts button3"). $global (“smiles3")),

###more slow smarts searchcs ###

&REMOVEGOOD,

&REMOVEBAD:

###output to user's browser ###

&WRITEHITLIST($global(“output type")),

quit:
dt_dealloc{Spool).
DBLPRINT(*n\n"**\tfinished Library Design 001”vn\n");
print■ ("JBODY-■ hTMLs”).
exit 0,

of

#########################
#sci hitlist with molecules read from file
trig■ g■■■■■ g■■ thirºprºtrºtti■ h

sub SETHITLIST (
local(Gºmolecules) = @ ;

$max_hit − d1 mcr_clear(Shitlist);

$seq = dt_alloc_seq();
foreach Smolecule (emolecules) {

Smolstring = d alloc_string($molecule);
dt_append($scq. Smolstring);

}

$max_hit = dt_mer_sethits($hitlist. Scol_smi, Sseq.);

dt_reset($seq),
while(NULL OB = (Smolstring = dt_next($scq)))(

dt_dealloc' Smolstring),
}
dt_dealloc■ $seq),

DBLPRINT(*\nSct Smax_hit molecules to hitlist from file:Anun"):

}

#########################

#write hitlist to browser - SMILES lper line format
#########################

sub SAVEHITLIST (
local(emolccules) = @ ,

print■ (“Content-type: application/octet-stream"nwn");
foreach Smolecule (emolccules)!

printf("Smolecule\n"),
}

#########################

*add cpds from supplier...if first make new hitlist
#########################

sub ADDSUPPLIER (
local($list, $name, $action) = @ .

DBLPRINT (“Doing string search for supplier: $name.An");

$ndone = d mer strºearch($list, Scol_sup, DX_STRING ASCII.
$action, -1, $status, Sname, Sname);

&PROGRESS($mserver) i■ ($status = DX_STATUS IN_PROGRESS),
ifisstatus == DX_STATUS NOT_FOUND)(

DBLPRINT ("Target not found \n");
}
elsif ($status = DX_STATUS ERROR)

DBLPRINT (“Error in string search.An”),
&DU_PRINTERRORS,

}
$max_hit = dt_mer_length($list);
DBLPRINT (“Finished Supplier search. hitlist = Smax_hit Vnum”).

}

#########################

*select ■ cd's hased on substring
gºtiatigg■ t■ ºfttºfth ghºstgä

sub FCDSEARCH
1.
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local(Sfcd) = (s_;

i■ Sfcd){
DBLPRINT (“Doing string search for ■ cd: Sfcd.vn");

Sndone = di mer_strsearch(Shitlist. Scol_fcd. DX_STRING_APPROX,
DX_ACTION_DEL_NONHITS, -1. $status. Sfcd. “Mus"),
&PROGRESS(smserver) it (Sstatus == DX_STATUS IN_PROGRESS),
i■ $status == DX_STATUS NOT FOUND).
DBLPRINT (“Target not found \n"),
}

elsi■ ($status = DX_STATUS ERROR)
DBLPRINT ("Error in string search \n");
&DU_PRINTERRORs:
}
Smax hit = di mer_length(Shitlist);
DBLPRINT (“Finished Name Search. hitlist = Smax_hit n\n");
}

}

#########################
#use name to limit search
#########################
sub NAMESEARCH

local($string) = (a_,

iftsstring) {
DBLPRINT (“Doing string search for name: $string \n");

Sndone = di mer_strsearch(Shitlist, scol_nam. DX_STRING_APPROX,
DX_ACTION DEL_NONHITS, -1, $status, Satring, "McS"),
&PROGRESS (Smserver) if ($status == DX_STATUS IN PROGRESS),
i■ $status == DX_STATUS NOT FOUND)
DBLPRINT ("Target not found \n"),
}
elsi■ ($status = DX_STATUS ERROR){
DBLPRINT ("Error in string search An”),
&DU_PRINTERRORS,
}
$max hit = di mer_length(Shitlist);
DBLPRINT (“Finished Name Search. hitlist = Smax_hit Vnum"):
}

}

#########################

*use ºnly selected suppliers
###################fffff:ffff;

sub SUPPLIERS
local(stype) = @ .

$max_hit = dt_mer length(Shitlist);

if{Stype cq “all suppliers")|
if{Smax_hit == 0) {

Smax hit = dt_mer reset(shitlist);
DBLPRINT("All Suppliers, hitlist = Smax_hilumun”),

}
#default do-nothing

###no hitlist sets its

elsif{($type cq “suppliers here”)&&($max_hit == 0)) {
$action = DX ACTION_NEW LIST,
foreach $supplier (keys ºgoodsupplier)|

ADDSUPPLIER (Shitlist.sgoodsupplier($supplier).saction),
$action = DX_ACTION_ADD HITS:

}
}
elsitti■ type cq “selected suppliers")&&(Smax_hit == 0))(

saction = DX_ACTION_NEW LIST.
forcach Ssupplier (keys * goºdsupplier) {

it■ $global (“Ssupplier"))|
ADDSUPPLIER(Shitlist.sgoodsupplier($supplier).Saction),
$action = DX_ACTION_ADD HITS,

}
}

}

###with a hitlist already set ###

elsif Stype eq“suppliers here")
DBLPRINT(“Starting independent supplier search \nun"),
$newlist = di mer allºc hitlist($pool).
$action = DX_ACTION_NEW LIST,
foreach $supplier (keys ‘goodsupplier)

ADDSUPPLIER($newlist.sgoºdsupplier (SSupplier).saction),
$action = DX_ACTION_ADD_HITS;

}
DBLPRINT("Finished all suppliers \n");
DBLPRINT(“Taking union of suppliers and original hitlist \n");
saction = DX_ACTION_DEL_NONHITS,
Smax hit = di mer_combinehitlists Shitlist. Snewlist.saction),
DBLPRINT(“Finished Union, hitlist = smax hit num"),

|
elsif Stype eq “selected suppliers”)|

DBLPRINT(“Starting independent supplier search.Anºn"),
$newlist = d mer_alloc hitlist(spool),
saction = Dx ACTION_NEW LIST:
foreach $supplier (keys 4 goodsupplier)|

i■ ($global{*Ssupplier"))|
ADDSUPPLIER($newlist.sgoodsupplier($supplier). Saction);

$action = DX_ACTION_ADD HITS,
}

|
DBLPRINT(“Finished all suppliers \n");
DBLPRINT(“Taking union of suppliers and original hitlist.An”);
Saktion = DX_ACTION_DEL_NONHITS;

$max_hit = di_mer combinehitlists(Shitlist. Snewlist.saction),
DBLPRINT(“Finished Union. hitlist = Smax_hit.Vnun”);

}
}

#########################

#print to output and to log
#########################

sub DBLPRINT |
local($string) = @ .

print■ LOG “$string",
$string =- sººf &LT"leg;
$string =-sº-■ º:GT.
$string =- sºn■ ".<BR-\n"/eg;
print■ STDOUT “$suring";

}
#########################
asave hitlist
#########################
sub WRITEHITLIST (

local($format) = @ ,

DBLPRINT (“n Histlist:\n"n").

i■ ($formal eq “lst")|
print■ STDOUT (“E”-bRx&BR-\n");
for($1=0;Si-Smax_hit, $14+){

$smiles = dt_mer_cellvalue(Scol_smi, Shitlist, Si);
$picsmiles = join(" ", $smiles. “hw-300 sh–150 sc-20");
Shcºpic = unpack(“H”, Spicsmiles),
$fcd = di mer_cellvalue(Scol_■ cd, Shitlist, $i);
print■ STDOUT (“…A HREF=\"klayegllsmi2girºshexpicy">\n");
print■ STDOUT (“$fcd. JAS-BR-\n");

}
}

i■ ($formal eq“library")■
print■ STDOUT (“…TABLE BORDER=0 WIDTH=80%%x");
print■ STDOUT (“KTR-TD-Library.</TD-TD-$global{\"reaction\").<!
TD-CTD-ºl-library reaction.</L-JTD-º■■ Rºn");
print■ STDOUT (“ºftABLE-An");
print■ STDOUT (“zTABLE BORDER=0 WIDTH=80%%-");
for($1=0;Si-Smax_hit, $14.4)(

$smiles = di_mer_cellvalue(Scol_xmi. Shitlist, $i);
$fid = di_mer_cellvalue($col_■ cd, $hitlist, $i),
Spicsmiles = join(“", Ssmiles, “sw-300 th=150 sc-20");
Shexplc = unpack(“H”. $picsmiles):
Shexsmiles = unpack(“H”, $smiles),
print■ STDOUT (“-TR-TD-AHREF=\"iday.cgi/smi2gif"Shexpicº">\n");
print■ STDOUT (“ssmiles.</A-2/TD-\n");
print■ STDOUT (“…TD ALIGN=right-A HREF=\"$url path/order?Shexsmiles\">\n");
print■ STDOUT (“$fcdº■ a-TD-JTR-\n");

}
print■ STDOUT (*~/TABLES");

}

iftsformal eq“graphic"){
i■ (Smax_hit - 2500){

DBLPRINT (“Hitlist too long for graphical output...please limit search or complain.\n");
$format = “ldt",

}
else■

print■ STDOUT (“…TABLE BORDER=5 CELLSPACING=8×TR-4TH></IH><TH> <!TH></
TR-\n");

fort Si-O.S1-Smax_hit;$it=2){
$smiles =
$stmiles! is “:
$smiles = di_mer_cellvalue($col_smi, Shitlist. Si),
$smiles! = di_mer_cellvalue(Scol_smi, Shitlist, Si■ 1),
$fcd a di mer_cellvalue($col_fcd. Shitlist. Si),
$fcdl = di_m silvalucí$col_fcd. Shitlist. $141);
Spicsmiles = join■ ' smiles, “sw-300 sh–150 #c-20");
Shexplc = unpack(“H”". Spicsmiles),
Spicsmiles] = join(**, $smiles!, “hw-300 ºh-150 sc=20");
$hexpic■ - unpack(“H”, Spicsmilesl),
Shexsmiles = unpack(“H”. $smiles),
Shexsmiles! = unpack(“H”. $smiles!);
print■ STDOUT (“…TR-TD--A HREF=\"Surl path/order?Shexsmiles\">\n");
print■ STDOUT (“s■ ed.</TD.");
print■ STDOUT (“ºtt)--A HREF=\"$url_path/order?Shexsmiles IV">\n");
print■ STDOUT (“s■ ed lº■■ D-■ tkºwn"),
print■ STDOUT (“…TR-"),
print■ STDOUT (“…TD-IMG SRC=\"klayegi/smi2gif"Shexpick" WidTH=300 HEIGHT=150×/
TD-\n");
print■ STDOUT (“…TD--IMG SRC=\"klayegusmi2girlsbexpiciw" width=300 HEIGHT=150×/
TD-\n");
printi STDOUT (*~/TRS.");

}
print■ STDOUT (“e■ table><BRSAn”).

}

i■ $formal eq “ldt")|
for($1=0.Six Smax_hit,Sitt) (

$smiles = dt_mer cellvalue($col_smi, Shitlist, Si);
$name = dt_mer cell value($col_nam, Shitlist. Si).
$mw = di_mier cellvalue($col_mw. Shitlist, $1).
$fcd = du mer_cell value($col_■ cq, Shitlist. Si),
Spicsmiles = joint” ". Ssmiles. “hw-300 sh–150 sc=20").
Shexsmiles = unpack . $smiles),
Shexpic * unpack(“H”. $picsmiles);
print■ STDOUT (“…A HREF=\"/day.cgi/smi2gif"Shexpic\">\n");
print■ STDOUT (“SSMI&lt;ssmiles&gt;…/A.BR-\n");
print■ STDOUT (“SNAM&lt;$name&gt;&BR-\n");
print■ STDOUT (“KA HREF=\"Surl path/order'shexsmiles\">\n");
print■ STDOUT (“SFCD&lt;Sfcd&gt;&A-BR-\n");
print■ STDOUT (“AMW&lt;Smw&gt;&BR-\nkBR-\n");

y
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}

###write hidden hitlist data to give ability to save hitlist ###

i■ (STRUE) {

print■ (“chrºn"):
print■ ("…FORM METHOD = \"POSTY ACTION=\"surl path/reagent">\n");
print■ (“n");
print■ (“‘INPUT type=hidden name=save hit value=1-\n");
forts1=0.Si-Smax_hit,Sita.)

Ssmiles = di mer_cellvalue(Scol_smi, Shitlist, $1).
print■ (“klMPUT TYPE=hidden name=HITsi value=\'ssmiles\">\n");

}
print■ (“ºlnPUT TYPE=\"submity” value=\"Save Hitlist\">\n");
print■ (“ºff-ORM-\n");
print■ (“‘HR-\n");

}

#########################

*remove ºpils with smarts passed as arguent
#########################

sub REMOVE

}

local($smarts) = {e_,

&CHECKSMARTS($smarts);
it■ $smarts}{

DBLPRINT (“Doing SMARTS search for Samarts \n");
$ndone = d._mer superselect(Shitlist, Scol_smi. DX_SUPER SMARTS.

DX_ACTION_DEL HITS. -1, Sstatus, ssmarts),
&PROGRESSSmserver) if (Satatus == DX_STATUS IN PROGRESS),
i■ (Sstatus == DX_STATUS NOT FOUND)|

DBLPRINT (Target not found.An”);
}
elsif (sstatus == Dx_STATUS ERROR)

DBLPRINT (“Error in smarts search.wn");
&DU_PRINTERRORS,

!
$max hit = d._mer length(Shitlist);
DBLPRINT ("Finished SMARTS search, hitlist = $max_hit Vnum”).

}

#########################

*remove functional groups whose default is to keep if specified
#&#######################
sub REMOVEGOOD

}

for $1=0.si:Smax good:$14+){
i■ t Sglobal ($good[$1j}){

DBLPRINT (“Removing compounds with $good[s] groups \n");
&REMOVE, $vb{sgood[Sil));

}
}

#########################

*remove functional groups whose default if remove unless specifically kept
#########################

sub REMOVEBAD (

}

for $1=0. Sixsmax had $1++)|
1■ t Sglobal (Shad[si]}}{

DBLPRINT (“Removing compounds with $bad($1] groups \n");
&REMOVE(Swh(Shad[si]}),

}
}

Bitflºtiftgifttºfistfighingttgºing

#check input - make sure smarts and smiles are ok
#########################

sub CHECKINPUT |

}

local($smiles, $smarts, $dblsmarts) = g :

&CHECKSMILES($smiles),

&CHECKSMARTS(ssmarts),

&CHECKSMARTS($dblsmarts);

#########################
#check smiles
*::::::Hagiº Riº dithairfittg■ g■ g
sub CHECKSMILESI

lºcal{Ssmiles) = (a_.
i■ ($smiles) {

i■ NULL_OB == (Smol = dt_smilin(Samules))) {
&DU_PRINTERRORS:
DBLPRINT ("Trouble making smiles = \"$smiles\" into a molecule Vn");
goto quit;

}

dt dealloc■ $mol):

#########################
#check snarts
Häftight titºriºsitiºn

sub CHECKSMARTS

local($smarts) = @ ;
if{Ssmarts)|

i■ (NULL_OB == (Spattern = di_smartin(Samaris)))'■
&DU_PRINTERRORS:
DBLPRINT ("Trouble making smarts = \"$smarts" into a search pattern An"),
goto quit.

}
}

dt_deallocºSpattern);
}

#########################

#primary chemical - get the functional group you want
#########################
sub PRIMARYCHEMICAL |

local($smiles,Samarts.sbuttonl.$smilesl,Sbutton2.Ssmiles2,Shutton3,5smiles3) = @ :

if{$smiles){

REMOVESMILES($smiles),

}

if($smarts).[

#$opt_smarts = dt_smarts opt(Samarts.FALSE),

REMOVESMARTS($smarts);

i■ (Sbuttonl){

i■ ($smiles 1){
REMOVESMILES($smiles!).

}

REMOVESMARTS(shutton 1);

i■ $global (“double!")){
REMOVEDBL($button 1.5global (“double!"));

}
}

i■ ($button2).

if($smiles2){
REMOVESMILES($smiles2),

}

REMOVESMARTS($button2).

i■ ($global (“double?"})|
REMOVEDBL(Sbutton2.5global ("double2"));

}
}

i■ ($bution3)(

if($smiles3){
REMOVESMILES($smiles3):

}

REMOVESMARTS(Sbutton3);

i■ ($global (“double?"})(
REMOVEDBLShutton3.5global (“double?"});

}
}

}

#########################
#rcnove smiles
#########################

sub REMOVESMILES
local($smiles) = @ ;

DBLPRINT (“Doing SMILES search for $smiles \n");

$ndone = di_mer superselect($hitlist. Scol_smi, DX_SUPER_SMILES,
DX_ACTION_DEL_NONHITS, -1, $status, $smiles),

&PROGRESS(Smserver) i■ ($status == DX_STATUS IN_PROGRESS),
i■ ($status == DX_STATUS NOT FOUND).[

DBLPRINT ("Target not found.An”);
goto quit;

elsi■ ($status = DX_STATUS ERROR){
DBLPRINT (“Error in smiles search.An”),
&DU_PRINTERRORS,
goto quit;

}
$max_hit = dt_mer length(Shitlist);
DBLPRINT (“Finished SMILES search, hitlist = $max_hit.Vn\n");

}

#########################
#remove smarts
########################
sub REMOVESMARTS (

local(Samarts) = (s_,

DBLPRINT (“Doing SMARTS search for $smarts.un");

$ndone = d mer_superselect(Shitlist, $col_smi, DX_SUPER SMARTS,
DX_ACTION_DEL_NONHITS, -1, $status. Samarts),





&PROGRESS(Smserver) if ($status == DX_STATUS in PROGRESS),
If($status == DX_STATUS NOT FOUND)(

DBLPRINT (Target not found \n"),
gotº quit;

elsi■ ($status = DX_STATUS ERROR)
DBLPRINT (“Error in smarts search. Wh");
&DU_PRINTERRORS,
goto quit;

}
$max hit = d._mer_length(Shitlist);
DBLPRINT (“Finished SMARTS search, hillist = $max_hit n\n");

}

#########################

#rcnove double - remove double occurances of smarts
##gg tºgg figh gºggitrifting tºgi:

sub REMOVEDBL (
local(shalfsmarts. Ssymmetry) = @ .

DBLPRINT (“Removing double occurances of Shalfsmarts \n");

$dhlsmarts = join(“”, shalfsmarts, shalfsmarts),
for S1-1. Si-Saymmetry.S.--)

$dblsmarts = join(“”. Silblamarts. Shalismarts);
}

$ndone = di mier superselect(Shitlist. Scol smi, DX_SUPER SMARTS.
DX_ACTION_DEL_HITS, -1, $status, $dhismarts);

&PROGRESS($nserver) if ($status == DX_STATUS IN_PROGRESS),
i■ ($status == DX_STATUS NOT FOUND)(

DBLPRINT (“Target not found \n");
}
elsii (sslatus == DX_STATUS ERROR)|

DBLPRINT (“Error in smarts search un”);
&DU_PRINTERRORS,
gotº quit;

}
$max hit = d mer length(Shitlist),
DBLPRINT (“Finished SMARTS search, hitlist = Smax_hit Vnun");

}

#########################

*sorted culls - remove by mw, price, price/gm
#######################giº

sub St RTEDCULLS

#######################

slow and high mu
#######################

$ftype mw = &GET FTYPE spool. “AMw"),
Scºl mw = d met alloc_column($pool. $ftype_mw, DX_FUNC_FIRST),
DBLPRINT (“Doing molecular weight search \n");

$ndone = di mer_numsearch(Shitlist, scol_mw, DX_ACTION_DEL_NONHITS,
-1, Sstatus. $global (“mw_min"), Sglobal (“mw_max”));

&PROGRESS (Smserver) i■ ($status == DX_STATUS IN PROGRESS),
iftsstatus == DX STATUS NOT FOUND)|

DBLPRINT (“Target not found \n");
}
elsit ($status == DX_STATUS ERROR)|

DBLPRINT (“Error in mw search \n");
&DU_PRINTERRORS,
goto quit.

Smax_hit = di_mer length(Shitlist),

DBLPRINT (“Removed cpds with my less than $global{\"mw_min\")\n");
DBLPRINT (“Removed cpºls with mw more than $global{\"mw_max\"} hitlist = Smax_hit unun");

dt_dealloc■ $ftype_mw),

#######################

*low and high clog■ ,
#######################

$type logp = &GET FTYPE(Spool. “CP”),
$col logp = d mer_alloc_column(Spºol, $ftype_logp, DX_FUNC FIRST),
DBLPRINT (“Doing clogP search \n");

$ndone = d mer numsearch(Shitlist, Scol logp, DX_ACTION_DEL_NONHITS,
-1, Sstatus, $global ("log■ _min"), $global ("logp_max")),

&PROGRESS(Sinserver) it ($status == DX_STATUS IN PROGRESS),
i■ ($status == DX_STATUS NOT FOUND)|

DBLPRINT (Target not found \n");
}
exit ($status = DX_STATUS ERROR)

DBLPRINT ("Error in clogP search ºn");
&DU_PRINTERRORS,
goto quit,

}
$max hit = dt_mer_length($hitlist),

DBLPRINT (“Removed crºls with Clog■ less than $global{\"logp min\") \n");
DBLPRINT (“Removed cpds with ClogP more than $global{\"log■ _max\"), hitlist =

$max_hit Vnum"),

dt dealloc's■ lype logp),

#######################

slogp error
##&####################

$ftype logp err = &GET_FTYPEN(spool. “CP". 2).
$col logp err = dt_mer alloc_column(Spool, $ftype logp_em. DX_FUNC_FIRST),
DBLPRINT (“Doing clogP error search.An”).

(Serr.Sdum) = split(“..". $global ("logp err")),
$ndone = di mer_strºearch(Shitlist, Scol_logp err, DX_STRING_ASCII,

DX_ACTION_DEL_NONHITS, -1. $status, “, Serr),
&PROGRESS(Smserver) if ($status = DX_STATUS IN_PROGRESS);
i■ ($status == DX_STATUS NOT FOUND)|

DBLPRINT (“Target not ■ ound \n"),
}
clsi■ ($status = DX_STATUS ERROR)

DBLPRINT ("Error in clogPerror search.An”),
&DU_PRINTERRORS,
goto quit,

}
Smax_hit = dt_mer_length($hitlist);

DBLPRINT (“Removed cpds with Clog■ error more than \"$global{\"logp erry") A^n hitlist =
$max_hit "nºn");

dt_dealloc■ $ftype_logp_err);

#######################

#low and high h-bond donors
#######################

$ftype_hbd = &GET_FTYPEN($pool. “COUNTS", 1).
Scol_hbd = dt_mer_alloc_column(Spool. $ftype_hbd, DX_FUNC_FIRST),
DBLPRINT (“Doing H-bond Donor search.An"),

$ndone = di mer_numsearch($hitlist, Scol_hbd. DX_ACTION_DEL_NONHITS,
-1, $status. Sglobal (“hbd_min"). $global (“hbd_max”));

&PROGRESS(Smserver) i■ ($status = DX_STATUS_IN_PROGRESS):
iftsstatus == DX_STATUS NOT_FOUND)(

DBLPRINT (Target not found \n");
}
elsi■ ($status = DX_STATUS ERROR)|

DBLPRINT (“Error in H-bond Donor search.wn");
&DU_PRINTERRORS:
goto quit;

}
$max_hit = di_mer length(Shitlist);

DBLPRINT (“Removed cpds withhhd count less than $global{\"hbd_min\").un");
DBLPRINT (“Removed cpds with hbd count more than $global{\"hbd_max\"). hitlist =

$max_hit \num");

dt_dealloc($ftype_hbd);

#######################

#low and high h-bond acceptors
#######################

$ftype_hba = &GET_FTYPEN($pool, “COUNTS". 2),
Scol_hba = di_mer alloc_column($pool, $ftype_hba. DX_FUNC_FIRST);
DBLPRINT (“Doing H-bond Acceptor search.An"),

$ndone = di_mer_numsearch(Shitlist, Scol_hba. DX_ACTION_DEL_NONHITS,
-1, $status. $global (“hha_min"). $global (“hba_max”));

&PROGRESS $mserver) if ($status == DX_STATUS_IN_PROGRESS),
i■ $status == DX_STATUS NOT_FOUND)|

DBLPRINT ("Target not found.An”);
}
elsif ($status == DX_STATUS ERROR)|

DBLPRINT ("Error in H-bond Acceptor search un");
&DU_PRINTERRORS:
goto quit,

}
$max_hit = di_mcr_length(Shitlist);

DBLPRINT (“Removed cpds with hta count less than $global{\"hba_min\")\n");
DBLPRINT (“Removed cpds with hba count more than $global{\"hba_max\"), hitlist =

Smax_hit,\n"n");

dt dealloc■ s■ lype_hha);

#######################

*low and high rotatable bonds
#######################

$ftype_roth = &GET_FTYPEN(Spool, “COUNTS", 3);
$col_roth = d mer_alloc_column(Spool, $ftype_roth, DX_FUNC_FIRST);
DBLPRINT (“Doing rotatable bond search.An");

$ndone = dº mer_numsearch($hitlist, Scol_roth. DX_ACTION_DEL_NONHITS,
-1. SStatus, $global (“roth min”), $global (“roth_max”));

&PROGRESS($nserver) i■ ($status == DX_STATUS_IN_PROGRESS):
i■ ($status == DX_STATUS NOT FOUND).

DBLPRINT (Target not found \n");
}
elsif (Sstatus == DX_STATUS ERROR)|

DBl_PRINT ("Errºr in rotatable bond search.An”);
&DU_PRINTERRORS:
golo quit,

Smax_hit = di_mer_length(Shitlist);

DBLPRINT (“Removed cpds with rotatable bond count less than $global{\"roth min\").Vn");
DBLPRINT (“Removed cpds with rotatable bond count more than $global{\"roth_max\"), hitlist =

$max_hit Anvn");

dt dealloc($ftype_roth),

gäääättättääättääättäähtäää

slow and high formal charge
#######################

$ftype_crg = &GET_FTYPEN(Spool. “COUNTS", 4),
$col_crg = dt_mer_alloc_column(Spool, Sftype_crg, DX_FUNC_FIRST),
DBLPRINT (“Doing formal charge search.An”),

* --

* .

320



, a - -

... " t

l

* }

º

- -

* . *

.* *
º, ºr , -

1. *
º

*- *

º, * ºs

*** * * * *

Af



$ndone = di mer_numsearch(Shitlist, Scol_crg, DX_ACTION_DEL_NONHITS,
-1, $status, $global (“crg_mun”). Sglobal (“crg_max”));

&PROGRESS (Smserver) i■ (Sstatus == DX_STATUS IN_PROGRESS):
itsstatus == DX_STATUS NOT FOUND)

DBLPRINT (Target not found \n");
}
elsii (sstatus = DX_STATUS ERROR)|

DBLPRINT ("Error in formal charge search \n");
&DU_PRINTERRORS,
goto quit,

}
$max_hit = di_mer length(Shitlist);

DBLPRINT (“Removed epds with formal crg count less than $global{\"crg min\") \n");
DBLPRINT (“Removed cpds with formal crg count more than $global{\"crg_max\"), hitlist =

$max_hit \nun”):

di deallocíSftype_crg);

#######################

#high price
#######################

$ftype_uºdpergm = &GET FTYPEN(spool, "SUP". 7):
Scol usupergm = dt_mer alloc_column(Spool, $ftype usupergm, DX_FUNC MIN);

DBLPRINT (“Doing price per gram search \n");

Sndone = di met numsearch(Shitlist. Scol_usdpergm, DX_ACTION_DEL_NONHITS,
-1, $status, 0, $global (“usdpergin") .

&PROGRESS (Smserver) if ($status == DX_STATUS IN_PROGRESS),
i■ $status == DX_STATUS NOT FOUND)|

DBLPRINT (Target not found un"),
}

elsi■ (Sstatus = DX_STATUS ERROR)|
DBLPRINT ("Errºr in price search \n"),
&DU_PRINTERRORS:
goto quit;

Smax_hit = di_mer length(Shitlist),

DBLPRINT (“Removed cpds with price per gram more than SUS $global{\"usdpergm"), hitlist =
Smax_hit."mºn”),

)

di_dealloc{$ftypes);

return($ftype),

#########################

#progress of a merlin process
#########################

sub PROGRESS (

local($server) = (a_.

$old percent_done = 0,
$done when = di done when($server);
while(DX_STATUS IN PROGRESS == $status){

$percent_done = int((100 * $ndone)isdone when);
i■ (Spercent_done - $old percent_done) (print■ (“%d%% “, $percent_done):print■ LOG (“Adºº. ".
Spercent done),
Sold percent done = Spercent_done;
$ndone = d._continucºsserver, $status),

}
DBLPRINT (“dome.An'"),

}

#########################

*get du printerrrors after II wang
#########################

sub DU_PRINTERRORS
Serrs = dt errors(DX_ERR ERROR),
while (NULL OB = (Serr = di_next{Serrs)))

Serrstring = di stringvalue(Serr);
DBLPRINT (“Serrstring\n");

}
}

########################

#get type(Spool. Stag)
#########################

sub GET FTYPE {
local(spool, stag) = (e_.

$dtype = di getdatatype(Spool, stag),
1■ t NULL_OB == $dtype) {printt(“no diype in get■ type n”));

$types = Ji stream($dtype, TYP_FIELDTYPE),
if (NULL OB = ($ftype = d next($ftypes)));

DBLPRINT ("Can't get 1st field for \"Stagº" datatype \n");
return[NULL_OB),

}
dt dealloc($ftypes).

return[$ftype);

#########################

*get type(Spool, Stag, scount)
########################g

suh GET FTYPEN
local{Spool, Stag. Scount) = {e_.

$dtype = dt getdatatype(Spool, Stag),
sitypes = di stream($dtype. TYP_FIELDTYPE),
for $1=0.Six Scount.Sitt).{

i■ (NULL OB == ($ftype = di next($ftypes)))'■
DBLPRINT (“Can't get field Scount for \"Slag" datatype \n");
return[NULL_0B),
}
}

#########################

#open database
#########################

sub OPENDATABASE {
local($1) = (0),

chop(Swhoami = "whoami"),
$host = Shostname l (gethostent())(0):

$user = $ENV{*USER”) ll getlogin II (getpwuid($º))(0) || $whoami,
Shost = $global (“server");
$service = “merlin".
Suserpw = $dbpw =

#######################

#vonnect to server after example code by ii yang
#######################

$pºol name = “$global (‘pool'}\@Shost:$service:$user";
if (NULL OB = ($mserver = dt_mer_server(Shost, Sservice, $user, Suserpw, Sisnew)))'■

DBLPRINT ("Can't connect to server: \"Spoolname\"\n");
goto quit;

}
elsif (!dt_isopen($mserver, $global{“pool"))) {

DBLPRINT (“Pool not loaded: Sglobal{\"pool\"\n");
goto quit;

}
elsif (NULL_OB == (Spool = di_open(Smserver, $global ("pool"), "r", $dbpw, Sisnew)))(

DBLPRINT (“Can't open pool: $global{\"pool\"\n");
goto quit;

}
else (

DBLPRINT (“Pool opened: $global{\"pool\"\n");
}

#######################
#allocatc columns and hitlist
#######################

$ftype_sup = &GET_FTYPEN($pool, “SUP". 1);
Scol_sup = di_mer alloc_column(Spool, $ftype_sup, DX_FUNC_ALL),
$ftype nam = &GET_FTYPE(Spool, “\SNAM");
$col_nam = dt_mer alloc_column(Spool, $ftype_nam, DX_FUNC_ALL),
$type_smi = &GET_FTYPE(Spool. “SSMI”).
$col_smi = di_mer_alloc_column(Spool, $ftype_smi, DX_FUNC_FIRST),
$ftype ■ cq = &GET_FTYPE(Spool, "SFCD");
$col_■ cd = di_mer alloc_column(Spool, $■ type_■ cd, DX_FUNC_FIRST),
if{(NULL_OB == $■ type_smi) l (NULL_OB == $■ type_sup) || (NULL_OB == $■ type_fcd))|

d!_deallºc($mserver),
goto quit.

}
$hitlist = dt_mer alloc_hitlist(Spool):

return■ 1);
}

#########################

#get attachment string
#########################

sub GET_ATTACHMENT (
local{$mod, $near, $ct) = @ ;
local($tempmod. $firstline);

Sany = ($new_variables (Shuttonncar) eq“any attachment"
elinkers = (“"“”“”:''''''''''''''''“ - * * * **

$maxlink = @linkers;
$modifystring = “
Stempmod =
$firstlime = $■ RUE;

if('Sany)(
$tempmod = join(“. Snear, $vb($mod));
for($i=1:si < Sct:Si■■ ) {

$moditystring = join(“, Smodifystring. "(“, Stempmod, “)"),
}
$modifystring = join(“, "(*”, Smodifystring. Stempmod. “)]");

}

else|
i■ (Sct == 1){

foreach Slink (€linkers) {
if($firsttime) {

$firsttime = $FALSE,
Stempmod = join■ ", “". Slink, $vb($mod}, “y”);

}
else■

$tempmod = join(“, Stempmod, “AS(*", Slink, $vb($mod)")"),
}

}
$tempmod = join(“, Stempmod, “),

}
elsif($ct == 2)|

fortSlink1=Smaxlink-1,Slimklx-0:Slink!--)■
for($link2=$link]:$link2>=0:Slink2--){

iftsfirsttime) {
$firsttime = $FALSE,
Stempmod = join(“. “*(“.
Slinkers(Slink1). Swh{$mod). “)".
Slinkers(slink2). $vb{$mod], “)");

)
else!

$tempmod = join(“, Stempmod, “MS(*(“.
Slinkers($link1). Swh{$mod}, “y”.

*
***
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Slinkers($link2). $vb{Smod}. “y”);
}

}
}

}
smodifystring = join■ ", "(*, Smodifystring, Stempmod, "I"),

}

return■ $modifystring),

#########################

*get input
#########################

sub GETINPUT
local($filename) = (a_;
e keys = keys *global,

% new_variables = READPOST(4 new_variables):

### put hitlist into molecule ###

foreach Svariable (keys ºnew_variables):
i■ (suhstrºsvariable,0.3) cq ‘HIT)

Smolecules|substr Svariable, 3)) = $new_variables ($variable};
}

}

$near($new variables($buttonnear}},
$new_variables(Sbuttonnearct));

* modify global string

$global (Shuttonsma} = join($joinstring,
subströglobal{$butionsma}.0.length($global ($buttonsma})-1),
$modifystring),

# DBLPRINT (“Sh = $global{ |\ns = $global ($
}

###put ring requirement at beginning if necessary”

if{(substróvariable, 0.4) eq“ring")&&($new_variables($variable) ne "ignore"))(

Shuttonsma = join(“, “essential_smarts button", substrisvariable,4));
Shuttonring = join(“. “ring", subströvariable,4)),

i■ ($new variables(Shuttonring}){
$global ($buttonsma) = join(“. “[R.",

substrisglobal [Sbuttonsma), 1)),
}
elsi■ (Snew_variables (Sbuttonring)) {

$global [Sbuttonsma} = joint”, “[R0.”,
substrúsglobal ($buttonsma), 1)),
}

### fix input for easy boolean. acknowledge input hits

foreach $variable (keys *new variables) {
i■ (Snew variables($variable) eq “FALSE")■

$new variables ($variable) = 0.
}
iftsnew variables($variable) eq “TRUE")|

$new_variables($variable) = 1.
}
i■ (Svariable - grep■ /Svariable■ , ºr keys))|
* DBLPRINT (“Svariable = $global{Svariable) was resel, its new value is $new_variables($vari
able.} \n");

$global{$variable) = $new_variables (Svariable};
}

}

###parse primary smarts first because other variables are dependent ###

foreach $variable (keys ºnew_variables){

***parse button names to button smarts and set smiles ash

i■ (substrišvariable, 0.23) eq“essential smarts button"){
# DBLPRINT (“Svariable = $global ($variable) was reset, its new value is $vb{$global ($vari
able}} \n");

$global ($variable) = $vh■ Sglobal{Svariable}}.
Shuttonsmi = join(“,"smiles”.suhstrº■ variahlc.23));

* DBLPRINT (“Shuttonsmi was set to ssh ($new variables($variable}} \n");
$global (shuttonsmi} = $sh ($new_variables (Svariable}},

}
}

###now parse the rest of the variablesses

foreach $variable (keys ºnew_variables) {

##sappend secondary stuff to primary button smarts and smiles ###

i■ ((subströvariable. 0, 6) eq “modify")&&($new_variables($variable) ne “none")}{

* get buttons

Shuttonsma = join■
Shuttonsini = joint

sential_smarts button". substrišvariable,6, 1)),
miles".substrišvariable,6, 1)),

Shuttonmod = $variable;
Shuttonext = }oint”. ”, substrf $variable,6));
Shuttonnear = join■ ear”, auhstrºsvariahle,6}).
Shuttonncarct = join■ nearct", substr■ Svariable,6)),

print■ ("…BR: “‘h-shuttonncarct"n-snew variables■ sbuttonnearct)”uncBR-"),
$new variahlex {Shuttonnearet) =l,
* make modifier smiles string

1■ t Snew variables(Shuttonext)}{
$glºbal (Sbuttonext } = Strue;
$newsmi = $global (Shuttunºmi).
if($sh{$new variables (shuttonmºd}} me “){

for(s1=0.Six Snew_variables■ shuttonnearct):Sitt);
i■ ($newsm, eq “)

Snewsmi = $sh ($new_variables ($buttonmod] };
}
else!

$newsmi = joint."”. Snewsmi,Ssh ($new_variables■ Sbuttonmod]}),
}

}
|
$global [Sbuttonsmi) = $newsm.

}

a set joining as true or false

it($new_variables (Sbuttonext)}{
$joinstring = *,\s",

else {
Sleinstring = ":"S";

* make modifier smarts string

Smedifystring = &GET_ATTACHMENT($new variables($buttonmod),

}

###append steric stuff to primary button smarts”

if{(subströvariable,0, 6) eq“steric")&&($new_variables($variable) me “ignore"))|

Shuttonhranch = joint”, “branch", substr Svariable,6));
$modifystring = join(“, “("", Sbranch($new_variables(Sbuttonbranch)), “)]");
if($new_variables ($variable) eq“IF")

$joinstring = "AS".
}
else■

$joinsuring = ","S";

$global{$buttonsma} = join($joinstring,
substr ■ global{$butionsma},0.length($global{$buttonsma})-1),
$modifystring),

# DBLPRINT (“Steric constraint added to $buttonsma.An”);
# DBLPRINT (“$butionsma = $global (Shuttonsma} \n");
}

###replace spaces in “reaction" with underscores (good for library outputº
i■ $variable cq “reaction"){

$global ($variable} =-x/ H /g,
|

###un-exacpe unix sa■ tey characters in smarts input ###

if Svariable eq“essential smarts"):
$global ($variable} =-s/\!//g,
$global ($variable} =-s/A34&/g:

}

###set symmetry number for removal of multiple occurances of buttons ###

i■ ((substr Svariable,06) cq “double")&&($new_variables($variable}))
Shutton = join(“, “essential_smarts button", substrºsvariable,6});
if($symmetry ($new_variables ($hutton}}}{

$global{$variable} = $symmetry($new_variables($button}};
}

}
DBLPRINT (“n”);

}

#########################

*get cyl post input
#########################

sub READPOST
local(ºvariables) = @ :

ift(SENV(“REQUEST METHOD) eq'POST)&&
($ENV ('CONTENT_TYPE') cq application/x-www-form-urlencoded")){

read(STDIN, $hu■ , $ENV (“CONTENT_LENGTH'});

@pairs = split■ /81, Shu■ );
foreach Spair (epairs)(

($key, $Jata) = split■ hal, Spair);
$data =~ trf+!?:
$data =-s/%(la-■ a-F0-9][a-fa-F0-9])■ pack■ "C", hex($1))/eg,
Sdata =-s/\!\!/g.
$data =-s/WAN/g,
$data =-s/WAV&/g,
$variables ($key)=$data:
DBLPRINT(*$key = $variables($key)\n");

}
DBLPRINT(*\num");

}

elsin(sENVIREQUEST METHOD) eq POST)&&
(substr SENV ('CONTENT_TYPE').0.19) eq multipart■ form-data'))(

read(STDIN, Sbu■ , SENV('CONTENT_LENGTH'));

print■ (“Content-type: text/htmlun\n");
print■ (“chTML-BODYS");
printf("Anun”uStarting Library Design 10u’”unum");

($dum, Sboundary) = split■ boundary=l. $ENV{CONTENT_TYPE' });
$boundary = join(*, *--", $boundary),
ºlines = split■ /$boundary/, $buf):

}\n");

sº

º

º,
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foreach sline (ºlines)
($dum, Skey, $predata. Silename. Smolecules) = split■ ", $line);
($dum. Sdata. Sdum) = split/s+H. Spredata).

###parse variables the

iftskey ne “hitlist”){
$data =- trit■ #,
$data =-vº ([a-ta-F0-9][a-A-F0-9]wpack(“C”, hex($1}\■ eg;
Sdata =-s/MM/g,
sdata =-sºl/g.
$data =-sºº A&fg:
$variables (Skey)=$data,
print■ LOG (“skey = $variables($key)\n");

}

###parse histlist filesha

else■
print■ LOG (“hitlist = $■ ilename\n");

($dum, @molecules) = split■ Ast■ , Smolecules),
foreach Smolecule (emolecules)

print■ LOG ("Smolecule\n"),
}

}
}
print■ LOG (“nun"),

}
return■ ºvariables),

!
#########################

*initialize
#########################

sub INITIALIZE |

$false = 0,
Struc = 1.

### date information ###

Smin = (localtime)[1].
Shour = (localtime)|[2].
$mday = (localtime)[3].
Smon = (localtime)|[4].
Syear = (localume)|[5]:
Swday = (localtime)|[6];
(edays = (Sunday. Monday,Tuesday. Wednesday.Thursday.Friday.Saturday).
Stºday = $days■ swday),
*months = (Jan.Fch.Mar.Apr.May.June.July, Aug.Sep Oct.Now.Dec),
*months = (January February March, April.May.June.July. August.September,

()ctober. November. December),
@uom = (31,28, 31.30, 31.30, 31.3.1.30, 31.30.31),
i■ (Syear'44 == 0) {

$dom (1}++,
}

***write general into to log aan

open(LOG, “2-design log") die "can't ºpen log",

print■ LOG (*n\n”uStarting Library Design ontº-ºnun");
print■ LOG (Time shour smin, Smon/smday/Sycarºn"),
printi LOG (“Remote Host $ENV ['REMOTE HOST]\n");
print■ LOG (“Remote Address. SENV(REMOTE ADDR')\n");
print■ LOG (“Remote User SENV (“REMOTE USER}\n");
print■ LOG (“Query String $ENV('QUERY_STRING')\n");

*** general selection has

$global (“mw max”) = 200,
$global (“mw min") = 100.
$glºbal (“usdpcrgin") = 101;
$global (“totusd") = 100,

$global ("logp max”) = 3,
Sglobal ("logp min") = -2.
$global ("logp err
$global ("hbd_max -

$global (“hbd_min") = 1;
$global (“hha_max”) = 10,
$global (“hba min”
$global (“roth max
$global (“roth min
$global (“crg max”) = 2,
$global (“crg_mun”) = 0.
$global (“essential_smiles") = “.

$global (“essential smarts buttonl") = “,
$global (“double!") = $false;
$global ("ring 1") = $■ alse.
$global (“extral") = $truc;
$global (“nearl") = “;
$global{-modify 1") = “,

$glºbal (“essential smarts button2") = “,
$global (“double2") = $false.
$global (“extraz") = $true,
Sglobal (“near 2" -

$global (“modify?"} = “,
$global (“essential smarts button3") = “.

$global ("double 3") = $talse:
sglobal (“extras”) = $true,
$glºbal{*near?"} =
$glºbal (“modify 3") = “;

Sglobal (“essential smarts”) = “,
$global (“bad double smarts")
$global (“server") = “yorick ucsf.edu",
$global (“pool") = "acd.972",
$global (“supplier type"} = “;
$global{“output type") = "ldt",

$global (“reaction") = “;
$global (“essential_name") = “;
$global (“■ cq number”) = “:
$global (“save hit") = $false,

### negative functional groups ***

$had[0] = “acid halide",
$bad(1) = "sultonic_aci
$bad|2) = "sulfonic_cster";
$bad[3] = “anhydride",
Shad[4] = “peroxide";
Shad[5] = “nonstandardatom";
$had[6] = “azide";
$had[7] = “azo",
$had[8] = “unbranchcq_chain".
$bad(9] = “four halides
$had[10] = “two charges",
Sbad || 1) = “long chain'
Shad[12] = “two nitri
$bad|13] = “dipeptide
$had[14] = “macrocycle":

$max_bad = 15,

$global (“acid halide") = $false;
$globalí"sulfonic acid") = $false;
$global ("sulfonic_ester") = $false;
$global (“anhydride") = $false,
$global (“peroxide") = $false;
$global (“nonstandardatom") = $false;
$global (“azide") = $false,
$global (“azo") = $■ alse;
$global ("unbranched_chain") = $false;
$global (“four halides") = $false;
$global (“two charges") = $false;
$global (“long chain") = $false;
$global (“two nitros") = $false,
$global (“dipeptide") = $false;
$global (“macrocycle") = $talse;

### positive functional groups ###

$good[0] = “alcohol";
$good[1] = “alkyne",
$good[2] = “arene":
$good[3] = “ether"
$good[4] = “nitrile"
$good[5] = "sulfide".
$good[6] = “thiol”;
$goºd[7] = "aldehyde",
$good[8] = “amide";
$good[9] = "carboxylic acid";
$good■ 10] = “halide";
$good[11] = “nitro",
$good[12] = "sulfone",
$good[13] = “aniline
$good[14] = “alkene";
$goºd[15] = “amine
$good[16] = “ester";
$good[17] = “ketone":
$good[18] = “phenol";
$good[19] = “sulfoxide"
$good[20] = “amino acid".
$good[21] = “urea".
$goºd[22] = “thiourea
$good!23) = "thioamide
$goºd[24] = "carbamaic":
$good[25] = “hydrazone
$good|26) = “hydrazine":
$good[27] = “hydroxylami
$goºd[28) = “alkyl halide
$good[29] = “aryl_halide".
$good[30] = “ring",

$goºd[31] = “primary_amine":
$good[32] = "secondary amine",
$good[33] = "tertiary amine",
$good[34] = "phosphonic acid”,
$good[35] = phosphonic ester";
$good[36] = phosphoric acid”,
$good[37] = "phosphoric ester",
$good[38] = "isocyanate”.
$good[39] = “imine";

$good■ +0] = “nucleophile",
$good[41] = “elecuophile";

$max good = 42.

$global (“alcohol") = $true;
$global (“alkyne"} = Strue:
$global ("arene"} = $true;
$global (“ether") = $true,
$global ("nitrile") = $true,
$global (“sulfide”) = $true;
$global{*thiol") = $true:
$global (“aldehyde") = $true;
$global (“amide") = $true;
$global (“carboxylic acid”) = $true;
$global (“halide”) = $true,
$global (“nitro") = $true;
$glºbal (“sulfone"} = Strue,
$global (“aniline") = $true,
$global (“alkene"} = Strue:
$global (“amine") = $true;
$global (“ester") = $truc;
$global (“ketone") = $true:
$global (“phenol”) = $true:

º

* *

1.
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$global{*sulfoxide"} = Strue;
$glºbal (“amino acid”) = $true,
$global (“urea") = $true;
$global (“thiourea") = $true;
$global (“thioamide") = $true;
Sglobal{"carbamaic") = Struc;
$glºbal (“hydrazone"} = Strue,
$glºbal{*hydrazine") = $true;
$global (“hydroxylamine"} = $true;
$global (“alkyl halide") = $true;
$global{*aryl_halide") = $true:
$global (“ring") = $true;

$global ("combi linker") = Strue;
$global (“combi ■ cn") = Struc;
Sglobal (“comht any”) = $true,
$global (“alkylating agent") = $true,

$global (“ring”) = $true:
$global ("primary_amine”) = $true,
$global (“secondary amine"} = $true,
$global (“tertiary amine"} = Strue.
Sglobal ("phosphonic acid”) = $true;
$global (“phosphonic ester”) = $true;
$global ("isocyanate") = $true;
$global (“imine"} = Strue;

local(*sbindings) = (a_:

open(SB, “hdkl/people/skillman/sb's■ t"}ll die “can't open wb";

while(“SB-){
chop(S_),
($name, $smiles) = split(Ast■ , $ );
$sbindings ($name} = $smiles;

}
close(SB);
return (*sbindings);

}

#########################

#initialize the vbindings
ºffgghtfººth■ tººgºthºgºgº■

sub READVBIND (
local(ºvbindings) = (a_;

open(VB, “hdkl/people/skillman/vbuse") die “can't open vb";

while(zVB>){
chop(S_);
($name, $smarts) = split■ Asti. $_);
$vbindings[$name} = $smarts,

@smartlist = (values ºvbindings);

iftefix = gren(■■ s]$name■ , ºsmartlist))
foreach $key (keys ºvbindings) {

$vbindings[$key) =-s/IVS]$name/subströvtindings ($name}.1.length($vbindings($name}}-2\leg;
}

}
}

$global ("nucleophile") = $true,
$global ("electrophile") = $true;

asavbindingspan

ºvh = &READVBIND.º.wh),
‘ºsh = &READSBIND(+sh),

***wbinding symmetry counts ash

$symmetry (“alkene") = 2,
Ssymmetry: “alkyne") = 2.
$symmetry (“anhydride") = 2,
$symmetry (“arene"} = 6.
$xymmetry (“ary!") = 6.
sayinmetry (“azo") = 2,
$symmetry (“triazine"} = 2,
$symmetry ("carbamate”) = 2.
$symmetry (“thiocarbamate") = 2,
$symmetry (“carbonate") = 2,
ssymmetry (“thiourea") = 2.
$symmetry (“urca") =
$symmetry ("epoxide
$symmetry ("disultide
$symmetry: “oxalyl") = 2,

asssmans for proximity was

$near (“alpha"
Snear (“heta") = *-A-A-
Snear ("gamma") A-A-A-",
$near (“ortha") = “aa
$near (“meta") = “aaa";
Snear (“para") = “aaaa".

**asmarts for branchingtºn

$branch ("alpha_branched") = *-(D3.D4]",
$branch ("alpha_t branched") = *-(D4)”.
$branch("beta_hranched") =
$branchºbeta_1_branched")
shranch (“gamma_branched")
$branch (“gamma_1_hranched") = “

***suppliersºns

$global (“aldrich") = $false;
$global (“fluka") = $false:
$global ("sigma") = $talse.
$global ("lancaster") = $false;
$glºbal (“tc. america") = stalse.
$global (“icn") = $false,
$global (“p■ altz bauer") = $false,
$global (“indotine"} = $false,
$global (“acros organics") = $false,
$global (“calbiochem") = $false;
$global ("maybr int") = $false,
Sglobal (“maybridge") = $false.
$global (“salor”) = $talsc,
$global (“trans_work■ ") = $false,

$goºdsupplier ("aldrich") = "ALDRICH".
$goodsupplier (“tiuka") = “FLUKA";
$goºdsupplier ("sigma") = "SIGMA”,
$goºdsupplier (“lancaster") = “LANCASTER",
$goºdsupplier (“ici_america") = TCIUS",
sgoodsupplier (“ien”) = “ICN":
sgoodsupplier (“p■ altz hauer") = “PFALTZBAUER",
$goºdsupplier (“indoline"} = “INDOFINE".
sgººdsupplier (“acros organics") = "ACROS".
$goodsupplier ("calbiochem") = “CALBl()".
$goodsupplier (“mayht int") = "MAYBRINT",
sgoºdsupplier (“maybridge") = "MAYBRIDGE",
$goodsupplier (“salor”) = “SALOR",
$gºodsupplier (“trans world") = "TRANSWLD",

#aaagasiisagastrºphagºssita

*initialize the smiles bindings
#fff; Hºggºi■■ g■■ itatistianitats

sub READSBIND

*** fix the logical AND in the combi v-bindings ###

$vbindings{"combi linker") =-s/:/&/g:
$vbindings{"combi ■ cn") s/J&■ g:
$vbindings ("combi_any") =-s/J&■ g:

close(VB),
returnºwbindings),

}

fººthºrspººfits stratingsgafºs

sprint form for input
#########################

sub PRINTFORM
print■ (“Content-type: text/htmlun\n");
print■ (“z'DOCTYPE HTML PUBLIC \"-■ leTFIIDTD HTML/EN">\n");
print■ (“chTML5-HEAD-\n");
print■ (“zTITLE-UC Select 1.01-■ title>\n");
print■ ("º■ head>\n");
print■ ("n"),
print■ (ºn"),
print■ ("…BODY BGCOLOR=\"sCFCFEF">\n");
print■ ("n"),
print■ (“k!-- end of header -->\n");
print■ (ºn");
print■ (“CENTER-An");
print■ ("…H 1»UC Select 101&HISAn");
print■ (“&copy;1997, University of California. San Franciscoun");
print■ ("º■ CENTER-\n"),
print■ (“n"),
print■ (“‘HRSwn");
print■ ("n"),
print■ (“khokM encrype=\"multipart/form-data\" METHOD = \"POST". ACTION=\"Surl path/

reagentwº-\n'
pºint■ (“n”);
print■ (“chi-Log Information.</H3>\n");
print■ (“Name<BR- \n");
print■ (“..INPUT SIZE=60 NAME=\"user_name\"><P-\n");
print■ (“Project.<BR-\n");
print■ (“zinPUT SIZE=30 NAME=\"project\"><P-\n");
print■ (“Reaction<BRSun"),
print■ ("…INPUT SIZE=60 NAME=\"reaction"><P-\n");
print■ ("n"),
print■ ("…TABLE width=2000+-TR-TD-xHR-TD-CTD-INPUT TYPE=\"submity"></

TD-º■ t RS <■ table>\n");
print■ (“kh 3>Server Selection.</H3>\n");
print■ (“ServercBR-\n");
print■ ("…INPUT size=30 VALUE=\"nobellucsf.eduv" NAME=\"server"><P-\n");
print■ (“ch 3>Database Selection.</H3>\n");
print■ ("Pool<BR-\n");
print■ (“zinpu■ TsizB-30 VALUE=\"acd 982\"NAME=\"poon"><P-\n");
print■ (“…TABLE width=20004-TR-TD-xHR-TD-2TD-INPUT TYPE=\"submity"></

TD-º/TRº■■ ABLE-\n");
print■ (“ch 3>Hitlists.</H3>\n");
print■ (“Starting Hitlist File (SMILES file, one line per compoundkBR-\n");
print■ ("…INPUT TYPE=file SIZE=60 NAME=\"hitlist\"><BR-\n");
print■ (“There is an option to save a hitlist at the end of the output.<P-\n");
print■ (“…TABLE width=20004-2TR-TD-CHR-TD-2TD-INPUT TYPE=\"submity"></

TD-º■ t Rº■■ ABLE×wn");
print■ (“chi-Compound Selection.</H3>\n");
print■ (“First choose a primary functionality which is desired in every molecule.<P-\n");
print■ (“Essential KA HREF=/smiles help-Smiles </A-(optional}<BR-\n");
print■ (“…A HREF=/Editor html>Try this lava SMILES editor''</A-3BR> \n");
print■ (“clNPUT SIZE=60 NAME=\"essential smiles\"><P-\n");
print■ (“n");
print■ (“Required Functional Group-BR-\n");
print■ (“‘SELECT NAME=\"essential smarts button IV">\n");
print■ (“OPTION SELECTED-noneum"),
print■ (“‘OPTION-acetalun").
print■ ("…OPTION-acid chloriden").
print■ (“‘OPTION-acid haliden").
print■ (“OPTION-alcohol\n");
print■ ("…OPTION-aldehydeu■ "),
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printf("coPTION-alkeneum");
print■ (“coPTION-alkylum"):
print■ (“z()PTION-alkyl halideum"),
print■ (“z()PTION-alkylating agentum"),
print■ (“zop'■ ION-alkynen");
print■ (“coPTION-amideum").
print■ (“k()PTION-amino acidui"),
print■ ("coPTION-anhydrideum"),
print■ (“z0PTION-aniline\n"),
print■ (“‘OPTION-aniline unsubstituted ºn");
print■ (“k()PTION-aryl halideum"),
print■ (“OPTION-azideum"),
print■ (“OPTION-azon");
print■ (“‘OPTION-carbamateum");
print■ (“OPTION-carbamic acidum"),
print■ ("x0PTION-carbonateum"),
print■ (“zoPTION-carbony■ un"),
print■ ("x0PTION-carboxylic acidum”);
print■ ("coPTION-combi linkern"),
print■ (“‘OPTION.combi ■ cnun"),
print■ (“OPTION-combi anyºn").
print■ (“OPTIONS disulfiden").
print■ (“OPTION-dithioacetalun").
print■ (“ct)PTION-enaminen").
print■ (“OPTION-enol etherun"),
print■ (“OPTION-epoxidew,
print■ ("x0PTION-cstern"
print■ ("coPTION-ethern").
print■ ("…OPTION-hemiacetalun"),
print■ ("coPTION-hemiketalun"),
print■ (“z()PTION: hydrawincun");
print■ (“z0PTION-hydrazone\n");
print■ (“zoPTIONºminoun");
print■ ("x0PTION-isocyanaten");
print■ (“OPTION-isothocyanateum”),
print■ (“zop ■ low-ketalun").
print■ ("coption-ketone\n");
print■ ("…OPTION--lactamun");
print■ (“OPTION-lactonen"),
print■ (“coPTION-nitrile\n");
print■ (“OPTION-nitron").
print■ (“OPTION-organometallic\n");
print■ (“OPTION-oxalylum"),
print■ ("…OPTION-oximcum"),
print■ (“OPTION-peroxiden").
print■ (“zoPTION-phenol\n");
print■ (“coPTION-phosphonic acidºn
print■ (“kop IION-phosphonic extern
print■ (“OPTION-primary aminen"),
print■ (“köPTION-secondary aminen"),
print■ (“OPTION-sulfiden"),
printf("…OPTION-sulfonamideum"),
print■ (“z()PTION-sulfoncun"),
print■ (“‘OPTION-sulfonic acid■ un"),
printt ("-OPTION-sulfonic extern
print■ ("x0PTION-sulfonyl halideum"),
print■ ("x0PTION-sulfoxideum"),
print■ (“OPTION-tertiary aminen"),
print■ (“coPTION-thiocarbonylºn"),
print■ (“OPTION-thioethern").
print■ (“OPTION-thiol\n").
print■ (“z()PTION-thioureaum"),
print■ (“OPTION-triazineum"),
print■ ("x0PTION-ureau"),
print■ (“e■ sBLECT-Am"),
print■ (“Discard Double Occurances ºn"),
print■ ("…INPUT TYPE=\"radio," NAME=\"double!\" VALUE=\"TRUEW" CHECKED-Yesun"),
print■ ("…INPUT TYPE=\"radioV"NAME=\"doublely" VALUE=\"FALSEA">NokBR>\n");
print■ ("n"),
print■ (“OK In Ringºn")
print■ ("…INPUT TYPE=\"radio," NAME="ring IV" VALUE=\"ignore">Don't Care\n");
print■ ("x■ NPUT TYPE=\"radio," NAME=\"ringly" VALUE=\"TRUE">Yes\n");
print■ (“zinpu■ T TYPE=\"radioV" NAME=\"ringly" VALUE=\"FALSEY">No-BR->\n");
print■ (“n”),
print■ ("…INPUT TYPE=\"radio," NAME=\"extralv VALUE=\"TRUE CHECKED-i■ \n");
print■ ("…INPUT TYPE=\"radioV" NAME=\"cktralv VALUE=\"FALSEV">notum"),
print■ ("n"),
print■ (“zSELECT NAME=\"nearly">\n"
print■ (“‘OPTION SELECTED-alpha
print■ (“coPTION-beta\n").
print■ (“OPTION-gamma\n");
print■ (“coPTION-orihou").
print■ ("…OPTION-meta\n");
print■ (“OPTION-paran"),
print■ (“OPTION-any attachmentum").
print■ ("JSELECT-\n");
print■ ("n"),
print■ (“to a SELECT NAME=\"modifylvºn"),
print■ (“köPTION SELECTED-none\n"),
print■ (“coPTION-acetalun").
print■ (“OPTION-acid chloriden"),
print■ ("…OPTION-acid halideum"),
print■ (“coPTION-alcohol\n");
print■ (“coPTION-aldehyde"m"),
print■ (“köPTION-alkenen"),
print■ (“OPTION-alkynn"):
print■ (“köPTION-alkyl halideum"),
print■ (“z()PTION-alkynen"),
print■ (“coPTION-amideum")
print■ (“zoPTION-anhydrideum
print■ ("x0PTION-aniline\n");
print■ (“coPTION-aziden");
print■ ("<OPTION-azon"):
print■ (“OPTION-carbamaicum"),
print■ ("x0PTION-carhamic acidum"),
print■ (“köPTION-carbonatcul'
print■ (“coPTION-carbonylum"),
printf("…OPTION-carboxylic acidum”),

printf("coPTION-combi linker\n");
print■ (“zoPTION-combi ■ cnun");
print■ ("…OPTIONS combi anyun").
printf("coPTION-disulfiden");
printf("…OPTION-dithioacetalun");
print■ (“OPTION-enamineum");
print■ (“OPTION-enol etherum"),
print■ (“x0PTION:-epoxideum");
print■ (“‘OPTION-estern")
print■ (“zoPTION-ethern"),
print■ (“OPTION-hemiacetalun");
print■ (“coPTION-hemiketalun"),
print■ (“‘OPTION-hydrazineu.");
print■ (“köPTION-hydrazoneum");
print■ ("…OPTION-minou■ "),
printf("<OPTION-isocyanate"m").
print■ (“‘OPTION-isothiocyanateur"),
print■ ("x0PTION-ketalun").
print■ (“coption-ketonen'
print■ ("…OPTION-lactamun'
print■ (“köPTION-lactonen");
printf("<OPTION-nitrile\n");
print■ (“coPTION-nitron");
print■ (“‘OPTION-organometallic\n");
print■ (“‘OPTION-oxalylum"),
print■ (“OPTION-oximcum"
print■ (“OPTION-peroxiden");
print■ (“coPTION-phenol\n
print■ (“z0PTION-phosphonic acidum");
print■ (“…()PTION-phosphonic_cstern");
print■ (“z0PTION: primary_amine\n");
print■ ("coPTIONºring\n");
print■ (“‘OPTION-secondary amincun"),
print■ (“OPTION-sulfideum"),
print■ (“coPTION-sulfonamideum"),
print■ (“zoPTION-sulfoneum"),
print■ (“OPTION-sulfonic acidum").
print■ (“OPTION-sulfonic estern");
print■ ("…OPTION-sulfonyl halideum"),
print■ (“OPTION-sulfoxideum"),
print■ (“‘OPTION-tertiary aminen"),
print■ (“coPTIONºthiocarbonylum"),
print■ (“z0PTION-thioetherum"),
print■ (“OPTION-thiol\n");
print■ (“‘OPTION-thioureaun"),
print■ (“z()PTION-triazine\n");
print■ (“coPTION-ureau"),
printf("</SELECT-\n");
print■ (“kBR-\n");
print■ ("n"),
print■ (“c■ NPUT TYPE=\'radio," NAME=\"stencl\" VALUE=\"ignore," CHECKED-ignorevn");
print■ ("…INPUT TYPE=\"radioV" NAME=\"steric IV" VALUE=\"IF">if \n");
print■ (“INPUT TYPE=\"radio"NAME=\"stericlvº VALUE=\"NOTY">notum");
print■ ("n"),
print■ (“SELECT NAME=\"branchly">\n");
print■ (“‘OPTION SELECTED-alpha branchedun"),
print■ (“OPTION-alpha_t branchedul"):
print■ (“z0PTION-beta_branchedul"),
print■ (“coPTION--beta_t branchedun");
print■ (“köPTION-gamma branchedul"),
print■ (“‘OPTION-gamma_1_branchedun"),
print■ (“-1SELECT-BR-\n");
printf("…BxYOTE: Currently has a \"feature\" which takes branching in the functional \n");
print■ (“group itself into account. For example, Ureas will ALWAYS have alpha\n");
print■ (“hranching because the carbonyl carbon is branched and is alpha to the \n");
print■ ("urea nitrogen. However, it should work fine for selecting amines or \n");
print■ (“carboxylic acids for instance.vn”);
print■ (“c■ BSAn”
print■ (“‘P-\n");
print■ ("n").
print■ (“ch4-AND-■ ha-BR-\n");
print■ (“Required Functional Group.:BR-\n");
print■ (“zSELECT NAME=\"essential smarts button2\">\n");
print■ (“zoPTION SELECTED-noncun"),
print■ (“‘OPTION-acetalun"),
printf("coPTION-acid chloriden"),
print■ (“z0PTION-acid halideum"),
print■ (“zoPTION-alcohol\n");
printf("…OPTION-aldehyde n
print■ (“coPTION-alkeneum"),
print■ (“‘OPTION-alkylum");
print■ (“OPTION-alkyl halideum");
print■ (“OPTION-alkyneum"),
print■ (“zoPTION-amideum"),
print■ (“OPTION-anhydrideum"),
print■ (“köPTION-aniline\n
print■ ("x0PTION-azideum");
print■ (“OPTION-azon");
print■ (“‘OPTION-carbamateur");
print■ (“coPTION-carhamic acidui"),
print■ (“‘OPTION-carbonatcut"),
print■ (“OPTION-carbonylum"),
print■ (“OPTION-carboxylic acidui"),
print■ (“‘OPTION-disulfiden'
print■ (“köPTION-dithioacetalun"),
print■ (“zoPTION-enamineum").
print■ ("coPTION-enol ether
print■ (“köPTION-epoxideum").
print■ ("...OPTION-estern"),
print■ (“zop■ i()N-ethern");
print■ (“coPTION-hemiacetamn");
print■ (“coPTION-hemiketalun"),
print■ ("coPTION-hydrazine\n"
print■ ("…OPTION-hydrazone
print■ (“x()PTION-minoum");
print■ ("…OPTION-isocyanateur"),
print■ (“OPTION-isothiocyanateum"),
print■ (“köPTION-ketalun"),

');
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print■ (“ºt)PTION-ketoneum"),
print■ (“OPTION--lactamun'
print■ (“OPTION-lactone\n");
print■ (“‘OPTION-nitrilevn"),
print■ ("…OPTION-nitroui"),
print■ (“coPTION-organometallic\n");
print■ (“OPTION-oxalylum").
print■ (“OPTION-oximen
print■ (“z0PTION-peroxideºn”),
print■ (“coPTION-pheno■ \n");
print■ (“‘OPTION-phosphonic acidum"),
print■ ("coPTION-phosphonic extern
print■ ("…OPTION-pnmary aminen"),
print■ (“OPTION:-secondary aminen"),
print■ ("x0PTION-sulfiden").
print■ ("x0PTION-sulfonamideum"),
print■ (“OPTION-sulfoneum").
print■ ("…OPTION-sulfonic_aidun"),
print■ (“OPTION-sulfonic estern"),
print■ ("x0PTION-sulfonyl halideum"),
print■ (“coPTION-sulfoxideum"),
print■ (“‘OPTION-teruary aminen"),
print■ (“OPTION-thiocarbonylum"),
print■ (“OPTION-thioethern"),
print■ (“OPTION-thiol\n");
print■ (“OPTIONºthioureaun"),
print■ (“zoPTION-triazincum"),
print■ ("…OPTION-ureau"),
print■ ("x■ SELECT: An"),
print■ (“Discard Double (xcurances"n").
print■ ("…INPUT TYPE=\'radio," NAME=\"double2\" VALUE=ATRUE CHECKED-Yesun"),
print■ (“kiSPUT TYPE=\"radio"NAME=\"double2\" VALUE=\"FALSE">No■ BR-\n"),
print■ ("n");
print■ ("…INPUT TYPE=\"radio." NAME=\"extrazy" VALUE=ATRUE CHECKED-i■ \n");
print■ ("…INPUT TYPE=\'radioV" NAME=\"extra 2\" VALUE=\"FALSEV">not\n");
print■ ("n"),
print■ (“SELECT NAME=\"near 2\">\n");
print■ ("x0PTION SELECTED-alpha\n");
print■ ("…OPTION--beta\n");
print■ ("…OPTION-gamma\n");
print■ ("…OPTION-orthou"),
print■ ("…OPTION-meta\n");
print■ (“OPTION-paraun"),
print■ ("x■ SELECT-\n");
print■ (“to a csFLECT NAME=\"modity?v'>\n");
print■ ("ct)PTION SELECTED-noneum"),
print■ (“OPTION-acetalun");
print■ (“coPTION-acid chloriden"),
print■ (“‘OPTION-acid halideum"),
print■ ("…OPTION-alcohol\n");
print■ (“OPTION-aldehydevn");
print■ (“OPTION-alkenen'
print■ (“z()PTION-alkylum").
print■ (“OPTION-alkyl halideum"),
print■ ("x0PTION-alkyneum").
print■ (“OPTION-amideum"),
print■ (“coPTION-anhydriden"),
print■ ("…OPTION-aniline\n");
print■ (“OPTION-azidewn"),
print■ (“‘OPTION-azon").
print■ (“‘OPTION-carhamateum"),
print■ ("…OPTION-carbamic acidum"),
pºint■ (“OPTION-carbonatcum"),
print■ (“OPTION-carbonyl
print■ (“coPTION-carboxyl,
print■ (“ct)PTION-disulfille\n");
print■ (“z0PTION-dithioacetalun"),
print■ (“OPTION-enaminen");
print■ (“OPTION-enol ethern"),
print■ (“coPTION-cpoxideum"),
print■ (“zoPTION-estern'
print■ (“OPTION-ethern");
print■ (“OPTION-hemiacetalun"),
print■ (“OPTION: hemiketalun"),
print■ (“OPTION:-hydrazineu■ "),
print■ ("…OPTIONºhydrazoncum"),
print■ (“OPTION-minoum"),
print■ (“OPTION-isocyanateur"),
print■ ("…OPTION-isothiocyanateum”),
print■ (“coPTION-ketalun"),
print■ ("…OPTION-ketone\n'
print■ (“coPTION-lactamun"
print■ (“OPTION-lactoneum"),
print■ (“kt)PTION-nitrile\n"),
print■ ("...OPTION-nitron");
print■ (“ct)PTION-organometallic\n");
print■ ("…OPTION-oxalylum"),
print■ (“OPTION-oximen").
print■ (“OPTIONSperoxideºn");
print■ ("…OPTION-phenol\n"),
print■ (“coPTION-phosphonic acidum"),
print■ ("x0PTION-phosphonic estern"),
print■ (“köPTION: primary amincun"),
print■ (“coPTION-secondary aminen").
print■ (“‘OPTION-sulfidewn").
print■ ("…OPTION-sulfonamideum"),
print■ (“OPTION-sulfonen"),
print■ (“‘OPTION-sulfonic acidum"),
print■ ("…OPTION-sulfonic_estern"),
printf("...OPTION-sulfonyl halideum"),
print■ (“ct)PTION-sulfoxideum"),
print■ ("…OPTION-tertiary amincun"),
print■ (“OPTION-thiocarbonylum"),
print■ (“OPTIONºthioethern").
print■ ("…OPTION-thiol\n");
print■ (“OPTIONºthioureaun");
print■ (“OPTION-triazine\n");
print■ (“OPTION-ureau"):

print■ (“‘■ sELECTSAn");
printf("-P-\n
print■ ("n");
print■ (“zinput TYPE=\"radio," NAME=\"steric2\" VALUE=\"ignorey" CHECKED-ignoreun");
print■ (“clNPUT TYPE=\"radioV"NAME=\"stenc2\" VALUE=\"IF">if \n");
print■ (“zinPUT TYPE=\"radio," NAME=\"steric2" VALUE=\"NOT">not\n");
print■ ("n"),
print■ (“cSELECT NAME=\"branch?v'>\n");
print■ (“‘OPTION SELECTED-alpha branchedul");
print■ (“OPTION-alpha_1_branchedul”),
print■ ("x0PTION-beta_branchedun");
print■ (--OPTION-beta_t branchedun");
print■ ("…OPTION-gamma_branchedul");
print■ ("xOPTION-gamma_1_branchedun");
print■ ("º■ sELECT-BR-\n");
print■ (“‘P-\n");
print■ ("n"),
print■ (“ché-AND-■ ha-BR-\n");
print■ (“Required Functional Group:BR-\n");
print■ (“SELECT NAME=\"essential smarts button3\">\n");
print■ (“coPTION SELECTED-none\n");
print■ (“k()PTION-acetalun"),
print■ (“OPTION-acid chloriden");
print■ (“zoPTION-acid haliden"),
print■ (“coPTION-alcohol\n");
print■ (“köPTION-aldehydeun");
print■ (“OPTION-alkeneum"),
print■ ("x0PTION-alkylum"),
print■ (“OPTION-alkyl haliden");
print■ ("x0PTION-alkyncun"),
printf("<OPTION-amideum");
print■ (“OPTION-anhydriden");
print■ ("…OPTION-aniline\n");
print■ ("x0PTION-azideum"
print■ (“OPTION-azown");
print■ (“zoPTION-carbamateum");
print■ (“z0PTION-carbamic acidum"),
print■ ("…OPTION-carbonaten"),
printf("…OPTION-carbonyl'n");
print■ (“‘OPTION-carboxylic acidum"),
print■ ("x0PTION-disulfiden"),
print■ (“coPTION-dithioacetalun");
printf("…OPTION-enamineum"),
print■ (“OPTION-enol ethern"),
print■ ("…OPTION-epoxideum");
print■ (“OPTION--estern"),
print■ (“coPTION-ethern"),
print■ (“coPTION:-hemiacetalun");
print■ (“‘OPTION: hemiketal
print■ ("…OPTION-hydrazine
print■ (“coPTION-hydrazone\n");
print■ ("…OPTION-iminou■ "),
print■ (“OPTION-isocyanaten");
print■ (“zoPTION-isothiocyanateum"),
print■ (“‘OPTION-ketalun");
print■ (“OPTION-ketoneum");
print■ (“OPTION-lactamun"),
print■ (“zoPTION-lactone\n'
print■ (“OPTION-nitrile\n
print■ (“z0PTION-nitron");
print■ (“c()PTION-organometallic\n");
print■ (“koPTION-oxalyln");
print■ ("…OPTION-oximeun");
print■ (“zoPTION-peroxideum"),
print■ (“OPTION-phenol\n");
print■ (“OPTION-phosphonic acidin");
print■ (“OPTION-phosphonic estern"),
print■ (“z0PTION: primary aminen"),
print■ ("…OPTION-secondary aminen");
printf("…OPTION-sulfiden").
print■ (“coPTION-sulfonamideum"),
print■ (“coPTION-sulfone\n"),
print■ (“OPTION-sulfonic acidum");
print■ ("…OPTION-sulfonic_estern"
print■ ("x0PTION-sulfonyl halideum"),
print■ ("x0PTION-sulfoxiden"),
print■ ("x0PTION-tertiary amineum"),
print■ (*~0PTION-thiocarbonylum");
print■ (“coPTION-thioethern"),
print■ ("…OPTION-thiolum"),
print■ (“OPTION-thioureau,
print■ (“OPTION-triazinevn"),
print■ ("…OPTION-ureaum"),
print■ (“k/SELECT-\n");
print■ (“n");
print■ (“Discard Double Occurances?\n");
print■ (“zinpu■ T TYPE=\'radio," NAME=\"doublev' value=ATRUE CHECKED-Yesva");
print■ (“zinput TYPE=\'radio)"NAME=\"double3\" VALUE=\"FALSEY">No.:BR-\n");
print■ (“n"),
print■ (“ciNPUT TYPE=\'radio," NAME=\"extraavº VALUE=ATRUE CHECKED-i■ \n");
print■ (“…INPUT TYPE=\"radioV"NAME=\"extra?" VALUE=\"FALSEV">not\n");
print■ (“n”),
print■ (“ksei ECT NAME=\"nearby Sun");
print■ (~~OPTION SELECTED-alpha\n");
print■ (“OPTION<beta\n");
print■ (“OPTION-orthou"),
print■ (“coPTION-meta\n");
print■ ("…OPTION-paran");
print■ ("JSELECTSAn");
print■ (“to a SELECT NAME=\"modify}\">\n");
print■ (“coPTION SELECTEDx none\n");
print■ (“OPTION-acetalun"),
print■ (“OPTION-acid chlorideun");
print■ ("…OPTION-acid halideum");
print■ ("…OPTION-alcohol\n"
print■ (“coPTION-aldehydeum");
print■ (“koPTION-alkeneum").
print■ ("…OPTION-alkylum");
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print■ (“‘OPTION-alkyl halideum"),
print■ (“OPTION-alkyneum"),
print■ (“‘OPTION-amideum"),
print■ (“‘OPTION-anhydrideum"),
print■ (“z0PTION-aniline\n");
print■ (“coPTION-azideum"),
print■ (“kop IION-azoum").
print■ (“OPTION-carbamateur"),
print■ ("x0PTION-carbamic acidum"),
print■ (“OPTION-carbonate n°),
print■ (“coPTION-carbonylum"),
print■ (“OPTION-carboxylic acidum"),
print■ (“z0PTION-disulfiden").
print■ ("x0PTION-dithioacetalun"),
print ("…OPTION-enamineu,
print■ (“ct)PTION-enol ethern"),
print■ (“OPTION-epoxideum"),
print■ ("…OPTION: extern"),
print■ (“zoPTION-ethern"),
print■ (“OPTION-hemiacetalun"),
print■ ("coPTION-hemiketal
print■ (“ct)PTION-hydrazineum"),
print■ (“OPTION-hydrazoncun"),
print■ ("…OPTION-iminovn"),
print■ (“zoFTION-isocyanate n”),
print■ (~~0PTION-isothiocyanaleu"),
print■ (“coPTION-ketalun"),
print■ ("…OPTION-ketone\n");
print■ (“coPTION--lactamun"),
print■ ("…OPTION-lactone\n");
print■ (“OPTION-nitrile\n'
print■ (“OPTION-nitroun"),
print■ ("c■ )PTION-organometallic\n");
print■ (~~0PTION-oxalylum"),
print■ (“OPTION-oximen"),
print■ (“OPTION: peroxide n'),
print■ (“OPTION-phenol\n");
print■ (“OPTION-phosphonic acid n");
print■ ("…OPTION-phosphonic extern
print■ (“köPTION-primary aminen"),
print■ (“‘OPTION2 secondary aminen
print■ ("coPTION-sulfiden"),
print■ (“coPTION-sulfonamideum"),
print■ (“köPTION-sulfoneum"),
print■ (“‘OPTION-sulfonic acidum"),
print■ (“coPTION-sulfonic estern"
print■ (“OPTION-sulfonyl halideun"),
print■ (“ct)PTION-sulfoxideum"),
print■ (“zt)PTION-tertiary amincum"),
print■ (“OPTIONºthiocarbonylum"),
print■ (“z0PTIONothioetherun"),
print■ (“OPTIONºthiol\n");
print■ (“OPTION-thioureau"),
print■ ("…OPTION-triazineum"),
print■ (“OPTION-ureaun");
print■ ("JSELECT-\n");
print■ (“n”).
print■ ("…INPUT TYPE=\'radio"N
print■ ("…INPUT TYPE=\'radio," F" >if \n");
print■ (“clNPUT TYPE=\'radio," NAME=\"stencº" VALUE=\"NOT">not\n"),
print■ ("n"),
print■ (“SELECT NAME=\"branchº">\n");
print■ (“OPTION SELECTED-alpha branchedun"),
print■ (“z0PTION-alpha t branchedun"),
print■ (“OPTION-heta_branchedun"),
print■ ("…OPTION-heta t hranchedun"),
print■ (“OPTION-gamma branchedun")
print■ (“z0PTION-gamma_t branchedun
print■ (“…SELECT-BR-\n"),
print■ ("n"),
print■ ("…H4-AND-■ h4×BR-\n");
print■ (“Other essential smarts\n");
print■ (“-INPUT SIZE=60 NAME=\"essential smarts">\n");
print■ ("\n"),
print■ (“H4-AND-AH4×BR-\n");
print■ (“Compound name substring (optional)\n");
print■ (“‘INPUT SIZE=60 NAME=\"essential_name\">\n");
print■ (“n”);
print■ ("…H4-AND-■ h4×BR-\n");
print■ (“Compound ■ cu substring (optional) ºn").
print■ ("…INPUT SIZE=60 NAME=\"ful number">\n");
print ("\n"),
print■ (~~TABLE width=2000%--TR-TD-xHR-3/TD-2TD-INPUT TYPE=\"submity"></

TD-º■■ Rx.</TABLE×wn”),
print■ (“ch 3×Compound Property Profile-■ hisun"),
print■ (“Limit the properties of compounds selected.<P-\n");
print■ ("…TABLE BORDER=25\n"),
print■ (“TR-TD-\n"),
print■ ("…INPUT SIZE=5 VALUE=\"450" NAME=\"mw_max\"> Maximum Molecular

Weight<BR-\n").
print■ ("…INPUT SIZE=5 VALUE=\"100"NAME=\"mw_min\"> Minimum Molecular

Weight<BR-\n");
print■ (“TD-º/TR-\n");
print■ (“zTR-TD-\n");
print■ (“kin■ ’UT SIZE=5 VALUE=\"5\"NAME=\"logp max\"> Maximum Clogº-BR-\n");
print ("…INPUT SIZE=5 VALUE=\" NAME=\"logp_min\"> Minimum Clogh-BR-\n");
print■ (“SELECT NAME=\"log■ erry">\n");
print■ ("x0PTION--0P.All fragments measured n”),
print■ ("xOPTION--10P.Valid estimate for di■ ticult structure"m"),
print■ (“OPTION--20P.Estimated fragment value used ºn"),
print■ (“OPTION--10P.Approximated fragment value used n”),
print■ (“k()PTION2 -31P.Benzyl approximation uscºn"),
print■ ("x0PTION: -32P.Vinyl approximation used ºn"),
print■ (“k()PTION--33P.New approximated fragment value used n”),
print■ ("…OPTION--40P.A prior tragment value used un"),
print■ (“coPTIONº. 41 P.Benzyl approx hased on a prior valuen"),
print■ (“‘OPTION--42P, Vinyl approx based on a prion value n°),
print■ (“kop IION--43P.Other a prior tragment value usedun");

printf("coPTION--50P.Warning, hard-to-esumate structure ºn");
print■ (“z0PTION SELECTED --51P.Very high LogP unrealistic in natureun");
print■ (“OPTION--52PA"X/Y-C-C-YY excessive structure ºn");
printf("KOPTION: -54P.Possibly low due to hydrophillic overlap\n");
print■ (“köPTION--55P.Possibly anomalous steroi■ m"),
print■ (“z0PTION--56P.Possibly anomalous alkaloid n");
print■ ("…OPTION--57PError uncertain for charged structures\n");
print■ ("x0PTION--58P.(NEW) STRUCTURE CAUGHT IN SCREENn");
printf("<OPTION: -60P.INVALID due to missing fragment valueum"),
print■ ("…OPTION--70P.Apparent impossible structureun");
print■ (“‘OPTION--71P:CLOGP3 can't do disconnected structures\n");
print■ (“z0PTION--72P, Apparent impossible structureun");
print■ (“k()PTION--80P.INVALID smiles input (fatal)\n");
print■ (“OPTION--90P.NULL smiles input (fatal)\n'
print■ ("x■ SELECTS Maximum Clog■ ' Error:BR-\n");
print■ (“JTD-/TR-\n");
print■ (“zTR-TD-\n");
printf("…INPUT SIZE=5 VALUE=\"5\"NAME=\"hbd_max\"> Maximum Number of H-Bond

Donors.<BR-\n");
print■ (“klNPUT SIZE=5 VALUE=\"0" NAME=\"hbd_min\"> Minimum Number of H-Bond

Donors: BR-\n");
print■ ("º■■ D-TRºn");
print■ (“TR-TD-\n"),
print■ (“cINPUT SIZE=5 VALUE=\"10"NAME=\"hba_max\"> Maximum Number of H-Bond

Acceptors&BR-\n");
print■ ("…INPUT SIZE=5 VALUE=\"0"NAME=\"hba_min\"> Minimum Number of H-Bond

Acceptors-BR-\n"),
print■ ("º■■ D-/TR-\n");
print■ (“zTR-TDºwn");
print■ ("…INPUT SIZE=5 VALUE=\"9A"NAME=\"roth_max\"> Maximum Number of rotatable

bonds.<BR-\n");
print■ (“klNPUT SIZE=5 VALUE=\"(W" NAME=\"rotb_min\"> Minimum Number of rotatable

bonds.<BR-\n");
print■ ("…TR-TD-\n");
print■ (“zTR-TD-\n");
printf("…INPUT SIZE=5 VALUE=\"2\"NAME=\"crg_max\"> Maximum Number of formal

charges&BR-\n");
print■ ("x■ NPUT SIZE=5 VALUE=\"(A"NAME=\"crg_min\"> Minimum Number of formal

charges-BR-\n");
print■ (“TR-TD-\n");
print■ (“clNPUT SIZE=5 VALUE=\"101\"NAME=\"usdpergm"> Maximum Cost Per Gram (in

USD).<BR->\n");
print■ ("º■■ D-TR-\n");
print■ ("º■■ aBLE×un"),
print■ (“zTABLE width=2000%--TR-TD-xHR-C/TD-CTD-INPUT TYPE=\"submitwº-d

TD-■ trº-■ table>\n");
print■ (“‘H3>Functional Group Eliminations.</H3>\n");
print■ ("n"),
print■ (“…TABLE BORDER=5 width=904-\n");
print■ ("xcAPTION<H4×These functional groups will be eliminated by default unless you select

them.</H4×wn");
print■ ("º■ CAPTION-\n");
print■ (“KTR-\n"),
print■ ("…TH>Keep?…TH><TH NOWRAP-Functional Groupe■ t Hºn");
print■ (“cTH>Keepº■■ H-TH NOWRAP-Functional Group-■ th
print■ ("<TH>Keep?º■ t H-TH NOWRAP-Functional Group-■ th-\n");
print■ (“■ trewn");
printf("n"),
print■ (“‘TRSAn"),
print■ ("x■ D ALIGN-center-INPUT TYPE=\"checkbox\" VALUE=ATRUEW"

NAME=\"acid halidew"></TD-CTD-ºf-ONT COLOR=\"#770000A"><FONT
COLOR=\'s 770000">Acid Halide</TD->\n");

printf("…TD ALIGN=center-ciNPUT TYPE=\"checkboxy” VALUE=ATRUE NAME=\"anhy
dridew"></TD-TD-FONT COLOR=\'s 770000">Anhydride.</TD-\n");

print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"TRUE,"
NAME=\"azideº"></TD-TD-FONT COLOR=\"#770000">Azideº/TD-\n");

print■ (“º■■ Rºn");
print■ (“zTR-\n");
print■ (“…TD ALIGN=center--INPUT TYPE=\"checkbox\" VALUE=ATRUEV"NAME=\"azov"></

TD-CTD-ºf-ONT COLOR=\"#770000">Azoº■ ti»wn"),
print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"TRUEW" NAME=\"dipep

tideA"></TD-TD-FONT COLOR=\"nT70000">Di-Peptide.</TD-\n");
print■ ("…TD ALIGN=center-cINPUT TYPE=\"checkbox\" VALUE=\TRUEW"

NAME=\"four halides\"></TD--TD-FONT COLOR=\"#770000">Four Halides ºftD-An”);
print■ ("</TR-\n");
print■ (“…TRºn");
print■ (“kTD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"TRUEW"

NAME=\"long chainw"></TD-TD-FONT COLOR=\"#770000">Long Chain (>7 atoms).</
TD-\n"),

print■ (“…TD ALIGN=center,<INPUT TYPE=\"checkbox\" VALUE=\"TRUE," NAME=\"non
standardatomy"></TD-TD-FONT COLOR=\"#770000">Non-Standard Atomº■ t Dºwn");

print■ (“zTD ALIGN=center-INPUT TYPE=\"checkbox\" VALUE=\TRUEY NAME=\"perox.
idew"></TD--TD-FONT COLOR=\"#770000">Peroxide.</TD-\n");

print■ (“k■ TR-\n");
print■ (“…TRºn"),
print■ ("…TD ALIGN=center-INPUT TYPE=\"checkbox\" VALUE=ATRUE,"

NAME=\"sulfonic acid■ vº■ t D--TD-FONT COLOR=\'s 770000">Sulfonic Acid-ºftD-\n");
printf("…TD ALIGN=center-INPUT TYPE=\"checkbox\" VALUE=ATRUE."

NAME=\"sulfonic_cster,"></TD-TD-CHONT COLOR=\"#770000">Sultonic Ester</TD-\n");
print■ (“‘TD ALIGN=center--INPUT TYPE=\"checkbox\" VALUE=\TRUEV"

NAME=\"two charges,"></TD-CTD-FONT COLOR=\"nTTOOOOM">>1 Formal Charge-■ tL-\n");
print■ ("º■■ R-\n");
print■ (“TR-\n");
print■ (“…TD ALIGN=center.<INPUT TYPE=\"checkboxy" VALUE=ATRUEV"

NAME=\"two nitros\"><■ t D-CTD-xHONT COLOR=\"#770000">>l Nitrosº/TD-\n");
print■ (~&TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"TRUE\"

NAME=\"unbranched chain\"></TD-><TD-FONT COLOR=\"#770000n">Unbranched Chain (>= 4
atomsk■■ D-\n");

print■ (“…TD ALIGN=center-INPUT TYPE=\"checkbox\ VALUE=\"TRUEY NAME=\"macrocy
clevº■ t D-2TD-FONT COLOR=\"#770000">Macrocycles (>7 atomsk■ TD-\n");

print■ (“‘■ trºn");
print■ (“…TR-\n");
print■ (“…TD ALIGN=center-INPUT TYPE=\"checkboxv VALUE=\TRUEV"

NAME=\"epoxidew"><■ t D-TD-CFONT COLOR=\"s"?0000">Epoxides ºf TD-\n");
print■ (“…TD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=ATRUEV"

NAME=\"alpha_elimination\"></TD-TD-FONT COLOR=\'s 770000"><i>Alpha Elimination
Problems</i></TD-\n");

print■ (~~TD ALIGN=center-INPUT TYPE=\"checkbox\" VALUE=\TRUE."
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NAME=\"heta_elimination\"></TD-TD-cFONT COLOR=\"#770000A"><i>Bela Elimination Prob
lens-■ l-e■ t■ ): An"),

print■ (“‘■■ Rºn"),
print■ ("º■ t ABLE-\n");
print■ (“‘l-Italic indicates groups under evaluation.</i>\n");
print■ (“kBR-CBR-An"),
print■ (“n”);
print■ (“…TABLE BORDER=5 width=90%-\n");
print■ (“CAPTIONºn");
print■ (“‘H4×These functional groups will be kept by default unless you select them.</H4×\n");
print■ ("º■ CAPTIONSun"),
print■ (“KTRºn"),
print■ (“…TH>Discardº■■ H--TH NOWRAP-Functional Groupº■ th-\n");
print■ ("…TH>Discardºr■ H--TH NOWRAP-Functional Group ºf TH>\n");
print■ ("…TH>Discard?…TH><TH NOWRAP-Functional Group:/TH>\n");
print■ ("º■■ Rºn"):
print■ (“An’):
print■ (“zTR-\n");
print■ (“zTD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW" NAME=\"alco

hol\"></TL)--TD-FONT COLOR =\"#007700A">alcohol ºf TD-\n");
print■ (“TD ALIGN=center…INPUT TYPE=\"checkbox,” VALUE=\"FALSEY NAME=\"alde

hyde"></TD-TD-FONT COLOR=\"#007700A">aldehydcº■■ D.,\n");
print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkhox\" VALUE=\"FALSEW" NAME=\"alk

eneV"></TD--TD-FONT COLOR=\"#0077(xA">alkeneº■ TD-\n"),
print■ (“k■ TR-\n");
print■ (“TR-\n");
print■ ("…TD ALIGN=center…INPUT TYPE=\"checkhoxy” VALUE=\"FALSEY”

NAME=\"alkyl halide"></TD-2TD-FONT COLOR=\"goo??00">alkyl halide</TD-\n");
print■ ("…TD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"

NAME=\"alkyne,"></TD-2TD-FONT COLOR=\"foo"700">alkyne</TD-\n");
print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"

NAME=\"amidew"></TD-TD-FONT COLOR=\"fºx)7700">amide.</TD->\n");
pºint■ (“ki■■ Rºn"),
print■ ("…TR-\n").
print■ (“cTD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=\"FALSE."

NAME=\"aminew"></TD-TD-FONT COLOR=\"#(x)7700A">amine.</TD-An”),
printf("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSE"

NAME=\"amino acidº"></TD-ºt D-FONT COLOR=\"#(x)770, nº-amino acid-■ tD-\n");
print■ ("…TD ALIGN=center-cINPUT TYPE=\"checkbox\" VALUE=\"FALSEW"

NAME=\"aniline\"></TD--TD-FONT COLOR=\"#007700">aniline.</TD-\n");
print■ ("º■■ Rºn").
print■ (“…TR-An”),
print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEA"

NAME=\"arency"></TD--TD-cFONT COLOR=\ºw)7700">arene.<r■ Dºwn");
print■ ("…TD ALIGN=center…INPUT TYPE=\"checkhoxy” VALUE=\"FALSE"

NAME=\"aryl halide"></TD-CTD-FONT COLOR=\"#007700">aryl halide.<r■ D-\n");
print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEY NAME=\"carbam

ate"><■■ DºcTD-FONT COLOR=\'º■ )07700A">carhamate.</TD-An”);
print■ (“ºf TR-\n");
print■ ("…TR-\n");
print■ (“…TD ALIGN=center-INPUT TYPE=\"checkhox\" VALUE=\"FALSEW"

NAME=\"carboxylic acid"></TD-TD-FONT COLOR=\"#007700">carboxylic acidº■■ I)-\n");
print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEY NAME=\"electro

philew"></TD--TD-FONT COLOR=\"soon?txº"><i>electrophile-■ i-■ tºn"),
print■ (“ctID ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"

NAME=\"cster"></TD-TD-FONT COLOR=\"#0077(xA">ester</TD,\n");
print■ (“k/TRSAn"),
print■ (“c■ Rºn"),
print■ ("…TD ALIGN=center-INPUT TYPE=\"checkbox\ VALUE=\"FALSEY"

NAME=\"ether,"></TD--TD-FONT COLOR=\"#007700m">ether.<r■ D-An”),
print■ (“zTD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=\"FALSE"

NAME=\'halide"></TD-TD-FONT COLOR=\"#007700m">halide-■ tL)-\n");
print■ (“zTD ALIGN=center» «INPUT TYPE=\"checkhoxy” VALUE=\"FALSEW" NAME=\"hydra

zine"></TD-TD-FONT COLOR=\'hô07700">hydrazine.</TD-\n");
print■ ("</TR-\n");
print■ (“TR-\n");
print■ (“zTD ALIGN=center-INPUT TYPE=\"checkhox\" VALUE=\"FALSEY NAME=\"hydrox

ylamine,"></TD--TD-FONT COLOR=\"hºº">hydroxylamineº■ TDºn"),
print■ ("…TD ALIGN=center,<INPUT TYPE=\"checkbox\" VALUE=\"FALSEY NAME=\"hydra

zone"></TD-CTD-FONT COLOR-\"#007700">hydrazone.</TD,\n");
print■ (“zTD ALIGN=center…INPUT TYPE=\"checkhoxy” VALUE=\"FALSEW"

NAME=\"ketone\"></TD-TD., cFONT COL()R=\"goo?700">ketone.</TD-\n");
print■ (“ºft R-\n");
print■ (“zTRºn"),
print■ (“zTD ALIGN=center-cINPUT TYPE=\"checkbox\" VALUE=\"FALSE"

NAM nitrile\"></TD--TD-FONT COLOR=\"gºo■ n’s nitrile.</TD-\n");
print■ (“zTD ALIGN=center-INPUT TYPE=\"checkbox\" VALUE=\"FALSE,"

NAME=\"nitrº"></TD-Tix--FONT COLOR=\"st ºf 700">nitrº/TD-\n");
print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkhox\" VALUE=\"FALSEW"NAME=\"nucleo

philevº■■ D--TD-FONT COLOR=\"goo"Toºw'-->nucleophile-Lº■■ Dºn"):
print■ ("º■■ Rºn");
print■ (“TR-An
print■ (“…TD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"FALSEY NAME=\"phe

nol\"></TD-TD-FONT COLOR=\"#0077(XR">phenolº■■ D-\n"),
print■ (“…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"

NAME=\"ring\"></TD-CTD-FONT COLOR=\"#007700A">ring</TD-\n");
print■ (“TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEY NAME=\"sul

fide"></TD-TD-FONT COLOR=\"s(x)77(x)\">sulfide.</TD->\n");
print■ ("x/TRSAm"),
print■ (“…TR-An”).
print■ (“…TD ALIGN=center--INPUT TYPE=\"checkbox\" VALUE=\"FALSEY NAME=\"sul

foney"></TD--TD-FONT COLOR=\"hoo770(A">sulfone.</TD-\n");
print■ ("…TD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"FALSEY NAME=\"sulfox

lde\"><■■ D-xTD-FONT COLOR=\"#00770■ º">sulfoxide.</TD-\n");
print■ ("…TD ALIGN=center,<INPUT TYPE=\"checkhox\" VALUE=\"FALSEY NAME=\"thioam

ideº"><■ t D-2TD-FONT COLOR-A's (M)77(x)\">thioamidez/TD-\n");
print■ (“ºf TR-\n");
print■ (“kTR-\n");
print■ (“…TD ALIGN=center…INPUT TYPE=\"checkboxwº VALUE=\"FALSEW"

NAME=\"thiol\"></TD-CTD., & FONT COLOR=\"#0077(x)\">thiolº■■ Dºn”),
print■ (“…TD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"NAME=\"thio

ureav'-cytid:--TD--FONT COLOR =\"fºo" zoº”-thiourea-Tid-An'");
print■ ("…TD ALIGN=center-INPUT TYPE=\"checkbox\" VALUE=\"FALSE\"

NAME=\"urea"></TD--TD...FONT COLOR-\"#(x)7700A">ureak/ID-An”),
print■ ("º■■ Rºn"),
print■ ("KTRSAn”),
print■ (“cTD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"

NAME=\"primary amine"></TD-TD-FONT COLOR=\"a■ o?700">primary aminck/ID-\n");

print■ (“zTD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEA"
NAME=\"secondary amine,"></TD--TD-FONT COLOR=\"#007700">secondary amine.</
TD-\n");

print■ (“kTD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"tertiary amine\"></TD-TD-FONT COLOR=\"#007700">tertiary amine.</TD-\n");

print■ (“ºft R-\n");
print■ (“zTR-\n");
print■ ("…TD ALIGN=center…INPUT TYPE=\"checkboxy" VALUE=\TALSE"

NAME=\"phosphoric acid"></TD-CTD-FONT COLOR=\"#007700">phosphoric acid-■ tdºwn");
printf("KTD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"

NAME=\"phosphoric ester,"></TD-TD-FONT COLOR-\"#007700">phosphoric ester</
TD-\n");

print■ (“…TD ALIGN=center» «INPUT TYPE=\"checkhox\" VALUE=\"FALSEW"
NAME=\"phosphonic acid"></TD-CTD-FONT COLOR=\"#007700">phosphonic acidº!
TD-\n");

print■ ("</TR-\n");
print■ (“…TRSAn”);
print■ (“zTD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"

NAME=\"phosphonic_ester"></TD--TD-FONT COLOR=\"soo"700">phosphonic ester</
TD-\n");

print■ (“‘TD ALIGN=center-INPUT TYPE=\"checkbox\" VALUE=\"FALSEY NAME=\"isocyan
ale\"></TD-TD-FONT COLOR=\"#007700">isocyanate.</TD-\n");

print■ (“zTD ALIGN=center,<INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"imine\"></TD-TD-FONT COLOR=\"#007700">imine.</TD-\n");

print■ ("º■■ Rºn");
print■ ("…■ table>\n");
print■ (“clº-Italic indicates groups under evaluation</i>\n");
print■ (“zBR><BR-\n");
print■ ("\n");
print■ ("…TABLE WIDTH=2000%-TR-TD-xHRS ºf TD-6TD-CINPUT TYPE=\"submity"></

TD-º/TRS, ºftABLE-An”);
###Currently there are no smarts strings for the unstable ■ cnsatiº
# print■ (“zH3>Compound Stability.</H3>\n");
# print■ (“…TABLE BORDER=5 width=90% ºn");
* print■ (“CAPTION: An");
# printf("<H4×Some of these groups may be unstable, Check the groups you wish to discard.</
H4×An”);
# print■ ("º■ CAPTION-An”);

print■ (“…TR-\n");
print■ ("…TH>Discard?:/TH><TH NOWRAP-Functional Groupº■ t HSun");
print■ ("…TH>Discardº■■ H-6TH NOWRAP-Functional Group:/TH>\n");
print■ (“…TH>Discard?…TH><TH NOWRAP-Functional Group-■ th-wn");
print■ (“k■ TR>\n"),
printf("\n");
print■ (“‘TRºn");

# print■ (“…TD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE-\"FALSEW"
NAME=\"malonic_acidy"></TD-CTD-º:FONT COLOR=\"#000077V">malonic acid derivatives.</
TD-\n");
# printf(“…TD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha_cyano_ca"></TD-TD-xHONT COLOR=\"#000077V">alpha-cyano carboxylic
acid-■ ix-\n");
# print■ (“zTD ALIGN=center-cINPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha_nitro_cav"></TD-2TD-FONT COLOR=\"goooo"TV">alpha-nitro carboxylic acid ºf
TD-\n");
# printf("…■ trºn");
# print■ (“zTR-\n");
# print■ (“zTD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha_aryl_ca"></TD-TD-FONT COLOR=\"Hoooo?7V">alpha-aryl carboxylic acidº
TD-\n");
# print■ (“zTD ALIGN=center-clNPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha_trihalo_ca"></TD-TD-xHONT COLOR=\"#000077V">alpha-trihalo carboxylic
acidº■ tdown”).
* print■ (“…TD ALIGN=center.<INPUT TYPE=\"checkbox" value=\"FALSEW"
NAME=\"alpha_keto cavº■■ D-TD-FONT COLOR=\"#000077V">alpha-keto carboxylic acidº!
TD-\n");
# printf("º■■ Rºn");
# print■ (“zTR-\n");
* print■ (“zTD ALIGN=centers &INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"beta_keto cavº■■ D-TD-FONT COLOR=\"#000077V">beta-keto carboxylic acidº■
TD-\n");
# print■ (“…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"beta_keto cavº ºf TD-3TD-FONT COLOR=\"#000077V">beta-keto ester</TD-\n");
s print■ (“…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha_beta_unsal ca\"></TD-TD-FONT COLOR=\"#000077V">alphabeta-unsaturated
carboxylic acid-■ tD-\n
a print■ ("º■ t Rºn");
a print■ (“‘TRºn");
# print■ (“‘TD ALIGN=center-INPUT TYPE=\"checkbox\" VALUE=\"FALSE\"
NAME=\"beta gamma_unsal ca'-x/TD-TD-FONT COLOR=\"#000077V">betagamma-unsatur
ated carboxylic acid-■■ D-\n");
# print■ (“…TD ALIGN=center-INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"beta_hydroxy_ca"></TD-TD-xFONT COLOR=\"#000077V">beta-hydroxy carboxylic
acid-■■ D-\n");
a print■ (“…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEV"
NAME=\beta_halo cav'></TD-TD-FONT COLOR=\"#000077V">beta-halo carboxylic acido■
TD-\n"),
a print■ (“‘■■ R-\n"),
a print■ (“…TR-\n");
# print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha_amino_ket_or_aldy"><■■ D-TD-cFONT COLOR=\"#000077V">alpha-amino
ketone/aldehyde-º■■ I)-\n");
a printf("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha hydroxy_ket_or_aldV"></TD-CTD-FONT COLOR=\"#000077V">alpha-hydroxy
ketone/aldehyde-º■■ Dºn"),
a print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha beta_ket_or_aldV"></TD-3TD-FONT COLOR=\"#000077V">alpha-beta ketone/
aldehydcº■■ Dºn"),
# print■ ("º■■ Rºn");
# print■ (“…TRSAn");
a print■ (“…TD ALIGN=center-ciNPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha_halo ket_or_ald)"></ID-CTD-FONT COLOR=\"#000077V">alpha-halo ketone/
aldehyde (CI.Br.l only}</TD-\n");
a print■ (“…TD ALIGN=center…INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"alpha_halo hydroxyly"></TD--TD-FONT COLOR=\"#000077V">alpha-halo hydroxyl.</
TD-\n"),
* print■ (“…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSE"
NAME=\"alpha_amino_hydroxyly"></TD-CTD-FONT COLOR=\"goooo?7">alpha-amino
hydroxylº■■ Dºn");

:
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# print■ ("º■ t Rºn").
a print■ (“zTR-\n");
# print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"beta_halo hydroxylvºr■ L-2TD-FONT COLOR=\"#000077V">beta-halo hydroxyl.<!
TD-\n"),
* print■ (“…TD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=\"FALSEW"
NAME=\"beta_amino hydroxy■ "></TD--TD-FONT COLOR=\"#000077V">beta-amino
hydroxylº■■ Dºn"),
# print■ ("…TD ALIGN=center-clNPUT TYPE=\"checkhoxy” VALUE=\"FALSE\"NAME=\"\"></
TD-TD-xHONT COLOR=\"#000077">alpha-halo ketone/aldehyde (Cl.Br.I only}</TD-\n");
# print■ (“ºf IRSun"),
* print■ (“‘■ tabl E-An”);
a print■ (“cBR-BR-\n"),
# print■ (“n”),
# print■ (“…TABLE WIDTH=20004×TR-TD-xHR-TD-2TD-INPUT TYPE=\"submitY"></
TD-º/TR ºf TABLE×wn”).

print■ ("…H3>Suppliers.</H3>\n"),
print■ (“zTABLE BORDER=52\n");
print■ ("…TRºn"),
print■ ("KTH ALIGN=center COLSPAN=2×Supplier Class.</TH>\n");
print■ ("º■ t Rºn"),
print■ (“TR-\n");
print■ (“TD ALIGN=center.<INPUT TYPE=\"radio." NAME=\"supplier type"

VALUE=\"all supplierº"></TD-\n");
print■ (“zTD ALIGN=center» «FONT COLOR=\"soo"T77V">All Suppliers.</TD-\n");
print■ (“º■■ Rºn"),
print■ ("…TRºn"),
print■ ("…TD ALIGN=center-INPUT TYPE=\"radio." NAME=\"supplier type"

VALUE=\"suppliers herev. CHECKED-TD-\n"),
print■ (“TD ALIGN=center.<FONT COLOR=\"#007777">All Supplier, Below.</TD-\n");
print■ (“ºtrºn").
print■ ("…TRºn"),
printf("…TD ALIGN=center.<INPUT TYPE=\'radio." NAME=\"supplier type"

VALUE=\"selected suppliers"></TD-\n");
print■ ("…TD ALIGN=center» «FONT COLOR=\"#007777V">Selected Suppliers Below.º■■ D-\n");
print■ ("º■■ Rºn"),
print■ ("…TR-\n"),
print■ ("…TD-TD-CTD-º■ t Dºn"),
print■ (“ºf TR-\n");
print■ ("…TR-An”),
print■ ("…T.D.'■ ID--TD-TDºn"),
print■ ("º■■ Rºn"),
print■ ("…TR-\n"),
print■ (“kTD-x/TD-2TD-TDºn");
pºint■ ("º■■ Rºn"),
print■ (“TR-\n");
print■ ("…TH>()K"-■ th-TH>Companyc/TH>\n");
print■ ("º■■ R-\n"),
print■ ("…TRºn");
print■ (“…TD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=ATRUE NAME=\"ald.

rich"></TD-\n");
print■ (“…TD ALIGN=center-FONT COLOR=\'s Too"T">Aldrich-TD-\n");
print■ tº/TRºu").
print■ (“TR-\n");
print■ ("…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\TRUE\"

NAME=\"fluka"></TD-\n"),
print■ ("…TD ALIGN=center» «FONT COLOR=\"#770077V">Fluka ºftD-\n");
print■ ("º■ t Rºn"),
print■ (“zTRSAn”),
print■ (“zTD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=ATRUE."

NAME=\"sigma\"></TD-\n");
print■ (“…TD ALIGN=center.<FONT COLOR=\"#770077">Sigmaº■ ti»n"),
print■ ("º■ t Rºn"),
print■ (“TRºn"),
print■ (“…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\TRUEW"NAME=\"calbio

chemy"></TD-\n");
print■ (“zTD ALIGN=center» «FONT COLOR=\"nTToo?.7V">Calbiochemº/TD-\n");
print■ (“ºf IRºn"),
pºint■ (“TRºn"),
print■ (“…TD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=\TRUE," NAME=\"ind.

onnevºr■ D-\n").
print■ (“TD ALIGN=center-cFONT COLOR=\"nT70077">Indofineº■ TD-\n");
print■ (ºft R-\n");
print■ (“k■ Rºn").
print■ (“…TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=\"TRUEY NAME=\"kn"><!

TD-\n"),
print■ (“zTD ALIGN=center…FONT COLOR=\"sº10077">ICN-TDown").
print■ ("º■■ Rºn"),
print■ (“zTRSAn"),
print■ ("…TD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=\"TRUEW"

NAME=\"pfaltz hauer,"></TD-\n");
pºint■ ("…TD ALIGN=center.<FONT COLOR=\"s??0077">P■ altz &amp; Bauer Inc.</TD-\n");
print■ ("º■ t Rºn"),
print■ (“zTR-u■ "),
print■ (“zTD ALIGN=center-cINPUT TYPE=\"checkbox\" VALUE=\TRUE."

NAME=\"tcl_america)"></TD-\n"),
print■ ("…TD ALIGN=center.<FONT COLOR=\"s?70077V">TCI America-■ tL)-\n");
print■ (“k/TR-\n");
print■ ("…TRºn"),
print■ (~&TD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=ATRUE\"NAME=\"lan

caster"></TD->\n");
print■ (“…TD ALIGN=center…FONT COLOR=\"#770077">Lancaster</TD-\n");
print■ (“ºf TR-\n");
print■ (“…TR-\n").
print■ (“…TD ALIGN=center-cINPUT TYPE=\"checkbox\" VALUE=ATRUE\"

NAME=\"acros organics"></TD-\n");
print■ ("…TD ALIGN=center» «FONT COLOR=\"*T7007T">Aeros Organics.</TD-\n");
print■ ("º■ t Rºwn").
print■ (“…TRSAn"),
print■ (+TI) ALIGN=center…INPUT TYPE=\"checkboxwº VALUE=ATRUEV"

NAME=\"mayhr intº"></TD-\n");
print■ (“…TD ALIGN=center…FONT COLOR=\"s?70077">Maybridge-INT-TD-\n"),
print■ ("º■■ Rºn"),
print■ ("…TRºn"),
print■ (“cTD ALIGN=center» «INPUT TYPE=\"checkbox\" VALUE=ATRUE\"NAME=\"may

bridge\"></TD-\n"),
print■ ("…TD ALIGN=center-FONT COLOR=\"s??0077">Maybridge-TD-\n");
print■ ("º■■ Rºwn"),

print■ (“TR-\n");
print■ (“‘TD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=ATRUE,"

NAME=\"salory"></TD.,\n");
print■ (“zTD ALIGN=center.<FONT COLOR=\"nT70077V">Salorº■ ti»wn");
print■ ("º■■ Rºn"),
printf("…TRºn"),
print■ (“‘TD ALIGN=center.<INPUT TYPE=\"checkbox\" VALUE=\"TRUEW"

NAME=\"trans_world,"></TD-\n");
print■ (“zTD ALIGN=center-FONT COLOR=\"s?70077V">Trans world.</TD-\n");
print■ (“ºf TRS-\n"),
print■ ("º■■ aBLESAm"),
print■ (“BR-BR-\n");
print■ ("n"),
print■ (“…TABLE WIDTH=2000%.<TR-TD-CHRS ºftD-CTD-INPUT TYPE=\"submitY"><!

TD-TR-3/TABLESun"),
print■ (**TABLE WIDTH = 30%-\n");
print■ (“kh 3>Select Output Formal&■ hy-\n");
print■ (“…TRSAn”):
print■ (“…TD ALIGN=center» «INPUT TYPE=\"radioV" NAME=\"output type," VALUE=\"uit"

CHECKED-cº■ t D.An”),
print■ (“‘TD-SMILES:/TD-\n");
print■ ("º■ t Rºn"
print■ (“…TRºn");
print■ ("…TD ALIGN=center» «INPUT TYPE=\'radioV"NAME=\"output type," VALUE=\'lsº"></

TD-\n");
print■ (“…TD NOWRAP-MDL lstº■ tdºwn");
print■ ("º■■ R-\n
print■ (“TR->\n"
print■ ("…TD ALIGN=center-INPUT TYPE=\'radio"NAME=\"output type"

VALUE=\"graphic\"><■■ Dºn"),
print■ (“‘TD NOWRAP-Inline Graphic (takes longer, not recommended for lists-100) ºftD-\n");
print■ ("º■■ R-\n");
printf("…TRSAn");
print■ (“zTD ALIGN=center-INPUT TYPE=\"radio," NAME=\"output type,"

VALUE=\"library"></TD-\n");
print■ ("…TD NOWRAP»Reaction Library.</TD-\n");
print■ ("º■ tRºun").
print■ ("º■■ aBLE-An”);
print■ (“n"),
print■ ("…TABLE width=20004-TR-TD-xHR-TD-2TD-INPUT TYPE=\"submity"></

TD-º■ t Rºº■ t ABLE×\n");
print■ (“zH3>Submit Searche■ H3>\n");
print■ ("…INPUT TYPE=\"submity"><INPUT TYPE=\"reset\">\n");
print■ (“‘P-When form is complete submit it for a database search. The search may take a couple

minutes."m"),
print■ (“ºff-ORMºun"),
print■ (“khRºun"),
print■ ("…BR-Created by Geoff Skillman\n");
print■ (“KA HREF=mallto skillman effancisco.ucsf.edu: \n");
printf("~EM-skillman\efrancisco.ucsf.edu.<jA-x/EM-\n");
print■ (“, «A TARGET=_TOPHREF=http://www.cmpharm.ucsf.edu/kuntry. Kuntz Group,

UCSFn");
print■ ("JBR->\n");
print■ ("º■ CENTER-\n");
print■ ("JBODYºn");
print■ (“JHTML-wn");

º,
**

*
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Functional Group Smiles Codes:

Functional Group SMILES

aminoacid NCC=O

dipeptide O=CCNC(=O)CN

two nitros N(=O)(O-].N(=O)IO-]

malonic O=CCC=O

Ulrea NC(=O)N

alcohol CO

thiol S

alkene C=C

alkyl C

alkyne C#C

lactam O=CN

amide O=CN

anhydride O=COC=O

aniline N

aniline unsubstituted N

azide N

triazine N=NN

aZO N=N

carbamate NC(=O)C)

carbamic acid NC(=O)C)

carbonate OC(=O)C)

thiourea NC(=S)N

carbonyl =C

thiocarbonyl S=C

carboxylic acid O=CO

acid halide O=

acid chloride O=CC]

sº

ºy)
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Functional Group SMILES

lactone O=CO

eSter O=CO

aldehyde O=C

ketone O=C

sulfonic acid S(=O)(=O)C

sulfonic_ester S(=O)(=O)C*

phosphonic acid P(=O)(=O)C)

phosphonic ester P(=O)(=O)C)*

epoxide C1OC1

hydrazine NN

hydrozone NN=C

isocyanate O=C=N

isothiocyanate S=C=N

nitrile N#C

nitro N(=O)(O-)

peroxide OO

phenol O

amine N

primary_amine N

Secondary amine N

tertiary amine N

sulfide S

sulfone S(=O)=O

sulfoxide S=O

disulfide SS

alkyl halide C

ether O

thioether S
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Functional Group SMILES

acetal OCO

ketal OCO

hemiacetal OCO

hemiketal OCO

sulfonamide S(=O)(=O)N

sulfonyl halide S(=O)(=O)

imino N=C

oxime ON=C

dithioacetal SCS

oxalyl O=CC=O

enamine C=CN

enol_ether C=CO

hydroxylamine NO

Functional Group Rooted SMARTS Codes:

Functional Group Rooted SMARTS

amino acid [N][C;!$(C=*)][C;$(C=O);$(C[!#6])]

dipeptide O=CCNC(=O)CN

two charges [$charge].[$charge]

two nitros [$nitro].[$nitro)

unbranched_chain [R0:D2][R0;D2][R0:D2][R0;D2]

charge [$acid,Shase]

acid [*&$(*=*)&$(*[$hydroxyl]),Smalonic]

base [n,N&D3&!$(N*=[!#6])]

malonic [C;H1,H2;$(C([$Ccarbonyl])[$Ccarbonyl])]

four halides [$halide]...[$halide]...[$halide]...[$halide]

long chain [A;RO][A;RO][A;RO][A;RO][A;RO][A;RO][A;RO][A;RO]

º -

º
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Functional Group Rooted SMARTS

macrocycle [r8,r9,r10,r11,r12,r13,r14,r15, r16,r17,r18]

nonstandardatom !}{1; H2;!}#3; #5;!}{6;!}#7;!}#8;!#9;!}#11;!}#12; H15;!#16;!}#17; #19;!
■ ó■ 3šî■ 53]

nucleophile §§§ amine, $secondary amine, $aniline, $phenol,Sazide ...}...;;..."; oxime]

alkyl [$Calkyl]

combi any [$combi fen, $combi linker]

combi_linker [$amide,$secondary amine,$Sulfona-.
mide,$urea, Šester,Sether, Stertiary amine,$carbam
ate,$imino,Shydrazone,$thioether, $thioamide,$thiourea,Sthiocarb
amate,$thioester]

combi_fcn º ine,$ d ine,$amide,$alkylatie, bprimary_anine, bSecondary amine, bam!Cle ating_a§§ $isocyanate $isot j. gate Scarboxylic acid $acid halide $hydražine Saryi mono Bril
[$alkene;$!($alkene.Salkene)]mono_alkene

mono alkyne [$alkyne;$!($alkyne.Salkyne)]

aryl_mono Bri [c;$(c[Br,I])]

Ulrea [$Nurea)

alcohol [$Oalcohol]

thiol [$Sthiol]

alkene [$Calkene]

alkyne [$Calkyne]

lactam [$Clactam]

amide [$Camide]

thioamide [$Cthioamide)

anhydride [$Canhydride]

aniline [$pseudo_amine;$(NI$aryl]);!$(N-[!#6])]

aniline_unsubstitut
ed

[$pseudo_amine:D1;$(NI$aryl]);!$(N-[!#6])]

azide [$Nazide)

triazine [$N1triazine,$N12triazine]

aZO [$Nazo]

º

º

nº
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Functional Group Rooted SMARTS

thiocarbamate [$Othiocarbamate,$Nthiocarbamate]

carbamate [$Ocarbamate,$Ncarbamate]

carbamic acid [$Ccarbamic acid]

carbonate [$Ocarbonate]

thiourea [$Nthiourea)

carbonyl [$Ccarbonyl]

thiocarbonyl [$Cthiocarbonyl]

carboxylic acid [$Ccarboxylic acid]

acid halide [$Cacid halide]

acid chloride [$Cacid chloride]

thioester [$Cthioester]

eSter [$Cester]

lactone [$Clactone]

aldehyde [$Caldehyde]

ketone [$Cketone]

sulfonic_acid [$Ssulfonic acid]

sulfonic_ester [$SSulfonic_ester]

phosphonic acid [$Pphosphonic acid]

phosphonic_ester [$Pphosphonic_ester]

phosphoric acid [$Pphosphoric acid)

phosphoric ester [$Pphosphoric ester]

epoxide [$Cepoxide)

hydrazine [$Nhydrazine]

hydrazone [$Nhydrazone]

isocyanate [$Nisocyanate]

isothiocyanate [$Nisothiocyanate]

nitrile [$Cnitrile]

nitro [$Nnitro)
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Functional Group Rooted SMARTS

peroxide [$Operoxide)

phenol [$Ophenol]

primary amine [$Nprimary_amine]

Secondary amine [$Nsecondary amine]

tertiary amine [$Ntertiary amine]

sulfide [$SSulfide]

sulfone [$SSulfone]

sulfoxide [$Ssulfoxide)

disulfide [$Sdisulfide]

alkylating agent [$Xalkylating agent]

alkyl halide [$Xalkyl halide]

aryl_halide [$Xaryl_halide)

ether [$Oether]

thioether [$Sthioether]

acetal [$Cacetal]

ketal [$Cketal]

hemiacetal [$Chemiacetal]

hemiketal [$Chemiketal]

sulfonamide [$Ssulfonamide)

sulfonyl halide [$Ssulfonyl halide]

imino [$Cimino]

oxime [$Coxime]

dithioacetal [$Cdithioacetal]

organometallic [$Corganometallic]

oxalyl ($Coxalyl]

enamine [$Cenamine]

enol_ether [$Cenol_ether]

Sdisulfide [S;$(S([$Calkyl])SISCalkyl])]
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Functional Group Rooted SMARTS

Xalkylating agent [$lg_halide;$(*[$Calkyl])]

Xalkyl halide [$halide;$(*[$Calkyl])]

Xaryl_halide [$halide;$(*[$aryl])]

Sthioether [S;$(S([$Calkyl])[$Calkyl])]

Oacetal [O;$(O[$Cacetal])]

Cacetal [C;H1,H2;$(C(OISCalkyl])O[$Calkyl])]

Oketal [O;$(O[$Cketal])]

Cketal [C;H0;$(C(O($Calkyl])O[$Calkyl])]

OEhemiacetal [O;$Oether;$(OISChemiacetal])]

OHhemiketal [O;$hydroxyl;$(O[$Chemiketal])]

OEhemiacetal [O;$Oether;$(O[$Chemiacetal])]

OHhemiketal [O;$hydroxyl;$(O[$Chemiketal])]

Chemiacetal [C;H1,H2;$(C(O($Calkyl])[$hydroxyl])]

Chemiketal [C;H0;$(C(O[$Calkyl])[$hydroxyl])]

SSulfonamide [S;$(S(=O)(=O)N)]

Ssulfonyl halide [S;$(S(=O)(=O)($halide])]

Nimino [N;$(N=[$Cimino])]

Cimino [C;$(C=[N;!$(N-[$hetatm])])]

OOxime [O;$(O[$Noxime])]

Noxime [N;$(N=[$Coxime])]

Coxime [C;$(C=NI$hydroxyl])]

Sdithioacetal [S;$(S[$Cdithioacetal])]

Cdithioacetal [C;$(C1SCCCS1)]

Corganometallic ■ ºscescºsmºs.cunsciculusciadºc
Ooxalyl [O;$(O=[$Coxalyl])]

Coxalyl [$Ccarbonyl;$(C[$Ccarbonyl])]

Cenamine [C;$(C=C[N;!$Nnitro])]
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Functional Group ROOted SMARTS

Oenol_ether [O;$(OC=[$Cenol_ether])]

Cenol_ether [C;$(C=C[$Oether])]

Oether [O;$(O([$Cstd])[$Cstd])]

Nurea [N;$(NI$Curea]).]

Curea [$Ccarbonyl;$(C(=O)(N)N)]

Oalcohol [$hydroxyl;$(OIC;!$(C=[!#6])])]

Sthiol [$mercapto;$(S[#6;!$(C=[!#6])])]

Nlactam [Namide;R]

Clactam [Camide;R]

Nthioamide [N;$(NI$Cthioamide])]

Cthioamide [$Cthiocarbonyl;$(CN);!$(C(N)(=S)[!#6])]

Namide [N;$(NI$Camide])]

Camide [$Ccarbonyl:$(CN);!$(C(N)(=O)I{6])]

Canhydride [$Ccarbonyl;$(COISCcarbonyl])]

Nazide [N;$(N=[N+]=[N-])]

N 1 triazine [N;$(N=N-N);D2]

N12triazine [N;$(N-N=N);D2,D3]

Nazo [N;D2;$(N=[N;D2]);!$(NI$hetatm]);!$(N=NI$hetatm])]

Ccarbamic acid [$Ccarbamate;$(C[$hydroxyl])]
Othiocarbamate [O;$(OISCthiocarbamate])]

Nthiocarbamate [N;$(NI$Cthiocarbamate])]

Cthiocarbamate [$Cthiocarbonyl;$(C(=S)(O)N)]

Ocarbamate [O;$(O[$Ccarbamate])]

Ncarbamate [N;$(NI$Ccarbamate])]

Ccarbamate [$Ccarbonyl;$(C(=O)(O)N)]

Ocarbonate [O;$(O[$Ccarbonate])]

Ccarbonate [$Ccarbonyl;$(C(=O)(O)O)]

Nthiourea [N;$(NI$Cthiourea])]

2.

Sº

º

-

º
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Functional Group Rooted SMARTS

Cthiourea [$Cthiocarbonyl;$(C(=S)(N)N)]

Ocarboxylic acid [$hydroxyl;$(O[$Ccarboxylic acid])]

Ccarboxylic acid [$Ccarbonyl;$(C[$hydroxyl]);$(C[#6, #1])]

Cacid chloride [$Cacid halide;$(CCI)]

Cacid halide [$Ccarbonyl;$(C[$halide]);$(C[#6, #1])]

Clactone [$Cester;R]

Cthioester [$Cthiocarbonyl:$(C(=S)O[#6]);$(C[#6, #1])]

Cester [$Ccarbonyl;$(C(=O)C■ #6]);$(C[#6, #1])]

Caldehyde [$Ccarbonyl;$([H1,H2]);!$(C-[$hetatm])]

CketOne [$Ccarbonyl;$(C([#6])[#6])]

SSulfonic_acid [S;$(S(=O)(=O)($hydroxyl])]

SSulfonic_ester [S;$(S(=O)(=O)C)*)]

Pphosphonic acid [P;$(P(=O)(=O)($hydroxyl])]

Pphosphonic_ester [P;$(P(=O)(=O)C*)]

Pphosphoric acid [P;$(P(=O)(O)[$hydroxyl])]

Pphosphoric ester [P;$(P(=O)(O)O*)]

Oepoxide [O;$(O(($Cepoxide))[$Cepoxide)]

Cepoxide [C;$(C1CO1)]

Nhydrazine [N;$(N-[N:D1]);!$(N=C)]

hydroxylamine [$pseudo_amine;$(NI$hydroxyl]);!$(N=*)]

Nhydrazone [N;$(NIN;D2]=C)]

Cisocyanate [C;$(C=[$Nisocyanate])]

Nisocyanate [N;$(N(=C=O)”)]

Cisothiocyanate [C;$(C=[$Nisothiocyanate])]

Nisothiocyanate [N;$(N(=C=S)*)]

Nnitrile [N;$(N#[$Cnitrile])]

Cnitrile [C;$(C#[N:D1])]

Nnitro [N;+0,+1;$(N(=O)-[O:H0;-0,-1])]

*
º,

º-
s
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Functional Group Rooted SMARTS

Operoxide [O;$(O[$hydroxyl])]

Ophenol [$hydroxyl;$(Oc)]

Nprimary_amine [$amine;D1]

Nsecondary amin [$amine;D2]

Ntertiary amine [$amine;D3]

ring [R]

amine [N;!$(N*=[!#6]);!$(N-[!#6]);!$(Na);!$(N#C);!$(N=C)]

pseudo_amine [N;!$(N*=[!:#6])]

SSulfide [S;D2;$(S([#6])[#6])]

SSulfone [S;$(S(=O)(=O)([#6])[#6])]

SSulfoxide [S;D3;$(S(=O)([#6])[#6])]

Ccarbonyl [C;$(C=[$Ocarbonyl])]

Ocarbonyl [O:D1;$(O=C)]

Cthiocarbonyl [C;$(C=[$Scarbonyl])]

Scarbonyl [S:D1;$(S=C)]

hetatm [!#6;$([N,O,S,F,Cl, Br,I,P])]

halide [!#6;$([F.Cl, Br,I])]

lg_halide [!#6;$([Br,I])]

mercapto [S;$([H1&-0,H0&-1])]

hydroxyl [O;$([H1&-0,H0&-1])]

Cstd [#6;!$(*=[!#6])]

Calkyl [C;!$(C=[!#6])]

Calkene [C;$(C=C)]

Calkyne [C;$(C#C)]

Caryl [#6;a]

arene [c]

aryl [a]

T-5

º

2
º

º

-
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º
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Appendix 3: Diversify Program

Abstract

The complete code in C for Diversify is included below. Diversify was discussed above in

Chapter 4. It includes extensive use of Daylight Chemical Information System's toolkit C
libraries. Although I must admit to writing the entirety of this code. It would not have been

possible without the extensive assistance of Connie Oshiro and Donna Hendrix, to whom I

am grateful. I’ve included both the datastructures (in header files) and the subroutines. The

code does include some notes for future development.

Included Files

Datastructure Files:

mol.h
trans.h
div.h

rep.h
seph
con.h

parsesmiles.h
io.h
screen.h
Select.h
vbind.h

debug.h
Code Files:

div.c

rep.c
Sep.c
COI].C.

parsesmiles.c
io.c
SCTCCI). C

Select.c
vbind.c

debug.c

S

*

º
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* adapted from getmatrix.h
-

"this is the header file for the main routine for the program getmatrix.
-

f***includes “f

/***definitions***/

#define FALSE 0
#define truE 1
#define MAxSMILES 200
#define MAXBUF 200

/***structs/typedefs “t

typede■ struct dg_minimizer■
void "minimizer:
float convergence;
int eval,
struct dg minimizer "Next;

}dg_minimizer;

typedef struct dg method■
void "method.
char name{MAXBUFl;
int ncon■ s,
int trials;
float mx.dv,
float mxvv;
char rulefile■ MAXBUFl;
int hflag;
int bump14,
int debug,
int savebounds,
dg_minimizer *Min;

}dg_method;

typede■ struct volatoms|
int iatom■ 4],

}volatoms;

typede■ struct volbounds■
float minvol:
float maxvol;

}volbounds;

typede■ structionles■
char infilename|MAXBUF);
char methodl name{MAXBUFl;
char method 2name{MAXBUF),

}iofiles;

/***function prototypes”/

dt Handle getconf(“molequeue "Molecule);
int getin■ FILE *Infile, dg_method "Method, iofiles "Filenames):
int openmethod(dg_method "Method),
int getmoltchar *Smiles, mol “Molecule);
int fix H(mol “Molecule, in molct);
int getstruct(mol "Molecule, dg_method "Method);
r

Copyright 1999, A.G. Skillman, I.D. Kuntz, Regents of the University of California
* r *n.h
-

* this is the header file for the syn rxn routines
-

f***definitiona”/

***structs/typede■ s “■

/***function prototypes”!

voidconnect(moleuueue *
f

actant, transform "Transform, molequeue **Laspir),

* debugh
-

* this is the header file for the debuging routines for use with daylight.

---- -- ----- *

****definitions****

#define truEI
#define FALSEO

/***structs/typede■ s “I

1"-"function prototypes”

void debug sequence(dt Handle seq),
void debug atoms(dt_Handle atoms);
void debug bonds(dt Handle bonds),
void Jehug pattern(dt Handle pattern):
void debug bond■ dt Handle hond),
void dehug path(dt Handle path),
void debug pathsettdt Handle pathset);
void debug molecule(dt Handle mol).
void debug atomidt Handle atom),
■

* diversity.h
-

* this is the header file for the main routine for the program diversity

• ------------------------------------------------------------------------/

/***includes • **/

#include <xtdlib.h>
#include <stdio h
*include <string.h>
#include <time hº

*include <ctype.h>

#include “dt_smiles h"
#include “dt_smarts.h"

*include “mol.h"
*include “trans h"

*include “io.h"
*include "reph"
*include “seph"
#include “conth"
#inelude “screen.h"
#include “whind.h"
*include “debug.h"

f***definitions****

#define version 1.10

#define truE 1
#define FALSE 0
gdefine PSTOP 750 ()
#define PSBOTTOM 500
#uefine PSLEFT 50.0
#define PSRight 550 t)

/***structs/typedets “I

type lef struct■
int membercount;
int zero count.
int member[MAXMOLEQUEUE-100];
int parentlMAXMOLEQUEUE-100].
int nochildrenIMAXMOLEQUEUE+100].
int nozero MAXMOLEQUEUE-100].

}level,

typede■ struct■
int numlevels:
level levellMAXDEPTH+1];

} dendogram.

/***function prototypes”

dendogram "fill dendogram(molegueue "Add, dendogram "Tree).
int write dendogram■ dendogram "Tree);
/** - - - - - - - - - * + -- ----------

* getconth
-

* in h
-

* this is the header file for the divio routines.
-

/***definitions***/

#define MAxBUF 2000
#define MAXKEY 20
#define TRUE 1
#define FALSE 0

f***structs/typede■ s ***/

typede■ struct■
char input[MAXBUF),
char whind[MAXBUF);
char ran levels|MAXBUFl:
char smiles[MAXBUF),
char transform[MAXBUF);
char library[MAXBUF),
char output[MAXBUF);

} filenames,

f***function prototypes”;

molegueue "readinmols(FILE "Smilesfile, molegueue **Lastptr):
molegueue "retire(FILE 'Outfile, molequeue "Done);
library “readlihs' FILE *Libraryfile, library *Libraries, int “libtot. transform *Transforms, int transtot);
int readtrans(FILE "Reaction■ ile, transform "Transforms),
int getsmart(transform *Transform):
transform "parscrepitransform *Transform),
transform "parsesep■ transform "Transform
transform "parsecon■ transform *Transform),
molegueue "re read(FILE 'Outread, molequeue "Active);
molequeue "tempwrite(FILE "Outfile, molcqueue "Done),
int get_input■ FILE *Infile, fi *F :s, molparms "M
*Transform parameters),
int. * -- FILE *Rxnlevelsfile, transform *T int int *rxnlevels, int.
maxdepth):



* * *

.* ~ **** ***:

** * *



f****
* mol.h

* ran-h
-

* this is the header file for the syn rxn routines.
-

f***definitions---/

#define MAXExtERNAL5

/***structs/typedefs “I

!”function prototypes”/

place(moleg "Reactant, --- -i. **Lastpir);
inth count(dt_Handle "Atom):
intscreen(molegueue "Reactant, transform "Transform),
/* ---------- ----------

* debugh
-

* this is the header file for the debuging routines for use with daylight
-

f***definitions***/

/***structs/typede■ s “I

/***function prototypes”/

int get molwt{dt_Handle mol):
int tanimoto(molequeue "Testmol, float min, float max):
int prune■ molequcue “Testmolmolparms “Parameters);
f ------

* select.h
-

* this is the header file for the selection routines for figuring out
* where a reaction should take place on a molecule.
-

º

;* this is the header file which contains molecular structures.

--- ---- • ****

f***includes ---/

*include “dt smiles h"
*include “dt_finger h"

/***uctinitions***/

#define MAxsMiles2(x)
#uctinc MAxChil DREN 5000
adefineMAXMOLEQUEUE2000,000
#define MAxDEPTH 13
#define MAXMOLWT1000
suchne MiNMOLWT50
#uetine MaxNAME 100
adctine MAXTAG20xx)

1“structs/typedets “f

typede■ struct molequeue■
di Handlemolecule.
dt Handlecon■ ,
charsmiles!MAXSMILES];
charexternalid(MAXTAG),
charparent(MAXSMILES+8).
int identical,
chartransform[MAXNAME|.
intchildren (MAXCHILDREN).
struct moleuueue"Next:
struct molequeue"Previous,
intºlepth,
flºattanimoto.
intsynno;
intnochildren,

} moleuueue.

typede■ suruct■
int maxdepth:
int maxmolwt.
int minnolwt.
int maximolecule,

) molparms,

/***function prototypes”/

r

* parºesmilesh
-

* this is the header file for the div transform-smiles parsing routines
-

f***definitions****

auctine truE 1
a deline FALSE 0
*define DIV CHI FORWARD 3
#dchne DIV_CHI BACKWARD 4
adefine Div CHI UP 5
#define DIV CHI DOWN 6
adefine DIV BCLS_IMPLICIT 0
#define DIV BCLS ExPLICIT
#define DIV BCLS, RING 2
adeline DIV BCLS_EXTERNAL 3
adcline DIV CHI AL 5
#define DIV2DX_AL(X) ((DX_CHI_TH))

sdefineFIRST POSITION(JOINT) ((((JOINT) >> 16) & 0xffff) - 1)
#define SECOND POSITION, JOINT) ((JOINT) & Oxfºrt)
#define JOIN POSITIONS FIRST.SECOND) ((((FIRST) + 1) << 16) I (SECOND))

#define FOR TO UPDOWN BONDPOS, ATOMPOS) (((BONDPOs) & (ATOMPOS)) *
(DIV CHI DOWN) (DIV CHI UP))
*define BACK TO UPDOWN BONDPOS, ATOMPOS) (((BONDPOS) < (ATOMPOS)) *
(DIV_CHI UP): (DIV CHI Down)
sdehneroRBACK TO UPDOWN CHI_FB, BONDPOS, ATOMPOSM((CHI FB) =
(DIV_CHI FORWARD)) " (FOR TO_UPDOWN BONDPOS. ATOMPOS)).
(BACK TO_UPDOWN BONDPOS, ATOMPOS)))

***structs/typedets “f

!”function prototypes”f

int pai har *string, atoms , int. bonds
int parscatoms char "string, atoms "atoms),
int atmºkºhar *nd),
int parschonds(char *string, atoms "atoms, int maxatoms, bonds "bonds):
int makchondºint bondelass, int bondcount, atoms "atoms, int maxatoms, bonds "bonds, char" string,
int position, int bondtype, int chival):
int preaton(atoms "atomlist, int maxatoms, int current, int branchlevel),
int postatom(atoms "atomlist, int maxations, int current),
int setchiral char *string, atoms "atoms, int maxatoms, bonds "bonds, int maxbonds);
int chihondettint value).
int other atom■ int atom, int hond. atoms "atoms, bonds “bonds):
int bondposition(int bond, intiatom, atoms "atoms, bonds “hands):

•r int }.

p-- -

/***definitions”/

#define DIV_RANK_ALL 0
sdefine DIV_RANK_THRESHOLD 1
#define DiV ONE 2
#define DIV_ONE THRESHOLD 3

sdefine DIV_STERIC_1A 1
#define Div STERIC_la 1
#define DIV_STERIC_2A 1
#define DIV_STERIC_2a |
*define DIV_STERIC_NEOPENTENE 2
#define DIV_STERIC_DBL 1
#define DIV_STERIC_ALPHAAROMATIC 2
#define DIV_STERIC_FLUORINE 9
*define DIV_STERIC_FLUORINE_SCR 1

f***structs/typede■ s “I

f***function prototypes”

dt_Handle "screen(molequeue “Reactant, transform “Transform):
dt Handle *steric(dt Handle “pathsci, dt Handle *mol, int threshold, int rank);
f

“seph
-

* this is the header file for the div separation transfrom routines.
-

f***definitions***/

/***structs/typede■ , “t

/***function prototypes”;

voidseparate(molequeue "Reactant, transform "Transform, moleuueue **Lastpur),
moleuueue “subproduct(molegueue *Product, transform *Transform. int count);
intºleletefragment(dt Handle bond, dt Handle "atom, dt Handle "delete, int *incount);
|----

* trans.h
-

* this is the header file for the reaction structures.
-

/***includes “*/

*include “dt_smilesh"
*include “dt_smarts.h"

f***definitions***/

suctine MAXTRANS 100
#definc MAXTEMPLATE 200
#define MAxlibrary 50
suctine MAXNAME 100
adefine MAXCHIRAL 8

_7,

º
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tº define Maxibond 6
#define MAXCONNECTIONS 6
#define MAXATTACHATOMs 10
#define MAxwbindings 100

adctine DIV_i.MP HYDROGEN 999

extern dt Handle wbinding|MAXVBINDINGS];

/***structs/typedefs “■

typede■ struct
charsymbol.
intatomicno,

inthydrogens,
intfºrmalcharge.
In la■ tinatic,

intibond MAXIBOND).
charhranchlevel,
intposition,
unsigned char inhracket.
unsigned char brackcisize,
intº hival.
intº hiscu■ MAXCHIRAL}:

| atoms,

typede■ struct {
intiatoml.
intiatºm 2.
intbondtype,
charbranchlevel;
intpºsition.
intehival.
intehiscu■ 2]:

} bonds,

typede■ struct■
charname(MAXNAME}.
intsuzc.

dt Handle"Fragments;
char” “Externalids:
dt_Handle""Attachatoms,

} library.

typede■ struct■
charproductset(MAXTEMPLATE].
atomsproductatom■ MAXTEMPLATE],
intatomnumber.
bondsproductbond■ MAXTEMPLATE].
inthondnumber,

} replacement,

typede■ struct■
charproductset[2][MAXTEMPLATE],
atomsproductatomi2|[MAXTEMPLATE).
intatomnumber[2]:
bondsproductbond■ 2][MAXTEMPLATE],
intbondnumber[2]:

! separation,

typede■ struct■
charlihraryname{MAXNAME};
library"Library.
charprºducts.ct■ NMAXTEMPLATE],
atomsproductatom■ MAXTEMPLATE).
intatomnumber.
bondsprºducthond[MAXTEMPLATE]:
inthondnumber.

}connection,

typedet struct■
char name{MAXNAME}.

char inclusion■ MAXTEMPLATE]:
dt Handlescreenin,
intpatternatoms.

char exclusion[MAXTEMPLATE).
dt Handlescreenout.

char markedIMAXTEMPLATE].
dt_Handle markscreen,

char flag.
union■

replacement rep;
connection con:
separation sep.

} type.
} transform,

typede■ struct■
int nothing.

}transparms,

/***function prototypes”!

f--------- ------ ---

* whind.h
-

* this is the header file for the wbinding initialization routines.
-

----------------------

f***includes---f

*include “dt_smarts h”
*include “dt_smilesh"

/***definitions***/

*define True i
#define FALSE 0
#dctine Maxbur 2000

f***structs/typedefs “■

f***function prototypes”/

int wbindinit(FILE *Bindingfile);

sinclude “div.h"

extern int syncount;

main(int argc, char "argv[])
■

char bu■ !MAXBUFl;
FILE *Infile,
*Vbindingfile,
*Smilesfile.
*Transform file.
*Rxnlevelsfile,
*Libraryfile,
*Outfile,
"Tempout.
*Tempin:
int ranscheme = FALSE,
rxnlevels = FALSE.
**levels,
count,
countl,
naw,
index,
index1.
end,
idcount = 0,
uniquccount = 0,
uniquelist(MAXSMILES"('z'-'g')] = {-1}.
transcount.
whindcount.
lihtou,
transtot,

goodnol.
moleuueue"First,

*Retire,
*Active,
*Last,
"Key,
"Going,
*Coming.
*Totrec.
**Lastptr = &Last:
/* dendogrammaintree;"|

transformtransforms(MAXTRANS):
library"Libraries,
molparms" Molecule parameters;
transparms"Transform parameters;
filenames"Filenames,
time tstarturnc.

Endtime,

f***initialize time ***/

Starttime = time(NULL),

f***initialize structures***/

if{NULL == = (mo■ - - Y))) {
■ printf(stderr. “Unable to malloc Moleculc_parameters in div.c.An'");
exit(l),

if(NULL == (Transform parameters = (transparms")malloc■ sizeof■ transparms))))(
■ printf(stder■ , “Unable to malloc Transform parameters in div.c.An'");
cxit(1};

}
1■ t NULL == (Filenames = (■ ilenames *)malloc(sizeof filenames)))) {

fprintf(slder■ , “Unable to malloc Filenames in div.c.An'");
exit(1).

}

■ ” open input file for reading ***/

if (argc >3)|
■ print■ (slderr."usage div <input■ ilex -slun"),

■ printf(stderr,"-s: reaction scheme rather than exhaustive application\n");
■ printf(sider■ ."-l: reaction levels\n");

exit(1),
}
if ([argc = 3)&&(0 = xtremp, argv[2]. “-x")))

fprint■ (slder■ . “Using rxn scheme formal \n");
rxnscheme = TRUE,

}
if ([argc = 3)&&(0 = stremp, argv[2]. “-1")))'■

■ printf(stder■ . “Using rxn levels format \n");
rxnlevels = TRUE.

}
if (arge = 2)■

if ((argv[1][0] == '-') && (tolower(argv[1][1])= 'h'))(
■ print■ (stderr.”usage div <smilesfile--slun"),

!,
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■ printf(stderr."-s: reaction scheme rather than exhaustive application\n");
■ printf(stderr."-l: reaction level control for scheme.un”),
exit(1).

}
}
if (arge - 2){

■ print■ (stdout."Input file">>"),
flush(stdout),
fgets, but MAXBUF.stdin),
hut■ strlen(but)-1}="wo',

strºpy[Filenames->input, bu■ );
i■ NULL == (Intile = topen(but."r")));

■ printf(stderr. “Unable to ºpen input file: %sun".buf),
cxit(1).

}
}
else!

strºpy(Filenames->input, argv[1]),
it■ NULL == (infile = ■ upen■ argv[1]."r")))|

■ print■ (stder■ , “Unable to open input file: % sun", argv[1]);
exit(1),

}
}

1“read input file “■

if{FALSE = get_input. Infile, Filenames, Molecule parameters, Transform parameters)}{
■ printistderr. “
exit■ 1),

}

ror reading input file \n");

get output filename and open “f

if ('surcinp(Filenames->output, “)){
■ printt(Aldout, “Output file?-->");

triush■ stdout),
fgets hut. MAXBUF, sldin),
hutistrlenbur)-1}="w)",
strºpy(Filenames->output, bu■ );
i■ NULL == (Outfile = fopen(bu■ . “w”))){

■ print■ (stderr, "Unable to open outputfile: %s"m", bu■ ),
exit 1).

}
)
else■

if{NULL = (Outfile = fopen(Filenames->Output.”w"))) {
■ printf(slder■ . “Unable to open outputfile: %s"m", Filenames->output).
exit 1),

}
}

/*** get library ■ ilename and open for input.”

if ('strempt Filenames->library, “)){
■ printt(stdout, “Library file?-->"),

■ flush(stdout),
fgets(hul. MAXBUF, stdin),
hurlstrlen■ bur)-1}="w)',
strupyt Hilenames->library, bu■ ):
i■ (NULL == (Libraryfile = ■ open■ hu■ . “r")))

fprintf(sider■ , “Unable to open libraryfile. Hsun", bu■ ):
exit■ 1),

}
}
clse|

i■ NULL = (Libraryfile = ■ open(Filenames->library."r")))
■ print■ (stderr,"Unable to open libraryfile, ºs\n", Filenames->library),
exit■ 1);

}
}

*** get transform ■ ilename and open for input.”

if ('strºmpt Filenamics->transform. “)) {
■ print■ (stdout, “Transform filc">>”).
flush stdout),
!gets bu■ . MAXBUF, stdin),
bu■ strlenthu■ )-1}= m)":
stropy Filenames->transform, buf):
i■ (NULL = (Transform■ ile = fopen(bu■ . “r")))

■ print■ (slder. “Unable to open transform file. *s■ n", bu■ );
exit 1),

}
|
else|

1■ (NULL = (Transform■ ile = fopen(Filenames->transform, “r”)))|
■ printt(stderr, “Unable to open transform■ ile. *sun". Filenames->transform).
exit(1).

}
}

1*** get smiles filename and ºpen for input “”/

if ('strºmpt Filenames->smiles, “)){
■ print■ (stdout,"SMILES file" >>"),
tflush(ºldout),
fgets(hu■ .MAXBUF.stdin),
buf[strlen■ huf)-1}="w)’.

strºpy(Filenames->smiles, bu■ ):
it(NULL == (Smilestile = ■ open■ hu■ ."r")))

■ print■ (stderr, “Unable to open smiles■ ile, 3 An".bu■ );
exit■ 1);

}
)
clºc■

i■ (NULL == (Smilesfile = fopen(Filenames->smiles."r"))){
■ print■ (stderr, “Unable to open smilestile %sun".Filenames->smiles):
exit(1).
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!” get wbinding filename and open for input “I

if ('strempf Filenames->vhind, “))|
■ print■ (sldout."VBINDING file? »"),
■ flush(stdout);
fgets(bu■ .MAXBUF.stdin);
bu■ tstrlen(but)-1}= \)":

strupytrilenames->wbind, buf);
i■ (NULL == (Vbindingfile = fopen(buf"r")))

fprint■ (stder■ , “Unable to open wbindingfile: %sun",bu■ );
exit(1),

}
}
else■

i■ (NULL == (Vbindingfile = fopen(Filenames->vbind,"r")))
■ printf(stderr. “Unable to open wbindingfile: % sun".Filenames->vbind);
exit(l);

}
}

/*** get ran levels filename and open for input “f

iforknlevels)(
if ('strompt Filenames->rxn_levels, “)) {

■ print■ (stdout,"RXN LEVEL file? »"),
iflush(ºldout),
fgeis■ hu■ .MAXBUFstdin);
but strlenthuf)-l]="M)',

strºpy[Filenames->rxn_levels, bu■ );
i■ (NULL = (Rxnlevelsfile = ■ open■ hu■ ."r")))(

printf(stderr. “Unable to open rxn levels file: %sun".bu■ );
cxit 1),

}
}
else|

i■ (NULL = (RXnlevelsfile = fonen(Filenames->rxn_levels."r"))){
■ print■ (stderr, “Unable to open ran levels file: %sun".Filenames->rxn_levels);
cxit(l);

}

} /* end rxnlevels ºf

/*** open temptile for reading and writing ***/

strftime■ bu■ . MAXBUF, “tempº H%M%.S", localtime(&Stantime));
i■ (NULL == (Tempout = fopen(buf, “w”))){

■ printf(stderr, “Unable to open temptile for writing"),
cxit(1),

}
i■ (NULL == (Tempin = ■ open(bu■ , “r”))) {

■ printf(stderr, “Unable to open tempfile for reading"):
exit(l),

}

f*** write start-up info to Outfile”/

■ printf(Outfile. “Diversify Version: 4.2■ m", VERSION);
■ print■ (Outfile, “Start: *s■ n■ n", ctime(&Startume)),
■ print■ (Outfile, "Input file:\!\!% sun", Filenames->input),
■ print■ (Outfile, "Smiles file:M\tº sºn" enames->smiles),
fprint■ (Outfile. “Vbinding file:Mu% sun", Filenames->wbind);
■ printf(Outfile. “Transform file:\,\lºs\n". Filenames->transform);
■ print■ (Outfile, “Library file:M\tº\n", Filenames->library);
■ printf(Outfile, “Output file:\\1% ºn", Filenames->output),
if{rxnlevels){

■ printf(Outfile, “RXn levels file:\!\!% sun". Filenames->rxn_levels);
}

f**"read in and initialize wbindings "**/

wbindcount = wbindinit(Vbindingfile);
■ printf(Outfile, “unºd wbinding(s) initialized.V.Vn", wbindcount),

/***read in starting molecule ***/

i■ (NULL == (Active = readinmols(Smilesfile, Lastpir)));
■ print■ (stderr, “Unable to read starting molecules \n");
exit(1),

}
■ print■ (Outfile, “ºd Molecule(s) read.Anun", syncount);
fulose(Smiles■ ile),
First = Active;

f***read in transforms ”/

iftNULL == (transtot = readtrans(Transform■ ile, transforms)));
■ printf(stderr, “Unable to read in transforms.Viva");
exit(1),

■ printf(Outfile. “ºd Transforms read.Anºn", transtol),
fclose(Transformfile),

/***read in libraries • **/

if(NULL == (Libraries = readlihs(Libraryfile. Libraries, &libtot, transforms, translot)));
■ printf(stderr, "Error reading in libraries.vnum"),
exit■ 1),

}
fprint■ (Outfile. “d Libraries read \num", libtot),
■ close(Libraryfile),

f***attach libraries to transforms”f

for(count = 0;count & transtot;countt—t)[
i■ (transforms|count] flag == 'c'){





for countl =0,countl & libtot;count 14-)
tº -- strump transforms(count type con libraryname, \
Libraries(countl|name)) {

transforms|count] type.com Library = &(Libraries|countl]),
break,

}
}

}
}

f***read in reaction levels”*/

iftrºnlevels)|
levels = readlevels(Rxnlevelsfile, transforms, translot. &rknlevels, Molecule parameters->max.depth).
■ print■ . Outfile, “nºd reaction levels \mu.", ranlevels),
for(count = 0;count ºrxnlevels, count ++)|

fprint■ (Outfile. “Level ºdºn", count).
■ or(count l = 0.countl & translot.count 1 ++){

i■ levels|count]|cºuntl]){
■ printf(Outfile, “tºx\n", transforms(countl|name);

}
|
■ printf(Outfile. “n”),

}
■ print■ (Outfile, "n"),

}
flusht Outfile),

f"write all molecules to beginning of Outfile ***/

Going = tempwrite Tempout, Active);
while(Going - NULL){

Totree = Going:
Going = tempwrite(Tempout, Going);
frectToffee),

|

f***re-read starting molecule for active”

Active = re_read(Tempin. Active),
Last = Active,

- MAIN LOxyP f
• ----------------MAIN LOOP-------------------------------- ******/

MAIN Lt }{)P */

!” cycle through queue attempt to transform each molcule ***/

while(Active - NULL)|

goodmoi = TRUE,

f***test to see if the molequeue is ok for transformation***/

goodmol = prune(Active. Molecule parameters);

/***screen for identity to previous molecules “t
j
index = 0,
index i = 0.
end = strlen(Active->smiles);
strupythu■ , Active->smiles),
for(cºunt={};count-end.count ºf

index += MAXSMILES*uount + hut■ count) - 'h',
index1 += MAXSMILES"count + buf[count).

}
index 1 -- ****tount:
■ print■ (stler■ . “A dºdun", index, index.1),
iftuniquelist|index) = -1)!

uniquelist|index} = Active->synno,
unique count ++,

}

■ print■ (stderr, “Reaction *d (%s) undefined type", \
transcount, transforms■ transcount]..name);

exit(1),
break,
} /* end switch */

/***while products are left, retire ***/

Going = Active->Next;
To■ rce = Active->Next,

while:Going - NULL)(
Going = tempwrite(Tempout. Going);

free(Tofree);
Last = Active,

if(rxnscheme) {
break, /* If ran scheme only apply 1 transform */

)

} /* cnd for transcount */

} ■ º end if goodmol '!

f***writeoul transformed molcqueue with children”!

f*

i■ NULL = fill dendogram(Active, &maintree)) {
■ print■ (sider■ , “Unable to add ks to dendogram \n", Going->smiles):

}
*/
Active = retirc(Outfile, Active);

/***get next molequeue ***/

Active = re read(Tempin, First),
Last = Active,

) /* end while Active isn't NULL */

*****END MAIN LOOP" -
*****END MAIN LOOP”

else|
Active->identical = uniquelist|index):
good mol = FALSE,
ldcºunt -t;

}
•f

f***apply transforms to active molecule if it's good “f

1■ t goºd mol)[
i■ it(transcount - Active->depth}|{Active->depth == 0))&&(rxnscheme)) {

■ print■ (stderr, “ndepth = 3 d Transform = *s■ n". Active->depth, transforms|Active->depth] name).
}

fort transcount =0, transcount ºf tranxtot', transcount-t')\
i■ (rxnscheme) { /" i■ ran scheme only apply 1 transform ºf

transcount = Active->depth:
■ print■ (stderr, “"),
}
if{{rxnlevels)&&('levels|Active->depth][transcount]))|

continue,

switch(transforms|transcount flag) {
case ºr':

replace(Active. & transforms■ transcount). Lastpir);
break,

case 'c':
connect(Active, & transforms(transcount), Lastptr),
break.

case ‘s’:
ift Active->transform[0] = 'c'){

separate(Active, & transforms■ transcount). Lastpir).
|
break,

vasc “l':
f* library transform don't apply to molecules */
break;

default:

m end Main Loop.”

f***write out psfile of dendogram”!
f*
if(FALSE = write_dendogram(&maintree)) {

■ print■ (sider■ , “Error writing dendogram to psfile \n");

•/
f***number of identicals”f

■ printf(Outfile, “nºd of ºd (or +2d 4%) were unique \n", \
syncount-idcount, syncount, (int)((float)(syncount-idcount)*1000/(float)syncount));

■ print■ (sldout, "nºd of £d (or '#24%%) were unique \n", \
syncount-idcount, syncount, (int){(float)(syncount-idcount)"1000/(float)syncount));

■ printf(Outfile, "nºd of ºd (or '#2d%%) were unique.Vn", \
uniquecount, syncount, (inth (float (uniquecount)*1000(float)syncount));

■ print■ (stdout, "nºd of 4d (or '42d'º'; ) were unique.Vn", \
uniquecount, syncount, (int)((float)(uniquecount)*1000(float)syncount));
•/

/**"clean up output “■

Endtime = time(NULL);
■ printf(Outfile. “nfinished at: *s■ n", ctime(&Endtime));
■ print■ (Outfile, "Elapsed time. *0■ secondsun". diflume(Endtime, Starttime));
■ print■ (Outfile, "Bye \n");
fºlushi Outfile),

fclose. Outfile),
fulose■ tempin).
■ close(Tempout),
stritime■ bu■ . MAXBUF, “tempº H%M%.S", localtime(&Starttime));

i■ (FALSE)|
i■ (FALSE = remove(bu■ )) {

■ printf(stderr, “Unable to remove temp file %s.\nun", bu■ ),
}

}

} /* cnd main */

f

* fill in dendogram before retireing moleuueue's

dendogram "fill dendogram(molegueue "Add. dendogram *Tree)
{

int levelno = Add->depth,
membermo = Tree->level (levelno).mcmbertount;

/***set tree depth ***/

i■ (levelno > Tree->numlevels){
Tree->numlevels = levelno,
memberno = 0,
Trce->level■ levelno) rerocount=Tree->level■ levelno-1].2crocount;

}

/***set member, parent, and children properties”!

Trce->level■ levelno) member[membermol = Add->synno:
scan■ . Add-ºparent. “id: “, &(Tree->level■ levelnol parent[membernol));
Tree->level■ levelnol.nochildren■ memberno) = Add->nochildren,
if(Add->nochildren == 0) {

Tree->level■ levelno).zerocount tº:

*.
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Tree->level■ levelnolnozero(memberno. 1] = \
Tree->level■ levelno, nozero(memberno) + l;

}

***increment membercount”f

Tree->level■ levelno)-membercount—tº

return■ Trce);

■ : - - - - - --- -

* make Post-Script file of dendogram
* * * * *

int write_dendogram■ dendogram "Tree)
■

FILE *Psfile.
typedet struct point■

floatz.
floaty,

}point:
point parent(MAXMOLEQUEUE].
float vspace,
hspace,
vsum:

int zero kids,
kids,
levelcount,
membertount,
parentotºxet,

i■ NULL == (Psfile = fopen(“ps out".
■ print■ (xtderr,"Unable to open Patile \n");
ext{l},

}

")))'■

1“write psheader ***/

*** PageOrder: Ascendun"),
%%% ()rientation: Portraitun"),

, “4%% º Document[jala. Clean? Bitum"),
■ print■ (Pºhle, “kºº'■ EndComments\n");
■ print■ (Pstile, “4%% º Begin?rolog\n");
■ print■ (Pstile, “4%%\n");
■ printf(Psil : {gsave newpath 0360 arc stroke grestore detºn");
■ print■ (Psfile | grave newpath 0360 are fill grestore ) defn"),
■ print■ (Pº■ ile, “ki ( lineto defun"),
■ print■ (Pºhle, "if [gsave stroke grestore ) defin");
■ printf(Patile, “■ m moveto defun"),

“■ o I gsave newpath 0360 arc stroke grestore ) de■ ºn");
) { ghave newpath 0 360 art fill grestore ) defun"),

■ print■ (Psfile, "irp new■ ath 42 roll movetoun").
■ print■ (Ps■ ile, “ dup 0 exchrlineto exch dup 0rlinctoºn"),
■ printt(Psfile. “ exch-1 mul 0 exchrlineto-1 mul Orlinetown"),
■ printt(Psfile, “ closepathun"),
■ print■ (PAfile, } defun”);
printt(Patile, “h gsave rp stroke grestore defun"),
■ printf(Palile, “■ k ( gsave rp till grestore ) defun"),
■ printt(Pstile, “is stroke defun");
printf(Psfile, “ºbg I seigray defin").
■ printf(Psfile, “■ ig ( 0 setgray defun"),
■ printt(Pshlc, “w setlinewidth) defun"),
■ printt(Pstile. “4% $º EndProlog\n"),
■ print■ (Pº■ ile, “4%% º Page. I\n"),
■ print■ (Pafil saveum”),
■ print■ (Psile, “[gun")
■ printf(Psile."
■ printt(Psfile, “l setlinejoinul")
■ print■ (Pº■ ile, “3 setmiteriimulum"),
■ print■ (Pº■ ile, "010 win"),
print■ (Psfile, “Abg ( 1 setgray ) de■ ■ ig ( () setgray de■ ºn");
■ print■ (Palile, “[gun"),
■ printf(Psile, “0 setgrayºn"
■ print■ . Ps■ ile, “%.2f '4.2f m\n". PSLEFT, PSBOTTOM),
■ printt(Psile. “421 “42 dun", PSLEFT, PSTOP),
■ print■ (Psile, “k 2■ + 2 d\n", PSRIGHT. PSTOP);
■ print■ (Ps■ il 2fº 2f d\n". PSRIGHT, PSBOTTOM).
■ print■ (Pºhle, “4.2■ +21 Jun", PSLEFT, PSBOTTOM),

i■ (Tree->level■ levelcount] nochildrenlmembercount] == 0){
Tree->level■ levelcount] nozero(membercount-1} = \
Tree->level■ levelcount] nozero(membercount: 1) - \
(Tree->level[levelcount] nozero(membercount]+1};

}
}

}

f**"push mochildren indicators into the children level “I

/***set number of zero's in lowest level to acro (all have no children) ***/

levelcount - Trce->numlevels;
for membercount = 0, membervount « Tree->level■ levelcount) membercount, membercount—t){

Tree->level■ levelcount] nozero(membercount]=0,
}

f***pass number of zero's on to first child from each parent ***/

fºr levelcount ~ 1:levelcount ºr Tree->numlevels, levelcount-){
parentoffset = Tree->level■ levelcount-1}...member[0].
for(membercount + ().mcmhercount « Tree->level■ levelcount] membercount; membercount:44)|

11(Tree->level■ levelcount] parent■ membercount]'-Tree->level■ levelcount] parent(membercount-ll){
Tree->level■ levelcount).nozero [membercount] = \

Trce--level(levelcount] nozerol membercuunt) + \
Tree->level■ levelcount-1} nozero■ Tree->level■ levelcount) parent■ membercount]-parentoffset).
}

}
}

/**"resct current row zero's to only reflect those from parent rows”;

fort levelcount - 0;levelcount ºf Tree->numlevels.levelcount tº
= (T l - -1}. >= 0. --)■

/***write out levels • **/

hspace = (float (PSRIGHT-PSLEFT) Tree->numlevels;
vspace = (float (PSTOP-PSBOTTOM) 1 (1+Tree->level(Tree->numlevels] membercount \

+Trce->level■ Tree->numlevels-1} rerocount),
for(levelcount=Tree->numlevels.levelcount ~ 0;levelcount-){

parentoftsc = Tree->level■ levelcount-l] member[0],

P”*if not first level, need to sum offspring and put in children”/

i■ (levelcount « Tree->numlevels)|

f***reset number of children counters for level above ***/

for(membercount=0,membercount & Tree->level■ levelcount-1] membercount; membercountt—t){
Tree->level■ levelcount-1].nochildren■ membereount]=0,

}

/***sum over children from this level to give number of children at next level ”/

for(membercount=0;membercount « Tree->level■ levelcount].membercount; membercount H-)■
if{Tree->level■ levelcount] no children■ membercount] == 0){

Trce->level(levelcount).nochildren■ membercount] = 1;
}
Tree->level■ levelcount-1]nochildrenITree->level■ levelcount] parent[membercount]-parentoffset =

(Tree->level■ levelcount-1].noc Tree- l l

+ \
Trec->level■ levelcount] nochildren■ membercount]),

/***calculate where parents will be ***f

vsum = 0.0,
for(membercount=0, hercount c T level■ ]

- - I ){
parent[membercount] x = PSLEFT + hspace"(levelcount-1);
kids = (Tree->level■ levelcount-1}.nochildren■ membercount]).
if kids==0)

kids=1;
zerokids = (Tree->level■ levelcount-1].nozero(membercount]),
parent■ membercount] y = PSBOTTOM + vsum + ((kids +1)"wspace/20 \
+ (zerokiuls" vspace));

vsum += (kids" vspace + zerokids"vspace);

f**"calculate where children will be and connect children to parents ***/

vsum = 00:
fortmembercount={}:membercount º Tree->level■ levelcount).membercount:membercount:44){

zerokids = Tree->level■ levelcount] nozero(membercount];
kids = Tree->level■ levelcount]..nochildren[inembercount);
if(kids==0)

kids=1:
■ print■ (Psile, “%2f $2f m\n",\

(PSLEFT + hspace"levelcount),\
(PSBOTTOM + vsum + ((kids +1)*wspace/20) + (zerokids’vspace)));

vsum += (kids"vspace + zerokids"vspace),
■ printf(Psfile, “4.2f 4.2■ dun".V

parentlT r |-| x, \
parent■ Tree->level■ levelcount] parentlmembercount]-parentoffset].y),

tflush(Psfile),
}

}

f***write ps footer “■

■ print■ (Psfile, “sun");
■ print■ (Pº■ ile, “grestore showpagen"),
■ print■ (Ps■ ile, “Kºkº Trailcrum"),

return■ TRUE),
}
#include <xtdio.h>
*include <stilih.h>
#include <string.h>
*include “trans.h"
#include “mol.h"
#include “reph”
*include “debugh"

cxtern int syncount,

r

* replace
-

* this is a transform to replace the inclusion with the target.

voidreplace(molegueue "Reactant, transform “Transform, molequeue **Lastpir)

charparent(MAXSMILES];
intcopyct.

reactatom,
reactbond,
atomicount,
interhondºt,
bondeount.
sequount.
xalomit,

+
>

S.

→

>





count, count!,
length,
ihonu.
realbond.
chival|MAxCONNECTIONS].
wildchival|MAXTEMPLATE).

dt_Handlcerror,
errors,

pathset.
paths,
path,
atoms.
alumn.
atoml.
bonds, bonds!.
hand.
bond l, hond2. bond?,
copybonds(MAXCONNECTIONS].
copyatoms|MAXCONNECTIONS].
Jelatoms|MAXTEMPLATE],
delhonda(MAXTEMPLATE],
newatoms|MAXTEMPLATE],
newbonds(MAXTEMPLATE].
chiseqLMAXCONNECTIONS].
wildchiscu■ MAXTEMPLATE].

ut Stringstr,
molcqueue"Product,

if{xcrcc.n(Reactant, Transform) == FALSE)
return,

/***malloc new molecule (Product)***/

i■ (NULL == (Product = (molecueue *)malloc(sizeof (molequcue)))) {
fprint■ stderr, "Out of memory in replace \n"),
■ printt(stderr, "Unable to open molecule #d.vn". syncount),
exit■ 1),

}

f** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* In the following secuon the product will be created
* 1. duplicate reactant->product
* 2 find reactant set
* 3. loop through reactant set
*if appropriate add new atom
* loop through reactant bonds and add to product
* 4 add rest of product atoms.
* 5 add product bonds.
* 6 delete reactant set.
* 7 set hydrogens in new molecule
* this should result in the product molecule
-- -- * - - - -

f***copy reactant molecule to product molecule ***/

Product->molecule = dº copy(Reactant->molecule):

/***make product molecule modifiable ***/

1■ t FALSE = di mod_on(Product->molecule)) {
■ print■ (stderr. "Can't modify ºs in rep \n", Product->smiles),
dt dealloc(Product->molecule),
treet Product).
return,

}

I’”find reactant path in product molecule “I

1■ t NULL OB == (pathset = dº umatch(Transform->screenin. Product->molecule, FALSE))) {
tprintf(stderr, “Unable to find remove: *s of *s in “sun”, \

Transform->inclusion, \
Transform->name. \
Product->sinules),

/***thus should NEVER occur but is left in for historical reasons ***/
■ printh sider■ , “BIG problem, a reactant conatuned screenin. but the product didn't \n").
dt deallow (Product->molecule),
treet Prºduct),
return,

}

f***get atoms in screenin “■

paths = dt_stream(pathset, TYP PATH),
path = d next paths),
atoms = di streamtpath. TYP_ATOM);

f***loop through reactant set get atoms, bonds “■

reactatom - 0.
reactbond = 0,
whilcº NULL OB = (delaloms(reactatom} = dº next(atoms))) {

it■ NULL OB = (bonds = di_stream(Jelatoms(reactatom). TYP BOND))) {
while(NULL_OB = (dclbonds real-thond] = di nexubonds)));

reacthond**.
|

}
dt dealloc■ bonds),

/***i■ appropriate add product atom***/

i■ (Transform->type rep productatom■ atomcount].atomicno >= 0) {

reactatum-4.
}
dt_deallocatoms),
dt dealloc pathset).
dt dealloutpaths),
dt_dealloc path),

atomicount = 0.
hondeount - 0.
while(atomcount & reactatom)|

if Transform->type rep productatom■ atomcount)atomicno > 0) {
newalomatatomcount] = d addatom(Product->molecule,\

Transform->type rep productatom■ atomcount].atomicno, 0),
dt_setaromatic(newatoms|atomcount]."

Transform->type rep productatomatomcount] aromatic),
dt_xetcharge(newatomslalomcount]."

pe rep ■
}

/***atomicno 0 is for wildcard, copy reactant atom”!

wildchival(atomcount] = DX_CHI_NONE;
if(Transform->type rep productatom■ atomcount)atomicno = 0){

newatoms|atomcount] = di_addalom(Product->molecule,\
dt_ *--------- i. l), dt_imp_h. 1)).

dt_setaromatic(newatoms|atomcount),\
dt aromatic(delatoms|atomcount)));

dt_setcharge(newatoms|atomcount],\
di charge(delatoms|atomcount)));

f***copy wildcard atom chirality if it exists ***/

wildchiscq|atomcount] = dt_alloc_seq();
if{TRUE = di imp htount(delalomstatomicount])) {

aloml = dt_isohydro();
wildchiscq(atomcount] = dt_append(wildchiscq[atomcount). atoml),

}
i■ (NULL_0B = (bonds = di_stream(delatoms|atomcount). TYP BOND)))(

while(NULL_OB = (bond = di_next(bonds)));
wildchiscu■ atomcount] = di_append{wikichiseul atomcount], bond),

} /* end while wildcard's bonds ºf
} /* cmd it bonds ºf
di_dcalloctbonds):
dl revet(wildchiscqlatomcount]);
wildchival(atomcount] = di chival(delatomslalomcount], wildchiseqlalomcount]),

} /* end if wildcard */

/***loop through reactant atom bonds and add to product "1

i■ (NULL_OB = (bonds = dº stream(delatoms(alomcount). TYP_BOND))) {
copyct = 0.
while(NULL_OB = (copybonds(copyct] = di_next(bonds)))

/***only count bonds to unchanged atoms ”/

realhond = TRUE,
chival■ copyct] = DX CHI NONE,
copy |copyct] = di xatom■ del ount I
for(count=0,count-reactatom.count-4)|

if(copyatoms|copyct) == delaloms(count]).
realbond = FALSE.
break;

bond is to non-delatom check for chirality in xatom ***/

1■ trealbond){
chiseqlcopyct] = di_alloc_scq(),
ift TRUE == dt_imp_hcount(copyatoms|copyct])) {

atom1 = dt_isohydrot),
chiscqlcopyct] = dt_append{chiseq[copyct], atoml),

}
i■ NULL OB = (bonds] = di stream(copyatoms|copyct]. TYP BOND))){

while NULL_OB = (hond l = di_ncxt(bonds 1))}{
chiscq|copyct] = dt_append(chiscq|copyct], bondl).

} {* end while non-delalom's bonds "f
} ■ º end i■ bonds ºf
dt_dcallochondal);
dt_resct(chuseq[copyct]);
chival■ copyct] = dt_chival(copyatoms|copyct], chiscq[copyct]),
copyct-,

} /* cmd if bond is real (i.e-to a non-dclatom) *f

f***if atom on either end of copybond is chiral substitute newbond. ***/

else!
for(count=0,count-atomcount;count ++){

if(copyatoms|copyct) == delatons(count])|
break,

}
}
if{(count-atomcount)&A (wildchival|atomcount] × DX_CHI_NONE)|l\

(Transform->type rep productatom■ count].atomicno = 0))) {
copyatoms|copyct] = newatoms(count].

copyct-4,
} /* end it wildchival */

} (" end clse “■

} /* while there are copybonds "I

/**"make new bond, substituting chirality i■ necessary ***/

for(count=0,count-copyct.count H)|
newbonds bondeount] = d addbond■ mewatoms|atomcount),\
copyatoms|count], di_bondlype(copybonds(count)));

f***i■ atom across bond is chiral reset chirality.”/

ifichival■ count]> DX_CHI_NONE)
dl resct■ chiscq|count]),
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while(NULL OB = (bond = dt next(chiseq|count))))
i■ (bond = copybonds(count]][

if{FALSE = dt delete■ chiseq[count])) {
■ printf(sider■ , “trouble repairing non-delatom chirality in ºs \mun”. Transform->name);
}

dt_next{chiseq[count]);
chiseq[count] = dt_insert(chiseq■ count), newbonds (bondeount]),
dt reset■ chiseq[count]),
dt_dealloc(copybonds(count]),
it■ FALSE = di setchival(copyatoms|count), chiseq[count], chival■ count]))|
!" ■ print■ (stderr. "trouble rescuing non-delalom chirality in ºs.Wºn”. Transform->name):*/

break.
|

}
} 1" end if xatom is chiral */

/***if atom across bond is wildcard reset chirality.”/

xatornet = -1 :
fort countle■ ).count lºreactatom.count 1++)|

i■ (cºpyatoms|count] == newatoms|count 1));
xatonci = countl,
hreak,

}
)
if{(xatomcº × < 0)&&(wildchival■ countl] × DX_CHI_NONE))|

di reset■ wildchiseqcountli),
while NULL OB = (bond = dº next wildchiseq[countil)));

ifthond == copybonds(count]).
i■ (FALSE == dt delete wildchiscq|count 1))}{
#" ■ print■ (stderr, "trouble repairing non-delalom chirality in is \num", Transform->name);"|

dt_next(wildchiseq■ countl]);
wildchiseul countl I = dt_insert(wildchiseq[countl), newbonds bondeount]);
dt_reset■ wildchiseq■ count 1)),
dt deallock copybonds(count]),
i■ (FALSE == dt_set, hival(copyatoms(count]. wildchiseq[countl), wildchival■ count]]}}{
!" ■ printf(stderr, "trouble resetting non-dclatom chirality in ‘ºs \nun". Transform->name);"|

break.
}

}
} f" end if xatom is chiral */

/*** if current atom is a chiral wildcard reset chirality.”/

i■ (wildchival■ atomicount] - DX CHI_NONE)
dt_resett wildchiseqlatomcount]),
while(NULL OB = (bond = d next(wildchiseqlalomcount))));

i■ bond == copyhonds(count])|
i■ (FALSE = di delete wildchiseq[atomcount)))'■
/* ■ printf(stderr, "trouble repairing wildcard chirality in ‘ºs.vnun". Transform->name):**

dt next{wildchiseq|atomcount]);
wildchiscu■ atoncount] = di_insert(wildchiseq[atomcount), newbonds[bond-ount]).
dt_resct(wildchiscu■ atomcount]),
it■ FALSE = di setchival(newatoms|atomcount]. wildchiseq[atomcount], wildchival■ atomcount])) {
f" ■ print■ (stderr. “Trouble resetting wildcard alom churality in ºs.vnºn", Transform->name); "|

else|
}
hreak:

}
}

Transform->type rep productbond■ bondcount] bondtype),
)
else|

dt_ºctbondlype(newbonds■ bondcount-interbondet], Transform->type rep productbond■ bond
count].bondtype);
}

!

!"**delete reactant atoms and bonds***/

for count = 0:count « reactatom;count-º)(
di dealloc(delatoms(count]),

}
for(count = 0:count & reactbond.countº-t)(

dt_dealloc■ delbonds(count]);
}

/*** set number of implicit hydrogens for each atom ***/

for(count=0,count « Transform->type repatomnumber count:4)
dt_scump_hcount(mewatoms|count], hºount(&(newatoms|count))));

}

/***set chirality on chiral transform atoms ”/

for■ count=0,count « Transform->type repatomnumber;count:4)
i■ (Transform->typerep productatom■ count] chival - DX_CHI_NONE){

/***get chiral sequence of bonds”/

chiseq[0] = dt_alloc_seq();
fortseqcount=0.seqcount & MAXCHIRAL;sequount ºf

i■ Transform->type rep productatom■ count)chiseq[scqcount] = DIV_IMP_HYDROGEN)!
atom = di isohydrot);
chiscq[0] = dt_append{chiseq[0], atom):

}
else i■■ Transform->typerep productatom■ count)chiseq[seqcount]>= 0){

chiseq[0] = di_append(chiseq[0],\
newbonds■ (Transform->type rep productatom■ count].chiseq[sequount]}+interbondct]),
}
else!

break,
}

}

/***set chirality of atom”!

i■ (FALSE = dt_setchival(newatoms|count], chiseq[0],\
Transform->type rep productatom■ count] chival));

■ print■ (slder■ , “Error setting chirality of atom in replace \n");
■ print■ (stderr, “Transform: ‘ks, Productatom: ‘ºdun". Transform->name, count):
■ printf(slder■ , “chival = %d.\n", Transform->type rep productatom■ count]...chival);

}
dt_dealloc(chiseq[0]);
di_deallockatom),

}
}

f***set chirality of bonds***/

for count=0,count-Transform->type rep bondnumber count ºf
if (Transform->type rep productbond■ count] chival == DX_CHI_CIS)|| \

(Transform->type rep productbond■ count) chival == DX_CHI_TRANS)) {
if{FALSE == dt_setdho(newbonds(count +interb■ ndct), \

fºr------ type rep produc :ountl t}, \
} /* cnd if wildcard is chiral */

f***if newbond was made, increment bond count ***/

if{NULL_OB = newbonds(hondeount)) {
hundcount-,

} f" end for make newbonds ºf
for(count=0,count-copyct;count ++)|

dt dealloc{chiseq|count]),
)

| Pº end loop through reactant atom's bonds ºf
dt deallowibonds),

} /* end it atomicno >0 */

atomicount 4+.
} /* chd while reactant set atom */

!"add rest of the product atoms”f

* f.rep ltor■ - alonal < Transf ty
newatºmslatomcount] = di_addatom■ Product->molecule,\
Transform->type rep productalomatomicount]..atomicno. 0),
dt_setaromatic(newatoms|atomcount]."
Transfºrm->type rep productatom■ atomcount] aromatic),
dt setcharge(newatoms|atomcount]."
Transform->type rep productatomatomcount]..formalcharge),

}

f'''add product bonds “t

interhondºt = bondcount:
fort bond.count - 0. - < T >type rep ++)|

if{NULL OB == (newhonds(hondeount-interbondct] = dº bond■ newatoms|Transform->type rep pro
ducthond{honddount]...atoml},\
newaterns[Transform->type rep prºducthondhonddaunt) iatom?)))) {

newbonds(hondrount-interbondct] = dt_addhondºnewatoms|Transform->type rep product
bond■ bondsount]...i.atoml}, \
newaloms|Transform->type replproductbond■ bondcount] iatom?), \

newbonds(Transform->type rep productbond■ count)chiseq[1]}+interbondct), \
Transform->type.nep productbond■ count)chival)) {
■ printf(slder■ . “Error setting double bond chirality in replace \n");
■ printf(stderr. “Transform: *s. Productbond: %d\n". Transform->name, count);
■ print■ sider■ , "chival = {d\n", Transform->type rep productbond■ count] chival);
errors = di_errors(DX_ERR_NOTE);
while(NULL_OB = (error = di_next(errors))) {

str = dt_stringvalue(&length, error),
■ print■ (slder■ , “ks un", str),

}
}

}

/***initialize product mmolequeue and reorder queue”/

i■ (FALSE == {dt_mod_off■ Product->molecule))) {
■ print■ (slder■ , “Unable to turn modify of in replace."m"),

■ ”clean up after reaction ***/

dt dealloc(pathset);
dt dealloc(paths);
dt dealloc(path),
dt_dealloc(atoms):
dt_dealloc(honds),

=0,count « T pe rep ){
di dealloctnewatoms|count]),

for(count=0,count-reactatom;count H-)■
i■ (Transform->type con productatom■ count] atomicno== 0){

dt dealloc wildchiseqícount]);
}

}

return:
} ■ º end i■ FALSE */

strmepy(Product->smiles, du cansmiles(&length, Product->molecule, TRUE), length),
Product->smiles■ length] = \0';
surupytrºroduct->externalid. Reactant->externalid),
i■ (strien(Prºduct->externalid) + strlen(Transform->name) < MAXSMILES) {

º l
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streat(Product->externalid, “”),
streat(Product->externalid, Transform->name);

|
f"■ printf(stderr, “º dº."sun". syncount, strlen(Product->smiles). Product->smiles):*/

sprint■ (parent. “ºd", Reactant->synno),
strºpy (Prºduct->parent. parent).
streat(Product->parent, “"),
streat(Product->parent. Reactant->smiles):
Prºduct->identical = -1;
strºpy(Product->transform. Transform->name);
Product->Next = NULL;
Product->Previous = "Lastpir,
Prºduct->depth = Reactant->depth l;
Product->synno = syncount,
syncount tº,
Product->nochildren = 0,

Reactant->children [Reactant->nochildren] = Product->synno,
Reactant->nochildren ++,

("Lastptr)->Next = Product;
*Lastptr = Product,

/***clean up after reaction ***f

i■ TRUE == dt deallocpathset))
■ printf(stderr, “true dealloc pathset\n");

}
i■ (TRUE = d deallºc paths)) {

■ print■ stderr. “true dealloc paths ºn"):
}
i■ TRUE == dt deallow■ path));

■ printt(stler■ , “true dealloc pathºn");
}

it■ TRUE == dt dealloktatoms)) {
■ printf(stderr, “true dealloc atomsºn");

}
dt dealloc paths),
dt dealloc path),
di deallocatoms),
dt deallochonds),
fort cºunt={}:count-reactatom.count ++){

1■ t Transform->type con productatom■ count]...atomicno == 0) {
dt dealloc wildchiseqcount]),

}
}

return,

/*-----------
* has cºunt
-

* takes atom as an argument, and returns the number of implicit
* hydrogens which the atom should cºntain

int htount(dt_Handle “Atom)
{

int formalcrg.
valence.
atomicmo,
huount,
count = 0,

dt Handlebonds,
bond.

typede■ struct (
int attºrillºno,
int valence;

|table.

table altable■ ] = { /" aliphatic table"/
1, 1.f" Hydrogen has 1 open valence. */
6, 4/- Carbon has 4 open valences. */
7, 3./* Nitrogen has 3 open valences */
8, 2.1" ()xygen has 2 open valences */
9. 1." F.C.Br.I have 1 open valence ºf
17, 1.
35, l.
53, 1.
15. 6." P has 6 open Valences ºf
16.6/* S has 6 open Valences */

};

table artable[] = { /* aromatic table */
6, 3,f aromatic Carbon have 3 open valence"
7, 2.j" aromatic Nitrogen have 3 open valence (for now)"|
8, 2.1" aromatic Oxygen have 0 open valence "l
16.2/* aromatic Sulfur have 0 open valence "l

l,

atomicmo = di number("Atom),
formalcrg = dt charge(“Atom),
1■ t FALSE == (■ t aromatic■ "Atom}}{

whiletallahle count!...atomicno - atomicno){
cºunt---,

}
valence = altable■ count].valence,
valence += formalcrg,
if(NULL OB = (bonds = dº stream "Atom, TYP BOND))}{

while(NULL OB = (bond = dº next(bonds))) {
valence -= dt bondtype bond),

}
if{(atomicmo == 16)&&(valence > 2)) {

valence -= 4./* expanded sulfur d-orbital */
}

dt_dealloc(bonds);
return(valence);

}

| ?" end if aliphatic */
else!

while (artable■ count].atomicmo '- atomicno){
count-H-.

}
valence = artable■ count].valence,
valence += formalcrg;
i■ (NULL OB =(bonds = di stream("Atom, TYP_BOND)));

while(NULL_OB = (bond = di_next(bonds))) {
valence---

}
i■ itatomicno = 7)&&(dt_hcount("Atom)== 1)) {

valence = 1/* [nh] */
}
dt_deallºc(honds);
return■ valencc).

} /* end else (aromatic) */
} {* END hecunt */

f

* screen
-

* takes a reactant molecule and a transform and returns True/False
* for whether the transform can be applied to the molecule.

int screen(molequeue "Reactant, transform "Transform)

dt_Handlepathset,
paths,
path,
atoms,
alºm,
expathset.
expaths,
expath,
exatºns,
exatonn.

intpathcount = 0.
flag:

f***check to see if screen is in molecule, if not return 0.***/

if(NULL_OB == (pathset = dt_umatch(Transform->screenin, Reactant->molecule, FALSE))) {
flag = FALSE,

}

else!
flag = TRUE,

f***count number of occurences in molecule, if > 1 return 0. ***/

paths = dº stream(pathset. TYP_PATH),
while(NULL OB = (path = dt_next(paths))) {

atoms = di_stream(path. TYP_ATOM);
pathcount—t:
if pathcount > 1){

flag = TRUE,
}

}

f**"check for exclusion structures which intersect inclusion path.”/

i■ (0's strcmp■ Transform->exclusion. “O'”));
i■ (NULL_OB = (expathset = di_match(Transform->screenout, Reactant->molecule, FALSE))) {

1■ t NULL OB = (expaths = dt_stream(expathset. TYP_PATH)))|
while(NULL_0B = (expath = d._next(expaths)))(

i■ NULL OB = (exatoms = dº stream(expath. TYP_ATOM))) {
while(NULL OB = (exatom – di next(exatoms))) {

while(NULL_OB = (atom = di next(atoms)));
if{dt_uid atom)=dt_uid(exalom)) {

flag = FALSE,
break.

}
}
dt_reset(atoms):

} Pº end exatom */
} f" end exatoms ºf

} / end expath "1
) tº end expaths “■

| " end expathset "1
| " end if exclusion "1

| 1 cnd clºc "f

/**"clean up pre-screening objects ***/

dt dealloc■ pathset),
d_dealloc■ expathset).

return (flag);

} /* END screen */

*include <stdio.h>
#include <stulih.h>

*include <string h
# include “trans.h"
#include “mol.h"
*include “seph"
#include “reph"
sinclude “debug.h"
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extern int syncount;

f************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* separate
-

* breaks apart a molecule into fragments

voidseparate(molequeue "Reactant, transform "Transform, molequeue **Laspir)
{

charparent[MAXSMILES];
intcount,

length.
molequeue"Product:

tf(screen(Reactant. Transform) == FALSE)
return.

f***malloc two new molecules (Product[0] and [1])***/

i■ (NULL == (Product = (molequeue "malloc■ sizeof molegueue)*2)));
■ print■ (stderr. “Out of memory in separate \n");
■ printf(stderr, “Unable to open molecule %d \n", syncount);
cxit(1).

}

f

* In the following section the product will be created.
* I make 2 duplicates of the reactant.
* 2, loºp through the 2 molecules
* a find key■ ) in product■ )
*h, loºp through reactant set
*if appropriate add new atom
"loºp through reactant bonds and add
*c. loop from z atom to end of molecule deleteing all atoms/bonds
"d add rest of product atoms
*e, add product bonds
* f delete reactant sct
*g, set hydrogens in new molecule
*h, make unincºlifiahle

* 3 fix both molequeues
* 4. return hoth molecueues
-------------

***loop through both product halves of reactant***/

for(count=0,count & 2:count: *)|

f***copy reactant molecule to product molecules “I

Product[count molecule = di copy(Reactant->molecule),

/***use subroutine to apply each part of the transform ****

1■ t NULL = subproduct■ &■ product■ count]), Transfºrm, count)) {
■ print■ (stderr, “Failed to make product ºd from #s in ºs \n".A
count, Reactant->smiles, Transform->name),
cºntinue.

strmºpy. Product|count] smiles, dt cansmiles■ &length. Product■ count] molecule. TRUE), length),
Product■ count) smiles■ length] = 0,
■ printf(xuler■ . “40 %."ºn", syncount, strlen(Product[count] smiles), Producticount smiles):
sprintf(parent. “ºd". Reactant->synno),
strºpy Prºduct[count parent, parent),
streat(Product[count] parent, “").
streat Product[count parent, Reactant->smiles),
Product■ count] identical = -1.
strºpy Product[count] transform, Transform->name),
Prºduct[count) Next = NULL,
Prºduct[count Previous = "Lastptr.
Product■ count) depth = Reactant->depth 1,
Product■ count] synno = syncount.
syncount--.
Prºduct■ count] nochildren = 0,

Reactant->children(Reactant->mochildren] = Product[count] synno,
Reactant->nochildren ++,

("Lastpir)->Next = & Product[count]),
*Lastpºr = &(Prºduct■ count]).

} /* end loop through product halves */

return,
}

f-----------------------------------------------------------------------

* subprºduct
-

* takes 1/2 product and 1/2 transform and returns one of the products

molecueue "subproduct(moleuueue *Prºduct, transform *Transform, int subcount)

intºlelcte,
copyet.
holdct.
cºunt,
count!,
deletºunt.
reactattorn.
reacthond.
alometºunt,
honkicount,
In 14x.

dt_Handlepathset,
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paths,
path.
àtons,
attorn,
bonds,
bond,
newbond,
holdhond|5],
copybonds(5).
delatoms|MAXSMILES).
delbonds(MAXTEMPLATE).
newatoms|MAXTEMPLATE];

/***make product molecule modifiable ***/

i■ (FALSE == dt_mod on(Product->molecule)) {
■ printf(stderr, “Can't modify ‘ºs in sep.An”, Product->smiles),
dt_dealloc■ Product->moleculc),
free■ Product),
return[NULL_OB);

}

/***find reactant path in product molecule ***/

i■ (NULL_OB == (pathset = dt_umatch(Transform->screenin, Product->molecule, FALSE))){
■ printf(sider■ , “Unable to find remove: %s of *s in 4An", \

Transform->inclusion, \
Transform->name, \
Product->smiles),

/***this should NEVER occur but is left in for historical reasons ***/
■ printf(stderr, “BIG problem, a reactant conatined screenin, but the product didn't.Vn"),
dt_dealloc(Product->molecule),
free(Proxiuct),
return[NULL_OB);

}

■ "get atoms in screenin “f

paths = dt_stream(pathset, TYP_PATH),
path = dt_next(paths);
atoms = di_stream(path. TYP_ATOM);

/***loop through reactant set “f

reactatom - 0,
deltount = 0,
reactbond = 0,
while NULL_OB = (delaloms(reactatom) = di_next(atoms))) {

iftNULL OB = (bonds = di stream(delatoms(reactatom). TYP_BOND))) {
while(NULL_OB = (dclbonds[reacthond] = di_next{bonds))) {

reactbond-º-º-;
}

}
reactatorn-44:
delcount:4,

atomicount = 0,
while atomcount « reactatom)

/***if appropriate add product atom”!

i■ (Tr wº-n || i icno > 0) {
newalomslalomcount] = dt_addatom(Product->molecule,\
Transform->type sep.productatom■ subcount][atoncount].atomicno, 0),
dt_setaromatic(newatoms|atomcount),\
Transform->type sep.productatom■ subcount][atomcount] aromatic),
dt_setcharge(newatoms|atomcount],\
Transform->type.*ep productatom■ subcount][atomcount]..formalcharge);

/***loop through reactant atom bonds and add to product “I

if(NULL_OB = (bonds = dt_stream(delatoms|atomcount]. TYP_BOND)));
copyct = 0,
while(NULL_OB = (copybonds■ copyct] = di_next(bonds)))(

copyctºr,

for(count=0,count-copyct.count H-){
newbond = d addhond(newatoms|atomcountj,\
dt_xatom■ delatoms|atomcount], copybonds!count]), \
dt_bondtype■ copybonds(count)));

} | end loop through bonds"!

) f" end if atomicno >0 */

atomicount-H-.

} /* end while reactant set atom */

!”loop from Zatom through product deleting unused half”/

atomcount = 0:
while(atomicount « reactatom)

i■ (Transform->type sep-productatom■ subcount|[atomcount].atomicno== -2) {
i■ (NULL_OB = (bonds = di_stream(delatomslalomcount]. TYP_BOND))) {

holdc = 0;
while(NULL_0B = (holdbond■ holdct] = d next(bonds)));

holdett-t;
} f" end if bond */
fort count = 0,count-holdct.count-){

if{NULL_OB = (alom = di_xatom(delatoms|atomicount), holdbond■ count]))) {
delete = TRUE,
for countl-0,count!…delcount;countl #4) {

if{(atom == delaloms|countl|Hi■ atom = newatoms|countl))) {
delete = FALSE, f" don't delete key atoms "f
break,
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}
} /"end loop through Jelatoms ºf

1■ t delete) {
i■ (FALSE = deletetragment(holdbond■ count]. &alom, delatoms, &delcount))

■ print■ (stderr, "unerror deleteing fragment \n"),
}

} /* end delete ºf
} f" end if atom *f

} /* end for count */
} /* cnd if bonds ºf

) f" end elseif */

alionhttpunt-H-.

| Pº end while reactant set atom */

/***add rest of the product atoms”/

fºrt - <t ype sep ]:alom
count ++}{
newatoms|atomcount] = d addatom(Product->molecule,\
Transform->type set productatom■ subcountl|atomcount] atomicmo,0),
dt seta■ omatic(newatoms (atomcount]."
Transtorm->type sep productatom■ subcount][atomcount] aromatic),
dt_setcharge(newatoms|atomcount],\
Transform->type sep productatom■ subcount][atomcount) formalcharge),

/***add product bonds “■

fortbond-ount = 0.bondcount « Transform->type sep hondnumber■ subcount]..hondeount ºf
it■ NULL OB == (newbond = di_bond■ newatoms|Transform->type sep productbond■ subcount][bond
cºunt] atomi J.V
newatoms|Transform->type sep productbond■ subcount][bondeount) atom?])));

newbond = d addhondºnewaloms|Transform->type sep productbond|subcount][bond
count] atoml], \
newatoms|Transform->type sep productbond■ subcount][bondcountliatom?). \
Transform->type sep productbond■ subcount][bondcount] bondtype);

)
else|

di setbondlype(newbond. Transt twixt, sen 1 -

}
}

f***delete reactant atoms and bonds****

for count = 0.count & delcount.count ++)|
dt deallºcideiatoms(count]),

}
for(count = 0,count ºf reactbond,count ++){

dt dealloc{dclbonds.[count]).
}

/*** set number of implicit hydrogens for each atom ***!

for count=0,count « Transform->type sepatomnumber■ subcount];counttº■
dt set imp hoount(newatoms|count), hºount(&(newatoms|canint))));

f***initialize product mmolequeue and reorder queue”;

i■ (FALSE = (dt_mod_o■■ (Product->molecule)));
■ printf(stderr. “Unable to turn modity of in separate \n");

f***clean up after reaction ****

dt dealloc'pathset),
dt deallºc{paths):
dt deallºw (path),
di deallux (atoms);
dt deallow (bonds),
for(count=0,count « Transform->type sepatomnumber[subcount];count: 1){

dt deallowinewatoms|count]).
}
/*free(Product), */
return■ NULL OB);

} /* end i■ FALSE */

**"clean up after reaction ***/

dt dealloc pathset).
dt dealloc paths);
Jt deallºc path),
di ulcalloc(atoms),
dt deallectbonds),
fortcount=0,count « Transform->type sepatomnumber[subcount):count: *)|

dt_deallºk (newatoms|count]).
}

***return product”/

return■ Product),

| " end subproduct ºf

f

* deletetragment
*

* recursively deletes any connected fragment starting with one atom.
* be careful not to backtrack up the hond you start with
-- *** - - - -

f

int deletetragment(du Handle backbond, dt_Handle "atom, dt Handle “delete, int "incount)

intcount.
countl,
repeat.
followct.

dt Handlexatom.
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bonds,
bond.
followbond■ 5],

/***mark atom for deletion***/

if(NULL OB == (delete■ "(incount)] = di_xatom(dt_xatom("atom, backbond), backbond)))[
■ print■ (slder■ . “Whats up wit dat");

}

/* if■ NULL OB = (delete■ "(incount)] = di copy("atom))){
■ print■ (sider■ , “Error 4d", dt_uid(*atom));
dt dealloc(bonds),
dt dealloc{bond):
returnt FALSE),

}
*/

++*(incount);

/***loop through all connections to get more atoms to delete “f

i■ (NULL OB = (bonds = di stream("atom, TYP BOND)))■
followct=0;
while(NULL_OB = (bond = dt_next(bonds))) {

if(bond – backbond){
followbond■ followct]=bond;
followct-tº-:

} /* cnd i■ NOT backbond */
} /* end if bond */

for(count=0,count-followct;count ++){
xalon = dt_xatom("atom, followbond■ count]);

/**"loop through delatoms making sure that you're not looping back on self”,

repeat = FALSE,
for(countl =0,countl & "(incount);count 14+){

if(xatom == delete■ count1]){
repeat = TRUE,
break;

}
}

/***if everythings ok, go to deeper level on recursion ***/

i■ (repeat)|
i■ FALSE = deletefragment(followbond■ count]. W
&xaton, delete, incount)) {

■ printf(stderr. “ºd. “, dt_uid(*atom));
dt_dealloc(bonds).
dt dealloc{bond),
return[FALSE);

}
}

) tº end for followct */

} /* end if bonds ºf

/***clean up after connections ***/

dt_dealloc(bonds);

return■ TRUE);

} /* end delete fragment ºf
#include <stdio.h>
#include <stdlib.h>
*include <string hº
#include “trans.h"
#include “Inol.h"
#include “con h"
*include “reph"
#include “dchug.h"

extern int syncount;

f

* connect
-

* joins a molecule or fragment to a library of other fragments.

*Reactant, *Transform, mol **Lastpur)
{

charparent■ MAXSMILES];
intsize,

ncwct,
copyct,
attach,
reactatom,
reacthond.
atomethunt.
interbondet,
honkicount,
concºunt.
connumber.
Katonict,
count, count!,
frag,
Inax,

length,
realbond,
scquount,
chival(MAXCONNECTIONS],
wildchival|MAXTEMPLATE].

d!_Handleerror,
errors,

-- .
* *

º l

*
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tempmol.
pathset.
paths,
path,
atoms, atomsl, atoms2, atom3, atom4,
alom, atoml, atom3.
bonds, bonds!, bonds2.
bond, bondl. bond2,
newbºnd.
copybonds.IMAXCONNECTIONS].
cupyatoms(MAXCONNECTIONS].
Jelatoms|MAXTEMPLATE],
delhonds(MAXTEMPLATE],
newatoms|MAXTEMPLATE).
newbonds(MAXTEMPLATE].
chuseq[MAXCONNECTIONS].
conatoms|10],
conbonds 10].
wildchiseq[MAXTEMPLATE].

dt Stringstr;
molecueue"Product;

if{screen■ Reactant. Transform) == FALSE)
return,

f***inallow new molecule (Product)***/

i■ (Transform->■ lag = ‘l’){
size = 1.

|
else {

size = Transform->type.con Library->size;

if (size == 0) {
return.

}

if{NULL == (Product = (molequeue "mallocksizeof (molegueue)"size)));
■ printt(stderr. “Out of memory in: con n”),
■ print■ (slder■ , “Unable to open molecules 4d-%d \n", syncount, syncount-size),
■ print■ (stlert, “Malloc call for size = %d un".sizeof (molequeue)"size),
exit■ 1),

}

f*** ******* ********* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* In the following section the product will he created
* I duplicate reactant->temp
* 2 find reactant set
* 3. loop through reactant set
*1f appropriate add new atom
* loop through reactant bonds and add to product
* 4 add rest of product atoms.
* 5 add product bonds
* tº delete reactant set.
* 7 loop through library
“duplicate temp->product
"add fragment to product
* 7. set hydrogens in new molecule
* this shºuld result in the product molecule
-----------------------------------------------------------------------,

/***copy reactant molecule to product molecule ***t

tempmol = di copy(Reactant->molecule):

f**"make product molecule modifiable ***

i■ FALSE = dº med on(tempmol)) {
■ print■ (stderr, “Can't modify ºs in convin”, Reactant->smiles):
dt Jeallºctempmol):
free(Product},
return.

}

/***find reactant path in product molecule “f

i■ NULL OB == (pathset = d._umatch(Transform->screenin, tempmol. FALSE))) {
■ print■ stderr, “Unable to find remove: *s of 3 s in ºs\n", \

Transform->inclusion, \
Transform->name, \
Reactant->smiles),

f***this should NEVER occur but is left in for historical reasons ***/
■ print■ stilert, “BIG problem, a reactant conatined screenin, but the product didn't.un");
dt deallºc■ tempmol).
treet Product),
return,

}

f***get atoms in screenin “l

paths = dt_stream(pathset. TYP_PATH),
path = di_next(paths).
atoms = di stream(path, TYP_ATOM),

/***loop through reactant set get atoms, bonds "**i.

reactatom - 0,
reactbºnd = 0.
while(NULL OB = (delaloms(reactatom) = d next(atoms))) {

if{NULL OB = (bonds = di stream(delatoms(reactatom). TYP BOND))) {
while NULL OB = (delbonds reactbond] = di_next{bonds))) {

reactbond:#4,
|

}
dt deallºchonds);
reactatºm-º:

dt_dealloc{atoms),

dt_deallocºpathset);
dt_deallocºpaths),

atoncount = 0.
bondeount - 0,
while(atomcount « reactatom) {

/***if appropriate add product atom”!

i■ (Transform->type.com productatom■ atomcount] atomicnox=0){

i■ (Transform->type.com productatom■ atomcount].atomicnox 0){
newatoms(atomcount] = di_addatom(tempmol,\

Transform->type.com productatom■ atomcount].atomicno, 0):
dt_ºctaromatic(newatoms|atomcount),\

Transform->type.com productatom■ atomcount] aromatic),
dt_scicharge(newatoms|atomcount].V.

-- tiºn

}

/***atomicno 0 is for wildcard, copy reactant atom”!

wildchival|atomcount] = DX_CHI_NONE;
i■ (Transform->type.con productatomlalomcount)atomicno == 0){

newatoms|atomcount] = dt_addatom(tempmol,\
dt_ ), dt_imp ly):

dt_setaromatic(newatomslalomcount].V
dt_aromatic(delatoms(atomcount])),

dt_settharge(newatoms|atomcount].V.
dt_charge(delatoms|atomcount)));

f***copy wildcard alom chirality if it exists ***/

wildchiseq[atomcount] = dt_alloc_seqt):
if(TRUE == dt_imp_hcount(delaloms(atomcount))) {

atom1 = di isohydro();
wildchiscqlalomcount] = di_append(wildchiseq[atomcount]. atom1);

}
i■ (NULL OB = (bonds = di stream(delatoms|atomcount], TYP_BOND)))'■

while(NULL_OB = (bond = di_next(bonds))){
wildchiseq[atomcount] = d append(wildchiseq[atomcount], bond);

} /* end while wildcard's bonds “I
} f" end if bonds “A
dt dealloc■ bonds),
di reset(wildchiseu■ atomcount]),
wildchivallalomcount] = dt_chival(delalomslatomcount], wildchiseqlalomcount]),

} /* end if wildcard ºf

***loop through reactant atom bonds and add to product “■

i■ (NULL_OB = (bonds = d._stream(dclatomslalomcount]. TYP_BOND)))(
copyct = 0,
while(NULL OB = (copybonds|copyct] = di_next(bonds)))(

f***only count bonds to unchanged atoms”!

realbond = TRUE;
chival■ copyct] = DX_CHI_NONE,
vºi pyct] = di_x 4...I - l, copy s|copyct]);
for(count=0,count-reactatom:count-4){

ift copyatoms|copyvt) == delaloms|count])|
realbond = FALSE;
break,
}

}

f***if bond is to non-delalom check for chirality in xalom ***/

if(realbond){
chiseq[copyct] = d alloc_seq();
i■ TRUE = dt_imp_hcount(copyatoms|copyct])){

atoml = dt_isohydrok),
chiseq[copyct] = d._append{chiseq[copyct]. atoml);

}
i■ (NULL_OB = (bonds] = di stream(copyatoms|copyct]. TYP_BOND)))'■

while NULL_OB = (hond1 = d._next(bonds 1))}{
chiseq[copyct] = dt_append{chiseq|copyct], bond1),

} /* cnd while non-dclatom's bonds ºf
} f" end if bonds ºf
dt_dealloc(bonds!);
dt_rcset(chiseq|copyct]),
chival■ copyct] = di_chival■ copyatoms|copyct], chiseq[copyct]);
copyct—t:

} /* end if bond is real (ic-to a non-delalom) */

/***if atom on either end of copybond is chiral substitute newbond. ***/

else|
for(count=0,count-atomcount;count H-){

if{copyatoms|copyct] = delaloms|count]){

}
}
if{(count.<atomcount)&A ((wildchival■ atomcount) > DX_CHI_NONE)|l\

(Transform->type con productatom■ count].atomicno = 0))) {
copyatoms|copyct] = newatoms|count),

copyctºt,
} f" end i■ wildchival */

} ■ º end clºe "l

} /" while there are copybonds “I

f**"make new bond, substituting chirality i■ necessary ***/

for(count=0,count-copyct,count-){
newbonds■ bondiount] = dt_addbond■ newatoms|atomcount],\

º
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copyatoms(count]. dt_bondlype(copybonds(count])).

/***if atom across bond is chiral reset chirality.”/

i■ ºchival■ count) > DX_CHI_NONE){
dt_resettchiscu■ count]),
while NULL OR = (bond = d next(chiscq count))));

it(bend = copybonds(count]}{
if FALSE = d deleieichiseq[count])}{

■ printt(slder■ , “trouble repairing non-delalom chirality in ‘ks Anun". Transform->name),

dt_next{chiscu■ count!):
chiseq[count] = dº inscrºtchiseq[count]. newbonds/bondcount]),
dt resct■ chiseq|count]),
dt_dealloccopybonds(count]).
it■ FALSE == dt setchival(copyatoms count), chiscu■ count], chival■ count])) {
* ■ printf(stderr, "trouble resetting non-delatom chirality in ‘ks \n"n". Transform->name),”/
|
break.

}

} /* end if xatom is chiral ºf

/***it alom across bond is wildcard resci chirality.”/

xatonct ºr -1.
for(countle■ ).count lºreactatom.countlºt)|

1■ t copyatoms|count] == newatoms(count 11){
xattºrnet = count 1.
break,

}
}
it■ (xalomat -- 0&&(wildchival■ countil] - DX_CHI_NONE));

dt reset■ wildchiseq[count 11,
while(NULL OB = (bond = di next wildchiseq[countl|)))'■

i■ (hond == copyhonds count]).
i■ FALSE = d delete wildchiscq count!)))'■
/* ■ print■ (stderr, "trouble repairing non-delatom churality in *-s ºn"m", Transform->name),"/

}
dt next wildchiseq[countli);
wildchiseul countl I = di insert■ wildchiscu■ countil. newbonds bond.count]).
dt reset■ wildchiscq (countl),
dt dealloc■ copybonds(count]);
tf(FALSE = di setchival(copyatoms|count]. wildchiscu■ count! ... wildchival■ countil J)) {
1" ■ printt(stderr, "trouble rescuing non-delatom chirality in ‘As \nun". Transform->name)."!
}
break.

}

} f" end if xatom is chiral */

f***if current atom is a chiral wildcard reset chirality”f

ift wildchival|atomcount] × DX_CHI_NONE) {
dt reset■ wildchiscq|atom.count]).
while NULL OB = (bond = dt next{wildchiseq■ atomcount)))) {

it(bond = copybonds!count)}{
1■ t FALSE = dt delete wildchiseqiatomcount)));
/* ■ print■ suler■ , “trouble repairing wildcard chirality in *s n\n". Transform->name), */

dt_next{wildchiscu■ atomcount]).
wildchiseqlatomcount] = dt_Insert■ wildchiseqlatoncount], newbonds.[bondcount]),
dt reset■ wildchiscu■ atomcount]),
ºf FALSE == dt_wichival■ :ount]. wildchiscu■ jount], wildchi

-
])) {

/* ■ printt(stderr, "Trouble resetting wildcard atom chirality in 4.s.n.m.". Transform->name). */

else■
}
break.

}
}

} /* end it wildcard is chiral */

/*- f newbond was made, increment honºcount ***/

1■ t NULL OB = newbonds (bondeount!)
honddount-4.

}
| Pº end for make newbonds ºf
for(count=0,count-copyct.countt—t)|

dt deallocchusculcount]).
|

| Pº end loop through reactant atom's bonds "1
dt_deallochonds),

} tº end if atomicno >0 */

attºrne cºunt-º-º-,
} f" end while reactant set atom */

--------------------- -----------

dº not edit above this line
----------------------------------------------------

f

1“"add rest of the product atoms”

for atomcount - atomcount, atomicount « Transform->type.com.atomnumber.atomcount—t){
newatoms|atomcount] = d addatom(tempmol."
Transform->type con productatom■ atomcount atomicno, 0),
dt setaromatic(newatoms|atomcount]."
Transform->type con productatomatomcount] aromatic),
dt_settharge(newatoms|atomcount]."
Transform->type.com productatom■ atomcount) formalcharge),

}

/***add rest of the product bonds “I

concount = 0,
interbondct = bondcount,
for(bondcount = 0.bond.count « Transform->type con bondnumber, bondcount: *):

i■ ((Transform->type con productbond■ bondcountliatoml & 0xff■■ )&& \
(Transform->type con productbond■ bondcountliatom 2 & Ox■■ if))|

iftNULL_OB == (newbonds(bond let) = di_b ■ transf pe.con pro
ductbond■ bondeount] latoml},\

ype.com liatom 2]))) {
newbonds bondcount-interbondet) = d addbond(newatoms|Transform->type con productbond■ bond.
count].i.atoml), \

newatoms(Transform->type con-productbond■ bondcountliatom?). \
Transform->type con-producibond■ bondcount] bondtype);

}
elsc■

dt_sethondtype(newb fl-...----4-- *- tl. Transf Lºrnn

count] bondtype);
}
}
else■

ift Transform->type.com productbond■ bondcount]...i.atom1 > 0xffff) {
connumber = (Transform->type con producthond■ bondeount].iatoml) >> 16,
atom 2 = º can liatºm 21:

}
else!

connumber = (Transform->type con productbond■ bondcountliatom?) >> 16;
atom? = newatoms(Transform->type.con productbond■ bondcountliatoml].

}
i■ (NULL_OB == ] = dº t 0. jjji

■ printf(stderr, “nProblem adding conatom *d in transform *s n\n", connumber, Transform->name);
}
if{NULL_OB == | = di_ J. atom 2, \

Transform->type con productbond■ bondcount] bondlype)))(
■ printf(sider■ , “nProblem making contond +d in transform #s unu■ ", connumber, Transform->name),

}
- t] = J.

concount-º-º:
}

}* end adding product bonds ºf

/***delcue reactant atoms and bonds***/

for(count = 0:count ºf reactatom;count H-){
dt_dealloc(delatoms(count]).

}
fort count - 0:count ºr reactbond;countt—t)|

dt_dealloc■ dclbonds(count]),
}

/*** set number of implicit hydrogens for each atom in base ***/

for count=0,count « Transform->type con atomnumber.countº■
di_setimp_hcount(newatoms|count). h.count(&(newatoms|count))));

}

start from rep

/***set chirality on chiral transform atoms “■

for count=0,count « Transform->type con atomnumber count tº
i■ (Transform->type con productatom■ count].chival '+ DX_CHI_NONE)(

/***get chiral sequence of bonds***/

chiseq■ o] = dt_alloc_scq();
fortseqcount=0.seqcount « MAXCHIRAL scqcount tº

i■ Transform->type con productatom■ count)chiseqlsequount] = DIV_IMP_HYDROGEN)(
atom = di_isohydro(),
chiscu■■ )] = di append(chiseq[0], atom):

}
else if{Transform->type.com.productatom■ count]..chiseq[seqcount] x = 0) {

chiseq[0] = dt append(chiseq[0],\
newbonds (Transform->type.com.productatom■ count].chiseq[seqcount])+interbondet]);
}

else■
break,

)
}

1“set chirality of atom”!

iftfalSE = dt setchival(newatoms|count], chiseq[0],\
Transform->type con productatom■ count] chival))|

!"■ print■ (stderr, “Error setting chirality of atom in liol \n");"|
■ print■ stderr. “Transform. Ås, Productatom: 'A Jun", Transform->name, count);
■ print■ (stderr, "chival = {d\n", Transform->type con productatom■ count] chival),
debug atom(newatoms|count]);
debug scquence■ chiscqí01).

)
dt_deallocchiseq■ )));
di_deallocaton),

}
}

/***set chirality of bonds***/

fortcount=0,count-Transform->type con bondnumber.count-t)(
i■ ((Transform->type con productbond■ count] chival == DX_CHI CIS)] \

(Transform->type con productbond■ count] chival == DX_CHI TRANS)) {
i■ (FAl-SE == Ji setdbotnewbonds(count +interbondet), \

newbonds (Transform->type.com.productbond■ count)chiseul.01)+interbondct). \
newbonds (Transform->type.com productbond■ count].chiseqí11)+interbondet]. W
Transform->type con productbond■ count] chival));
■ printf(stderr, "Error setting double bond chirality in connect\n");

sº

R. º

_2 ,

º

353



S
~

d tººl
—a
º

.*

- :

--

1. *º

+.T L + * * :

-
** * * * autº
- * -

* - º - *

- *- - - |
--- - -

* - -º º-º-º-º-º- - - º*-º

- º --- --- -~ * -

-- *. º

- - - -
-

- *-i- -
-

* - s:- -

-

'º º

-
* *

a "

• *



■ print■ sider■ . “Transform: *s. Productbond. * dun", Transform->name, count),
■ printf(sider■ , "chival = * d \n". Transform->type con productbond■ count)chival),
errors = di errorMDX_ERR NOTE).
while(NULL OB = (error = di next(errors)))

str = di stringvalue(&length, error),
■ printt(stderr. “ks \n", str),

end from rep

for library transforms can exit now

it■ Transform->■ lag == 1){
dt dealloc Reactant->molecule);
i■ (NULL OB == (Reactant->molecule = dt_copy(tempmol))) {

printt(stderr, “test crtorun”),
|
dt deallocitempmol),
dt deallocipathset),
dt dealloc (paths),
dt deallow (path),
dt dealloctatoms),
dt deallow■ honds):
frce■ Prixiuct):
fortuount=0,count-reactatom.count: *){

1■ t Transform->type con productatom■ count].atomicno== 0) {
dt dealloc wildchiseqcount]),

}
}

return:
}

/***loop through library making many products ***/

for trag-O,trag • Transform->type.com Library->size, frag++)|

/***copy fragment“.

Product[frag) molecule = d copy(tempmol),

/***make adjuncts”*/

atoms1 = dº stream tempmol. TYP ATOM);
atoms2 = di stream(Product■ frag) molecule, TYP ATOM).
while(NULL_OB = (atom1 = di nexuatoms 1)));

atom1 = dt_next(atoms.2).
dt_scuadjunct(atoml, atom3).

}
hondal – di stream(tempmol. TYP BOND),
bonds2 = dº stream(Product[fragl molecule, TYP BOND),
while NULL_OB = (hond l = dt_next{bondsly));

bºnd2 = di nextthands2).
dt sctadjunct■ bondl. bond2),

}
dt deadloctatorns 1);
dt deallºc{atoms.2):
dt deallºx (bonds
dt deallow (bonds2).

f***copy stream of atoms from fragment “I

newct = 0,
it. NULL OB = (atoms = dº stream(Transform->type con Library->Fragments fragl. TYP_ATOM)));

while NULL OB = (atom = di next(atoms))) {
newatoms|newct] = d addatum(Prºduct!Irag) molecule, dt_number(atom), dt_hcount(atom));
i■■ ilt aromatic(atom}==TRUE) {

it■ FALSE ==(ut setaromatic■ newatoms|newetl. TRUE))) {
■ printf(stderr, “Error making ‘ºd aromatic with %s.vn".A

di udi newatoms|newct]), Transform->name),
}

}
dt setaljunct■ atom, newatoms|newct]);
newut--.

}
)
dt dealloc■ atoms),

***copy stream of bonds from fragment ***/

in NULL OB = (bonds = dº stream(Transform->type con Library->Fragments(fragl. TYP BOND)))
while(NULL OB = (bond = dt_next bonds))) {

it■ NULL_OB = (atoms = di stream(bond. TYP_ATOM))) {
atoml = dt_next(atoms).
atom7 = dt_next(atoms),
atomº = di_adjunct■ atoml),
atom4 = dt_adjunct(atom
newbond = d._addbond atom3, atom4, dº bondtype bond)),

}
dt setad■ unct(bond, newbond),
dt_deallºw (atoms).

}
dt dealloc■ bonds),

}

/**"copy chirality of atoms from fragment”/

f(NULL OB = (atoms = dt streamTransform->type conLibrary->Fragments■ trag). TYP_ATOM)))'■
while NULL_0B = (atom = di_next(atoms)));

chiscu■ o) = d alloc seq.),
chix.cq| | | = dt_alloc_scq(),
if TRUE == di_imp htount(atom))(

atom1 = dº isohydrot),
chiscq 0) = dt append(chuseq■ o], atoml).

chiseq[1] = di_append{chiseq[1]. atoml);
}
i■ (NULL OB = (bonds = di stream(atom. TYP BOND))){

while(NULL_OB = (bond = di_next(bonds))) {
bond l = dt_adjunctibond),
chiseq[0] = di_append{chiseqto], bond):
chiseq[1] = dt_append(chiscq|1], bond1),

}
}
dt_dealloc(bonds);
dt_reset(chuseq[0]),
dt reset(chiscu■ 11):
chival|0} = di_chival(atom, chiscq10]),
chival{1} = chival{0}.
iftchival(0) > DX_CHI NONE)|

alon = dt_adjunct■ atom),
if{FALSE = di setchival(atom, chiseq[1], chival(1]))|

/*■ printf(stderr, Trouble copying chirality in fragment ºd of library ºs \nu■ ", frag. Transform
>type conLibrary->name)."!

}
}
dt_deallocchuseq[0]);
dt deallocchiseqi ll),

}
}
dt_dcalloc■ atoms),

/***copy chirality of bonds from fragment”/

i■ NULL OB = (bonds = dº stream(Transform->type conLibrary->Fragments(frag). TYP_BOND)))(
while(NULL_OB = (bond = di next(bonds)));

f(DX_BTY_DOUBLE = di bondtype(bond));
if(NULL_OB = (atoms = di_stream(bond. TYP_ATOM))) {

atoml = dt_next(atoms),
if{0 < dt_imp hºount(atoml)) {

bond1 = di_isohydro (),
}
else!

bonds} = dt_stream(atom1. TYP BOND);
while(NULL OB = (bond1 = dt_next(bonds!))){

iftband a bondi )
break.
}

}
atom? = di next(atoms),
if{0 < dt_imp_hcount(atoml)) {

bond2 = d isohydrot),
}
else■

bonds2 = di_stream(atom 2. TYP_BOND).
while (NULL_OB = (bond2 = di_next(bonds2))) {

ifthond ºr bond2)
break.
}

}
}
i■■ ox CHI NO DBO & (chival■ o] = di_dbo■ bond, bond.1, bond2)))

bond = dt_adjunctibond),
it■ DX_BTY UNKNOWN < dt_bondtype(bond1))

bond l = di_adjunct(bond 1),
}

1■ t DX_BTY UNKNOWN < dt_bondtype(bond2))(
bond2 = di_adjunct(bond2),

}
ift FALSE == dt_seidboxbond. bond.1, bond2, chival(0])) {

■ printf(stderr. “Trouble copying double bond chirality in fragment *d of library ‘ks \num", frag,
Transform->type conLibrary->name),
}

} /*end found chiral dblº■
| 1" found db bond */
dt_dealloc(atoms),
dt_dealloc{bondsl),
dt_dealloctbonds2),

}
dt_deallochonds),

}

/***make the new bond which connects fragment to base ***/
/***need to change io to handle multiple connections ***/

for(connumber=1;connumber<=concount.connumber++){
atom = d xatom(conatoms(connumber], combonds(connumber]);
atoml = d adjunct■ atom),
atom3 = di_adjunct(Transform->type.com.Library->Attachatoms|frag|[connumber]).

1***copy initial chirality “f

chiseq[1] = d alloc seq();
i■ (TRUE == dt imp_hcount(atoml)) {

alom = dt_isohydro■ ),

iftNULL OB = (bonds = di_stream(atoml. TYP_BOND))) {
while(NULL_OB = (bond = dt_next{bonds))) {

chiseqíl = dt_append{chiseq[1], bond),
}

}
dt reset(chiseq[1]);
chival■ l l = dt chival(atoml, chiscqill),
dt_deallochonds),

chiseq[2] = dt alloc_seq().
if{TRUE = di_imp_hcount(atom?)) {

alom = di_isohydro().
}
i■ (NULL_OB = (bonds = di stream(atom3. TYP BOND))) {

while(NULL_OB = (bond = di_next(bonds))) {
chiscq[2] = d append(chiseq[2], bond),

}

-
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}
dt reset■ chiseq[2]);
chival{2} = di chival(atom 2, chiseq[2]);
dt_deallochonds).

f***make new bond ***/

i■ (NULL OB == (newbond = di_addbond(atoml. atom?, dt_bondtype(conbonds.[connumber))))){
debug atom(atoml),
debug atom■ alon?),
■ print■ (sulc■ i, “\nTrouble making connection bond ‘4 d in ‘ks."mun”, connumber, Transform->name);

|

/***if necessary reset chirality.”/

i■ (chival||1] 3 DX_CHI_NONE)|
bond l = d adjunct■ combonds connumber■ ),
while(NULL OB = (bond = dt_next(chiseq[1])))'■

it■ bond == bond1){
di delete■ chiseuil );
dt_next{chiseq[1}),
chuseq[1] = dt_insert■ chiseq[1]. newbond),
break,

|
}
dt dealloc{bondl):
ilt reset■ chiscu■ ll);
if{FALSE = di setchival(atoml. chiseu■ 1), chival■ 1))}{
■ " ■ print■ (stderr, ºwn Trouble rescuing chirality of root connect atom #d in ‘As \nun", connumber,
Transform->name);*f

}
it■ chival|2| > DX_CHI_NONE)|

* need to have bond1 = Transform->type con Library->Altachbonds(frag|Iconnumber] eventually */
while(NULL OB = (bond = dt_next{chuseq|2|))){

if{bond = hond1)|
dt delete■ chiscq|2|),
dt_next{chiscu■ 2]).
chiseq[2] = di inscri(chiseq[2]. newbond):
break,

}
}
dt deallochondl),
di reset{chiseq[2]),

strºpy(Product[frag) parent, parent);
streat(Product■ frag) parent. “:"),
streat(Product[fragl parent, Reactant->smiles);
Product[Irag) identical = -1;
strºpy(Product■ frag|...transform, Transform->name);
Product[frag). Next = NULL;
Product[■ tag|Previous = *Lastpir;
Product[frag|...depth = Reactant->depth + 1,
Product[frag) synno = syncount,
syncount—t,
Product■ trag).nochildren = 0,

Reactant->children|Reactant->nochildren] = Product(fragl.symno,
Reactant->nochildren ++;

(*Lastpir)->Next = &(Product[frag|),
*Lastptr = & Product[frag),

] ■ º end loop through fragments */

/***clean up after reaction ***/

for(count=0,count creactatom;count:4){
i■ (Transform->type.com.productatom■ count] atomicno = 0) {

ult dealloc{willchisequount]),
}

}
dt dealloc■ tempmol):
dt_dealloc(atoms);
dt dealloc{bonds),

return.
}
#include <stdio.h>
#include <stdde■ he
#include <string.h>
*include <stdlib.h>

*include ºctype hº
#include “trans.h"
#include “parsesmilesh"

f

it■ FALSE == di Metchival(atom 2, chiseq[2], chival(2)));
* ■ printt(stderr. “nTrouble resetting chirality of root connect atom #d in ºs \num”. connumber,
Transfºrm->name):*/
}

}
dt deallocchuseq[1]);
dt deallockchuseqill).

1***clean up connection place-holders ***/

atom = dt_adjunct(conatoms(connumber]);
dt deallocatorn),

} /* end making connections */

/*** set number of implicit hydrogens for auachment site atoms “f

dt_setump hºount(atom 2. hCount(&(atom?)));

f***set number of implicit hydrogens for fragment atoms “f
/*

atoms = dt stream(Transform->type con Library->Fragments(frag), TYP_ATOM);
while(NULL OB = (atom = dt_next(atoms))) {

atomi = dt adjunct(atom),
di Sctimp hºount(atom. htount(&(atom)));

dt dealloc■ atonx);
*/

f***initialize product mmolequeue and reorder queue”/

1■ t FALSE == (dt_mod off Product[frag) molecule)));
■ printf(stderr. “Unable to turn modify of in connect \n"),
■ printf(stderr, “Reactant ºn Fragment: ‘A sun". Reactant->smiles. Transform->type con Library

>Externalidal frag));
debug molecule(Product■ trag) molecule),
debug molecule(Transform->type con Library->Fragments|frag|),
debug molecule(tempmol),

f***clean up after reaction “I

dt dealloc{pathset),
di deallow (paths):
d! deallºcatoms);
ult deallow (hands);
for cºunt=0,count & newut, count ºt) {
di ulcallow (newatoms|count]),
}
for(count=0,count-reactatom;count ++)|

i■ Transform->type con prºductatom■ count] atomicno = 0){
dt dealloc■ wildchiscqlcount]),

}
}
return.

} / end i■ FALSE */

strmepy(Prºduct[frag) smiles, dt cansmilest&length, Product[fragl molecule, TRUE), length),
Prºduct[frag) smiles■ length] = \0'.
strupyt Prºduct■ trag|externalid, Reactant->externalid);
ift stricn(Prºkluct[frag| externalid}+\

strlen(Transform->type con Library->Externalids(frag)) & MAXSMILES)|
streat(Product■ frag|..externalid. Transform->type.co.n.Library->Externalids frag),

}
!"■ print■ (stderr, “ºd'é.’s n", syncount, strlen(Product[frag) smiles), Product[fragl smiles);"|
sprintf(parent, “ºd", Reactant->synno),

* parsesmiles
-

* ags 4/25/96
-

* this routine is a pseudo-smiles parser, it currently docs not handle
* nested branching (ie - CCC(NCC(BrycKC) correctly, this can be handled by
* disconnection and “ring' closure (ie - CCCICCN1CC(Br}C).
****can fix this by putting openbranchbond on a stack and pop/push with ) and (
* this
* routine handles the special characters X, Y, and Z which stand for
" atom termination, connection point, and separation point respectively.

int parsesmiles(char *string, atoms int bonds "frag int

int chiralnumber;

/***get atoms “f

if(0 × ("atomnumber = parseatoms(string, newatoms))) {
■ printf(stiler■ , “E■■ or pa■ sing atoms in 3.sun", string);
return■ FALSE),

}

f***get bonds "**/

ift■ ) > ("bondnumber = parsebonds(string, newatoms, "atomnumber, fragbonds)));
■ print■ (stderr, "Error parsing bonds in 4 An", string),
returnt FALSE);

}

f****et chirality.”/

i■ (0 × (chiralnumber = setchiral(string, newaloms, "atomnumber, fragbonds, "bondnumber))){
fprint■ (stderr. “Error parsing chiral centers in ■ sun", string),
return■ FALSE),

}

/***done parsing return “”/

return■ TRUE):

| Pº end parsesmiles "f

f

* parseatoms
-

* 4/25/96 ags
-

* this routine takes a smiles-transform string and gets a list of
* the alons out.

int parseatoms(char *string. atoms "atoms)
{

int max = 0.
count a 0.
icount,
chicount,
atomicount = 0,
inbracket = FALSE,
bracketsize = 0.
hranchievel = 0.
char alcticrí53]:

strºpytaletter. "ABCDEFGHIJKLMNOPQRSTUVWXYZabcde■ ghijklmnopgrstuvvºyz");
max = strlen(string):

} tº
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while(count « max) {

f***Check if atom is inside a bracket “”f

1■ t string■ cºunt] =='1' ) {
inbracket = TRUE,
while string■ count-l-bracketsize = }'}■

bracketsize--.
}

}

****check if now ºutside bracket.***/

it■ string■ count] == “I’){
inhracket = FALSE,
bracketsize = 0.

}

/***increment branch level on (***/

1■ t string|cºunt] = *(*) {
branchlevel++,

}

f***decrement branch level on Y-- */

in string■ count] == *)'){
branchlevel--.

}

/***check for and build atom symbols “”/

f

if{{{string|count] -= 'A' |&&(string■ count] ºr Z")}|A
((string■ count] x = ‘a’ &&(string■ count) -- “Z”)));

•/

i■ (NULL = strchrtaletter, string■ count])) {

/***note position of atom in string “■

atoms|atomcount] position = count.
atomslatumcount] inhracket = inbracket;
atoms|atomcount] bracketsize = hracketsize;
atoms|ato■ hcount] branchlevc = branchlevel;

f***parse atom symbol into atom structure”*/

f**** is wildcard atom.” “f

if(string■ count] == ***){
atoms|atomcount] symbol = “’;
atoms(atomcount] atºmicno = DX_ATN_WILD,
atomslalomcount] aromatic = 0,

|
f***C. and Br are special cases”f

ift(string■ count: 1) == "r lºstring|count: 1) == "I')) {
1■ t string■ count] == ‘B’){

cºunt-4-4,

atoms|atomicount] symbol = 'R',
atoms|atomicount] atomicmo = 35,
atoms|atomcount] aromatic = 0,

else i■ string|count] = ‘C’)|
cºunt-4,

atoms|atomicount] symbol = 'L',
atoms|atomicount] atomicno = 17,
atoms|atomcºunt] aromatic = 0,

}
}

f***all other atoms • **/

else {
atomslatomcount] symbol = string■ count].
atoms|atomcount!...atomicno=atnº & string■ count]).
ift (stringicount 2- 'a')&&(string|count] -- 'z')) {

atoms|atomcount] aromatic = TRUE,
l
else|

atomis■ atomicount] aromatic = FALSE,

}

atoms|atomcount]...■ ormalcharge += (string■ counttl]-48),
count += 2;

}
else■

atoms|atomcount]..formalcharge ++;
count---.

}
}
while(string■ count] == '-'){

i■ ((string|count-1}>= '1')&&(string■ count-1} <= '9')){
atoms|atomcount]..formalcharge -= (string■ count: 1) -48);
count += 2;

}
else!

atoms|atomcount]..formalcharge--,
count---.

}
}

/***get chirality.”/
/***allow TH as default [Cºlor (Cae) “■
/***allow AL, SP. TB, or OH but only as stated case (ie-NOT by degree defaults) ***/
/***allow [Cº(ºxx] to by synonymous with [CºxX2]”/
/***allow (CG (g eSP) to by synonymous with (C&SP3]***/
****only AL1-2, SP1-3. TB1-2, and OH1-2 are allowed. TB1-20 and OH.1-30 exist “f

chicount = 0:
while(string■ count] = **"){

chicount-4.
count-H+.

if{(string■ count] = ‘A’)||(string■ count] == ‘S’ll \
(stringle.ount] = ‘T)|(string■ count] == ‘O'))(
switch(string■ count)) {

f***Alene chirality “■

case 'A':
count += 2.
if■ chicount == 1){

iftstring■ count] = ‘l’){
atoms|atomcount).chival = CHI_VAL(DIV_CHI_AL, I);
count---,

else iftstring■ count] == "2")
atoms|atomcount] chival = CHI_VAL(DIV_CHI_AL. 2):
count-º-º-;

}
else■

atoms|atomcount].chival = -CHI_WAL(DIV_CHI_AL, 1};
}

}
else!

atoms|atomcount].chival = CHI_VAL(DIV_CHI_AL, 2):
}
break;

/***square-planar chirality “■

case 'S':
count += 2:
ifichicount == 1){

i■ (string■ count] = '1')(
atomslatumcount] chival = -CHI_WAL(DX_CHI_SP 1),
count ++,

}
else iftstring■ count] == ‘2’)(

atoms|atomcount)chival = -CHI_WAL(DX_CHI_SP 2),
count-º-º:

else i■ ºstring■ count] == "3")|
atoms|atomcount)chival = CHI_VAL(DX_CHI_SP. 3);
count:4 +,

}
elve■

atoms(atomcount].chival = CHI_VAL(DX_CHI_SP 1);
}

}
else if chicount == 2)|

atoms|atomcount].chival = CHI_WAL(DX_CHI_SP 2),
}

else■
atoms|atomvount].chival = CHI_WAL(DX_CHI_SP. 3),

}
break:

Sº |
Tº:

/***general atom Initializaton”!

atoms|atomcount formalcharge = 0,
atoms|atomcount] chival = DX_CHI_NONE:

f***initialize ibond ***t

torticount=0.icount…MAXIBOND;icount—t)|
atomslatººmcºunt] bondlicount] = -1.

}

!""check to see if extra information is coming”!

ift unbracket)|

cºunt ++.

/***set formal charge of each atom, either (C++) or [C+2) format”

while(string■ count] == ***) {
i■ (string■ count: l l = '1')&&.(string■ count-l) -- '9")}{

f***Octachedral chirality “■

case "()":
count += 2;
i■■ uhicount == 1){

i■ (string■ count] == ‘l’){
atoms|atomicount] chival = -CHI_WAL(DX_CHI_OH, 1),
count-º-º:

else if(string■ count] == ‘2’) {
atoms(atomcount)chival = -CHI_VAL(DX_CHI_OH, 2);
count-º-º-,

)
else|

atoms(atomcount].chival = CHI_VAL(DX_CHI_OH, 1);
}

}
clse■

atoms|atomcount].chival = -CHI_WAL(DX_CHI_OH, 2):
}
break,

--- * * *
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case T:
count---,
switch string■ count]);

f***Trigonal-bipyramidal chirality “"I

case ‘b’
cºunt-º-º:

it■ chicount == 1){
1■ t string■ count] == 1){

atoms atomcount) chival = -CHI VALDX_CHI_TB. 1);
ununt--,

else i■ string■ count] == "2"){
atoms|atomtount].chival = CHI VAL(DX_CHI_TB, 2),
cºunt---.

}
clºse■

atoms|atomcount]...chival = -CHI_VALIDX_CHI_TB. 1),
}

}
else|

atomslatum count].chival = -CHI_WAL(DX_CHI_TB, 2),
}
break.

/***Tetrahedral chirality “■

case 'H'
count---.
it■ chicount == 1){

it■ string■ cºunt] = ‘l’){
atoms|atomcount] chival = DX_Chi_THCCW:
count--.

}
else it■ string|count] == ‘2’) {

atoms|atomcount] chival = DX_CHI_THCW.
count--.

“R”. 35. ("Brº R*/
“I’. 53.
NULL.

}:
int count = 0.
while (array■ count] symbol = *id)&A: \

(array■ count] symbol = NULL)){
count-,

}
return■ array■ count].atomicnumber);

} /* cind almo "/

f

* parsebonds
-

*4/29/96 ags
-

* this routine takes a smiles-transform string and gets a list of the
* bonds out, along with standard bond properties, order, connections.
-------------- --------

int parschonds(char *string, atoms "atoms, int maxatoms, bonds "bonds)

int max = 0,
bond.count = 0,
count = 0,
counter.

separation.
nonexplicit,
bondclass,

max = strlen(string),

/***get implicit bonds (atoms without explicit bonds or disconnects between them)***/

for(count=0,count & maxatoms-l;count—t){

f***find out-of-bracket separation between atoms”!

r - [count: 1) position - ■ countºll.imbraci \
- atoms|count].position - atoms|count] bracketsize;

/***count ring and external bond separation ***/

counter = atoms(count) position + atoms(count] bracketsize + 1,
while(counter & atoms(count +1] position)

i■ (isdigit(string■ counter]))|(string■ counter)=="&")){
cºunter-,

}
else iftisdigit(string■ counter*11)) {

countcrº-º-,
}
else■

break.
}

)
nonexplicit = counter-atoms(count) position - atoms|count) bracketsize;

/***compare 2 separations to see if atoms have implicit bond ***/

1■ t separation = nonexplicit){
if{(atoms(bonds/bondeount] aloml]..aromatic = TRUE)&&\

(atoms(bonds[bondeountliatom 2].aromatic = TRUE)) {
bondcount += makebond■ DIV_BCLS_IMPLICIT, bondeount, atoms, maxatoms, bonds, \
string. count, DX_BTY_AROMAT, DX CHI NONE),
}
else!
bond.count += makebond■ DIV_BCLS_IMPLICIT, bondcount, atoms, maxatoms, bonds, \
suring, count, DX_BTY_SINGLE, DX_CHI_NONE).
}

}
}

else!
atoms(atomcount).chival = DX_CHI_THCCW,

}
}

elve■
atoms (atomcount) chival = DX_CHI THCW,

|
break,

default
break.
} tº end switch BH "f

default.
break,
} /* end switch ASPT */

| 1" end i■ AST() */

/***tetrahedral without any specification is the default.***

else it chicount a 0) {
if■ chicount == 1){

atoms|atomcount]...chival = DX_CHI THCCW:

1■ t chicount == 2) {
atoms|atomcount)chival = DX_CHI_THCW,

}
}
else|

atoms atomlount)chival = DX_CHI NONE,
}

f***look for explicit hydrogens, but ignore them.***/

i■ suing|count] = 'H')
count---.

}

count--, 1- to catch | */

) f" end bracket ºf

f***inish atom.” “f

atonwount ++,

| " end i■ alphanumeric'■

ununt--.

) ■ º end while count */

return■ atomcount), /* returns the number of independent atoms found "f

| " cnd parse atom */

i

* at no
-

* returns the atomic number for a character
-

unt atmo■ char *id)
|

typcdet struct {
cha■ symbol;
intatomicnumber.

|convert.
convert array■ - {

'X', -1, 1" X for 1:1 atoms from reactant that are not in product “I
‘Y”. -2.

!”get explicit single, double, triple, branch, and directional single bonds "**/

count = 0,

/*
while(count « max) {

i■ (stringle.ount] = +)||{string■ count] == \')|\
(stringle.ount] == F)|(string■ count] == **")|M
(string■ count] = *(*}ll(string■ count] ==")')) {

while(max = (count += strespn(string+count, “--\V*():"))) {

/***exclude explicits inside brackets (which can be charges) ***/

counter = count + strºpn(string+count. "0123456789-Washt");
if{(counter & max)&&(string■ counter] = ‘l’)){

count ++.

continuc,

s

º

4.

zº, *
**
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***if not anng or external bond, make different bond types “l

1■ t (suring■ count-1} < 0)|(string■ count:1]: “”))(
switch(string count)) {

/***- is an explicit single bond'''/

case “-':
bond.count += makebond■ DIV BCLS EXPLICIT, bondcount. atoms, maxatoms, bonds,V
string, count, DX_BTY_SINGLE. DX_CHI_NONE),
break.

is a double bond***/

case ‘s’

bondcount += makchondúDIV BCLS_EXPLICIT, hondeount, atoms, maxatoms, bonds,"
string. count. DX_BTY_DOUBLE, DX_CHI_NONE),
break,

/***\ is a directional single bond “f

case "W".
bond count += makebond■ DIV BCLS_EXPLICIT, honddount, atoms, maxatoms, bonds."
string. count, DX_BTY_SINGLE, DIV_CHI_BACKWARD),
hreak.

1"-"t is the other directional single bond ****

case ºf:
bonklvount += makebond■ DIV BCLS_EXPLICIT, honddount. aloms, maxatoms, bonds,\
string. count. DX BTY_SINGLE, DIV CHI FORWARD),
break,

/**** is a triple bond''",

case ‘s’:
honddount + = makebond■ DIV BCLS EXPLICTT, bondeount, atoms, maxatoms, bonds,\
string, count, DX_BTY TRIPLE, DX_CHI_NONE),
hreak,

/***, opens a branch chain “■

case "('
if atoms|postatomatoms, maxatoms, count) position - \

atoms(postatomatoms, maxatoms, county) inhracket == count-1){
honddount += makebond■ DIV BCLS EXPLICIT, bond.count, atoms, maxatoms, bonds,
string, count, DX BTY_SINGLE, DX CHI NONE),

}
break,

f***) closes a branch chain ***/

case ‘J’
1■ t atoms|pºstatom(atoms, maxatoms, count)|position - \

atoms|pºstatom(atoms, maxatoms, count]] unbracket == counttl)|
hond-ount += makebond (DIV BCLS EXPLICIT, bond.count, atoms, maxatoms, bonds,

string, count, DX BTY_SINGLE, DX_CHI_NONE),
}
hreak.

*** for explicit aromatic bond'''■

case ‘’’:
honddount += makebond■ DIV BCLS EXPLICIT. bondeount, atoms, maxatoms, bonds."
string, count, DX BTY_AROMAI, DX CHI NONE).
break,

f***if should prevent defaults.”/

detault:

■ printt(stderr. “Fatal Error in parsing explicit bonds unun"),
exit(1).
hreak,

tº end switch ºf

} /* end if not ringbond **

count---.

/*) •l■ ' end ºf "f

} /* end while */

/***parse ring-forming AND external bonds “I

cºunt = 0.
while(max > (count += strespn(string+count. “123456789"))) {

/***exclude numbers inside brackets (which are stereo signals) ****

counter = count + strºpn(string+count. "0123456789-A-sht"),
if (counter - max)&&(string■ counter) = ‘l’)) {

cºunt-4.
continue,

/**"determine i■ numerical bond is ring or external”

wountcra count-l;
while(((string■ counter]: ‘0 &&(string■ counter|<= 9')\!\

(string■ counter] == ‘’’)ll(string■ countcr} = - \l■ º
(sinng■ counter] == f\lkstring■ counter] = \\ |\
(string■ counter] == - \ll stringicounter] = **')){

counter--.

/***ring bonds “I

iftstring■ counter] = &"){
bondclass = DiV_BCLS_RING;

}

/***external bonds**

else ifistring■ counter] == "&")
bond.class = DIV_BCLS_EXTERNAL,

)

/***number bonds should be either ring or external ***/

else {
■ printt(stderr. "Error Number bond which is niether ring nor external.");
■ print■ (stder■ , “Error String.ºsu.Vn", string),
exit(1),

}

/***make bond of appropriate class(ring or external) and type”/

switch(string■ count-1})

caº

bondeount += makebond■ bondclass, bondcount, atoms, maxatoms, bonds, \
string. count, DX_BTY_AROMAT, DX_CHI_NONE),
break.

case ‘-':
bondcount += makebond■ bondelass, bondeount, atoms, maxatoms, bonds, \
string, count, DX_BTY_SINGLE, DX_CHI_NONE),
break;

case “A”:

-
+= makebond■ bondclass, atoms, bonds. W

string, count, DX_BTY_SINGLE, DIV_CHI_FORWARD),
break,

case "W":
bondoount += makebond■ hondelass, bondcount, atoms, maxatoms, bonds, \
string, count, DX_BTY_SINGLE, DIV_CHI_BACKWARD),
break,

case 'a':
bondcount += makehond(hondelass, bondcount, atoms, maxatoms, bonds, \
string, count, DX_BTY_DOUBLE, DX_CHI_NONE),
break.

case ‘■ ':
bondcount += makebond■ bondclass, bondcount, atoms, maxatoms, bonds, \
string, count, DX_BTY_TRIPLE. DX_CHI_NONE),
break.

default:
bondlount + = makebond■ hondolass, bondcount, atoms, maxatoms, bonds, \
suring. count, DX_BTY_SINGLE, DX_CHI_NONE),
break.

) # end switch bond type */

count-º-;

} f" end while numerical markers */

/***return bond count, which is the total number of bonds***/

return(honddount),

| Pº end parsebonds “I

f

* makebond
-

• 4/26/96 ags
-

* routine string position and bondtype and chirality and adds a member
* to the hondlist.
----------- f

int makebond (int bondclass, int bondeount, atoms "atoms, int maxatoms, bonds "bonds, char" string,
int position, intbondlype, int chival)
■

int count.
goodbond = TRUE,
fullbond = TRUE,
static inthalillag|MAXTEMPLATE];

1“initialize flags once per molecule”f

i■ ibondeount == 0) {
for count=0,count-MAXTEMPLATE, count ++)|

half■ lag■ count] = FALSE,
}

}

switch(honddass) {

/***make implicit bonds.”/

case DIV_BCLS_IMPLICIT.
bonds(hondeountliatom1 = position;
bonds(honddountliatom? = position+1;
bonds■ bondcount] bondtype = bondtype;
bonds/bondcount) position = atoms(position-1) position - atoms(position+1}.inbracket,
bonds(honddount] branchlevel = - -

bonds(hond-ount)chival = chival,
break.

f**"make explicit bonds”/





case DIV_BCLS ExPLICit.
bonds/bonduount] alom 2 = postatom(atoms, maxatoms, position);

/**"special handling for (X and combinations (=X, (X, look for lower branchlevel”/

i■ (string|position) == "('Mistring|position-1] = *(*)) {
bonds|bondcount]...iatom1 = preaton(atoms, maxatoms, position, atoms|bonds[bond

count]...i.atoml] branchlevel-1).
}
clse■

bonds/bond-ount■ iatom1 = preatom(atoms, maxatoms, position, atoms|bonds bond
countliatoml] branchlevel).
|
bonds■ bondcount] bondtype = hondtype.
bonds handcount position = position:
bonds bondeount) branchlevel = atoms|bonds(hond-ount]...iatomiz) branchlevel,
bonds [bond-ount chival = chival,
break:

case DIV_BCLS_RING:
fullhond = FALSE, !" only half of ringbond "I
it halftlag|string position]-48) == FALSE) {

haltilagistring■ position|-48] = bonddount,
bonds bondcount] atom1 = preatom(atoms, maxatoms, position, 999),
bonds!hond-ount] bondtype = bondtype,
bonds(hond-ount) position = position.
bonds (bandwount] branchlevel = atoms(honds(hondkount]...i.atoml] branchlevel,
bonds!hondkount] chival = chival,

}
else!

goodhond = FALSE,
bonds halflag■ string|position]-48]] atom? = preatomatoms, maxatoms, position, 999),
if (bondlype = DX_BTY SINGLE)

bonds ■ halillag■ suring■ position)-48]] bondtype = bondtype:
}
bonds ■ hal■ ilag(string|position]-48]] position =

JOIN POSITIONS bonds halflagstring|position]-48]|position, position);
it■ chival – DX CHI NONE) {

bonds(halftlagistring|position]-48]] chival = chival,

/***register ringbonds in atoms here rather than below ***/

count = 0.
while atoms/bonds halftlagistring|position]-48]]iatoml].ibond■ count] x = 0) {

wount-,
|

[handsthal■ il --- |-48]]iatoml] -- 48);
count = 0.
while atoms(honds(halftlagistring|position]-48]] intom 2).ibond■ count] x = 0) {

count--.

}
-tit (halftlag|string■ |-48 || atom 2) | = (string■ , |-48],

}
break.

*4/25/96 ags
-

* routine takes the string position and returns the atomnumber of
* the previous atom in the bonding tree.

-- -

int preatom(atoms "atomlist, int maxatoms, int current, int branchlevel)
■

int atomcount = 0,

■ "*look forward until find first atom after bond or run out-f

while (atomcount « maxatoms)&&(atomlist|atomcount) position < current))
atomcount---.

}

/***go back one atom ***/

aloncount--.

/***look backward from there until find atom of same or lower level ”/

while((atomcount >= 0)&&(atomlist■ atomcount].branchlevel» branchlevel)) {
atomcount--.

ift (atomcount == maxatoms)■ katomcount « 0)) {
■ printf(sider■ , "Error finding previous alom.vn"),
exit(1),

return (atomcount),
}

f

* postatom
-

*4/25/96 ags
-

* routine takes the string position and returns the atomnumber of
* the next atom in the bonding tree.

int postatom(atoms "atomlist, int maxatoms, int current)

int atomcount - 0.

while (atomlist|atomcount] position < current)&4(atomcount « maxatoms))
atoncount--.

}

if atomcount -- maxatoms)(
■ print■ sider■ . "Error finding next atom in postatom.An"),
■ print■ (stderr, "Error: maxatoms.º.d current:%d atomcount:%d\nun", maxatoms, current, atomcount);
exit(1),

}

return■ alomcount);

f

* setchiral
-

*4/30/96 ags
-

* this routine takes a smiles-transform string and orders the list of
* bonds in the chiral scquence so that the chiral class and order are
* correct for the ordered sequence.

-- --- f

int setchiral■ char *string, atoms "atoms, int maxatoms, bonds “bonds, int maxbonds)

int chicount - 0.
xalofrict.
atomict,
bondet.
suhbond.ct.
ibondetl, ibond.ct2,
tempatom.
temppos,
xatoml.
atoml, atom3.
bond.1, bond2,
chil. chil.
count - 0.
bondsexpected,
seqet,
class, set:
int position■ NAXTEMPLATE];
char chiral;

*****/
/
-----------------/

first handle chiral atoms."
---------------

f***look for chiral atoms”f

fortatomct=0;atomct-maxatoms.atomct--)■
i■ latoms(atomet] chival '+ DX_CHI_NONE){

chicount:44,

bondsexpected = chibondet(atoms|atomct].chival);
i■ (bondsexpected 5-MAXCHIRAL)

■ printf(stderr. "Error: More bonds than chirality allows. Adjust MAXCHIRAL \n");
■ printt(stderr, "Error: String: 4 AnAtom: 'A dunum", string, atomict),
chicount --999,

}

2.
*

case DIV BCLS EXTERNAL
hondalbond-ountliatom 2 = (string|position|-48) << 16,
bonds(hºnd-ount atoml = preatomatoms, maxatoms, position, 999).
bonds bondeºunt] bondtype = bondtype,
bonds(honddount] position = position,
honds handcount].hranchlevel = atoms|bonds (bond.count]...atoml] branchlevel:
bonds bondeount) chival = chival,
break.

detault:
gººlbond = FALSE.
hreak.
|

/***verify any aromatic bonds with exception for halfmade ring bonds”/

ift■ hondtype == DX BTY AROMAT&&(fullbond ==TRUE))|
i■ i■ (atoms|bonds(honddount) atoml] aromatic - TRUE)|| \

(atoms|bonds [honddount] atom 2) aromatic 'a TRUE)|&A \
(halftlag|string■ cºunt]] - bonucount)) {

■ print■ (slder■ . "Error attempting to make aromatic bond between non-aromatic atoms"),
goodbund = FALSE,

|
}

#"if it is really a bond, reference the atoms”
/***ringbonds handled separately in switch above”

i■ (fullbend = TRUE) {
count = 0.
while (atoms(honds(honddount] atoml]ibond■ count] x = 0) {

vulunt ++.

|
atoms|bonds(honddount]...iatoml].ibond■ count] = bondcount,

/***i■ external only reference the first (known) alom ***/

i■ thondelass = DIV_BCLS_EXTERNAL)|
count = 0.
while atoms (bonds bondcount) atoml] bond■ count] x=0){

cºunt ++.

}
atomsbonds bondcount atom?] bond■ count] = bond-ount:

}
}

****rcturns number of honds made (1 if no crors. 0 i■ crnors)***/

return■ goodbond),

) 1' end makebond ‘f

f

"preatom
-

f***initialize atom ***/

seqet = 0.

tº
<--

º º,

359



-

*

. . .
*

* * * -

* * * ,

s º

* . tº." *

* * -

º, **

\
s:

º - “.
!. º

* -

* *
*

, - t-- *

- º t

º

***
* *

*

.*
---

º

*

º

}



for(count=0,count…MAXCHIRAL.count ++){
atoms|atomict].chuseq|count] = -1;

}

/***look through bonds of this atom”!

bonuct = 0.
while((bondct ºf MAXIBOND)&&(atoms|atomict] ibond■ bondct) >= 0)) {

/***if allene get secondary bonds***/

ift CHI CLASS(atoms atomict) chival) == DIV CHLAL){
xatoml = other atom(atomict, atoms|atomct] ibond■ bondet], atoms, bonds),
subbond-t = 0.
while (suhbondit • MAXIBOND).º.A:\

(atoms|xatoml] bond■ subbondct x=0)) {
ift (bonds atoms|xaton!] thend{suhbondet]].iatom1 = atomict)&A.A

(bonds atoms|xatoml] bond■ subbandcill.i.atom 2'- atomict)) {
alons|atomictl chiseq[scuct] = atoms|xatoml Libond■ subbondet],
position[scqct] = honk!position(atoms|xatoml] bond■ subbondet]. W

xatoml. atoms, bonds),
seqet.*.*,
} /* end if not same dhl bond */

subhond-t-t-.

| " end while secondary bonds left “■

} /* end ºf allene "f

f***i■ NOT allene just use primary bond.”

else {
atoms|atomict) chiseq[seqct) = atoms(atomct] thond■ honddt),
position[scqct] = bondposition(atoms|atomct].1bond■ bondet], atomct, atoms, bonds),
scquit**.

}

honºut--.

| " end loop through atom's bonds ºf

!”*if necessary add implicit hydrogen “l

1■ (sequt 'e bondsexpected){
i■ seq.tº 1 = bonds.cxpected){

atoms|atomcil chiscu■ seqct] = DIV_IMP HYDROGEN,
positioniscqut] = atomslatonct position,

}
elve■

■ print■ (uder■ . "Error Bonding/Chiral class incompatability \n"),
■ printf(stderr, “Error: String ‘sumatom. * Junºn", string. atomict),
chicount is -999,

}

f***sort chiseq by bond position”",

for sequt-l.scuctºbondsexpected.scqct-);
tempatom = atomslatunct) chiscu■ scqct}.
temppos = position[sequt].
count = sequt-l:
while (count >=0)&&(positionicount] x temppos)) {

atºms|atomict) chiscq (count: 1) = atomslatonct].chusequount].
pºsition|count: 1) = position■ count].
count--.

!
atoms|atomct chuseq[count-ll a tempatom.
position|countº 11 - temppos,

} f" end ºf chiral atom"?

f***must make div allene-type into day allene-type”/

in CHI CLASS atoms atomict) chival) == DIV_CHI_AL)|
class = DIV2DX AL atoms■ alomet) chival),
set = CHI COSET(atoms|atomict) chival),
atoms|atomict) chival = CHI VAL class, set),

}

| f" end for loop through all atoms "I

f* ---

f*** now handle chiral bonds
--

f***look for double bonds "**/

forthomdet-0.hondel-maxbonds.hondet* +)|
i■ (bonds bondet] bondtype = DX BTY DOUBLE) {

chiral = FALSE.

****look for directed single bonds at either end”/

atom1 = bonds(hondet] atoml.
thondet 1 = 0,

while (atoms|atoml libond■ tbondell) >= 0) {
bond l = atoms|atoml]...ibondlibondet 1),
if (bonds(hondl) chival == DIV_CHI FORWARD) \

(hºnus (bond I | chival == DIV_CHI BACKWARD)) {
chil = FORBACK TO UPDOWN, honds(hond1 chival. V

bonds(hondll position, atoms|atom Il-position),

1***now look for second directed single bond at other end”/

atom? = bonds (bondet] iatom 2,
bondit2 = 0.

while(atoms|atom?] bond■ ibondct2) -- 0){
bond2 = atoms|atom 21-ibond■ ibondet2).
ift (bonds (bond2).chival == DIV_CHI FORWARD) \

(bonds bond2] chival == DIV CHI BACKWARD)) {
chuz = FORBACK_TO_UPDOWNUbonds (bond2).chival, \

bondalbond2].position, atoms(alom 2) position);

/**have 2 directed single bonds around a double bond...set chirality and chiseq”/

bonds bondet].chiseq[0] = bond l;
bonds bondet] chiscq|1} = bond2;
i■ (chil == chil);

bonds(hondet] chival = DX_CHI_CIS,
}
elset

bonds.[bond.ct) chival = DX_CHI_TRANS:
}
chiral = TRUE,
chicount-º-;

!”chirality set, just get out and look for other double bonds”!

} /* end if bond2 is chiral */

iftchiral)
break.

ibond.ct2++;

} /* cmd while ibond2 */

} f" end if bondl is chiral */

ifichiral)
break.

ibondct 1++.

} /* end while ibondl ºf

} f" end if double bond */

} /* cnd for loop through all bonds "l

f***return number of chiral atoms and bonds or # - 0 if error ****

return(chicount);

) /* end setchiral */

f

* chibond.ct
-

• 4/29/96 ags
-

* returns the default number of bonds for an atom of given chiral value.
---- --- -- -

int chibond.ct■ int value)
■

inthonds,

switch, CHI CLASS(value)) {
case DX_CHI_NONE:

bonds = 0,
break;

case DX_CHI_TH:
bonds = 4,
break,

case DIV_CHI_AL
bonds = 4,
break,

case Dx_Chi_SP.
bonds = 4;
break,

case DX_CHI_TB:
bonds = 5.
break.

case DX CHI_OH:
bonds = 6,
break,

default:
■ print■ (stderr. “Default reached in chibondct \num"),
bonds = 0.
break,
}

return (bonds).
}

f

* othcratiºn
-

• 5/13A96 ags
-

* returns the atom number of the atom accross the ibond from intom.
------------------------------------------------------------ *** ********/

int otheratom(int atom, intibond, atoms "atoms, bonds "bonds)
t

int xatem:

return (latom = bondslibond] atom 2 "
bondstibond) atomi : bondsiibond).1atom7);
}
f ------
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* bondposition
-

• 5/13/96 ags
-

* returns bond position of the ibond. If it is a ringbond, it returns
* the position associated with atom.

int bondposition(int bond, intiatom, atoms "atoms, bonds “bonds)
{

int position,

f***check i■ nngbond “■

i■ (bonds(ibond] position > 0xt■ m)|

***get position associated with atom ***/

if■ honds band] atom1 == i atom) {
position = FIRST POSITION(bonds■ ibond) position);

}

}
i■ level» "rxnlevels);

*rxnlevels = level;
}
} /* end if level < max */

/***if no errors return array else die”/

i■ (goodread){
(*rxnlevels)++, ■ º adjust for starting at 0 °t
return■ Leveltrans),

}
else|

exit(l),
}

) f" end readlevels “■
f******

* get_input
-

* reads input file.
-

* ags 10/96
--

int get input(FILE *Infile, fi •F molparms "M
*Transform_parameters)

int goodread = TRUE.
count,

int parmcheck=0,
char bufim AXBUFl:
char keyword|MAXBUF):
char valucíMAXBUF).

/*** set defaults if there are any ”/

/*** read input file “t

while(NULL = ■ pels(bu■ , MAXBUF, Infile)) {
sscant(bu■ , “As ºx! -zl". &keyword, &value);

*** parse strings “I

i■ (stricinpekeyword. “smiles_file”)=0){
strmºpy(Filenames->smules, value, strlen(value));
continue,

}
if{surcmp■ keyword. “transform_file”)=0){

strikpy(Filenames->transform, value, strlen(value));
continue,

}
i■ (stremp■ keyword. “library file")==0){

strmepy[Filenames->library, value, strlen(value));
continue,

}
i■ (stremp■ keyword, "output file")=0){

strncpy(Filenames->output, value, strlen(value));
continue,

}

sº |

T-5

º,
-

º

2.* ,
else {

position = SECOND POSITION(bondslibond) position),
}

}

f*** if not ringbond, just get position ***/

else|
position = bondslibond] position;

}

return■ position).

}
#include <stdio.h>
*include <string.h>
*include <stdlib.h>
# include “mol h”
finclude “trans h”
#include “io.h"
*include “debug h"
*include “con.h"
*include “parsesmilesh”

intsyncount;

º

* readlevels
-

* reads reactions for each level of depth

int **readlevels(FILE *Rxnlevelsfile, transform *transforms, int transcount, int
"rxnlevels, int maxdepth)

{

int count,
level.
*Transet.
** Leveltrans,
goodread = TRUE,
fºund;
char builmAXBUF).
char dummy|MAXBUF),
char transname{MAXBUF);

f***initialize arrays and variables”/

*rxnlevels

i■ (NULL == (Transct = (int *malloc■ maxdepth"sizeoflint)))) {
■ printt(stderr, “Out of memory trying to malloc transct in readlevels \n");
■ printt(stderr, "size = % i■ nº.maxdepth"sizeof int)).
exit■ 1);

if NULL == (Leveltrans = (int “mallocºmax.depth'sizeofunt"))))
■ print■ stderr, "Out of memory trying to malloc Leveltrans in readlevels \n");
exit( !),

}
i■ (NULL == (Leveltrans[0] = (int *malloc■ maxdepth"transcount'sizeof int))))(

■ print■ (stderr. “Out of memory trying to malloc Leveltrans in readlevels \n");
■ printt(slder■ , “%d #d ºdºn.".maxdepth, transcount, sizeof (int));
■ print■ (slder■ , "size = % ■ m", maxdepth"transcount'sizeof int)),
exit■ 1),

}
memsettl () count"sizeof (int)/sized!(char));
■ er■ count=1;count-maxdepth count tº

Leveltrans|count] = Leveltrans[count-1}+transcount;
|

/***read input line“t

while(NULL = gets(bu■ . MAXBUF, Rxnlevelsfile))|

swan■ (but, “4s 3d #s■ -z]". &dummy, &level. &transname),

1■ tlevel <= maxdepth)|
found = FALSE,
fort count=0,counts:transcount;count H-)|

it(strump transname,Transforms|count■ name)==0){
Leveltrans[level][count] = TRUE,
found = TRUE,

}
}

i■ 'found){
■ printf(stdout. Transform ‘ks not found among transforms \n"),
goodread = FALSE,

if(strempt keyword, “wbindings_file")==0){
strmcpy(Filenames->vbind, value, strlen(value));
continue.

}
i■ (stremp■ keyword, “rºn levels_file"}=0){

strucpy(Filenames->rxn_levels, value, strlen(value));
continue:

}

/*** parse numbers ***t

i■ (strcmp■ keyword, “maximum depth")==0){
sscan■ (value, “{d", &(Molecule parameters->maxdepth));
parmcheck - 1-0.
continue;

}
i■ (strump, keyword, “maximum mol_wt")==0){

sscan■ (value, “%d", &(Molecule parameters->maxmolwt));
parmcheck - 1:1;

continue,
}
if strempt keyword, “minimum mol_wt”)==0){

sscan■ (value. “%d", &(Molecule parameters->minmolwt));
parmcheck |=1<<2,

continue,

iftstremp■ keyword, “maximum molecules”)==0){
sscan■ (value, “%d". &(Molecule parameters->maximolecule));

parmcheck - 1:3;
continue.

}

/***way overcomplicated checking for all the parameters”/

i■ (parmcheck < 15)|
goodread = FALSE,
■ printf(stdcrº, “Missing essential parameter(s) from input file \n");
for(count=0,count. A count ++)|

i■ ('parmcheck&1<<count)|
switch(count) {

case 0.
■ print■ (stderr, “Need maximum depth n”);
break,

case 1:
fprint■ (slder■ , “Need maximum_mol_wt \n"),
break:

case 2:

s

* *

º

361



*

** * *

º:
*-*... " ** *



■ printtistderr, “Need minimum_mol_wt \n");
break.

case 3
■ printf(stderr, "Need maximum_molecules.An”),
break;
}

}
}

}

fclose(Infile):
return■ goodread),

| " end geun */

/*

* re_read molejueues
-

* an i■ o routine to read in the next molequeue for transfromation
* from the middle of the temp file It will put this next molegueue
* into the molecueue that is sent to it and if successful will return
* a pointer to that same moicqueue. if there is a problem it will
* return null
---------

melcqueue "re read(FILE 'Outreal, molequeue "Active)

char buf[MAXBUF).

/***read Jata for new active into old active place”!

!" one line for everything in temp molecule ºf

ifiNULL = (■ gets bu■ , MAXBUF, Outread)))
■ printt(stderr, “NULL in re_readun"),
return■ NULL).

}
hurlstricn(buf)-1}="w)";
*scant but, “idºs ºs ºs ºd 3 (*\n]", \

&(Active->synho), \
Active->smiles, \
Active->transform, \
Active->parent, \
&(Active->depth). \
Active->externalid),

if{NULL == (Active->molecule = (dt_smilin(stren(Active->smiles), Active->smiles)))) {
■ printf(stderr, "Error reading in smiles from tempº ºsºn”. Active->smiles).
■ printf(xtderr, “Parent: *-sun". Active->parent):
■ print■ (sulcri, "depth = 3 d. transform = %sunun", Active->depth, Active->transform),

|

****react ticids not read in ***/

Active->identical = -1;
Active->tani mºto = 0.0,
Active->nochildren = 0,
Active->Next = NULL;
Active->Previºus = NULL;

return■ Active);

--------------------------------------------------------------------f

* temp write
-

* an 1■ o routine to write a product and some molegucue informauon to
* a temporary output file, a pointer to the next molequeue in the

-- * -

molegueue "tempwrite FILE *Outfile, molegueue *Done)
|

/***write abbreviated form of molequeue to temporary outfile ****

■ print■ . Outfile, “ºd ºs ºs ºs ºdºx\n”, \
Done->synno,
Done->xmiles, \
Done->transfºrm. W
Done->parent. A
Donc->depth. A
Donc->externalid).

tflush (Outfile),

/***rejoin the queue”/

it dome->Next = NULL)
Done->Next->Previous = Done->Previous,

it■ Donc->Previous a NULL)
Done->Previous->Next = Done->Next.

***release the molecule's memory”

dt dealloc Done->molecule).

f***return next molequeue”/

return■ Done->Next).

}
1- - - - - - - - - - - - - - - - - - - - - - - ------------------------------------------------

tibinfo|MAXBUF).
transname{MAXNAME).
smiles|MAXBUF),
externalid(MAXBUF).
smarts[5],

inteount, countl,
fragct[MAXLIBRARY),
lihct = -1,
transct.
connumber,
delet;

dt_Handlekey,
pathset.
paths,
path,
atomix,
atom,
bonds,
bond,
xation.

delatoms|MAXATTACHATOMS]:
molcqucuc"Frag,

/***initialize fragment”/

i■ (NULL == (Frag = (molequeue")malloc■ sizeof■ molequeue.))))
■ print■ (slder■ . “Out of memory mallocing temporary fragment in readlibs un");
exit(1),

}

f***initialize fragct”/

for(count=0,count-MAXLIBRARY:count ++)|
fragci■ count]=0,

}

1***get size and number of libraries “■

while(NULL = [gets(bu■ , MAXBUF Libfile)) {
sscantibu■ . “4 s”, &keyword):

if{0 == strºmp keyword, “Library:”)) {
libct-º-;

}
else i■ (0's strcmp(bu■ , “n"))|

fragct[libct]++,
}

}
libct-4,

/***set total number of libraries***/

"libtot = libct;

/***malloc libraries, fragments, and attachment atoms “I

i■ (NULL == (Libraries = (library •)malloc■ .libet'sizeof{library))))(
■ printf(stderr. “Out of memory trying to malloc library An");
returninui-L).

}

for(count=0,count-libct;count ++){
i■ (NULL = (Libraries(count] Fragments =\
(dt Handle "malloc(fraget[count]"sizco■ (dt Handle))))|

■ print■ (stderr. “Out of memory trying to malloc fragment \n");
return[NULL);

}
i■ (NULL = (Librarics|count]. Externalids =\
(char **}malloc fragct■ count]"sizeof{char *))))'■

■ print■ (slder■ . “Out of memory trying to malloc fragment id's un"),
return■ NULL);

}
if(NULL = (Libraries(count). Externalids(0) =\
(char *malloc MAXNAME"fragct|count]"sizeof■ char))))(

■ printf(stderr. “Out of memory trying to malloc fragment id's Vn"),
return■ NULL),

}
iftNULL = (Libraries(count]. Attachatoms =\
(dt Handle **)malloc■ fragcticount]"sizco■ (dt Handle"))))'■

■ printf(stderr, "Out of memory trying to malloc attachment \n");
return■ NULL),

}
if(NULL = (Libraries(count].Attachatoms|0} =\
(d_Handle")malloc MAXATTACHATOMS’■ ragct!count]"sizeof{dt Handle))));

■ print■ (stderr, “Out of memory trying to malloc attachment atoms in readlib,\n");
return (NULL).

}
for(count 1–1;count 1-fragct■ count];count 14+)|

Libraries|count). Externalids(countl] = Libraries(count). Externalids(countl - 1) + MAXNAME,
Libraries(count]. Attachatoms|countl] = Libraries(count]. Attachatoms|count 1 - 1) + MAXAT

TACHATOMS;
}

}

* readlibfile
-

* an i■ o routine to read in the library format
i

library "readlibs(FILE "Libfile, library "Libraries, int “libot, transform "Transforms, in transtot)
{

charbu■ !MAXBUFl.
keyword|MAXBUF),

f***reset before getting data “■

rewind■ Libfile).
lihut = -1.
strºpy(smarts, “[*0"),
it■ NULL OB == (key = di smartin(strlen(smarts), smarts)));

■ printf(sulcrº, “BIG ERROR. Unable to make *s into smarts in readlibs un", smarts),
exit(1).

}

while(NULL = fgets(bu■ , MAXBUF Libfile)) {

!”get header of library”f

sscan■ (but, “%s ‘k■ u!-z!". &keyword, &libinfo);

3
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if{0 == strump-keyword, “Library:")){
iftlibct >= 0) {

Libraries libct] size = count-l;
tprintf(stderr, "\nkcad ‘ºd fragments for Library ºs.Wºn”. Libraries|lihctl size, Libraries (libct].name);

|
libct 4+,
swant■ libinfo, “Ms ºs", & Libraries|libct].name, &transname);

■ printt(stderr. “Reading library ‘ks and “.Libraries|libct) name),
■ printt(stderr. “converting it using transform ‘ºs An". transname);

/***hnd correct transform for library ****

transct = -1:
fºr(count=0,count-transtet-count-4)

ifto − xtrempt transforms count] name, transname)) {
transut = count,
hreak,

}

tf(transct « 0) {
■ print■ (slder■ , “Unable to find transform *s to transform library ºs \n", \

transname. Libraries litict) name),
exit■ 1),

}
count = -1.

}
else it■ () = strump■ bu■ , “n”));

/**"read new fragment smiles and make molequeue”/

hut■ strlen■ bury-11 = \0':
mensettexternalid. (), strlent hut)):
sacan f(huf, “ka ‘ºsº, & smiles, &externalid);

1■ t NULL OB == (Frag->molecule = di smilinistrlen(smiles), smiles)))'■
■ printf(slder■ , “nunable to convert ‘ks to library molecule in ºs \n", \

smiles, Libraries libct name):
continuc,

)
else!

count ++.
it■ count%. 10 = 0)
■ printt(stderr, "").

}

memset(Libraries (libºt) Externalids(count). Mo', MAXNAME),
it■ stricn(externalid) > MAXNAME) {

■ printt(stdcrr. "Fragment name *s is too long. Max, length = %d.wn", externalid, MAXNAME):
}
else i■ t■ ) == xtremp■ externalid, “)){

sprintf(Librancs (litkt). Externalids(count], *.*.d.º.d". libct, count),
|
clºc■

sprint■ (Librariestlibct) Externalds■ count]. “...ºs", externalid);
|
strepy(Frag->smiles, smiles),

/***transform fragment molequele"“f

connect Frag. Transforms-transct, NULL);

Libraries libct) Fragments(count] = dº copy(Frag->molecule),
di deallºc{Frag->molecule),

(***find attachment atoms in fragment and dealloc dummy pointer atoms “l

i■ FALSE = di med on Libraries|lib.t] Fragments|count)))
■ print■ (slder■ , “nunable to turn modity on for “d in library 4 x \n", count. Libraries libct, name),
count--.

cºntinuc,
}

delet a 0.
i■ NULL OB = (pathset = di vinaich(key, Librancs|libct] Fragments|count). FALSE)));

i■ NULL OB = (paths = Ji stream(pathset. TYP_PATH)))
while NULL OB = (path = d next(paths)))

1■ t NULL OB = (atoms = di stream path. TYP ATOM)))|
while NULL OB = (atom - di next(atoms))) {

connumber = dt hoount■ atom),
bonds = dº stream(atom, TYP BOND).
hond = dº next{bonds).
xatom = dt xatom(atom, bond),
delatoms|dclºt] = atom,
delet--,
Libraries libct| Attachatoms|count][connumber] = xatom,
dt deallochonds),

}
}
dt dealloc(atoms),

}
dt dealloutpath),

}
dt deallºw (paths);
for(count l =0,count! …delut.count 14+)|

ut deallocºdel atoms|countl|}.
}
dt deallocºpathset),

}
else|

■ printt(stderr, "nunable to find key in molecule: %s for library: %s \num", \
hu■ , Libraries|libct|name).

count--,
continue,

}

If(FAl-SE = di mod_oft( Librariestlibct Fragments|count]))(
■ printf(stderr, “ununable to turn modity off for 4d in library 4 sºn", count. Libraries|libct) name),

count--.
continue.

} /* end if molecule */

} /" end i■ nextline in library file */

f”need to finish counting libraries and fragments ***t

Libraries(lihctl size = count-l;
■ printf(slder■ , “nRead ‘ºd fragments for Library *s un", Libraries|libct] size, Libraries■ lihctl name);

libct---,

/***avoid read crrors ---f

i■ (libct: "libtot)|
■ printf(stderr. “Read more libraries than malloced for libct = % dun.". libct);
exit(1),

}

/***dic if all libraries not read”*/

if{libct lie "libiot){
■ printf(stderr, “Stopping becuase of library error.\n");
exit(1).

return■ Libraries),

f

* readinnois
-

* an i■ o routine to read in all the molecules from a SMILES input
* file, create a linked list from them, and return a pointer to the
* first molegueue.

--

molegueue "readinmols(FILE *Smilesfile, moleuueue **Lastptr)
{

char *buf.
smiles(MAXBUF).
tag|10].
*Starptr.
"Endpir,
molcqueue"Latest.

*First = NULL;
intº ount.

length.
goodmol = FALSE;

char junk[5000);

if(NULL == (bu■ = (char *)malloc(MAXBUF“sizco■ (char))))■
■ print■ (stderr. “Out of memory way too early in readinmolsun”),
exit(1),

}

while(NULL = fgets(bu■ , MAXBUF, Smilesfile)) {

strºpy(junk, bu■ ):

!”use SMILES string to allocate molecular object”/

buftstrlen■ buf)-1} = \o':

memset■ tag, 0.10),
swan■ (bu■ , “A-4s", &tag),
i■ ibu■ !0] == "I').

cuntinue.
}
i■ (NULL = (Startptr = strehrtbu■ . “)))(

■ print■ (slder■ , "Couldn't find a '•' in a line of molfile \n");
■ print■ (stderr, “Buffer: **\n", bu■ ),
continue,

}
strºpy(Startptr. Startpur +1):
i■ NULL == (Endptr = surchr■ bu■ , ‘x')))[

■ print■ (stderr, "Couldn't find a 'x' in a line of molfile \n");
■ print■ (stderr, "Bu■ ter, ºs\n", bu■ ),
continuc;

}
*Endpur = \0':
ift■ ) == strcmp(tag. “$SMI”));

f***allocate next molecule in linked list”f

iftNULL == (Latest = (molegueue *)malloc■ sizeof (molecueue.)))) {
fprintf(stderr. “Out of memory in: readinmolsun”).
■ printf(stderr. “Molecule Number: #dun", syncount: 1).
returnt First),

}

i■ NULL == (Latest->molecule = (d_smilin(strlen(Starptry, Startpur))));
■ print■ sider■ , “Error reading in smiles: ºs\n". Starptr),
good mol = FALSE,
free(Latest),
continue.

}
goodmol = TRUE,

/***initialize molequeue”/

sirncry(Lalest->smiles, dt cansmiles(&length, Latest->molecule, TRUE), length):
Latest->smiles■ length] = \0',
sprint■ (Latest->externalid, “DIV+08d", syncount);
strºpy(Latest->parent. “-l:Nonewºr"),
Latest->identical = -1;

*
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strepy(Latest->transform, “Nonewo"),
for(count=0,count-MAXCHILDREN count: *)(

Latest->children■ count] = 0,
}
Latest->Next = NULL;
Latest->Previous = NULL;
Lates->depth = 0,
Latext->synno = syncount.
syncount ++,
Latest->mochildren = 0:

f***note the first moleucue as the First”/

i■ (First == NULL)|
First = Latest;
*Lastpºr = Latest:

}
else|

(*Lastpir)->Next = Latest;
Latest->Previous = "Lastpir,
*Lastptr = Latest;

}

f***parse non-smiles lines from the tdt"""?

}
else i■ t(■ ) = strcmp■ tag. “STAG")&&(goºdmol)))'■

mcmset(Latest->externalid. (), MAXSMILES),
strºpy(Latex->externalid. Starptr.),
■ printf(stderr, “º Mºn”. Latest->externalid);
continue,

}

keyword|MAXKEY]:
inti,

transcount = 0.
smartlen;

f***rcad transforms”**f

while((transcount « MAXTRANS)&& \
(NULL = (■ gcts(bu■ , MAXBUF, Transform■ ile)))) {

/***blank lines separate transforms”/
f

NEED TO INITIALIZE REACTIONSTRUCTURES

while(0 = stremp■ bu■ , “n")){

/***read keyword and find text”f

sscan■ buf, “%s #[!-z]". &keyword, &bu■ );

/***find datatype and enter data”f

if(0== strcmp■ keyword, “name.")){
strincipy(transforms■ transcount]..name, buf, strlen(bu■ ));

else i■ 0 == strempfkeyword, “type"))(
transforms■ transcount]...■ lag = bu■ iOl;

}
else if 0 == strump (keyword, “inchision:”)) {

strncipy(transforms■ transcount]...inclusion, bu■ , strlen■ buf));

else if 0 == strempfkeyword, “exclusion:”)}{
strmcpy(transforms■ transcount] exclusion, buf, strlen■ buf));

else i■■ O == strcmp■ keyword, “mark:")){
strmcpy(transforms■ transcount].marked, but, strlen(buf));

}
else i■ (0== strump keyword, “library"))(

surncpy(transforms■ transcount] type.con libraryname, buf, strlen■ buf));
}
else i■■ o == strºmptkeyword, “productset:")){

switch(transforms■ transcount] flag){

else|
continuc,

memset■ huf, ‘W)', MAXBUF),
}!" end while */

/***a■ ter all the molecules, return a pointer to the first one.”/

f* free■ bur), “f
return■ First),

}

/* * * * * -----------------------------------------

* retire
-

* an i■ o routine to remove a molecule from the list and write it to
urned

-----------

molcqueue "retire(FILE "Outfile, molcqueue *Done)

int-ount,
molequeue"Next,

/***print out the vitals for the retireing molecule “I

■ printf(Outfile, “ºd ºs º---'ºs--- *s■ n". Done->synno, Done->smiles, \
Donc->transform, Done->parent),
■ printt(Outfile. “DIV* 0.8d depth = 3 dºn". Done->synno, Done->depth);
■ printt(Outfile, “SSM1<%x-STAGººs-■ m", Done->smiles. Done->externalid);
■ printfit hitfile, “Tanimoto = ** 2fºn”. Done->tanimoto);
if Done->identical E-1){

■ printf(Outfile, “Identical--> *d", Donc->identical);
|
clve■

■ printf(Outfile, “Children:--> *d: “, Done->nochildren),
tortcºunt=0,count « Done->nochildren.count ++)|

■ printf(Outfile. “4 d", Done->children count]),
}

}
■ printf(Outfile. “num"),
tflush(t) utile);

f***close the list”“I

Next = Donc->Next;
if(Done->Next = NULL)

Done->Next->Previous = Done->Previous,
it■ Done->Previous ºr NULL)

Donc->Previous->Next = Done->Next,

f**"deallocate memory “■

dt_dealloc■ Done->molecule).
** free(Done).commented out bic have trouble with multiple moleuueue's
*mallowed by the same call...
*/

/**"return pointer to the next molequeue”/

return (Next):

/***** --

* reailtrans
-

* in ■ o routine to read in reactions from a reaction file. The
* reactions are placed in an array of rºn structs, and the total
* number of reactions is returncºl,

int readtrans(FILE *Transformfile, transforin “transforms)

charhu■ !MAXBUFl.

case ‘r':
strncpy(transforms■ transcount]..type rep productset,\
bu■ , stricn(buf));
break,

same as type con "I

strmcpy(transforms■ transcount] type.com.productset,\
buf, strlen (hut)),
break.

}
}
else i■■ O == strcmp■ keyword, "productsell:"))(

stinctly(transformaluranscount]..type sep.productset[0],\
huf, strlen(bu■ )),

}
else i■■ 0 == xtrempfkeyword, “productset2”));

strnºpy(transforms■ transcount] type sep productset[1]\
buf, strlen(buf));

}

f***break out if reach end of file (or read crºor)***/

if(NULL == (gets(bu■ , MAXBUF, Transform■ ile)) {
break:

}

} f" end while not blank line. */

1***debugging feedbac */

■ printf(stderr. “----------------Anºkdum”, transcount):
■ printf(stder■ . “A sun", transforms■ transcount] name);
■ print■ sider■ , “%sun", transforms■ transcount] inclusion);
■ printf(slderr, “ºn”, transforms■ transcount] exclusion);

/***routine which converts external->internal data-types "**/

switch(transforms■ transcount] flag)■
case ‘r':

i■ (NULL = (parscrep(&(transforms■ transcount))))) {
transcount-º-º:

/***debugging “I
■ print■ (stderr, “sun", transforms■ transcount-1] type rep productset),
■ print■ (slder■ , “%d\n", transforms■ transcount-1] type rep atomnumber);

for(i-■ hi-transforms■ transcount-1] type repatomnumber:it: )(
■ print■ (stderr, “kcºdu■ ", transforms■ transcount-1].type rep productatomli]symbol, trans

forms■ transcount-1].typc rep productatom■ i) atomicno),
}*/
}
break:

case 's':
i■ (NULL = (parsesep(&(transforms|transcount)))))'■

transcount:44,

-1}...type sep. [0]);
-ll.type.sep );

forti-0.1-transforms■ transcount-1] type sepalumnumber[0]...it *)(
■ printf(stderr, “ºc '5 Jun", transforms(transcount-1}.type sep-productatom■ O][1].symbol. trans

forms■ transcount-1} type sep.productatom!0)[1].atomicno),
}*/

t

*

~, ‘…
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■ printt(stderr, “sun". transforms■ transcount-11 type sep productset[1]);
■ print■ (slder■ , “%d\n", transforms■ transcount-1) type scº.atomnumber[1]),
f

ºr(1=0,1-transforms■ transcount-1] type scp atomnumber[1]...it *)|
■ print■ (stderr, “º cº-dun", transforms■ transcount-1 | type sep productatom■ ll■ il symbol. trans

forms■ transcount-1 | type scp productatom■ li■ t} atomicno).
}*/
}
break;

case 'I' f" same as type con ºf
case 'c'

if NULL = (parsecon■ &(transforms■ transcount)))));
transcount--.

f***debugging “I
■ printt(suler■ , “As , transforms■ transcount-1) type con productset),
■ printf(stderr. “A dun", transforms■ transcount-1}...type.con atomnumber),
y

for(1=0,1-transforms■ transcount-il type con atomnumber.1++)|
■ printt(slder■ , “c “dum", transforms■ transcount-ll type con productatom■ il symbol, trans

forms■ transcount-1 | type con productatem|1} atomicno).
}-f

break,
default

■ printt(stderr, "Can't find transform type for *s ºn", \
transforms transcºunt] name):
fprintt(stderr, “It will not be used Anun");
|

/*
/*
•y

}

y
-

-

-

-

*"more debugging”!

}/* end while count-MAX && not Eof */

return■ transcount),

--------- --------- -----

parse replacement

an i■ o rºutine which converts the smiles-like external transform
data-types to internal pattern, atom. and bond data for replacement
transfºrm types.
--------------- -------- f

transform "parscrepitransform “Transform)

int maxatons,
maxhunds,
count,
subcount,
char string[MAXTEMPLATE].
atoms newatoms|MAXTEMPLATE].
bonds fragbonds.[MAXTEMPLATE].

f***initialize variahles”*/

for count=0,count-MAXTEMPLATE.count-tº-y■
string|count]="wo'.
fragbonds [count] atom1 =
tragbonds(count] atom7 = -

}

/***convert inclusion and exclusion SMARTS to pattern objects ***/

1■ t FALSE = getsmartTransform))(
return, NULL).

/**"parse transform product SMILES(limited set) into atoms and bonds "**/

futt

|---------------------- *** * * * * * * * * * * * * * *

strucDy(string, Transform->type rep productset, strlen(Transform->type rep productsch)),

it■ FALSE == par -- }{
urn■ NULL).
}

•---------------/
/***done parsing, now add internal atoms/bonds***/
f ------- •/

f***count product atoms”/

Transform->type rep atomnumber = maxatoms;

/***add atoms • **/

for(count = 0:count « maxatoms, count ++}{
Transform->type rep productatom■ count] symbol = newatoms|count] symbol,
Transform->type rep productatom■ count) atomicno= newatoms(countjatomicmo,
Transform->type rep productatom■ count aromatic = newatoms|count] aromatic.
T

- ype rep produc
-

| to - |count
Transtorm->type rep productatom■ count) chival = newatoms(count chival,
for(subcount=0, subcount.<MAXCHIRAL subcount---)■

Transform->type rep productatom■ count].' - - -

}
}

/***count product bonds***

Transform->type rep bondnumber = maxbonds,

1***add fragment bonds "**/

fort count = 0,count.<maxbonds, count #4) {
Transform->type rep producthond■ count] atom1 = fraghonds(count] atoml;
Tr
TI;

ansforin->type rep producthond|count] intom 2 = tragbonds(count) atom?:
|count

- ype rep productb pe = irag ount] b ji

Transform->type rep productbond■ count)chival = Iragbonds■ count] chival,
Transform->type rep■ :ountle = fragbonds■ countl chisell■ )l:

rt-n | chiscq (1) = l.chiscu■ 1};

}

f***return pointer to Transform if parsing is succssful***/
/*

■ printf(sider■ , “dun", Transform->type repatomnumber);
fort count=0,count: pe rep - }{

■ print■ (sider■ , “cºdu■ ". Transform->type rep productatom■ count] symbol, Transform->typerep pro
ductatom■ count].atomicno),

*/

return■ Transform):

f

* parse separation
-

* an i■ o routine which converts the smiles-like external transform
* data-types to internal pattern, atom, and bond data for separation
* transform types

transform "parsesep■ transform "Transform)
t

int half.
count - 0,
subcount.
maxatonna,

maxbonds,
char string[MAXTEMPLATE]:
atoms newatoms|MAXTEMPLATE];
bonds fragbonds(MAXTEMPLATE],

f***convert inclusion and exclusion SMARTS to pattern objects ***/

ift FALSE = getsmart(Transform))(
return■ NULL);

}

***loop through both half's of the transform ***/

for(half-0.half - 2.half++)|

A-"initialize variables***/

for count=0,count-MAXTEMPLATE.count:4+){
string■ count]="wo';
fragbonds count]...iatom1 = -1;
fragbonds count]...i.atom7 = -1:

}

/***parse transform product pseudo-SMILES into atoms and bonds “I

strmcpy(string. Transform->typescp.prod ■ half], strlen(T. ->type sepp f])),

if{FALSE == pal E. -

returninull).
}

f f

***done parsing, now add internal atoms/bonds***/
f f

***count product atoms”/

Transform->type sepatomnumber■ half] = maxatoms:

f***add atoms • **/

for(count = 0:count-maxatoms;count-4)
Transf >type scº | symbol = ■ count] symbol;
--- scp pr !■ countl - |count]
Transform->type scp productatom■ half][count]..aromatic = newatoms|count]..aromatic;

ype sep produc |half]|count) harge = + lcharge
T type sep.I ||count).chival = chival:
for(subcount=0;subcount-MAXCHIRAL subcount—t){

twine scn l■ countl - i

}
}

f***count product bonds”

Transform->type sep bondnumber■ hal■ ] = maxbonds;

/***add fragment bonds "***

for(count = 0,count-maxbonds;count-t')|
i. type seppº |count] intom1 = frag iatorn 1:

Transform->type sepproductbond■ half][count] atom? = fragbonds■ count]iatom 2,
Transform->type sep productbond■ half]|count] bondtype = fragbonds(count] bondtype;

Transform->type sep productbond■ hal■ ][count)chival = fragbonds(count)chival,
Transf ype scº produc f]|count].c - lchiseq[0];
Transform->type sep productbond■ half]|count)chiseq[1] = fragbonds(count)chiscq[1];

} /* end loop through transform halves */

return(Transform),

}
f

* parse connection
-

* an i■ o routine which converts the smiles-like external transform
* data-types to internal pattern, atom, and bond data for connection
* transform types
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------------------- ------

transform "parsecon■ transform "Transform)
■

int count = 0,
maxations,
maxhonds.
subcount,
Jha string[MAXTEMPLATE).
atoms newatoms (MAXTEMPLATE],
bonds fragbonds.[MAXTEMPLATE-3].

/*** initialize variables”/

fºrt count=0,count-MAXTEMPLATE.count ++)|
string■ count]="w)",
tragbonds!count atoml = -1,
tragbonds(count atom. * -1;

/***convert inclusion and exclusion SMARTS to pattern objects ***/

i■ (FALSE = getsmart(Transform))(
returnt NULL),

}

/***parse transform product pseudo-SMILES into atoms and bonds "**t

strncpy(string, Transf >type.com. strlen(Transf >type con prod \):

i■ FALSE == 1 les■ stri & 1----- \\■
return■ NULL).

}

f**** --- ------/

/***done parsin
f

, now add internal atoms/bonds***/

/***count product atoms”

Transform->type con atomnumber = maxatoms,

f***add atoms - ***

for count is 0.count-maxatoms.count ++)|
Transform->type con prºductatomicount] symbol = newatoms|count] symbol,
Transform->type con productatorn■ count] atomicno = newatoms|count] atomicmo,
Transform->type con productatomicount] aromatic = newatoms|count] aromatic:
Transform->type con prºductatorntcount formalcharge = newatoms|count] formalcharge.
Transform->type con productatomicount chival = newatoms(count] chival.
for(subcount=0.subcount-MAXCHIRAL.subcount ++)|

}
)

->type con-produc *inant it hºuntl a

f***count product bonds***/

Transform->type con bondnumber = maxbonds,

/***add tragment bonds “I

fort count - 0:count.<rnax bonds:count-tº-){
Transform->type con productbond■ count atom1 = traghonds(count) atoml:
Transform->type con producthondícount] atom 2 = fraghonds|count] atom 2,
Transform->type con productbond|count] bondtype = fragbonds(count] bondtype,

Transform->type con productbond■ count chival = traghonds(count chival:
Transform->type con productbond■ count) chuseq[0] = fraghonds count) chiscu■ ol:
Translorin->type con prºductbond■ count] chiscull} = fragbondsl.count] chiscqll].

}

iftstrlen(Transform->marked):-0){
if{NULL_OB == (Transform->markscreen = di smartint \

strlen(Transform->marked), \
Transtorm->marked))) {
■ print■ (stderr. “Unable to convertºs to SMARTS \n", \

Transform->marked).
■ printf(stderr. “Reaction *s will will not mark atoms un”. Transform->name);

}

f***i■ gets to this point, transform passes ***/

returnt TRUE),

} f end getsmart "1

*include <stdio.h>
*include <string.h>
*include <xudlib.h>
#include “mol.h"
*include “trans-h

*include “debugh."
*include “no h"
*include “screenh"

externintsyncount;

f

" prune
-

"subroutine takes a moleaucue as an argument and returns whether or
* not that molequele should be transformed current screens include
* total molecules, depth of search, molecular weight, and tanimoto
* similarity

int prune(molequeue "Testmol, molparms "Parameters)
■

int mw.
goodmol = TRUE,

f* reen for total number of molequeue's”!

i■ (syncount >= MAXMOLEQUEUE)[
goodmol = FALSE,

}

/***screen for depth of search “■

i■ (Testmol->depth >= Parameters->max.depth)|
goodnol = FALSE,

}

f***screen molecular weight before reacting ***/

/*

mw = get_molwt(Textmol->molecule).
ift(mw >= MAXMOLWT)|(mw & MINMOLWT))(

goodmol = FALSE,
}*/ 1* end if not NULL */

/***screen for 2d similarity to starting mol “I

i■ FALSE)
i■ (FALSE = tanimoto Testmol, 00, 10){

■ print■ (stderr, “FALSE={d\n", Testmol->tanimoto);
goodmol = FALSE,

}
}

/***return TRUE for pass return FALSE for pruned.”

return■ goodmol),

}
f

* Lanimoto
-

* subroutine takes a moleuueue and (min, max) as arguments, the first
* time it is called, it will remember the ■ p of the molequcue and
* compare all future ■ p's (Daylight 2D) against it. The tanimoto
* between the two will be stored in the molcqueue and if it is within
* the limits set by (min, max) will return TRUE otherwise it returns
* FALSE

--------- /
int tanimoto(molecueue "Testmol, floal min, float max)
{

/***return pointer to Transform i■ parsing is succesful****

return■ Transform),

}

f----- -------- ----

* getsmart
-

* fills in smarts strings for transforms, returning boolean for success
* note, this returns TRUE even if the exclusion falls as long as the
* inclusion succeeds
-------------

int getsmart(transform "Transform)

/***convert inclusion to daylight smarts”!

i■ (NULL OB == (Transform->screenin - dt_smartin(strien(Transform->inclusion)."
Transform->inclusion))) {

■ printh stºler■ , “Unable to convertºs to SMARTS,\n", \
Transform->inclusion),

■ printfistlert, "Reaction ºs will not work \n", Transform->name),
memºct(Transform->inclusion, 0, strlen■ Transform->inclusion)),
return■ FALSE),

}

f***if exclusion exists convert to daylight smarts pattern”?

it■ strlen(Transform->exclusion):-0){
iftNULL OB == (Transform->screenout = dº smartin( \

stricnt Transform->exclusion), \
Transform->exclusion)));
■ printitsuder. “Unable to convertºs to SMARTS An". A

Transform->exclusion),
■ print■ (stderr. “Reaction ºs will be applied generally \n", Transform->name):

/***i■ marked exists convert to daylight smarts pattern”?

static intflag = TRUE,
static charheadname■ MAXSMILES]:
static di Handletp:
static di Handle■ pl;

/***get ■ p of first molequeue ***/

ift■ lag)■
strºpy (headname, Testmol->smiles),
i■ (NULL_OB == (p = dt_■ p_fingerprint(Testmol->molecule, FALSE)))

■ print■ (sider■ , “Error getting ■ p of first molecule, ºs\nun", \
Testmol->Amilcs);
}
flag = FALSE,

}

f***compare the ■ p of each molecule with that of the first molecule”!
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■ pl = di_■ p_fingerprint(Testmol->molecule, FALSE),

Testmol->tanimoto = di_■ p_tanimoto■ .■ p.fpl.);

dt deallocº■ pl),

***return boolean for tanimoto within limits ***/

it((Testmol->tanimoto -- max) &&. (Testmol->tanimoto -- min))
returnt TRUE):

}
else|

return■ FALSE),
}

molecular weight of molecule

int get_molwttdt Handle mol)
{

intmolwt = 0.
dt Handicatoms,

atom,

cons static floatweight[54]={
o, ■ - x0°/
I (xx. 1-H1-f
4003, ■ º H2 */
694, I- H3 */
901. " H4 */
1081. P. Hs ºf
12 011, f. H5 °/
1401, ■ º H5 °/
16.00. f* H5 °/
19 (M). 1: H5 -/
20.18, 1- H10 -/
2299, f* H10 */
24, 31. f* H10 -?
26, 98, p. Hilo ºf
2x 09, f* H10 -/
1097, 1- H10 -/
1206. f* H10 -/
35.45. f* H10 */
39 95. " Hilo ºf
39 10, p. H 10 */
4008, ■ º H20 */
4496. /* H21 */
47 90, ■ º H22 */
50 94. /* H23 */
52 (x), f' H24 */
54.95, / H.25 ºf
55 x5, ■ º H26 ºf
58 93, P. H.27 '■
5871. " H28 probably wrong wi "l
63 55.1° H20 */
65.37. /* H30 */
6972. /* H30 */
72 59, f* H30 */
7492, p. Hi■ ) -/
7x 96. /* H30 */
79 90, ■ º H30 */
83 x0 tº Hºo ºf
8s 47. /* Hºo ºf
87.62. /* HM) ºf
8x 91, f. H40 */
91 22, 1- H40 */
92.91, f. H40 */
9594. f. H40 */
98.91. " H40 */
101.07, f" H40 */
102 91. " H40 */
1064. /* H40 */
107 x7, f. H40 */
11240. - H40 */
114.82. 1: H40 */

1869, f* H50 */
121.75, /* H50 */
12760. 1" H5() */
126.90/- H53 */
}:

i■ ºmol == NULL_()B)
return (0).

atoms-Jº stream(mol. TYP_ATOM);
while (NULL OB = (atom - di next{atoms)));

molwt += weight|dt number■ atom)], ■ º atomic number "2 */
molwt += dt_hcount(atom)" (Nº. 1" number of hydrogens ºf

}

dt dealloc(atoms),

return■ molwt).
}

*include <xtdio hº
*include -ºxidish hº
*include <string h
*include “trans h"
*include “inol h"
*include “debug.h"
*include “select h"

/* * * * *

* screen
-

* 6/96 ags

dt_Handle *screen(molegueue "Reactant, transform *Transform)
(

*
*

* takes a reactant molecule and a transform and returns the a sct of
* paths where the transform is supposed to take place.

dt_Handlepathset,
paths,
path,
atoms,
alon.

expathset.
cxpaths,
expath,
exatoms,
exaton,

intpathcount = 0.
flag.

/***chcck to see if screen is in moleculc. if not return 0.”**/
f**think lots about using dt_match rather than dt_umatch”/

if{NULL OB == (paths.ct = di_umatch(Transform->screenin. Reactant->molecule, FALSE)));
return■ NULL);

}

clsc{
flag = TRUE;

count number of occurences in molecule, if > 1 ***/
/*** find leasumost sterically hindered one. ***/

pathset = steric(pathset, Reactant->molecule, 3, DIV_RANK_THRESHOLD);

/***check for exclusion structures which intersect inclusion path.***/

atoms = di stream(path. TYP_ATOM);
*********really need to loop over pathset and paths.”

if(0 = stremp(Transform->exclusion, “Mr")) {
i■ (NULL_OB = (expathset = dt_match(Transform->screenout. Reactant->molecule, FALSE)));

if{NULL OB = (expaths = di stream(expathset, TYP_PATH)));
while(NULL_0B = (expalh = dº next(expaths)));

if{NULL_0B = (exatoms = dº stream(cxpath, TYP_ATOM))){
while(NULL_OB = (exalom = di next(exatoms))){

while(NULL OB = (atom = dt_next(atoms))) {
i■ (dt_uid■ atom)=dt_uid(exatom))(

flag = FALSE,
break,

}
)
dt_reset(atoms);

} /* cmd.exatom */
} /* end exatoms ºf

) tº end expath ºf
| " end expaths “I

| ?" end expathset “I
} /*end i■ exclusion */

} f" end else */

1“clean up pre-screening objects ***/

di dealloctexpathset);

return[pathset),

} f END screen “■

i

* sucric
-

* takes a pathset and a molecule and ranks the steric hinderance of
* each of the paths in the pathsct, depending on the flag “rank”.
* steric will remove ºpds above a threshold, rank all the cpds, rank
* only the cpds below a threshold, or return the least hindered path.
-

• 6/96 ags

dt_Handle *steric{dt_Handle "pathset, dt Handle "mol, int threshold, int rank)
{

dt_Handlepaths.
path.
atoms,
atom,
xalthin,

xatombonds.
xatomhond,
xxaton.

pathatoms,
pathalom.
honds,
bond,

int" score,
pathct=0.
count.

f***count the number of paths “■

if(NULL OB = (paths = dº stream(pathset. TYP_PATH))) {
■ printf(sider■ , “No paths in steric \n");
return■ NULL);

}
while(NULL OB = (path = dt_next(paths)))'■

pathct-,
}

/***malloc and initialize score array "**/

i■ (NULL == (score = (int")mallocipathct’sizco■ (int))))'■ jº, )
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/***malloc array of bindings "**/
f*

1■ t FALSE = (whinding = (dt Handle")malloc(maxwbind"sizeofidi Handle)))) {
■ print■ (stderr. “\nOut of memory mallocing for whindings, count = %d.\nun". maxwbind):
exit(l),

}
*/
f***read in binding ***t

whindct = 0:
while(NULL = fgets(hu■ , MAXBUF, Bindingfile)) {

goodread = TRUE,
sscan■ (hu■ , “%s ‘ºs■ '--!", name, smarts),
i■ (strump (name.") && strump(smarts."))(

/***initialize bindings”/

iftnu■ LL_OB == (pattern = dº smarun(strien(smarts), smarts)));
■ print■ (stdcrº, “Unable to convertºs to smarts.un", smarts),
goodread = FALSE,

}
else i■ (NULL_0B == (vtinding■ vhindct] = d alloc_wbind(strlen(name), name))) {

■ printf(stderr. “Unable to alloc whinding ‘ks"m", name).
goodread = FALSE,

}
else i■■ FALSE = di setval(vbinding■ vhindct], pattern))(

■ print■ (sider■ , “Unable to set 4's to +sun”, name, smarts);
goodread = FALSE,

}

f***increment counter if things are ok***/

iftgoodread){
whindclºt,

}
memsettbu■ , 0, MAxBUF),
mcmset(name, 0, MAXBUF),
memset(smarts, 0, MAXBUF),

} /* end while (gets */

return (whindct),

}
#inchude <stdio.h>
#include ºstring.h>
*include “dt_smilesh"
*include “debug.h"

f* --

* debug sequence

void debug sequence(dt_Handle scq)
{

dt_Handlcmcmber,

dt_reset(scq),
while NULL OB = (member = d._next(seq)));

debug bond■ member),

dt_reset(scq),

f

* debug atoms
-------

void debug atoms(dt Handle atoms)
{

dt_Handlcatom;
while(NULL OB = (atom = di_next(atoms))) {

debug atom■ atom),
}

}
f

* debug bonds
-----------------------------------------------------------/
void debug bonds(dt_Handle bonds)
{

dt Handlchond,
while(NULL_OB = (bond = dt_next(bonds))) {

debug bond■ bond),
}

■ print■ sider■ . “Unable to malloc *d scores in steric \n", pathct),
|
for count=0,count-pathct;count ++){

wore count] = -1,

/**"loop through paths and atoms”

path, t = 0,
dt reset(paths);
while NULL OB = (path = dº next paths)))

i■ NULL OB = (atoms = dt stream path. TYP_ATOM))) {
pathaloms = dº streamtpath, TYP ATOM),
while NULL OB = (atom = di next(atoms)));

/***look across bonds for aloms outside of current path”/

1■ t NULL OB = (bonds = di stream atom, TYP BOND)))'■
while NULL OB = (bond = d next{bonds))) {

xation = dr_xatiºn■ atom, bond).
dt resettpathalams),
nonpath = TRUE,
while(NULL_0B = (pathatom = di_next(pathatoms)))|

1■ tpathatom = xalom),
nonpath = FALSE,
break.

}
}

/***ully score and search for secondary non-path atoms”/

ift nonpath)!
scorelpathet] += (dt aromatic(xatom) == TRUE "DIV_STERIC la: DIV_STERIC_1A),

if{NULL OB = (xbonds = dt stream(xalom. TYP BOND)))
while(NULL_OB = (xhond = di next(xbonds)));

xxatom = d xatom(x,atom, xbond),
dt reset■ pathatems):
nonpath = TRUE,
while NULL OB = (pathatom - dt next(pathat oms)))

i■ pathalom = xxaton) {
nonpath = FALSE,
break,

}
|

f***i■ have secondary atoms tally score”/

if nonpath)|
score■ pathctl tz (d_aromatic(xxalom) = TRUE "DIV_STERIC_2a : DIV_STERIC_2A),

}

/***loop through all lary and 2ndary atoms of every path collecting scores”f

} /* chd while xbond */
} /* end ºf xbonds ºf

} /* end it nonpath "1
} /* end while bond */

} f" end ºf bonds ºf
} f" end while next atom */

| " end if atoms ºf
path-t-t-.

}* end while next path ºf

/***for debugging print each path with score ***/

debug molecule(mol),
dt rescºpaths):
pathet = 0.
while(NULL OB = (path = dt_next(paths)))

debug pathºpath):
■ print■ (slderr, ºn Path score = %d \num", scorelpathct]),
pathct-4.

}
f" end steric */

*include <stdio ho
*include <string h
#include <suilib.h>

#include “whind.h"

di Handle wbinding[1000].

int wbindinit(FILE “Bindinghle)
{

int whindct.
maxwhind.
goodread,
char bu■ MAXBUFl.
name{MAXBUF).
smarts|MAXBUF),
dt Handle pattern,

/***read through hindings and get number”!

whind-t = 0,
while NULL = gets(but, MAXBUF, Bindingfile));

sscan■ (hu■ , “A sº s[ --!". name, smarts).
it■ strump■ name.") && stremptsmarts")) {

whindet**.
memºset(name. 0. MAXBUF),
themset(smarts, (), MAXBUF),

}
rewind Bindingfile),
maxwhind = wbindict,

f.----------------------------------------------------------
* debug pattern

void debug pattern(dt_Handle pattern)

di Handleatoms,
atom,

atoms = di stream(pattern. TYP ATOM);
while(NULL_OB = (alom = di_next(atoms))) {

debug atom(atom),

return.
}
f

* debug path
-

-------

void debug path(dt Handle path)
{

di Handleatoms,
attain,

i■ (NULL_0B == (atoms = di_stream(path. TYP_ATOM)))

j

^. N
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fprintfestderr,"no atoms in pathun"),
return,

|
while NULL_OB = (atom = di_next(atoms))) {

debug atom(atom).
}
■ printf(sider■ , "n"),

}

-------------f***

" debug pathsel
-----------------------------------------------------------|
void debug pathsci/dt Handle pathset)
|

dt Handlepaths.
path.
atonix.
alon,

intlen.
charºstring,

symbol{10},

paths = dº stream pathsel. TYP PATH),
while NULL_0B = (path = di_next paths)))

atoms = dº streamtpath, TYP_ATOM,
while NULL OB = (atom = dº next(atoms))) {

debug atom(atom),
)
■ print■ (slder■ , “t"),

}
■ printf(stderr, "n"),

P------
* debug hond

----- --

void dchug bond■ .■ t Handle bond)
■

dt Handleatoms,
attºrn.

in NULL_0B = (atoms = di streambond. TYP_ATOM)));
while NULL_0B = (atom = di next(atoms)));

debug atom(atom),
)

|

■ printf(stderr, “tººd", dt_bondtype(bond));
}

f-----------------------------------------------------------
* debug molecule
-----------------------------------------------------------f
void debug moleculed Handle mol)
{

dt Handleatoms,
aton,

intlen,
chart string.

symbºl{10}.
string=dt cansmiles &len.mol.TRUE),
printf(“º "sun".len.string),
atoms=dt_stream mol. TYP_ATOM),
while(NULL OB = (atom - d._next(atoms))) {

debug alomatom),
}
■ printfistderrºn"),
dt dealloctatoms),

}

*
sº

;

º,

-

4.

p-------------------------------------------------------------
" debug atom
-------------------------------------------------------------/
void debug atomidt Handle atom)
{

int len.
char *suring.
symbol■ 10):

if(NULL OB == atom■
■ printt(sider■ , “Null atom");
return,

|
string = di symbol{&lenatom),
strmenyi symbol,string.len),
itru■ t aromatictatomy) "symbol = "symbol + 'a' - 'A';
■ printfestderr,"****ku)", len, symbol, dº uid (atom));

}*g//
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Appendix 4: Combi■ )OCK Datastructures and Code

Abstract

The following are selections of the datastructures and code from CombiDock version 2.0.

These selection form the core of CombiDock and highlight the differences between Com

bi■ )ock and the underlieing Dock algorithm. The CombiDock code grew out of version

alpha 45 of the Dock.4.0 code which was written entirely by Todd J.A. Ewing. The modifi

cations and additions necessary for CombiDock version 1.0 were completed by Yax Sun.

Optimization of version 1.0 and the modifications and additions which comprise Combi

Dock version 2.0 were completed by Allan Geoffrey Skillman, Jr.

Included Files

Datastructure Files:

dock.h

fragment.h

molecule.h

Code Files:

dock.c

fragment.c

rank.c

SCOTC.C
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Copyright 1999, A.G. Skillman.T.J.A. Ewing.I.D. Kuntz, Regents of the University of California.
Datastructures:

dock.h

f*
Written by Todd Ewing
3/96.
•/
/*
Modified by Geoff Skullman
•/
y
* General Parameters
•/
*define ANCHOR NEW MAX 101****ALSO defined in definitionsh” ºf

typede■ struct combi struct
|

int flag." Flag for combinatorial fragment */
unt linker lib flag.
int probe flag." Flag for using probe fragments with the scaffold */
double total compounds; /* Counter for total compounds docked */
double total conformations, i' Counter for total conformations docked "l

FILE_NAME *file name:#" List of files containing fragments */
FILE “tile.” List of file pointers of fragments */

FILE_NAME "probe file name■ ' 2/99 Name of file containing probe fragments */
FILE “probe file■ ' file containing probe fragments */

FILE_NAME scaffold file_name,
FILE *scaffold file,

int max_sites.j" Maximum number of sites */
int max_fragments(ANCHOR_NEW_MAX]/* Maximum number of tragments */
int max_anchor_tºrsions,

int max probes(ANCHOR_NEW_MAX]." Maximum number of probe fragments */

MOLECULE_COMPOSE "molecule compose,

| COMBI.

typede■ struct client_struct
{

int flag.J.” Flag for client/server option */
int total." Number of clients to whom jobs given ºf
STRING20 *name.” Names of the clicnts involved "/

| CLIENT.

typede■ struct dock struct
■

int restart.” Flag to restart a job ºf
int orient ligand.” Flag for whether ligand to be oriented "l
int multiple ligands." Flag to process more than one ligand "l
int rank_ligands." Flag to rank ligands ºf
int multiple orients.” Flag to write multiple ligand orientations */
int rank orients.” Flag to rank orientations */
int molecules_max/* Maximum number of molecules to process */
int initial skip■ " Number of molecules to skip initially “I
int interval skipj" Number of molecules to skip for each read ºf
int restart_interval." Frequency of saving restart info"

int max_atoms.” Maximum number of atoms "I
int max_heavies.” Maximum number of heavy atoms"?
int max_flexes.” Maximum number of flexible bonds "f

FILE NAME ligand file_name." File containing ligand(s) */
FILE_NAME receptor file_name■ ' File containing receptor “l
FILE NAME dump file name." File by user to cause into dump 'f
FILE NAME quit_file name.” File by user to cause program quit */
FILE NAME into file_name■ " File containing current run into "?
FILE_NAME restart_file_name:/* File where restart info written "f

FILE "ligand_file.” File pointer for ligand(s) */

COMBI combi:/* Combinatorial docking information */
CLIENT clicut.” Clienuscrver information "1

int clash_cals,

} DOCK,

fragment.h

f*
Written by Todd Ewing
10/25
*/
p
Modified by Geoff Skillman
•/
int check_clash
(

LABEL VDW “.
MOLECULE *imolecule,
MOLECULE "molecule

),

int write_fragments
t

DOCK "dock.
SCORE *score,
LABEL “label,
MOLECULE * molecule.

int countcr
);

void allocate molecule_compose
t

MOLECULE COMPOSE "molecule compose,
int *fragment_total

);

void reallocate_molecule_compose
(
MOLECULE_COMPOSE *

),

void free molecule_compose
(

MOLECULE COMPOSE *
):

void merge_fragments
(

MOLECULE *molecule
),

void add_bond (MOLECULE *molecule, int idl, int id2);
int rotate_fragment(XYZ rotation[3].XYZ origin.int current_atom,int

previous atom, MOLECULE "molecule),
void calc_properties(MOLECULE *mol),
void prescore fragments(MOLECULE COMPOSE "molecule compose):
void merge_fragments(MOLECULE *molecule),
void add_fragment(MOLECULE *mol, MOLECULE *fragment, int site, float angle),

molecule.h

/*
Written by Todd Ewing
low 5
•f

/*
Structures to hold molecule data
loºs te
•/

typedef struct info struct
{

char *name. *comment, "molecule_type, “charge_type, "status_bits,
char *file_name,
long file position,
int allocated;
int fragment_single_allocated:
int commentkey, f" integer key based on comment */
int conformation_flag:

| INFO:

typede■ struct move_struct
{

int initialized, anchored, oriented, moved, reflected;
float rimsd:
float initial■ ó), anchor■ t). orient■ 6), final(6),
XYZ com, anchor_com/* Center of mass “l

| MOVE,

typedef struct mol_score_struct
|

int id, type;
int bumpcount, iterations;
float total, suh_total,

/*-ags 3/98 - add scoring of chris lipinski "rule of 5" "**/
float clogp,
short annw;
unsigncil char höd, hba,

| MOL_SCORE,

typede■ struct arrayszc_struct
|

int score parts, atoms, bonds, substs, features, sets, anchors:
int flexes, initial_flexcs,
int sitcs, fragments,

| ARRAYSIZE,

typede■ sunuct atom_struct
■

int number, subst_id, label_id, definition_id, vuw_id, ring id,
flag, anchor_id:

int *neighbor, neighbor_total;
float charge:
char *name, *type;

| ATOM,

typede■ struct bond struct
{

int origin, target, flex_id.
char *type,

| BOND,

typede■ struct subst_struct
|

int number, root_atom, dict type, inter bonds,
char *name, "type, "chain, "sub_type, “status,

} SUBST,

typede■ struct flex_struct
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{
int bond Id, origin, target, origin wº, target_wt;
float angle;

| FLEX:

typede■ struct set_struct
{

int type:
} SET.

typedef struct anchor_struct
{

int atom_total,
int atoml?];
XYZ coord|3},
int scaffold linked;
int fragment_linked.

] ANCHOR_NEW,

typede■ struct molecule_struct
■

INFO into:
MOVE move,
MOL SCORE score;

ARRAYSIZE total. max;
float "score part,
ATOM “atom;
XYZ "coord. *initial_coord.
BOND “hond;
SUBST *subst;
FLEX “flex, “initial flex;
ANCHOR NEW -anchor:
int *site:
struct molecule struct “fragment;
struct molecule struct "fragment_single,

| MOLECULE,

typede■ struct molecule_fragment_struct

int site_tºtal;
int "fragment total.
int “unique fragment total;
MOLECULE scaffold:
MOLECULE “fragment;

| MOLECULE_COMPOSE;

typede■ struct linked molecule
|

struct linked molecule *next_head. *next member,
MOLECULE * molecule:

) LINKED_MOLECULE,

/*

Routines used to manipulate molecule data structures
10/95 te
*/

void allocate molecule (MOLECULE *).
void allocate_info (MOLECULE •),
void allocate move (MOLECULE *):
void allocate score (MOLECULE *):
void allocate score parts (MOLECULE *);
void allocate atoms (MOLECULE *),
void allºcate_honds (Molecule *):
void allºwale substs (MOLECULE
void allocate sites (MOLECULE •),
void allocate_fragments (MOLECULE *).
void allºcate flexes (MOLECULE *),
void allocate fragment_singles (MOLECULE *):

void reset_molecule (MOLECULE *);
void resct info (MOLECULE *):
void resct move (MOLECULE *);
void reset score (MOLECULE *),
void reset score parts (MOLECULE *):
void reset atoms (MOLECULE *).
void reset atom (ATOM “)
void reset bonds (MOLECULE •),
void reset bond (BOND “)
void reset_substs (MOLECULE *);
void reset_subst (SUBST *) :
void reset sites (MOLECULE *):
void reset tragments (MOLECULE *),
void reset_flexes (MOLECULE *):

void free molecule (MOLECULE *):
void free into (MOLECULE
void free move (MOLECULE *):
void tree_score (MOLECULE *);
void free score parts (MOLECULE •),
vºid frce_atoms (MOLECULE •),
void free atoms only (MOLECULE *).
void free atom_coordinates (MOLECULE *):
void tree_atom (ATOM “)
void free honds (MOLECULE *);
void frce bond (B()ND “)
void tree_substs (MOLECULE •),
void frec_subst (SUBST •) :
void tree_sites (MOLECULE *);
void tree fragments (MOLECULE *):
void free fragment_singles (MOLECULE *),
void free_flexes (MOLECULE
void free_anchors (MOLECULE *),

void reallocate molecule (MOLECULE *);

void save score parts (MOLECULE *. FILE *
void save_atoms (MOLECULE *, FILE *);
void save atom (ATOM “, FILE •),
void save bonds (MOLECULE *, FILE *);

void reallocate_atoms (MOLECULE *):
void reallocale bonds (MOLECULE *);
void reallocate subsis (MOLECULE *):
void reallocate_sites (MOLECULE *):
void reallocate_fragments (MOLECULE *);
void reallocate_flexes (MOLECULE *);
void reallocate_anchors (MOLECULE *);

void copy molecule (MOLECULE •, MOLECULE •),
void copy info (MOLECULE *, MOLECULE *):
void copy move (MOLECULE *, MOLECULE •),
void copy score (MOLECULE *, MOLECULE •),
void copy atoms (MOLECULE ". MOLECULE *);
void copy atom (ATOM “, ATOM “)
void copy coord (XYZ, XYZ)
void copy bonds (MOLECULE *, MOLECULE •),
void copy bond (BOND ", BOND ") ;
void copy substs (MOLECULE *, MOLECULE •),
void copy subst (SUBST *, SUBST *) ;
void copy sites (MOLECULE ". MOLECULE *);
void copy fragments (MOLECULE *, MOLECULE •),
void copy flexes (MOLECULE *, MOLECULE •),
void copy flex (FLEX ’, FLEX •)
void copy anchor (MOLECULE *, MOLECULE *);

void save molecule (MOLECULE *. FILE *);
void save info (MOLECULE *. FILE *).
void save_move (MOLECULE *, FILE *);
void save score (MOLECULE *, FILE *);

void save bond (BOND ", FILE •)
void save substs (MOLECULE *, FILE •),
void save_subst (SUBST *, FILE *):
void save sites (MOLECULE *, FILE *):
void save fragments (MOLECULE *, FILE
void save_flexes (MOLECULE *, FILE *);

void load_molecule (MOLECULE *, FILE *):
void load_info (MOLECULE *. FILE *);
void load_move (MOLECULE •, FILE *):
void load_score (MOLECULE *. FILE *):
void load score parts (MOLECULE *, FILE *);
void load_atoms (MOLECULE *, FILE *).
void load_atom (ATOM -, FILE •),
void load bonds (MOLECULE *, FILE *).
void load_bond (BOND ", FILE •),
void load substs (MOLECULE *. FILE *):
void load_subst (SUBST •, FILE *);
void lºad_sites (MOLECULE •, FILE •),
void load_fragments (MOLECULE *, FILE *):
void load_flexes (MOLECULE *. FILE *);

void save string (char **, FILE •),
void load string (char **, FILE *);

Code:

dock.c

UUUUUUUUU CCCCCCC SSSSSSS FF. FFF/ -

UU/ UU/ CCF CC/ SS: SS/ FF. FFF/ -

UU/ UU/ CC, CCI SS/ FFFFF; -

UU/ UU/ CCF CC SS/ FF/FF, -

UUf UU/ CC, CC/ SS: SS FF. FFA -

UUUUUUUUU/ CCCCCCC/ SSSSSSSI FF. FFA -

-

-

Copyright (C) 1991 Regents of the University of California -

All Rights Reserved. *
-

This program implements the docking algorithm of I.D. Kuntz, -

J Mol Biol 161,269-288, 1982. -

Versions 10 and 1.1 of the dock program were based extensively on "
the work of Robert Sheridan. Rence DesJarlais, and Tack Kuntz -

-

Version 2.0, macrodock. is based on the work of Brian Shoichct -

and Tack Kuntz, with help from Dale Bodian. -
-

Version 3.0, chemdock, is based on the work of Elaine Meng. Brian *
Shoichet, and Tack Kuntz. -

-

Version 3.5 was produced from version 30 by Mike Connolly and -

Dan Gschwend -

*

Version 4.0 is based on the work of Todd Ewing and Tack Kuntz. -
-

Combidock is based on the work of Geoff Skillman, Yax Sun, and Tack Kuntz"
-

#include <time-hº.
#include “definitions.h"
*include “globalh"
*include “utility h”
#include “molecule.h"
#include “grid_struch"
#include “list.h"
#include “dock h"
*include “label.h"
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*include “grid_score h”
*include “xcure h"
*include “match.h"
*include “to h"
*include “to grid h"
*include “io_ligandh”
*include “io prepare.h"
*include “parm dockh”
#include “rank h”
*include “rotransh"
*include “fragment h"

GLOBAL global = {0},

main (int argc, char "argv[])

!.
* General variables (see header files for globally defined variables
* twº ic
*/

int . . k. I./* Counter variables */
float angle.” Angle for probe attachment *f
STRING80 line. /* Sunng used to compose output */
floal time = 00." Total amount of elapsed epu time ºf
int index(ANCHOR NEW MAXI./* counter from probes "1
int index_max.J." max for counter */
int index_basel ANCHOR NEW MAX]. f* mod base for each index */
int index_umns(ANCHOR NEW MAXI. f* size in each dimension for index */
int rot(ANCHOR_NEW_MAXI./* counter from attachment tu■ sions */
introl maxi/* max for rºtation counter */
int rot_hascIANCHOR NEW MAX}, ■ º mod base for each rotation */
int rot Jinns (ANCHOR NEW MAx]i /* size in each dimension for rotation */
XYZ bond vector, rotation[3]./* attachment bond vector & rotation "1
int minimize timpy" space holder for minimize variable */
int multiple imp■ " space holder for multiple variable */
int interpolate_imp■ " spacd holder for interpolation flag “I

/*

* Variables for multiple ligands mode
• thrº5 te
•/

int ligand read./* Flag for whether a ligand was read "f
int ligand_read_num = 0.7° Number of ligands read “f
int ligand dock num = 0." Number of ligands docked "f
int ligand skip num = 0./* Number of ligands skipped "/
int iteration = 0./* Counts number of processing cycles */

/* ags 1197 counter of fragments for combi dºck ‘■
int unique_frag num = 0.

y

* File pointers used when checking for the presence of control files
- thrº5 te
•/

FILE “dump, *quit.
“scaffold Juplicate.” File to read scaffolds for probes "1

/*

* Data structures containing docking parameters
• 2/96 te
*/

DOCK dock = {0}.f.” Dºcking data structure “f
MATCH match = {0}.” Matching data structure */
SCORE score = {0}./* Scoring data structure */
LABEL label = {0}.” Laheling data structure */

LIST ligand orients = {0}/* List of best orientations */
LIST best ligands = {0}./* List of best molecules ºf
LIST fragment orients = {0}, f" List of orientations of a fragment "f
LIST best scaffolds = {0}.” 2/99 ags List of the best scaffolds (& orientations */
LIST wa■ told orients = {0}. f* 2°39 ags List of onentations of wa■ told "f

MOLECULE ligand = {0}.” Lugand data structure "l
MOLECULE probe fragment = {0}. 1" Temporary probe fragment holder "1

MOLECULE COMPOSE ligand compose = {0}.
* Ligand fragments and scaffold structure “f

MOLECULE COMPOSE probe compose = {0},
/* Prºbe fragments and scaítold structure */

ATOM "head trag atom, f**** ags ■ tr to atoms of initial fragment "1
BOND "head_frag hond/* */98 ags pºr to bonds of initial fragment "1

j
* Functions used in the main rºutine that also reside in this file.
" ()ther functions are declared in the header files
* twºs te
•f

void write program header (void),
vold set_memory limit (void),
float clapsed time (float"),
extern void get_index(int, int, int", int"). 1" from rotransc */

f*
* Process command line arguments
* thfus te
*/

process commands (&dock, argc, argv):

y

* Output program header and user information
* 6/95 te
•f

write program header ():

/*

* Set ceiling on how memory can be dynamically allocated for this run
• 11/95 ic
•/

sct memory_limit (),

1

* Read in dock parameters
* 6A95 ic
•/

if ('get parameters
(&dock, &match, &score, &label, &ligand_orients. &best ligands))

{
■ print■ (stdout, "Error reading control parameters, check output fileAn");
cxit (EXIT_FAILURE),

}

f*
* Read in chemical label definitions
* 6/95 we
•/

if ((label.chemical.flag fl score lipinski) &&
'get_chemical labels (& label.chemical))

■ print■ (global outfile, "Error reading in chemical definition file *s."m",
label chemical file_name),

exit (EXIT_FAILURE).
}

if (match chemical &&
'generate_matchtable (&label chemical))

■
■ print■ (global outfile, “Error generating chemical match table \n");
exit (EXIT_FAILURE),

}

/*

* Read in chemgrid info; bump, vidw and electrostatic pot'l grids
- arºste
•/

if (score.flag any)

■ print■ (global.outfile, “Reading in chemgrid data grids.An");

if ('read grids (& score-grid, & score flag, &label.chemical))
■

■ print■ (global outfile, “Error reading chemgrid data grids An");
cxit (EXIT_FAILURE),

}
}

/*
* Read in vdw parameters
* fºste
*/

if (labelvdw.flag &&
'get_vdw_lab.cis (&label.vdw, & score grid))

{
■ print■ (global outfile, “Error reading vidw parameter file %s un",

label vidw.file_name),
exit (EXIT_FAILURE);

}

/*
* Read in flexible bond parameters
* 10^95 te
•/

if (label flex flag &&
!gct_flex_labels (&label.flex))

(
■ print■ (global.out■ ile, "Error reading flexible bond file %s"m",
label.flex.file marrie):

cxit (EXIT_FAILURE),
)

f*
* Read in dummy atom label definitions
* 6/95te
•/

if (label dummy flag &&
'get_dummy labels (& label dummy))

{
fprint■ (global outfile, "Error reading in dummy atom definition file *s \n".

label dummy file_name).
exit (EXIT_FAILURE),

}

f*
* Read in site points for matching
* 3/96 te
•/

if (dock.orient_ligand)
read_site_points (&dock. &match, & score, &label):

f*
* Initialize best molecule lists
* 2/96 tº
*/

allocate list (&hest ligands);
allocate list (&ligand_orients):

f

* Open ligand and fragment input files
• 6/95 te
* Open scaffold file
* 6/95 ys
•/

if (!dock.combi flag)
{

if (dock client flag – 'c')
dock ligand_file = e■ open (dock.ligand_file_name, "r". global outfile);

}
clºse

dock.combi.scaffold file =
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e■ open (dock.combi scaffold file_name. “r”. global outfile),

for (i = 0, 1 < dºck.comhi max_sites; it +)
dock combi file(1) =

efopen (dock combi.file_name{1}. “r”, global outfile):

/* 289 ags ºf
if (dock.comh probe flag)
■
scaffold duplicate =

efopen (dock combi scaffold hle_name, ”, global outfile);

fort 1 m 0, i < dock comba max_sites, 14–4)
dock.combi probe file■ i) =

etopen (dock combi probe file_name■ ). “r”, global outfile),
}

|
7

* Open hgand and fragment output files
**

1" i■ ("Jock rank_ligands && (dock client flag – 's'))*
if (TRUE)

for (i = 0: , « SCORE TOTAL, it *)
if (score typeii, flag)
■

score type■ il file =
efopen (score typelt] file_name, “w", global outfile),

it (dock.combi flag && 'score combi merge)
for u = 0, j < deck.combi.max_sites; ºth

score comb, type■ ] file■ ]] =
etopen (score combi type■ t) file name{j}, “w”. global outfile),

f* 1198 ags this is the start of the most basic docking loop */
while
■

'iteration ||
tdºck multiple ligands && (ligand_read_num « dock molecules_max))

)

|
f

* 2/99 ags this is a new experimental section for pre-docking a
"scaffold with a set of probe fragments
-------- -----------

if (dock combi flag)
t
it■ dock.combi probe flag && dock.orient_ligand)
{

f*
“read in probes 4/99 ags
•/

probe compose site_total = dock combi max_sites:

ift "itcration)

allocate molecule compose (&probe compose, dock combimax probes),
}
score pre bump = 0.
score post hump = 0.

for (i = 0: i < probe compose site_total: i ++)

rewind(dock combi probe file(11):
}

for (i = 0, i < dock.combimax_sites; 1 ++)
t

for (j = 0, j < dock.combimax probes■ il, hºt)
{

dock multiple ligands = TRUE, !" dock as multiple */
minimize trnp = score type(SCORE_TMP minimize; ■ º hold boolean */
score type(SCORE TMP minimize = score probe minimize; ■ ’ set min for probes ºf
interpolate_tmp = score option interpolate,
score option interpolate = 0,

/* begin potential loop around scaffolds (if no more scaffolds, END) */
if ((read_ligand

(
&dock.
&score,
&label.
&probe compose.scaffold,
dock combi scaffold file_name,
scaffold duplicate,
score flag any || label flex flag.
(label chemical flag i■ score...lipinski).
label dummy flag,
label vilwflag

}) = TRUE)
t

ligand_read_num = dock molecules_max; f" no more molecules */

/* reset docking variables */

dock comb ■ lag = TRUE,
dock multiple ligands = multiple trnp;
score type■ SCORE TMP minimize = minimize thmp,
score option.interpolate = interpolate_tmp;

break:

■
if (probe compose scaffold-anchor == NULL)

■ print■ (global outfile, “anchor atom information missing."
“please check scaffold mol2 file\n");

cxit (EXIT_FAILURE),
}

ligand_read_num++:
probe compose scaffold total sites =

probe compose scaffold.max sites = probe compose site_total,

* For probe dock, connect probes to the scaffold

orient_fragments (&probe compose),

* prepare for scoring
•f

score pre bump = score post bump = 0,
scaffold orients max(0) = score.combi scaffold orient_max,
best scaffolds max(0) = score combi.scaffold greedy:

for (i = 0, i < SCORE TOTAL; it *)
t
score type■ il number written = 0,

scaffold orients max(i) = scaffold orients max(0);
best scaffolds max{1} = best scaffolds.max(0);

}
ligand.max flexes = 1:

ift literation)f
allocate molecule(&ligand):
allocate_list(&scaffold orients),
allocate_list(&best scaffolds);

■ " set up match for probe docking */
malch setup (&dock. &match, & score, &label);

}
else■

reset_list(&best scaffolds);
if (thgand_read = read_ligand
(

&dock.
& score,
&lahel.
&probe cºmpose fragment[i][j].
dock combi probe file_name[i].
dock comb, probe file(1).
score flag any || label flex flag.
(label chemical flag || score lipinski).
label dummy flag,
label vilw flag

}) = TRUE)
break,

/-

- chcak i■ anchor atom information has been read in
•/

i■ probe compose fragment[1][j] anchor == NULL)
{

■ print■ (global outfile, “anchor atom missing."
“please check probe mol2 file:\n site: *d probe: 'A dun",
1, j),

exit (EXIT_FAILURE);

} /* close j'■

if (j - probe compose fragment totalli))
probe compose fragment total (1) = j.

} /* close i "f

f" set docking variable for probe docking */
dock comb ■ lag = FALSE, !" probe docking is NON-combi docking */
multiple trimp = dock multiple ligands, ■ º hold boolean */

}
/*
* 2/99 ags loop through all combinations of probes and dock each one
*/

/* malloc fragment_single for ligand to store probe fragments */

/* set up index_max, dimension, and a mod base for index */
index_max = 1,
rot max = 1;
for (i-0.i-probe compose scaffold total sites;it 4)
■
index_max *=probe compose fragment total{i};
rot_max *= dock.combimax_anchor_torsions:
index_dmns[1] = probe compose fragment_total[i]:
rot dinns■ il = dock.combimax_anchor_torsions,

}
for (i=0;iq.robe compose scaffold.total sites:itt)
{
index_base[i] = 1;
rot_hase[i] = 1;
for(j=i-j<probe compose scaffold total sites.j++)
(

index_base[i] *= index_dmns[j].
rot_base[i] "= rot_dmnsljl,

}
}

f*
* 2/99 ags create a whole molecule from probe compose and put in ligand
*/

f* work through all combinations of probe fragments */
for ( i = 0, i < index_max; 14+)
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{
get_index (1, probe

index dinns, index):
compose scattold total sites,
convert to appropriate index [1,2,..] "1

/* work through all combinations of attachment torsions */
tor(j = 0, … rot_max, hºt)
{

get_index (1, probe compose scaffold total sites,
rot dmns, rot), /* convert J into rotation for each attachment */

/* cupy the scaffold'■
reset molecule■ & ligand);
copy molecule(&ligand, &probe compose scaffold),

for k = 0.k < probe compose scaffold total sites:k++)
■

f* add the appropriate fragment pieces */
copy molecule(&ligand tragment_single■ k], &probe compose fragment■ k][indexlk]]);

/* prepare for each tragment for rotation */
ligand flex->target = ligand fragment_single■ k) anchor(0) atom■ ll:
ligand.■ lex->origin = ligand tragment_single■ k] anchor■ 0} atom■ Ol.

for thi■ ), 1-3.1++)
■
bond_vector[l] =

ligand fragment single■ k) coord|ligand flex->target][1] -
ligand fragment_single■ k! cºord|ligand flex-> ºrigin][1].

ligand flex->angle = rot■ k, "2 * Pl/dock.combimax anchor torsions;

fixtate axis

t

ligand flex->angle,
bond vector,
fixtauton

),

/* rotate cach fragment *f
rotate fragment
t

rotation,

ligand tragment_single■ k].coordiligand.flex->target].
ligand■ lex->target.
ligand flex->origin,
&ligand.tragment_single■ k]

):

} /* end k loop thrºugh rotating cach fragment *f

/* make all of the fragments + scaffold into one */
merge_fragments (& ligand).

f" prepare ligand for matching */
get centers (&dock. &match, &label, & ligand):

f*

* 2* ags standard call to match_driver (like multiple cpd docking )
*/

match driver
(&dock, &match, & score, &label, & ligand, & scaffold orients),

/*
* 289 ags merge the scaffold orients from this probe with the best
*/

merge list (& best scaffolds, & scaffold orients. 1),
reset_list (&stattold orients),

} ^ close --rotations loop & one in which final docking occurs */

•------------------------------/
** debug "** this is to write scaffolds ºf
f*

for k=0.k.<best scaffolds total[SCORE TMPL k++){
■ print■ (global outfile," writing scattold *d \n".k),

copy move ( &ligand, best scaffolds member[SCORE TMP■ k]);
copy score ( &ligand, hest scattolds member|SCORE TMP)|k]),
transform molecule(&dock.&ligand, NULL, NULL),

write_ligand
t

&dock.
& score,
& label.

best scaffolds member[SCORE_TMPI■ k].
score typc|3] file name,
score typc|*| file,
++score typc|3| number written

} /* close "f

f" write probe docking information to scaffold specific info file */

write probe info
t

&dock,
& score.
&hest scaffolds,
prºbe compose scattold info.name,
elapsed time (NULL)

),

■ " set docking variables back for combi “I
dock combi flag = TRUE, !" reset combi flag now that were done with probe'■
dock multiple ligands = multiple tinp; ■ º reset for combi “A
score type■ SCORE_TMP) minimize = minimize ump, 1* reassign minimize for fragments */

} /* end if probe && orient */

f

* 2^* ags this is the end of the probe section & back
* the entire combi library
-- r

/*
"ys start of combi read-in section
•/

it■ iteration)
{

free molecule compose (&ligand_compose),
unique_frag_num=0,

}

ligand_compose site_total = dock.comhimax_sites,
allocate molecule compose (&ligand_compose, dock.combimax_fragments),

for (i = 0, i < ligand_compose site_total, 1 ++)
■

rewind(dock.combi file(1)),
}

p
*read in scaffold for orientation
•/

if (read_ligand
t

&dock.
& score,
&label,
&ligand_compose scaffold,
dock.combi scaffold file_name,
dock combi.scaffold file,
score flag any Il label flex flag.
(label.chemical flag i■ score lipinski),
label dummy flag.
label vidw flag

) = TRUE)
{

ligand_read_num = dock molecules_max, ■ º no more molecules */
break,

}
else
{

if (ligand_compose scaffold anchor = NULL)
{

■ print■ (glºbal outfile, “anchor atom information missing. “
"please check scaffold mol2 file\n");

exit (EXIT_FAILURE),
}

ligand dock_num++:
ligand compose scaffold.total sites =

ligand_compose scaffold.max sites = ligand compose.site_total;
}

f*
*done with scaffold...read in side-chains
•/

for (i = 0, i < dock.combi.max_sites, i ++)
t
unique_frag num++;
for (j = 0, j < dock.combimax_fragments[i]; j4+)
■
if ((ligand_read = read_ligand
(

&dock.
& score,
&label.
&ligand_compose fragment[i][j].
dock combi.file_name{i},
dock.combi file■ i),
score.flag.any il label flex.flag.
(label chemical flag || score lipinski),
label dummy flag.
labelvdw.flag

}) = TRUE)
break:

/* ags 1 1/97 append this here rather than in score.c. it is nice to have
* so that you can append the info without getting a run-on when you
* compose whole molecules will become obsolete with multiple confor
* mations.
•/

vstreat (&ligand compose fragment[1][j] info.name. ““):
f" ags 11/97 set the comment key to identify unique fragments */
/* ags 388 set pu to atoms of head fragment "1

ligand compose fragment[i][■ ] info.conformation_flag = FALSE:
it■ (j-0)&&(0 = strump■ ligand compose fragment[1][,] info.name,

ligand_compose.fragment[1][1-1] info.name)))
{
unique_frag num++,

head frag atom = ligand compose fragment[1][1] atom;
head_trag bond = ligand_compose fragment[1][j].bond,

}

else f(j==0)
{
head_frag_atom = ligand compose fragment[i][j].atom;
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head_frag_bond = ligand compose fragment[1][j] bond,
}

/* ags 3"x i■ not head, free atoms and point to head fragment ºf
else|

free atoms only(&(ligand compose fragment[i][j]));
free bonds(&(ligand compose fragment[i][j]));
ligand compose fragment[i][j].atom = head trag atom;
ligand compose fragment|1|[i] bond = head_frag bond,

/* 4/99 set flag that this is a conformation rather than real molecule */
ligand_compose.■ ragment[i][] info.conformation_flag = TRUE,

}
ligand compose fragment[i][■ ] info commentkey = unique_frag_num;

f

- check if anchor atom information has been read in
•f

i■ (ligand compose fragment[i][1].anchor == NULL)
{

■ print■ (global out■ ile, "anchor atom missing."
"please check fragment mol2 file:Vn site: %d fragment: * d\n",
1. i.).

cxit (EXIT_FAILURE);
}

| " close 1 (fragments)"/

if (■ º ligand compose fragment total[,])
ligand_compose.fragment_total[1] = f;

if (i == 0) {
ligand compose unique_fragment_total[i] = unique_frag num;

else!
ligand compose unique_fragment_total[1] =

unique frag num - I.
|
| = unique_frag num; # 1 is # to calc difference in unique_frag'■

} f" close 1 (attachment sites)*/

f*
* For scaffold-based combi. dock, connect fragments to the scaffold
*/

orient_fragments (&ligand compose),
f

***8 ags - prepare library for “rule of 5" scoring
•/

prescore_fragments (& ligand compose),
} /* end of combi ºf

/*
* Reset the score records
* 8/95 te
•f

score pre bump = score post bump = 0,

for (i = 0, i < SCORE TOTAL; it *)
score type■ t) number written = 0,

/*

• y, 2/97

* Update the clock
*/

elapsed time (NULL),

f*
* Perfºrm docking calculation
* I thºs ic
•f

■ ' 12/1 ags this is still inside the “Read in ligand" loop ºf
if (dock-orient ligand)
■

**

- Initialize variables used for matching
* 1 tº 5 te
*/

i■ ('iteration)&&('dock combi probe flag))
match setup (&dock. &match, & score, &label),

f*
* do the combinatorial dock here
•/

it (dock.combi flag)
{

&ligand_compose scaffold, &ligand_orients. 0),

}

else "just do regular no-probe combidock'■
{

match_driver
(&dock, &match, & score, &labcl.
&ligand compose scaffold, &ligand_orients),

)

} /* end "if dock orient_ligand" "I

/*

* If the ligand was not to be oriented, then do a single point score
* calculation
* fºste
*/

else i■ (dock.combi flag)
{
dock combimolecule compose = &ligand_compose;
evaluate_score (&dock, & score, &label,

&ligand compose.scaffold, & ligand_orients. 0),
}

else

evaluate_score (&dock, & score, &label, &ligand. &ligand_orients, 0):

P
* Write/store the best orientation(s) of this molecule
* if it wasn't written out in the scoring function.
* 3/96 te
•/

if (dock-rank_ligands !!!dock multiple_orients Il dock rank_orients)
{

/*
* Either store the best oricntation(s)
* 3/96 te
•f

!" update best orients, but set minimum score to limit length of
* ligand_orients in score.c ags 4/99 */

if (dock rank_ligands)|

■ " output info for each libraries performance */
write_scaffold_info
(

&dock,
& score,
&ligand_orients,

&ligand compose,
elapsed time (NULL)

);

/* update the overall list & set up score limit for next library */
merge_list (& best ligands, &ligand_orients, 0):
reset_list (&ligand_orients).
if (best ligands total[SCORE TMP) == best ligands max(SCORE TMPI)

score type(SCORE TMP maximum =
best ligands member|SCORE_TMPI■ best ligands total (SCORE_TMP)-1)->score..total;

}

Or write the best orientation(s) out to a file
3/96 tº::

else
write_topscorers
(

&dock,
&match,
& score,
&label,
&ligand_orients,
&ligand

}:
| " end short if rank & multiple */

dock combi molecule compose = &ligand compose,

if (dock.orient ligand &&
'match centers && 'dºck combi probe flag &&

'get_centers (&dock, &match, &label, &ligand compose scaffold)),

if (dock.combi probe ■ lag) f" 2^39 ags combi dock with probed scaffold orients */

f" loºp through scaffold orients */
fºr (i = 0 , i < best scaffolds total SCORE TMP): 144)
{

f" copy next scaffold's orient to ligand compose */
*cºpy member ( &ligand compose scaffold.
best staffolds member(SCORE TMP)[1]).
*/

copy move ( &ligand compose scaffold.
best scaffolds, member[SCORE TMP)(i)).

/* transform ligand compose to scaffold's "f
transform molecule(&dock.&ligand compose scaffold.
NULL, NULL),

/* do single point combi for each "/
dock.comht molecule compose = &ligand compose:
cvaluate score (&dock, &score, &label,

f*

* Print out the final results
* 10/95te
*/

* 1/98 ags this gives garbage for combi--it writes to global out */
output score_into

(&dock. & score. &ligand, &ligand_orients, ligand_dock_num,
elapsed_time (NULL));

i■ (dock-orient_ligand && dock multiple ligands)
{

/*
* Output list of current top scorers
* 6/95te
*/

write_info
(

&dock,
& score.
&hest ligands.
ligand_read_num.
ligand dock_num,
ligand skip_num,
elapsed time (NULL)

>
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Check to sce if this job has been requested to shut down
thrº5 te

if (quit = topen (dock quit_file_name. “r”))
{

■ close (quit).
it (remove (dock quit_file_name))

■ print■
(global.out■ ile, “* * * Unable to delete is \n", dock quit_file_name).

}

if (dock rank_ligands)
■

Check to see if this job has been requested to write its results so far
tº 5 te

i■ (Jump = topen (dock dump_file_name. “r”))
t

tº lusc (dump),
it (remove (dock dump_file_name))

■ print■
(global outfile, “*” Unable to delete %'s An", dock dump_file_name),

|

it (dump Il quit)
|
write_topscorers
t

&dock,
&match,
& score.
&label,
&best ligands.
&ligand

),

■ print■ (global outfile.
** * * Current top scorers were written as requested un");

}

dump = NULL;
} f" end if dock rank_ligands "1

it (quit)

■ print■ (global outfile, “’ ” “Program has terminated as requested \n"),
■ close (dock ligand_file),

■ close (global outfile).
cxit (EXIT_SUCCESS);

} ■ º end i■ quit */
}* end it (onent && multiple) "I

resct_list(&ligand_orients),

iteration++.

| " end big loop-- while lst ume or multiple & & max */

/-

* Finished reading ligands in from disk, make sure at least one was read
• 6/95te
•/

if thigand_read_num == 0)

■ print■ (global outfile, “Unable to read from ligand coordinate file \n");
exit (EXIT_FAILURE),

}

/-

* Wnte out final results (in dock rank_ligands mode)
* fºste
•/

if (dok k rank_ligands)
{

■ print■ (global outfile, “Writing top scoring molecules to disk \n");

write_topscorers
t

& dºck.
&match,
& score.
& label.
&best ligands,
& ligand

),

} f" end ºf rank ºf

f
* Close ligand output files
* thrº5 tº:
*/

else
{

for (i = 0, i < SCORE TOTAL. i**)
1■ (wºre type■ t) flag)
{

■ close (score type■ ) file),

}

if (dock combi.flag && 'score.combi merge)
for (j = 0, j < dock.combimax sites, ºtt)

■ close (score.combi type■ il filcul).

fprint■ (global outfile,
“Finished processing molecule%s.\n",
ligand_dock_num > 1 7 “s": “),

■ close (dock.ligand_file),
■ close (global.outfile),

}

f* fºrtiff■ /f///ff///ff/ff/f/ff/ff//ff////////////ff/ff///ff/f/ftp/

Evaluate how much time has clapsed (with checking for wrap-around)
tº 5 te

//////////ff////ff/ff/ff/f/ffffff:fffff/////////////ff/fffff:fffff ºf

float clapsed_time (float "resct_value)

static long clock_previous = 0.
static long clock_current = 0,
static float ume:

if (reset_value)
time = *reset_value;

clock previous = clock current,
clock_current = clock (),

if ((clock previous > 0) &&. (clock_current < 0).)
tunne +z

((float) ((LONG_MAX - clock_previous) + (clock_current - LONG_MIN)))
/((float) CLOCKS_PER_SEC);

else
time +=

((float) (clock_current - clock previous)
! ((float) CLOCKS_PER_SEC);

return time;

}

/* ///////////l/■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ////////////////III///*/

void write_program header (void)
{

if (global outfile !-stdout)
■ print■ (global outfile, “wn"

“ UUUUUUUUU CCCCCCC SSSSSSS FF. FFF; \n"
“ UU/ UU/ CCF CCI SS SSI FF/FFFf \n"
“ UUI UU/ CC/ CCI SS/ Frt-Frf vin"
“ UU/ UU/ CCF CC SS/ rry FFW \n"
“ UU/ UU/ CCF CC/ ss/ ss/ FFA FFA \n”
“ UUUUUUUUU/ CCCCCCC/ SSSSSSSI FF. FFW \numn"),

cise
■ print■ (global outfile, "\n"n"

“ UUU|4muuLUIOmuu C4mCCCCI0mCC S(4mSSSSIOmSS FF. FFF/\n"
“ UU/ UU/ CC/ CC/ SSI SS/ FF/FFF/ \n"
“ UU/ UU/ CCF CCI SS/ FFFFF/ \n"
“ UU/ UU/ CC/ CCI SS/ FF/FFW \n"
“ UU/ UUí CC/ CC/ SS: SSA FF. FFA \n"

“[4mu■ ul■ UUUUUUIOm/ [4mCCCCCCCI0m/ [4mSSSSSSSIOm/ [4mFF[0ml (4mFFA[0m
\munwa"),

■ print■ (global outfile,
“University of California at San Francisco, DOCK ‘ksun”. DOCK_VERSION).

flush (global outfile);
|

fragment.c

/*
Written by Todd Ewing
10a).5
•/
f*

Modified by Yax Sun and Geoff Skillman
*/
#include “definitions.h"
*include “utility h"
*include “molecule.h"
*include “global h"
*include “grid_struc.h"
#include “list.h"
#include “dock h"
*include “label.h"
*include “grid_score h"
*include “score h"
*include “fragment h"
*include “io_ligandh”
*include “io prepare.h"
#include “rotrans h"
#include “vector h”
*include “oricnth"

sdefine FRAGMENT_MAx_ATOMS 100.

void frce_conformation
(

MoLECULE * molecule
),

/* ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||If
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Routine to check if two molecules clash.
8A-5 te

f/ff/ff//ff//ff//////ff//////////////f/ff/ff///ff///////ff/////ff/ff/f */
tui check clash
{

LABEL VDW "label_vdw.
MOLECULE "molecule,
MOLECULE "molecule

}
{

int i, j, k,
float distance, re■ crence;

fºr (i = 0, i < molecule->total.atoms; 14+)
if (label_vdw->member[imolecule->atom■ ilvulw_id] heavy id)

for (j = 0, j < jmolecule->tºtal atoms, it *)
if (label_vdw->member■ jmolecule->atom■ ilvdw_id] heavy id)
{

fºr (k = 0. distance = 0.0: k < *; k++)
distance += SQR

(imolecule->coord||1][k] - molecule->coord■ j][k]);

reference = 0.6 -
(label_vdw->member[imolecule->atomli] vidw_jJJ radius +
label_vdw->memberjmolecule->atom■ j].vdw_id] radius),

reference = SQR (reference),

if (distance <reference)
return TRUE,

}

return FALSE.
}

/* /t/f/ff/ff///ff///ff//////////////#//////ff///ff////////f/f/f/f/////f "f

void allocate molecule compose
(MOLECULE COMPOSE 'molecule compose, int *fragment_total)

■
int 1,

f* allºcale scaffold "f

ccalloc
t

(void “) &molecule compose->scaffold,
1.
sizeof (MOLECULE).
“mºlecule compose".
global.out■ ile

},

molecule compose->scaffold max.sites = molecule compose->site_total;
allºcate molecule(&molecule compose->scaffold),

f* allocate tragments */

ecallek
(

(void “*) & molecule compose->fragment_total,
molecule compose->site_total.
sizeof (int),
“fragment total array".
global outfile

}.

clallow
{

(void “) &molecule compose->unique fragment_total,
molecule compose->site_total,
sizeof (int),
“unique_fragment_total array”,
global outfile

y;

if (molecule compose->site_total -0)

clalloc
(

(void "") &molecule compose->fragment,
inolecule compose->site_total,
sizeof (MOLECULE *),
"molecule compose",
global outfile

}:

for (i = 0, i < molecule compose->site_total; it *)
{

molecule compose->fragment_total■ i) = fragment_total[i];

if (molecule compose->fragment total[1] × 0)
ecalloc
(

(void “) &molecule compose->fragment[i],
molecule compose->fragment_total[1],
sizeof (MOLECULE),
“molecule compose",
global.outfile

}
}

}

f* /f//ff/ff/ff///////////////ff/hi/f/f/ff/ff/ff/ff////ff//ff/f///////// "f

void reallocate molecule compose
(MOLECULE COMPOSE ‘molecule_compose)

{

molecule compose->scaffold.max.sites = molecule compose->site_total;
reallocate molecule (&molecule compose->scaffold);

if (molecule compose->site_total: 0)
{
ecalloc
(

(void "*) &molecule compose->fragment,
molecule compose->site_total,
sizeof (MOLECULE *),
“molecule compose".
global.outfile

):

for (i = 0, i < molecule_compose->site_total; it 4)
(

if (molecule_compose->fragment_total[i]> 0)
ecalloc
t

(void "") &molecule compose->fragment[i],
molecule compose->fragment_total{i},
sizeof (MOLECULE).
“molecule compose",
global.outfile

}.

memset(molecule_compose->fragment[i].0,
sizeof (MOLECULE)"molecule_compose->fragment_total[i]/sizeof{char}):

}
}

}

f* H///////III//l/#/■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ºf

void free molecule compose
(MOLECULE COMPOSE "molecule_compose)

(
int i, j.

free molecule (&molecule compose->scaffold);

for (i = 0, i < molecule compose->site_total; i ++)

'. (j = 0, j < molecule_compose->fragment_total[i], j++)

if(molecule compose->fragment[i][j] info.conformation_flag)

free conformation (&molecule compose->fragment[i][1]),

*
free molecule (&molecule compose->fragment[i][j]);

} }

efree ((void "*) &molecule_compose->fragment[i]);
}

efree ((void "*) &mdlecule compose->fragment_total):
efree ((void "") &molecule compose->unique_fragment_total),

efree ((void "*) &molecule compose->fragment),
molecule compose->fragment = NULL;

}

/* If/ff//////ff////////////////////ff/ff/f/ff///hi/f////////f ºf

void free_conformation (MOLECULE *molecule)
{

free info (molecule):
free move (molecule),
free_score (molecule),
frce_atom_coordinates (molecule);
molecule->atom = NULL;
moleculc->bond = NULL;
free substs (molecule),
free sites (molecule):
free fragment_singles (molecule);
free flexes (molecule):
free_anchors (molecule);

}

/* ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| */

void copy molecule_compose
(

memset(molecule compose->fragment[i], 0.
sizeo■ (MOLECULE)"molecule compose->fragment_total[i]/sizeof■ char}),

MOLECULE COMPOSE 'copy molecule compose,
MOLECULE COMPOSE "molecule compose,
int max_fragments

)
■

int i, j,

copy moleculc_compose->site_total = molecule compose->site_total,

copy molecule (&copy _comp ffold. & _comp

*

*-

*

S
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for (i = 0, i < molecule compose->site_total; 1 ++)
{

copy molecule compose->fragment totalli)
= molecule compose->fragment_totallil.

copy molecule compose->unique fragment_total[1]
= molecule compose->unique_fragment_totallul,

for (j = 0, 0 < max_fragments) &&
(J - molecule_compºsc->fragment_total[1]), 1 ++)

copy molecule (&copy molecule compose->fragment[i][1].
&molecule compose->fragment[i][1]);

}
}

f* ////////////f/f/ff/////ff/////ff/////ff/f/ff/f/f/f/ftp/irf/f/ -/
f* ags “■
void merge_fragments
i

MOLECULE * molecule
)
t

int i. 1;
int fragment_id;
int bonuled atom_total = 0.
int bonded atom(2][10] = {0}.
int unp id., tmpl id:

STRING20 score_string;

MOLECULE molecule unp=(0);

molecule_tmp.max atoms = molecule->total atoms;
molecule_imp.max.bonds = molecule->total bonds,

for (1 = 0, 1 < molecule->total sites, 1 ++)
t
molecule trimp max atoms --

moleculc->fragmicnt single■ i) total atoms,

molecule timp max bonds +=
molecule->fragment_single■ i) total bonds +2,

/*

* +2 for adding bonds later connecting fragments and scaffolds
•/

}

allocate molecule (&molecule timp).

cºpy info (&molecule timp, molecule);
cºpy move (&molecule trap. molecule):
copy score (&molecule_tmp, molecule).
copy substs (&molecule timp, molecule):
copy sites (&molecule trnp, molecule).
copy anchor (&molecule_imp, molecule);

y

* use “flag" in atom structure to temporaryly hold the new atom number
*/

/*
* copy atoms and coords
•/

for (i = 0, i < molecule->total atoms, i ++)
■

i■ ('moleculc->atom■ ) anchor_ld)

molecule->atom■ il flag = molecule_tmp total atoms,

copy atom (&molecule trnp.atomimolecule_tmptotal atoms),
& molecule->atomlil),

copy coord (molecule timp coord(molecule_trnp total atoms),
molcculc->coord||1}),

copy coord (molecule_tmp initial coord|molecule_tmptotal.atoms “].
mºleculc->initial_coord{i}),

}
}

for (1 = 0, 1 - molecule->total sites: i ++)

for (j = 0, j < molecule->fragment_single■ 1) total atoms, 14-)

it ('molecule->fragment_single■ i).atom■ jlanchor_ld)

molecule->fragment single■ ) atomu flag =
molecule_unp total atoms,

copy atom (&molecule timp atomimolecule timp total.atoms).
& molecule->fragment_single■ i) atoml]]).

copy coord (molecule trnp coord(moleculc_ump.total atoms).
molecule->fragment singlelil.coordui),

if ((molecule->atom■ tmp_id].anchor_id = 0)
&&. (molecule->alon■ ump.2_id]-anchor_id== 0).)

{
copy bond (&molecule_imp.bond■ molecule_tmptotal bonds),

&molecule->bond■ il),

copy coord (molecule timp initial coord|molecule_tmptotal atoms “].
molecule->fragment single■ i). Initial coord[j]);

/*

* copy bonds
*/

for (i = 0, i < molecule->total bonds; i ++)
{

tmp Id= molecule->bond■ il target:
tmp2 id = molecule->bond■ il origin,

molecule_tmp.bond■ molecule_tmptotal bonds).origin =
molecule->atom
[molecule_imp bond■ molecule_tmptotal bonds).origin] flag:

molecule_tmp bond■ molecule_tmptotal bonds] target =
molecule->atom

[molecule_imp bond■ molecule_umptotal bonds) target].flag:

molecule_imptotal bonds ++,

|
for (i = 0, i < molecule->total sitcs; i ++)

'. (J = 0, j < molecule->fragment_single■ i).total bonds: j ++)
{
tmp_id= molecule->fragment_single■ i) bond■ j] target;
tmp2_d = molecule->fragment_single■ il bond■ jlorigin;

if ((molecule->fragment_single■ il atom■ tmp idlanchor_id== 0)
&&. (molecule->fragment_single■ i) atomitmpz_idlanchor_id== 0))

t
copy bond (&molecule_tmp bond■ molecule_tmptotal bonds).

&molecule->fragment_single■ i) bond■ j]),

molecule_imp bond■ molecule_tmptotal bonds] origin =
molecule->fragment_single■ i).atom
(molecule_tmp bond■ molecule_tmptotal bonds).origin).flag;

molecule_tmp bond■ molecule timp total bonds] larget =
molecule->fragment_single■ i) atom
Imolecule_tmp.bond■ molecule_ump total bonds].target].flag,

molecule_ump.total bonds ++,
}

}
}

■ or (i = 0, i < molecule->total.sites; it—-)
■
add_bond (&molecule_tmp,

molecule->atomimolecule->anchor■ t].atom■ lll flag,
molecule->fragment_single■ i) atom

(molecule->fragment_singletijanchor■ 0}.atom■ lll.flag);
/*
• used “0” above, DEBUG
*/

}

vstrºpy (&molecule_imp info.charge_type, “USER CHARGE");
vstrupy (&molecule_imp.info.status_bits.

valrcat (&molecule timp info.name, " "),
for (i = 0, i < molecule->total.sites; i ++)
■

/*
vstreat (&molecule_tmp info.comment, “"),
vstreal (&molecule_imp info.comment.

molecule->fragment_single■ i) info.comment),
•/

vstrcat (&molecule_imp info.name,
molecule->fragment_single■ i) info.name),

/*

sprint■ (score_string, “‘4.2f".
molecule->fragment_single■ i) score..total):

vstrcal (&molecule imp info.comment, score_string),
•/

}

f*
* update atom neighbor information
•/

atom_neighbors (&molecule_tmp);

copy molecule (molecule, &molecule_tmp),
free molecule (&molecule_imp),

}

/* /////////////////////////////////////////■ i/H/////////////*/

void add_bond (MOLECULE *molecule, int idl, int id2)
■
molecule->bond■ molecule->total bonds] origin = idl:
molecule->bond■ molecule->total bonds].target = id?;

vstrºpy (&molecule->bond■ molecule->total bonds] type, “1”);

molecule->total.bonds ++,
}

f* ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

initial orientation of fragments onto scaffold.

1/97

ysun
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void orient_fragments (MOLECULE COMPOSE "molecule compose)
{

int i, j, k,
int mode_count,
int check_chirality=0. mirror_ligand, match_Chirality,

XYZ rotation_matrix(3):
XYZ connect_atom(4).
float bond. angle, tºrsion;

MOLECULE scaffold clique = (0);
MOLECULE fragment clique = {0}:

~affold clique max atoms = molecule compose->scaffold max.atoms;
fragment clique max atoms = FRAGMENT_MAX_ATOMS,

allocate molecule (& scaffold clique),
allocate molecule (&fragment clique),

for (1 = 0.1 % molecule compose->site_total, i ++)

..
-

*/

copy coord (connect_atom(0), molecule_compose->scaffold.
anchor|1] coord||2|),

copy coord (connect_atom■ 1), molecule_compose->scaffold.
anche■ || coord||}).

cºpy cºord (cºnnect_atoml 2], molecule compose->scaffold.
anchºr|| Lºrd(■ )|),

now generating new position

f

gen–4th atom (connect_atom. bond. angle, torsion),
*/

for (j = 0, j < molecule_compose->fragment_total{1}: j ++)
{

for (node count= 0, node count « molecule compose->
fragment[1][1] anchor■ 0} atom total, node count ++)
copy cooru (fragment clique coºrdinode count).

molecule compose->fragment[i][j] anchor■ 0} coord|node count]),

bond = dist3 (fragment_clique coord||1}. fragment clique coord(2)):

angle = angle_from cril
t

fragment clique.coord(0).
fragment clique coord||}.
fragment clique coord|2]

}.

torsion = Pl:

gen 4th atom (cºnnect_atom, bond, angle, torsion),

center_of_mass
t

fragment clique coord,
nºde count.
molecule compose->fragment[1][y] move anchor_com

),

if (!oricnt gk_
{

&node count.
tonnect atom■ lik,
fragment clique coord,
molecule compose->tragment[1][1] move anchor_com,
rºtation_inatrix.
molecule compose->fragment[1][1].move anchor.
& check chirality,
&mirror_ligand,
&molecule compose->fragment[1][1] move reflected

})
return .

f*

* Transform the fragment coordinates
•/

transform_
(

& molecule compose->fragment[i][j] total.atoms,
molecule compºse->fragment|1|1} initial_coord.
molecule compose->fragment[1][y] move anchor_com,
rotation_matrix.

molecule compose->fragment[1][1] move anchor,
melccule compose->fragment[1][1].coord

),

/-

* clean up
•f

molecule compose->fragment[1][y] move anchored = TRUE.

get angles from matrix
(& inolecule compose->fragment[1][j] move anchor(3]. rotation_matrix):

for (k=0, k < molecule compose->fragment[i][■ ] total atoms, k++)
copy coord (molecule compose->tragment[i][1] initial coord■ k],

molecule compose->fragment■ (1) coord|k]).

center_of_mass
(

molecule compose->fragment■ il■ il initial_coord,
molecule compose->fragment[1][1] total atoms,
molecule compose->fragment[1][j] move.com

}.
}

}

}

free molecule (&scaffold clique),
free molecule (&fragment clique);

/* /t//fri■ tinfº/ff/ff//ff//ff////////ff/f/f/ff///ff/////ff/f/ff//////
initial calculation of amw, hbd, sum of O's and N's.
data taken from the program div ags 96
3/9

|f|||||||||||||||||II////////////////////////■■■■■■■■■■■■■■■■■■■■■■■ ºf
8 ags

void calc_properties (MOLECULE "mol)
{

float amw-00,
float clogp-0.0.
inthrºd–0.
inthra-0.
int atomic_no,
const static float weight[54]={

0. -- /* x 0 -/
1,008, f* h I ºf
4.003, f* h 2 */
6.94, /* h 3 */
9.01. f* h 4 */
10.81. /* h 5 ºf
12011, /* H 6-1
1401, /* H 7 -/
16.00. /* H 8 °/
1900, /* h 9 ºf
20.18. f* h 10 */
22.99. f* h 11 */
24.31, /* h 12 ºf
26.98. /* h 13 */
28.09. /* h 14 */
30.97. /* H 15 ºf
32.06, /* H 16 °/
35.45, f* h 17 */
39.95. * H 18 ºf
39.10. * h 19 •/
4008, /* h 20 */
44.96. f* h 21 */
47.90, /* h 22 */
50.94, f* h 23 */
52.00. * H 24 */
54.95. /* H 25 °/
55.85, /* h 26 -/
58.93. /* h 27 °/
58.71. f* h 28 °/
63.55, f* h 20 */
6537, /* h 30 */
69.72. /* h 30 */
72.59. /* h 30 */
74.92. f* h 30 */
78.96. f* h 30 */
7990, /* h 30 */
83.80. f* h 30 */
85.47. /* h 30 */
87.62. /* h 30 */
88.91. /* h 30 */
91 22, /* h 40 */
92.91. /* h 40 */
9594, /* H 40 */
98.91, f* h 40 */
101.07. /* h 40 */
102.91. f* H 40 */
1064, f* h 40 ºf
107.87, /* H 40 */
11240, /* h 40 */
1 1482, /* h 40 */
11869, f* H 50 */
12175, f* H 50 */
12760. /* h 50 */
126.90 /* h 53 */
}:

static int type■ 150);

type■ t,8] = 0, ■ º Dummy'■
type(72] = 1; 1" H "I
type(67] = 6, 1° C */
type(18] = 7. 1" N -1
type■ ?91 = 8, 1- o "t
type■ 80) = 15, 1- P -/
type■ 83) = 16, 1° S 't
type 70] = 19, f* F */
type(0) = 17, 1" Cl done as special case later"/
type■ tº] = 35; ■ ’ Br'■
type(73) = 53: " I "I

for (i = 0, i < mol->total atoms, i ++)|

/***determine atom type”/

atomic_no = type■ (int)mol->atom■ il type(0]]; /* get atomic number for atom */
i■ ((atomic_no ==6)&&((int)mol->atomli] type(1) = 108)) {

atomic_no = 17, ■ º differentiate Carbon and Chlorine "f
}

!”get number of hydrogen bond acceptors “fget

i■ (mol->atom■ il label_id== 3)(
hha-,

}

■ ”get molecular weight***/
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amw = weight■ atomic_no), ■ º sum the mw ºf

/***get hydrogen-bond donors “I

if■ (mol->atom■ illahel d = 2\! /* chem defn of donor */
((mol->atom■ || label_id== 4)&&.(mol->atom■ i).dctinition_ld == 0))) {

hbd “, tº chem defn of polar && 0.3 */
}

f***NOTE: no clogp calculation for now”f

}

f"print■ (“hha = %d amw = %d hbd a % d\n", hba, (int)amw.hbd); "1
mol->score htha = hlha.
mol->score.amw = (int) amw.
mal-scºre htkj = hld.

}

/* //ff////f/f/f/ff//////#//ff///ff/f/ff/ff///////////f//////////ftp///
initial calculation of amw, hbd, sum of ()'s and N’s.

3/98 aga
f///ff/////f/f/f/f/////f/f/ff/ff//////////////ff//////////#///ff/// -/
void prescore_fragments (MOLECULE COMPOSE "molecule compose)
{

int 1. j, k,

calc_properties & molecule compose->scaffold),

for (i = 0, i < molecule compose->site_total, 1 ++)
{

for Q = 0, j < molecule compose->fragment_total[i]; 1 ++)
{
cal properties(&molecule compose->fragment[i][1]),

}

/* //////////////////////////####!/I■ i■ /h//////////fi■■ i■■ i■■ i■■ il■

2A97
yºun

/////////f/ff//////#ffff:ffff:fffff///////f//////////ff/f/f/ff///frf -/

float dist2,

for (1-0, i < moleculel->total.atoms; it *)
{

/* ags 11/97 simplify heavy atom check for speed "/
/* i■ label->vdw.member[moleculel->atomli].vdw_id] heavy id && */
/* “H” is 72, “D" as in “Du” is 68 °/

if{( (int)molecule 1->atomli] type■ ()) = 72)&&
( (int) molecule 1->atom■ il type■ ()) = 68)&&
(i = moleculel->anchorianchorl) atom(0)&&.
(i = moleculel->anchorlanchorl atom■ ll))

(
for(j = 0, j < moleculc2->total atoms, j++)

i■ (((int)molecule2->atomli] type(0) = 72)&&
((int)molecule 2->atom■ il type(0) = 68)&&
(J = molecule?->anchorianchor?].atom10])&&

(j = moleculez->anchorianchor2].atomill))

dist2 = square_distance (moleculel->coord[i].
molecule2->coord|y|),

i■ (dist2 < 2.00-200)

return l;

return 0.
}

int Lornbi clash
t

D(x'K "dock,
SCORE *score.
LABEL “label,
MOLECUIE *molecule_original,
LIST *fragments,
int “index

}

{
int 1, l, k,

dock->clash_cals-4,
/*

* ags
•/

it (Jock->clash_cals & 10000)&&(dock->clash_cals ‘º 250 == 1))
|

■ print■ (global outfile.
“total clash checks done = %d . An”, dock->clash_cals),

flush (global.outhle),
}
if (Jock->clash_cals ‘º 10000 == 0)
■

■ print■ (glºbal outfile.
“total clash checks done = *d \n", dukk->clash_cals),

tflush (global outfile),
}

■ orti = 0, 1 < molecule original->total sites, 1++)
■

/*

* 10^97 ags add fragment in/dependence
•/

for (1 = i+1. ºf molecule original->total sites. It ty
it■ score->combi dependencell-l lin-1)}
|

/- i■ (molecule clash(label. &molecule original->fragment_singleli], 0.
&molecule ºriginal->fragment single■ ]], 0)) */

i■ (tragment clash label, fragments|il member[SCORE TMPI(index(i)].
fragments(I) member[SCORE TMPHindex(|||})

{
return TRUE,

}

return 0,
}

/* clash check for while ignoring anchor points - ags “■
int molecule clash(LABEL "label, MOLECULE "moleculel, int anchorl,

MOLECULE "molecule 2, int anchor 2)
{

unt i, j, k,

/* clash checking side-chain vs side-chain */
int fragment_clashlabel "label. MOLECULE *molecule1. MOLECULE *moleculc2)
■

int 1. j. k.
float dist?:

for (i-0, i < moleculel->total.atoms; it—t)
|

/* ags 11/97 simplify heavy atom check for speed "1
/* i■ label->vdw member[molecule1->atom■ ilvdw_id] heavy id && */

if(((intºmoleculel->atomli] type■ ()] = 72)&&
( (int) molecule 1->atom■ ) type■ o) = 68))

■
for(j = 0, j < molecule?->total atoms; j++)
{

i■ (((int) molecule2->atom■ j] type■ ()] = 72)&&
( (int)molecule2->atom■ ]] type(0) = 68))

dist2 = square_distance (moleculel->coordi),
moleculc2->coord(j));

ift(dist2 & 200*2.00)&&
((i = moleculel->anchor(0|atom■ 1}}ll
(j = moleculc2->anchor(0].atom■ 1))))

{
return l;

f* ///////////ff////////////////ff////f/ff////ff//////////ff////////ff/f/

non-recursive routine to rotate all atoms not part of the bond vector
in a fragment ***replaces todd's rotate_bonded_atoms” for non-flexible
fragments
11/97 ags

/////////////////li■ t■ /h/hi/■ ili■ ill■ /f/fll///////■■■■■■■■■■■■■■ h -/

int rotate_fragment

XYZ rotation[3].
XYZ origin.
int current_atom,
int previous atom.
MOLECULE *molecule

)
{

int i,
void transform_atom_{XYZ, XYZ *, XYZ},

for (i = 0, i < molecule->total.atoms; it 4)
{

i■ (( = current_atom)&&(i = previous atom))

transform_atom_
(

molecule->coord[i],
rotation,
origin

).
}

}
return TRUE,

}

:
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rank.c

/*

Written by Todd Ewing
10/95
•f
/*

Modified by Geoff Skillman
*/
# include “definitions.h"
*include “utility h"
*include “molecule h"
*include "global h"
*include “grid_struch”
*include “list.
# include “dºck h"
# include “label h"
*include “grid score h"
# includ score.h"
#include “match.h"
*include “tº h”
*include “io_ligandh”
*include “io prepare h"
*include “oricnth”
#include “rank h”

f* ///////////////////////////////////####||||||||||||||||| “f

int write_info
t

DC X K "dock.
SCORE *score,
LIST *list.
int ligand read_num,
int ligand dock num,
int ligand skip_num.
float time

{
int i. 1. k.
FILE “info■ ile = NULL;

intofile = r■ open (dock->info file_name, "w", global outfile),

■ print■ (Info■ lc.
■ print■ (infotile.
■ print■ (info■ i

* 10^n". “Libraries read". ligand_read_num);
* 100 un”, “Librarics decked", ligand dock_num),
* 102en", "Total Compounds", dock->comb, total compounds);

■ print■ (info■ ile, : * 10.2eºn”, “Total Conformation ock->combi total conformations);
■ print■ (infotile, $ 102■ m”, “Elapsed CPU time (sec)", time),
■ print■ (in■ otile, “º-35s : * 10 2fm”, “Time per library (sec)",

time ! (float) ligand dock num):
fprint■ (in■ ohle, “4-35s. 5.10.2fun". "Time per compound (msec)".

1000"time f dock->combi total compounds).
print■ (in■ olile, “4-35s : * 102■ ºn". “Time per conformation (microsec)",

1(xx)"10%"time f Jock->combi.total_conformations);

if ((dock->rank_ligands)|(dock->combi probe flag))
fºr (i = 0, i < SCORE TUTAL. i4+)
■

if (score->type■ t) ■ lag)
{

■ print■ (Info■ ile,
"\nCurrent best *s scorers un", score->type■ ) name):

for (j = 0: , ; list->total[i]. H. t.)

■ print■ (in■ ofile, “º 2d.; $7.2f 410 ºs",
j + 1,
list->member■ i][j]->score..total.

list->member[1][1]->score bumpeount.
list->member|1||||->in■ oname);

for(k = 0, k < list->member[i][1]->total sites, k++)
{

■ print■ (infohle. “4 s”, list->member[i][1]->fragment single■ k] info.name),
}

■ print■ (in■ ofile, "n"),

}
}

■ close (infotile).

/* /■ /■ i//////#!/////ff/ff//////////i■■ i■■ /■ /■ /■ i/////////////# */

int write probe info

*\n Probe Docking_Results \n");

if (dock->orient_ligand)
{

■ print■ (global outfile. “%-50s: %100 n”, “Orientations tried",
score->pre_bump),

if (score->flag bump)
■ print■ (global outfile, “%-50s: %100 n”, “Orientations scored",

score->post bump);
}

■ print■ (global outfile, "4-50s: %10.2fun", "Elapsed cputime (sec)", time);
■ print■ (global.outfile, “\n");

if ((dock->rank_ligands) (dock->combi probe flag))
for (i = 0, i < SCORE_TOTAL. i**)
{
if (score->type■ il.flag)
{

sprintf(line, “Best ºs score", score->type■ il name);
■ print■ (global outfile, “k.50s: ‘ºl■ ).2■ n", line,

list->member[i][0]->score..total),

if (dock->orient ligand I score->type■ il minimize)
{
sprintf(line, “RMSD of best ºs scorer (A)".

score->type■ i).name),
fprint■ (global outfile, “4-50s : 410.2fun”. line,
list->member[i][0]->movermsd),

}

■ print■ (global outfile,
“\nCurrent best ‘ks scorers: \n", score->type■ il name);

for (j = 0: j < list->total[i], j++)
■ print■ (global.outfile. “42d: *7.2■ ºld #s ‘■ sºn”.
j + 1.
list->member[i][j]->score total,

list->member[i][j]->score bumpcount,
list->member[i][j]->info name.
(list->member[i][j]->move reflected " "(REFLECTED)": “));

}
}
fprint■ (global.outfile, “n”);

/* ■ close (in■ ofile): */
}

/* |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| */

int write_scaffold_info
(

DOCK "dock,
SCORE *score.
LIST "list.
MOLECULE COMPOSE 'library.
float time

)
{

static int count=0;
STRING80 line;
int i, j,
float size=1, csize=1;
FILE *in■ ofile = NULL;

/* countt—t,
sprint■ (line, “%.s.º.d". dock->info file_name,count);

info■ ile = r■ open (line, “a”, global.outfile);
*/

■ print■ (global outfile,
“An Combi Docking_Results \n");

■ print■ (global outfile, “4-35s : * 100\n", "Attachment sites", library->site total);
■ or(i = 0, 1 < library->site_total; it #)

sprint■ (line, “Fragments at site %d", i),
■ print■ (global outfile, “3-35s : * 100\n", line, library->unique_fragment_total[i]);
sprint■ (line, “Conformations at site kid", i.);
■ print■ (global.out■ ile, “%-35s 'ºl■ k!\n", line, library->fragment_total[i]);
size "= library->unique_fragment_total[i];
csize "= library->fragment_totalli);

}

t
DOCK "dock,
SCORE *score.
LIST *list,
char *waffold name.
float time

)

■
static int count={}.
STRING80 line;
int 1, 1,
FILE 'info■ ile = NULL;

f* count 4–4.
sprint■ (line, “4.s.º.d", deck->info file name, count),

infottle = r■ open (line, "w", global.outhle);
*/

■ print■ (glºbal outfile.
~\n---------- Library \n");

■ print■ (global outfile. “\nº-1 is : *s■ n”, “Name”. scaffold name).
■ print■ (global outfile.

dock->combi.total compounds += size;
dock->combi.total conformations += csize,
■ print■ (global outfile, “nº-35s; $10.2en”, “Virtual Size", size);
■ print■ (global.outhle, “%-35s : 3.10.2cum”, “Virtual Conformations", csize):
for (i = 0, i < SCORE TOTAL; it *)
{

if (score->type■ il flag)
{

■ print■ (glºbal outfile, “uncompounds on 46s list : %100 n”.
score->type■ i) name. list->total[i]);
■ print■ (global outfile, “Best $6s score : %10.2■ n”.

score->typc■ il.name, list->member[i][0]->score..total);

}
■ print■ (global outfile, “4-35s: %10.2f n”, “Elapsed CPU time (sec)", time),

if ((dock->rank_ligands)|{dock->combi probe flag))
for (i = 0, i < SCORE_TOTAL; it #)
{

if (score->type■ il flag)
■

■ print■ (global ºutfile
“\nBest ºs scorers: ", score->typc■ il.name);

>
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for (j = 0, j < list->totalli), 144)
■ print■ (global outfile, "42d. ºf 2■ ºld '4's ºn",

1 + 1.
list->member[i][1]->score total,

list->member[i][1]->score bumpcount.
list->member[i]{j}->into name,
(list->incinber[i][1]->move reflected " "(REFLECTED)": “)),

}
}

** ■ close (intofile), */
}

/* /////////////ff/fll///////fi■■ i■■ i■ /f/////////■■■■■■■■■■■■■ h -/

in write topscorers
t

Ix k K "dock.
MATCH “match.
SCORE *score,
LABEL *label.
LIST *list,
MOLECULE *molecule

}

{
unt i, j, k, temp;
int use matrix = FALSE,
lºng file position,
Fil-E *tile,

/*

* ys
•/

it (dock->combi flag)

deck->ligand file = dock->combi scaffold file;
strupy (dºck->ligand file name. dock->combi scaffold file_name);

}
f*
"Save the current position in the ligand input file
• 7/95te
•f

it ('dock->comb flag)
tile position = ■ tell (dock->ligand file):

/*

* Loºp through all requested scoring types
* 7/95 te
*/

for (1 = 0, i < SCORE TOTAL, 14-)
t

i■ ('store->type■ t) flag)
continue,

f*

* Open up the output file
• 7/95 ic
•f

it (dock->rank_ligands)
score->type■ il file =

rtopen (score->type■ t) file name, “w", global outfile),

if (dock->rank_ligands & & dock->combi flag && score->combi merge)
■ or () = 0. º deck->comb max_sites, j--)

score->comhi typcil filcli) =
rtopen (score->combi type■ il file_namell. “w", global outfile),

for (j = 0, j < list->total[1]. H. :)
{

/*

* If coordinates are needed for output (output file is NOT pt■ format),
* then reread them and transform thern
• 6/95 te
•/

it (strºmp (strichr (score->typelil file name, ''), “ptr"))

reset molecule (molecule),
copy incinter (molecule. list->member[i][1]),

it (Jock->multiple ligands i■ dock->combi flag)
{

read molecule
(molecule, dock->ligand file_name, dock->ligand file).

t
copy member

(&molecule->fragment_single■ k].
&list->member[i][j]->fragment_single■ k]);

read_molecule
(&molecule->fragment_single■ k), dock->combi.file_name{k},
dock->combi.file■ k]);

/* ags 1 1/97 need it to agree with change made in dock
vstreat (&molecule->fragment_single■ k].info.name,

if (stremp
(list->member[i][j]->fragment_single■ k].info.name,
moleculc->fragment_single■ k].info.name) = 0)

■ print■ (global outfile.
*** * Read incorrect fragment from input file:\n");

fprint■ (global outfile, “ Intended : *s■ n".
list->member[i][j]->fragment_single■ k] info.name),

print■ (global outfile, “ Actual : *s■ n".
molecule->fragment_single■ k].info.name),

exit (EXIT_FAILURE),
|

if (molecule->fragment_single■ k] move anchored)
moleculc->movc.anchored = TRUE,

atom_neighbors (&molecule->fragment_single■ k]);
}

}
}

if (molecule->move moved Il molecule->move.anchored)
transform_molecule (dock. molecule, NULL, NULL);

write_ligand
■

dock,
score,
label.
molecule,
score->type■ il file_name,
score->typci1} file,
++(score->typcli).number written)

};
}

cise

writc_ligand
(

dock,
scorc.

label,
list->member[i][j].
score->type(i) file_name,
score->type(1) file,
++(score->type(1).number written)

),
)

if (dock->rank_ligands)
■ close (score->type(1).file);

if (dock->rank_ligands && dock->combi flag && score->combi.merge)
for (j = 0, j < dock->combi max_sites, j++)

■ close (score->combi type■ il-file[j]).
}

if (!dock->combi flag)
fscek (dock->ligand_file, file position, SEEK_SET),

}

f*////////■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ f “f

int write_restartinfo
(

DOCK •dock,
SCORE *score.
LIST "list.
int ligand_read_num,
int ligand dock_num,
int ligand skip num,
float clock elapsed

)
temp = { strlen■ list->member[i][y]->info.name) <
stricnimolecule->into name) '
strlen(list->member[1][1]->into name):
strlen■ molecule->into name)),

11 (strintmp
(list->member[i][1]->info.name, molecule->info.name, temp) = 0)

■ print■ (global outfile,
“*” Read incorrect ligand from input hle\n");

tprint■ (global outfile, “ Intended ‘a sºn".
list->member[1][1]->info name),

■ print■ (glºbal outfile." Actual : * ~\n".
molecule->into namic),

exit (EXIT_FAILURE),
}

copy into (molecule, list->member■ 11(1)),

atom neighbºrs (molecule),

it (dock->combi flag)

for (k= 0: k < moleculc->total sites, k++)

{
-

int i, j,
long file position.
FILE *restart_file;

void efwrite (void ", size t, size t. FILE *);

file position = ■ tell (dock->ligand_file),

restart_file = efopen (dock->restart_file_name, "w", global outfile),

cfwrite (&file position, sizeof (long), l, restart_file):
cfwrite (&ligand read_num, sizeof (int), 1, restart_file);
efwrite (&ligand_dock_num, sizeof (int), l, restart_file),
efwrite (&ligand skip num, sizeof (int), l, restart_file),
efwrite (&clock elapsed. sizeof (float). 1. restart_file):

save_list (list, restart_file),

■ close (restart_file).
return TRUE.

º

S

>
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** ■ i■ /f/fi■■ i■■ i■ ||||||■■ i■■ i■■ i■■ i■ |||||||||||||||||||||||||||||■ t -/

int read_restartinfo
■

DOCK "dock,
SCORE *score.
LIST *list,
int *ligand_read_num,
int “ligand deck_num.
int "ligand skip num,
float "clock clapsed

y
t

int i, j.
long file position:
FILE *restart_file;

volt■ etread (void "...size t, size t, FILE *);

restart_file = efopen (dock->restart_file name, “r”, global outfile),

etread (&file position, sizeof (long), 1, restart_file),
efread (iigand read_num, sizeof (int), l, restart_file);
e■ tead (ligand dock_num, sizeof (int). 1, restart_file).
efread (ligand skip num, sizeof (int), l, restart_file);
efread (clock elapsed, sizeof (float), 1, restart_file).

if ('load_list (list, restart_file))
■

frºnt■ (global outfile. “* * * Error reading restart information.An”),
exit (EXIT_FAILURE),

}

fulose (restart_file),
fseek (deck->ligand_file, file position, SEEK_SET).
return TRUE,

|

score, c

/*

Written by Todd Ewing
10A95
*/

return.
}

score->post bump ++.

/*

* Loop through all scoring types
* 2/96 te
*/

for (i = 0, i < SCORE TOTAL; it—t)
{

if (!score->type■ i) flag)
continue,

molecule->score type = i,

/*

* Either minimize this orientation or just score it
* 2/96 we
*/

if (score->type■ il minimize)
minimize ligand (dock, score, label, molecule, list);

else
get_ligand_score (dock, score, label, molecule, list);

/*
* If the molecule has moved, then calculate the rmsd of current orientation
•/

if (molecule->move.moved)

calc_rmsd (&label->vdw, molecule);

i■ (dock->combi flag)
for (j = 0, j < dock->combimolecule compose->site_total; j4+)

for (k=0, k < dock->combimolecule_compose->fragment_total[i]; k++)
calc_rmsd (&label->vdw, &dock->combimolecule_compose->fragment[j][k]);

Write out the orientation to a file, if:

1. Ligands not ranked. AND
2. Want multiple orientations, AND
3. Orientations not ranked. AND
4. Other

A. Ligand has moved AND rmsd is within override, OR
B. No scoring is performed, OR
C. The score is below maximum cutoff

3/96 te

if
(

'dock->rank_ligands &&
dock->multiple orients &&
!dock->rank_orients &&
{

((molecule->move moved) &&
(moleculc->movermsdºs score->rmsd_override)) ||

!score->flag any ||
(molecule->score total -- score->type■ il maximum)

)
)
{
write_ligand
(

dock.
score,
label.
molecule,
score->type■ t).file_name,
score->type■ i).file,
++(score->type■ il number_written)

}
}

}

f* fº■■ /f///////ff///////////////ff/ff/f/f//////ff/////////////////////////*/

float calc_rmsd (LABEL_VDW label_vdw. MOLECULE *molecule)
■

int i, j. heavy count = 0,

molecule->move.rmsd = 0.0,

for (i = 0, i < molecule->total atoms; it—t)
if (label_vdw->member■ molecule->atom■ ilvdw_id] heavy id)
(

for (j = 0, j <3; H.)
molecule->movermsd +=

SQR (molecule->coord|illj] - molecule->initial coord[i][j]);

heavy count-º-º:

molecule->move rmsd/= (float) heavy count;
return molecule->move rinsda sqrt (molecule->movermsd);

}

f*I/////////////////////fi■■ /■ /■ /■ /■ /■ /■ /■ i///////////////////■■■■■■■■■■ ºf

float calc_2rmsd (LABEL_VDW *label_vdw, MOLECULE *molecule1.MOLECULE "molecule 2)
{

.
/*

Modified by Yax Sun and Geoff Skillman
*/
#include “definitions h"
*include “utility h”
#include “molecule.h"
*include “global h”
*include “grid_struch”
#include "list h"
*include “dºck h"
#include “lahel h”
*include "grid_score h"
#include “score h"
#include “match.h"
#include "fragment.h"
*include “io_ligand.h"
#include “oricnth”

int hash(char "key, unsigned int size),

typede■ struct simplex_struct

Dº X. K. “dock,
SCORE *scure,
LABEL *label:
MOLECULE *molecule,
LIST "list;

| SIMPLEX,

f* ||||||||||f||f||1||||||||||||||||||||||||||||||||||||||||||f||

Suhroutine to calculate and optimize the score for a ligand orientation
The best scoring orientation is updated.
7A95 te

#////////#///ff///////////ff/ff//f/f/ff/ff//////////////////ff/ ºf

void evaluate_score
■

DOCK • dock.
SCORE *score,
LABEL “label,
MOLECULE *molecule,
LIST *list.
int combi flag

}
■

int i, j, k,

void minimize ligand (DOCK", SCORE ". LABEL *, MOLECULE ". LIST *);

f*
* Evaluate whether orientation bumps with receptor
* 3/96 te
•/

score->pre_hump-tº-:

it ('combi flag)
{

if (score->■ lag bump &&.
(check bump (&score->grid, & score->option, label, molecule) >

score->option bump_maximum))
int i, j, heavy count = 0,
float rimsd-0;

f
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for (i = 0: , º moleculel->total atoms: it-t')
if (label_vdw->member[moleculel->alomli]vdw_id] heavy id)
{

for (j = 0, j < 3; t■ )
rinxed +=

SQR (moleculel->coord||1][j] - molecule2->coord[1][1]),

heavy count ++;
}

rinsd fa (float) heavy count;
return rinsda sqrt{rmsd),

}

/* /h/#/#//■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ ºf

void minimize ligand
(

DOCK "dock.
SCORE *score,
LABEL "label.
MOLECULE *molecule,
List "list

SIMPLEX simplex;

float simplex optimize (void ".. float", int. float, int". Int,
float (*) (SIMPLEX •, float - ));

float simplex score (SIMPLEX", float");

if (store->minimize torsion)
size += molecule->total flexes;

ecalloc
t

(void “*) &vertex.
size,

sizeof (float),
“simplex array”.
global outfile

}.

simplex dock = dock.
simplex score = score.
simplex label = label;
simplex melcuule = molecule:
simplex list = list,

molecule->score total =
simplex_optimize
t

(void “) &simplex.
vertex.
size,

score->type■ molecule->score type] convergence,
&molecule->score...iterations,
scºre->iteration_max.
simplex score

).

simplex score (&simplex, vertex);

efree (■ wold **) & vertex),
|

f* {{#■■ i■ /f//////////////////ff////////////fll/////////////////////■ ºf

float simplex score (SIMPLEX “simplex, float “vertex)
{

/*

* Convert simplex array to comect units
* I (A45 tº
*/

fur (i = 0, i < 3, 1++)
simplex->molecule->move final■ l =
simplex->molecule->move ºrient[i]+
vertex11] * simplex->score->initial_translation;

for it - 3: I < 6, 1++)
simplex->inolecule->move finalli) =
simplex->mºlecule->move.orient[1] +
vertex■ il “simplex->score->initial rotation * Pl 1800,

i■ (simplex->score->minimize torsion)
■ ur (i = 0, i < simplex->molecule->total flexes, i4+)
simplex->molecule->flexi} angle =

vertexii)" simplex->score->initial_torsion " Pl 1800,

/*

simplex->label,
simplex->molecule,
simplex->list

);
}

/* f///■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ il■ ºf

float get_single_ligand score
(

DOCK "dock,
SCORE *score,
LABEL "label,
MOLECULE *molecule,
LIST * list

)
{
/*

* Evaluate the score of the ligand in the current orientation
* 8/95te 2/99/ags modifica for plain-old single ligand
- f

get_score
(

& score->grid,
&score->option,
label,
molecule,
molecule->score type

);

molecule->score..total = molecule->score sub_total;

return molecule->score..total;

/* ||||||||||||||||||||||||||||III/III/////////■■■■■■■■■■■■■■■■■■■ ºf

float get_ligand_score

DOCK "dock,
SCORE *score,
LABEL *lahel,
MOLECULE *molecule,
LiST * list

)

* Transform the ligand to the new position
* lº■■ us ic
•f

transform molecule (simplex->dock, simplex->molecule, NULL, NULL);

/*

* Evaluate the score of this ligand position
* 10^95 te
*/

return get_ligand_score
t

simplex->dock.
simplex->score,

{
int i, j, k, m, number_held;
int clash = FALSE,
int previous save, previous_member,
int "index = nul L.
int "index_hase = NULL;
int "index_dmsn = NULL;
int index_max, index_update:
float "fragment score_maximum = NULL, ligand_score_maximum;
STRING80 line:
STRING2(X) long_name;
float rotate_angle;

XYZ rotation[3];

XYZ bond_vector;
static LIST *fragment_scored = NULL;
static LIST"fragment_ump_scored = NULL;
FlEX flex_anchor = {0}:

1 MOLECULE fragment_ump = {0}; */
MOLECULE *fragment timp = NULL;
MOLECULE fragment_ump_best = (0);

extern void get_index(int, int, int", int");
extern void rotateaxis(float phi,float vect[3], float rot[3][3]),
extern int rotate_bonded atoms (XYZ *. XYZ, int, int. MOLECULE *);

/*

* Evaluate the score of the ligand in the current orientation
* 8/95 ic
•/

get_score
t

& score->grid,
& score->option,
label.
molecule,
molecule->score type

),

/*
• y:
• 2/97
* RMSD calculation is done here because infomation will be store here in
* the list
*/

i■ (molecule->move moved && dock->combi flag)

calc_msd (&label->vdw, molecule).

if (dock->combi flag)
for (j = 0, j < dock->combimolecule compose->site_total; it *)

for (k=0, k < dock->combi molecule compose->fragment_total[j]; k++)
calc_rmsd (&label->vdw. &dock->combi.molecule compose->fragment[j][k]);

-

• 10A96
*/

* ys

2

º

§

>

y

385



…
--■-··· |-

·

ae
'

.ºg…*
*■



• 2/97
• DEBUG!!! for cathapsin D project only, RMSD override
•/
1"print■ (* 2:\n"molecule->score sub_total)."!

it (deck->combi flag &&
(molecule->score...sub_total & BAD_SCORE) &&.
(molecule->movermsdº score->rinsd_max) ) /*DEBUG-f

{
f*
* now allocate the list to hold all the scored fragments
•f

/* ags 11/97 only mallow the first time through */
/* ags 12/97 add timp list allocation ºf

it■ fragment scored == NULL)

ecalloc
(

(void "") & fragment scored.
deck->combi.molecule compose->site_total,
size ºf (list■ ).
“-orcu fragment_list".
global outfile

),

}
•/

flex_anchor target = dock->combimolecule_compose->
fragment|1||1|anchorí0].atom■ 1);

flex_anche■ origin = dock->combimolecule_compose->
fragment[1][j] anchor■ 0] atom(0),

for (m = 0, m & 3; m ++)
bond_vector[m] =
dock->combimolecule compose->fragment[i][j]

coord|flex anchor.target][m] -
dock->combi.molecule compose->fragment[i][i]

coord||lex—anchor.origin]|m};

/* ags 11/97 don't copy just use fragment_imp as a pointer to the fragment

copy molecule (&fragment_tmp.
&dock->combimolecule_compose->fragment[i][j]);

*/
fragment_tmp = &dock->combimolecule compose->fragment[i][j];

for (k=0, k < dock->combimax_anchor_torsions, k++)
{
fragment_tmp->score..total = BAD_SCORE,

/* ags 11/97 increment angle rather than starting over to avoid copying molecule ºf
flex_anchorangle = k + 2* Plf dock->combi.max_anchor_torsions;

rotate_angle = {k== 0.70: (2 * Pl / dock->combi.max_anchor_torsions)),

rotattaxis

(
rotate angle,
bond vector.
rotation

!" 11/97 ags don't need recursive function, rotate whole fragment for speed “I
/* for (m = 0, m × fragment_tmp->total atoms; m ++)

fragment_tmp->atom■ m] flag = 0,

rotatc_bonded atoms
t

rotation.

fragment_tmp->coord[flex_anchor.target],
flex_anchor target,
flex_anchor origin,
fragment_imp

),
•/

rotate_fragment /* replacement routine for rotate_honded atoms "f
(

rotation,
fragment_tmp->coord|flex_anchor target].
flex_anchor target,
flex anchor origin,
fragment_imp

)

if (score->flag bump &&
(check bump (&score->grid, & score->option, label, fragment_ump)
> score->option bump_maximum))
continue,

fragment_tmp->score..total =
get_score
(

& score->grid.
& score->option,
label.
fragment_tmp,
molecule->score type

),

ecalloc
t

(void") &fragment_tmp scored,
!.
aircot (List).
“scored timp fragment",
global outfile

)

}

for (i = 0: , … SCORE TOTAL, i ++)
■

for (j = 0.1% deck->comb, molecule compose->site_total: ) ++)
fragment scorell] maxi) = (score->typeli] flag) '
dock->combimax fragmentsu] 0.

fragment_trnp scored->max(||= (score->type■ il flag) "
score->combi.greedy 0.

}

f* ags 1 1/97 only mallow the first time through otherwise nulify list"?
/* ags 12/97 add tinp scored list ºf

1■ t tragment_scoredIQ member[SCORE_TMP) == NULL)
t

for (i = 0, i < dock->comb molecule compose->site_total, 1 ++)
allocate list (&lragment scored[1]),

allocate list (fragment_imp scored);

else
{

for (i = 0, i < dock->comb molecule compose->site_total; it 4)
reset_list (&fragment_scored|1}),

reset list (fragment_tmp_scored).
f

for (i = 0, 1 < dock->combi molecule compose->site_total. 144)
{

fragment scored|d total[SCORE TMP) = 0.
for() = 0, 1 & fragment scored[i] max{SCORE TMP, H+)
t

fragment scored 11 member■ SCORE TMP)[1]->score total = BAD_SCORE,
}

|
fragment imp scored->total[SCORE TMP) = 0,
for k=0,.k < score->combi.greedy;k++)

t
fragment timp scored->member[SCORE TMPI(k)->score total = BAD_SCORE,

|-

* Update the orientations of all fragments to current scaffold's
-

get matrix from angles (rotation, & molecule->move final|3]),

for (1 = 0, i < deck->combi molecule compose->site_total; it *)
tor (1 = 0, j < dock->combi molecule compose->fragment_total[i]; 1 ++)
■
dock->combi molecule compose->fragment[i][■ ] move moved = TRUE,

transform
■

&dock->combi molecule compose->fragment[i][1] total atoms.
dºck->combi molecule compose->fragment■ ilj) initial_coord.
molecule->move.com.
rotation.

mºlecule->move final.
dock->combimolecule compose->fragment[i][i] coord

p

* Evaluate the score of all fragments in the current orientation
•/

for (i = 0, 1 < dock->comhi molecule compose->site_total; it tº
{
fragment ump_best score total = BAD SCORE,
for Q = 0, j < Jock->comht molecule compose->fragment_total[1]; it *)
■

/* agº Sºx i■ frag + scaff weigh too much. Iust skip “■
f* it(dock->combi molecule compose->fragment[i][j] score.amw: 120){

Leºntinue,

if (fragment_tmp best score total == BAD_SCORE I
(fragment_tmp->score total - fragment_tmp_best-score..total))

copy molecule (&fragment tmp_best, fragment_tmp),
append_flex (&fragment_tmp_best, &flex_anchor);

|

} /* cnd k--torsion loop */

/* ags 11/97 only update if we have a good score of a NEW fragment "1
/* 12/97 ags change fragment update to unp score list "f

i■ (fragment_ump_best score total & BAD_SCORE)
■
update_list(fragment_ump scored, SCORE_TMP &fragment tmp_best. TRUE),

}
fragment_tmp_best score total = BAD_SCORE,

if ((1+1 == dock->combimolecule compose->fragment_totallil).
(fragment trnp->info commentkey's

dock->combi _comp
-

|U+1].info }}
{

merge_list(&fragment scoredli), fragment_tmp_scored, TRUE),

fragment timp scored->total[SCORE TMP) = 0,
for k=0.k < score->combi.greedy;k++)
{

fragment_ump scored->member[SCORE_TMPI■ k]->score total = BAD_SCORE,
}

}

} ■ ” end j-- fragment loop */
} f endi -- site loºp "|
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* Allocate space for the index arrays

ecalloc
■

(void “”) &ndex.
dock->combi molecule compose->site_total,
sizeof (int),
"combinatorial index array".
global outfile

).
ck alloc
t

(void “*) &ndcº, dman,
deck->combi molecule compose->site_total.
sizcºt int),
"index dimension array".
global outfile

),
ecallow
■

(void "*) &index_hase.
dock->comb, molecule compose->site_total.
sizeºf (int),

“index base array".
global outfile

}.
ecalloc
t

(void “”) &fragment score maximum.
dock->combi molecule compose->site_total,
sizeof (float),
“site score cutoff array".
global outfile

}.

index_max = 1,
for (i = 0, i < dock->combi molecule_compose->site_total: 144)
■
fragment_score_maximumli] = BAD SCORE,
index max *= fragment_scored (i) total{SCORE TMP):
index_dmsn (1) = fragment scored (1).total (SCORE_TMP).

for (i = 0: I < dock->comb molecule_compose->site_total, i ++)
{
index_hase[1] = 1;
fºr (j = i, j >= 0, --)

index base[1] *= index_dmsnu):
}

cºpy molecule (&score->combi current, molecule),
molecule->wore total = BAD_SCORE,

/* ags 1 1/97 clash check fragments vs scaffold */

it■ score->combi check_clash)
■

for (i = 0, 1 < dock->combi molecule compose->site_total, it tº
■

■ or (j = 0, j < fragment scored [,] total(SCORE_TMP). j++)
(

fragment scored|il member[SCORE TMPI)->score bumpcount =
molecule clash(lahel, & wore->combi current, i.

fragment scored|| member[SCORE TMP)|| 0),

}
|

f*

* Lºop through all combinations of best scoring fragments.
* 10^6 ys
*/

fºr (i = 0, 1 < index_max, 1 ++)
■

get index (1, dock->combi molecule compose->site total.
index_dmsn. Index), tº converts ->index, an index to the fragments */

score->combi current score total = molecule->score sub_total,
!" ags ºx add "rule of 5" scoring */

1■ t scºre->lipinski)
score->combi current scorc.amw = molecule->score amw.

* scºre->combi current score clogp = molecule->score clogp, */
scºre->Lemhi current score.hhd = molecule->scorchbd,
score->combi.current scorchha = molecule->score.hha.

/* ags 1197 if any fray clashes with scaffold skip it "1
** sums score at same time */

clash = FALSE.
for G = dock->combi molecule compose->site_total -1.p--0.1--)
{

if ( fragment scoredIIlmember|SCORE TMPHindex{1}}->score bumpcount)
{
f* if frag humps, increment its index */

clash = TRUE,
it(-0)
|

i = index_have|]-1-1;
for k=1, k < dock->combi molecule compose->site_total.k1 +)
■

1 += (index.[k]"index_hase[k-1}),
}

}
break,

}
score->combi current-score total +=

fragment scored[i] member|SCORE_TMPI(index.j]]->score total;
/* ags 3/98 add "rule of 5" scoring */
if{score->lipinski)|
/* score->combi.current score...clog■ +=

fragment_scored|| member[SCORE_TMP)[index.]]]->score clogp,
*** not clogp yet "1

score->combi current score amw =
fragment scoredu] member■ SCORE_TMPHindexull->score.amw;

score->combi current score hbd +=
fragment_scored[j].member[SCORE_TMPI(index(1)]->score.hbd:

score->combi.current score.hha +=
fragment_scored■ jl member[SCORE_TMPI(index.j]]->score.hba,

}

ificlash)
continue,

/*

"check to see if this molecule passed “rule of 5"
"ags 3/98
*/

ift score->lipinski){
i■ (score->combi.current score.amw > score->amw_max)

continue,

if(scorc->combi current score.hbd x score->hbd_max)
cºntinue,

iftscore->combi current scorehba > score->hha_max)
continue,

f*
if(score->combi.current score...clogp > score->clogp_max)

continue, “not clogp yet “I
| " end lipinski “I

f" load “best" score for pseudo-minimization ºf
ift score->combi current score total * molecule->score total)

molecule->score total = score->combi currentscore..total,
/*

* Check to see if this is a score worth considering
•/

if ((score->combicurrent score total &
score->type(molecule->score type).maximum ) &&
(list->totallmolecule->score type) -
list->max(molecule->score type I
score->combi.current score total &

list->member[molecule->score.type)
[list->total(molecule->score type) - 1)->score total))

/*

- Update the current ligand with the current set of fragments
*/

strºpy (long_name, molecule->info.name),

score->combi current total sitcs =
dock->comb, molecule_compose->site_total,

for (j = 0, j < dock->combimolecule compose->site_total, j++)
{
strcat (long name,

fragment scored[i] member[SCORE_TMPI(indextil]->info.name);

copy member (& score->combi current fragment_single■ i).
fragment scored|■ | member[SCORE_TMPI(indexill),

}

score->combi.current.info.fragment_single_allocated = TRUE.

* Check to see if this molecule has already been saved

for (j = 0, previous save = FALSE,
j < list->totallmolecule->score type]; j++)

if (!strump
(list->member■ molecule->score type][j]->info.comment,

score->combi.current.info.comment))
{
previous save = TRUE,
previous mcmbcr = j.
break.

}
}

*/
/*
* ags 11/97 use numerical comparison
•f
score->combi current info.commentkey = hash(long_name, 100070);

■ or (j = 0, previous save = FALSE,
jº list->totallmolecule->score type]; j++)

if (list->memberImolecule->score type][1]->info.commentkey ==
score->combi.current.info.commentkey)

{
previous save = TRUE,
previous member = };
break,

}
)

- if it has, then update the specific member
- otherwisc.update list normally

if (previous_save)
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t
ift scºre->cornhi current score total ºr

list->member[molecule->score type]|previous member]->score total)
{

it (score->combi check_clash)
{

if (comht clashtdock, score, label. & score->combi current,
fragment_scored, index))

{
fort] = 0, j < dock->combi molecule compose->site_total, H+)

if (score->combi current fragment_singleji score bumpcount)
tragment scored|il member[SCORE_TMPI(index.]]]

->score bumpcount = TRUE,

else

update_member
(list, molecule->score type, previous member,
& score->combi current),

clve
{
update_member

(list, molecule->score type, previous member.
& scºre->combi current),

}
}

}

else
{

if (score->comb, check_clash)
{

1■ (combi clash(dock, score, label, & score->combi.current,
fragment_scored, index))

■
toru = 0, j < dock->combi-molecule_compose->site_total, it *)

i■ (score->combi current fragment single■ ) score bumpcount)
fragment scored|il member[SCORE TMPI(indexill

->score humpcount a TRUE.
}
else

{
update list

(list, molecule->wore type, & score->combi current.0),
}

}
clºc

{
update list

(list, molecule->score type, & score->combi current.0),
}

|
} /*end if good score */

/* if score exceeds the maximum, stop checking fragments at the
current site, and adjust index to the next site (dimension) */

else
■

m = 0.
index update = 0,
while ( m = dock->comhi molecule_compose->site_total - 1)

if (index(m) = 0)
■

1 += index base[m]. - (index(m)*(m > 0 ° index_base[m-1) : 1)) -1;
index update = 1
break,

}

clºc
in #4.

}

it (index update == 0)
break.

}
|

efrce ((void “*) &index):
efree ((void “”) & index dman),
efree ((void "") &ndex_base),

/* 11/97 ags don't tree these are now static
for (1 = 0, i < dock->combi molecule_compose->site_total. 1 ++)

free list (&fragment scored[i]),
circe ((void "“) &fragment scored):

•p

!" free molecule (&fragment_imp). */
free molecule (&lragment_tmp best).

j
* Print out the progress
•f

it (score->minimize)
■
sprintt (line, “Best *s score at iteration ºd”.

score->type(molecule->wore type) name, molecule->score iterations**);
■ printt (glºbal outfile, “K-50, : * 10.2:\n", line, molecule->score total);
tflush (global outfile),

}
}

}

/* ||||||||||||||||||||||||||||||||||||||||||||||||||I///////////////*/

void output score_info
(

DOCK "dock,
SCORE *score.
MOLECULE "molecule,
LIST *list.
int number_docked,
float time

)
{

else
molecule->score total = molecule->xcore sub_total;

return molecule->score total,

int 1;
STRING80 line;

if (global output volume == "t")
{

if (number_docked == 1)
|

■ print■ (global outfile, “ks", “Results: "),
■ print■ (global.outfile, “ks “, “name");

if (dock->orient ligand)
fprint■ (global.outfile, “ks “, “matches"),

if (score->flag bump)
■ print■ (global outfile, “ks". “orientations”);

for (i = 0, i < SCORE TOTAL. i**)
if (score->typeful flag)
{

■ print■ (global.outfile, “%s", score->type■ i) name);

if (score->type■ il minimize)
■ print■ (global.outfile. “ks", “iterations"),

if (dock->orient ligand ■ º score->type■ il minimize)
■ print■ (global outfile, “ks". “rmsd"),

■ print■ (global outfile, “% sun", “time"),
}

■ print■ (global outfile, “%s", “Docked “),
■ print■ (global outfile, “ks", molecule->info.name).

if (dock->orient ligand)
■ print■ (global outfile, “ºd “, score->pre_bump),

if (score->flag bump)
■ print■ (global outfile, “ºd", score->post hump);

for (i = 0; i < SCORE TOTAL, it *)
if (score->typeii) flag)
{

■ print■ (global outfile, “%2f", list->member[i][0]->score total),

if (score->type■ t] minimize)
■ print■ (global outfile, “ºd “, list->member[i][0]->score...iterations);

if (dock->orient_ligand I score->type■ il minimize)
■ print■ (global outfile, “4.2f", list->member[i][0]->movermsd),

■ print■ (global.outfile, “%.2fun", time),
}

clºc
{

■ print■ (global.outfile,
“\n king Results—wn");

■ print■ (global outfile, “‘H-11s : *s■ n", "Name", molecule->info name);
■ print■ (global outfile, “k-11s : ºn", “Description", molecule->into comment);

i■ (dock->orient_ligand)
{

■ print■ (global outfile, “%-50s: %100 n”, “Orientations tried",
score->pre_bump),

if (score->flag.hump)
■ print■ (global outfile, “4-50s: %10■ n”, “Orientations scored",

score->post bump),
}

■ print■ (global outfile. “n"),

for (i = 0, i < SCORE TOTAL; it 4)
if ((score->type■ i) flag)&&.(list->total[1]))
|

sprint■ (line, “Best ºs score", score->type■ il name);
■ print■ (global out■ ile, “4-50s: ‘A 10.2fun", line,

list->member[i][0]->score...total),

if (score->type■ il minimize)
■

■ print■ (global outfile, “4-50s: %100 n”, “Minimizer iterations".
list->member[i][0]->score itcrations),

}

if (dock->orient_ligand H score->type■ il minimize)
{

sprint■ (line, “RMSD of best ºs scorer (A)".
score->type■ t).name),

■ print■ (global outfile. **-50, : 3.10.2■ n", line,
list->member[i][0]->movermsd),

º

s

1.

s
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}

If
(

'dock->rank_ligands &&.
dock->multiple orients &&
'dock->rank_orients

}
■ print■ (global outfile, “º-50s $10■ n”, “Orientations written",

score->type■ i) number written);

■ print■ (global outfile, “n”);
|

■ print■ (global outfile, "%-50, : *102nn", "Elapsed cpu time (sec)", time);

■ print■ (global outfile, “unum");
}

flush (global.outfile),

f* /////#//ff///ff/ff/f/////#///////ff///////////////////////ff///# */

int hash(char *Key, unsigned int size)
|

unsigned int hashvalue = 0,

while(*Key - M)')
hashvalue = hashvalue * 37* "Key++,

return hashvalue” size:
}
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