
94 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 1, JANUARY 2007

openSourcePACS: An Extensible Infrastructure
for Medical Image Management

Alex A. T. Bui, Member, IEEE, Craig Morioka, John David N. Dionisio, David B. Johnson, Usha Sinha,
Siamak Ardekani, Ricky K. Taira, Denise R. Aberle, Suzie El-Saden, and Hooshang Kangarloo

Abstract—The development of comprehensive picture archive
and communication systems (PACS) has mainly been limited to
proprietary developments by vendors, though a number of freely
available software projects have addressed specific image man-
agement tasks. The openSourcePACS project aims to provide an
open source, common foundation upon which not only can a basic
PACS be readily implemented, but to also support the evolution of
new PACS functionality through the development of novel imaging
applications and services. openSourcePACS consists of four main
software modules: 1) image order entry, which enables the ordering
and tracking of structured image requisitions; 2) an agent-based
image server framework that coordinates distributed image ser-
vices including routing, image processing, and querying beyond the
present digital image and communications in medicine (DICOM)
capabilities; 3) an image viewer, supporting standard display and
image manipulation tools, DICOM presentation states, and struc-
tured reporting; and 4) reporting and result dissemination, sup-
plying web-based widgets for creating integrated reports. All com-
ponents are implemented using Java to encourage cross-platform
deployment. To demonstrate the usage of openSourcePACS, a pre-
liminary application supporting primary care/specialist commu-
nication was developed and is described herein. Ultimately, the
goal of openSourcePACS is to promote the wide-scale development
and usage of PACS and imaging applications within academic and
research communities.

Index Terms—Biomedical imaging, image communication, ra-
diology information system (RIS)/picture archiving and communi-
cation system (PACS) fusion, software libraries.

I. INTRODUCTION

THE increasing presence of medical imaging within clinical
care is evident: as an objective source of documentation

and as a means to improve communication, imaging serves as
a tenet of evidence-based medical practice [1]. Moreover, im-
ages contain important biomarkers, providing in vivo snapshots

Manuscript received September 30, 2005; revised February 23, 2006. This
work was supported in part by the National Institutes of Health (NIH) Program
Project Grant (PPG) PO1-EB00216 and in part by NIH Grant RO1-EB000362.

A. A. T. Bui, C. Morioka, U. Sinha, R. K. Taira, D. R. Aberle,
S. El-Saden, and H. Kangarloo are with the UCLA Medical Imaging In-
formatics Group, Los Angeles, CA 90024 USA (e-mail: buia@mii.ucla.edu;
morioka@mii.ucla.edu; usinha@mii.ucla.edu; rtaira@mii.ucla.edu; daberle@
mednet.ucla.edu; sels@mednet.ucla.edu; hkangarloo@mii.ucla.edu).

J. D. N. Dionisio was with the UCLA Medical Imaging Informatics Group,
Los Angeles, CA 90024 USA. He is now with Loyola Marymount University,
Los Angeles, CA 90045-2659 USA (e-mail: dondi@lmu.edu).

D. B. Johnson was with the UCLA Medical Imaging Informatics Group, Los
Angeles, CA 90024 USA. He is now with E! Networks, Los Angeles, CA 90036
(e-mail: dbjohnson@eentertainment.com).

S. Ardekani was with the UCLA Medical Imaging Informatics Group.
He is now with The Johns Hopkins University, Baltimore, MD 21218
(e-mail: sardekani@jhu.edu).

Digital Object Identifier 10.1109/TITB.2006.879595

of anatomical and physiological processes. Thus, imaging also
plays an emergent role in research, expanding the understand-
ing of normal and disease states. With the growing estimates
from tera- to petabytes of imaging data acquired annually, the
effective management of imaging data is now a paramount ne-
cessity. Unlike standard medical data, however, images pose
additional, distinctive management challenges. These problems
are only amplified in consideration of the rapid developments
in medical imaging—ranging from core technical investigations
into new imaging modalities, to novel applications of existing
imaging—all of which are capable of marshaling an evolution in
healthcare; but such changes must be integrated into the clinical
environment and research in order to be practical. Facilitating
this objective requires an infrastructure that can support both the
common requirements of today’s imaging applications, while
further serving as a springboard for future explorations.

openSourcePACS leverages earlier work by the authors in
teleradiology and medical imaging information systems to pro-
vide an open source architecture for a picture archiving and
communication system (PACS), creating a foundation for inte-
grated imaging applications. Three considerations permeate the
design of openSourcePACS: 1) cross-platform development and
deployment, leveraging both Java and web-based technologies;
2) standards compliance, focusing on present and upcoming
digital image and communications in medicine (DICOM) proto-
cols; and 3) extensibility, allowing additional types of function-
ality (e.g., distributed image processing, non-DICOM query-
ing) and standards (e.g., web services) to be incorporated in a
unified manner by abstracting image-handling processes. The
openSourcePACS framework loosely considers the multiple as-
pects of image management in terms of workflow, starting from
the point of ordering an image, to its interpretation and use in
documentation, through to the final distribution of results. Col-
lectively, the software under openSourcePACS aim to provide a
common, comprehensive suite of tools that can be adapted by
developers to readily implement PACS-based functionality.

The remainder of this paper is organized as follows. Section II
briefly provides background on related work in the area of PACS
and imaging informatics, focusing on image management is-
sues. Section III provides an overview of the openSourcePACS
architecture, followed by the design issues and implementation
details of each major module making up the system. An exam-
ple application using openSourcePACS to support rapid com-
munication between primary care physicians and specialists is
described in Section IV. Finally, we conclude with a discus-
sion on openSourcePACS issues, and future directions for this
project.

1089-7771/$25.00 © 2007 IEEE

BUI et al.: openSourcePACS: AN EXTENSIBLE INFRASTRUCTURE FOR MEDICAL IMAGE MANAGEMENT 95

II. BACKGROUND AND RELATED WORK

Several long-standing projects exist, some freely download-
able and released as open source packages, which address the
basic functionality involved in a PACS.

1) PACS servers and DICOM tools. Several different PACS
servers are available [2]–[6], running under Microsoft
Windows and Linux operating systems; all offer basic
DICOM functionality, such as query/retrieve and moving
image studies. With the exception of [6], the storage back-
end is a relational database (e.g., MySQL, PostgreSQL),
and many now offer web-based access to images and ad-
ministration of the PACS. More sophisticated features in-
clude some image-processing abilities, and implementa-
tion of the DICOM printing standard. Largely, these sys-
tems are meant for single-server setup and smaller installa-
tions, in that distributed or larger PACS are not considered
or handled efficiently. Separately, utilities for performing
DICOM image management functions arose outside of
these full PACS implementations: DCMTK [7], the Cen-
tral Test Node software (CTN) [8], and dcm4che [9] are
three popular software packages used by the above PACS
software to execute core DICOM functions.

2) Image viewers. In addition to the above PACS servers,
which often embed viewing software, there is a wide selec-
tion of stand-alone applications for displaying medical im-
ages [10]–[16]. For the most part, these software programs
are geared towards the (diagnostic) review of imaging
studies; hence, the main operations for manipulating im-
ages (i.e., window/level settings, cine, affine transforms)
are central to all these programs. Many of these viewers
also support the export of DICOM images to other graphi-
cal formats (e.g., joint photographic experts group; JPEG),
annotation overlays, and real-time two-dimensional/three-
dimensional (2-D/3-D) image analysis tools.

The choice of implementation language varies between
projects, and includes C/C++, Perl, Java, and more platform-
specific solutions, such as Microsoft ActiveX. It should be noted
that the above-mentioned software packages are not an exhaus-
tive list; and that these programs are in addition to the many
commercial solutions such as those offered by major PACS ven-
dors. Individually, each of these projects excels in their targeted
application area; but none have yet yielded a complete solu-
tion, instead remaining focused on a specific part of the imaging
workflow. For example, limited attention has been placed in
formalizing the requisition of imaging studies across a commu-
nity of physicians (e.g., clinicians outside of a primary insti-
tution); the integration of additional clinical information from
other medical and research databases; or the dissemination of
imaging results to broader audiences—all key matters for imag-
ing to progress beyond its current state. Notably, [17] details a
systematic workflow to support many of the tasks involved in
a radiology enterprise, implemented using Java and a common
object request broker architecture (CORBA); while some of the
described objectives and technologies are similar to openSour-
cePACS, [17] primarily describes the application of software
engineering principles to image management, rather than an

Fig. 1. Overall architecture for the openSourcePACS system, consisting of
four different modules: 1) image order entry; 2) imageServer; 3) imageViewer;
and 4) reporting/results viewing. A Java messaging system (JMS)-based com-
munication layer ties together each of these parts. The submodules making up
each module are depicted.

open-source solution. Thus, the goal of openSourcePACS was
to provide an inclusive open-source set of programs and mod-
ules supporting the multifaceted needs of imaging applications,
including but not limited to the requisite functionality of PACS.
openSourcePACS provides a framework wherein other existent
imaging projects can be effectively tied together.

III. SYSTEM DESCRIPTION AND ARCHITECTURE

openSourcePACS comprises four major modules that capture
a generic imaging process model (Fig. 1), combining elements of
conventional clinical workflow and documentation with support
for research-oriented investigations; implementation details are
provided in the subsequent sections. The first openSourcePACS
component, image order entry, addresses the basic problem of
requesting an image study for a given patient, thus initiating the
process (e.g., referrals from a primary care physician; special-
ists ordering exams). Following image acquisition, the image-
Server module performs routing, (ancillary) image processing,
and archiving in a distributed network. imageViewer provides
a standard image review interface for reading DICOM imag-
ing studies, enabling the capture of key images and annotations
through DICOM presentation states and structured reporting.
Lastly, the flow of imaging is completed in the reporting/result
view module, which facilitates further clinical data integra-
tion and communication of image findings. While many of the
functions supported by openSourcePACS are derived from the
DICOM standard, where possible the operations are abstracted
to enable flexibility in image management. With the intent of
supporting truly cross-platform development and deployment,
all modules were built using Java and established frameworks.

To coordinate the different modules, an open-source appli-
cation server, JBoss, was used: the different openSourcePACS
modules were connected together under JBoss using a Java mes-
saging system (JMS), supporting both point-to-point and pub-
lish/subscribe models for communication; and enterprise Java
bean (EJB) components. The JBoss engine also provides for
scalability by allowing developers to configure server clusters.
Security in openSourcePACS is handled twofold: 1) standard

96 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 1, JANUARY 2007

security and encryption methods (e.g., secure socket layer, SSL;
authentication via login/password) was employed throughout
the system and 2) the Java authentication and authorization
service (JAAS) were further used to enforce role-based access
control, attaching security requirements to the EJB methods.

A. Image Order Entry

The process of image management can be seen to start with
the ordering of a study by a physician: fundamental information
detailing the rationale for the study and the patient’s presenta-
tion are formulated in this early stage. The paper-based analog,
the imaging requisition order, plays this role in many radiology
environments, stating the reason for exam and particular paths
of inquiry to confirm (or to refute) a differential diagnosis. From
this description (and through investigation of past clinical his-
tory), a radiologist can guide his/her response. However, two
issues present themselves: 1) the contents of requisition orders
are largely unstructured—most of the information is free-text
(e.g., chief complaint information stated in the patient’s own
language)—and thus defies consistent coding (e.g., to ICD-9,
International Classification of Disease, 9th Revision) and 2) in
an increasingly distributed healthcare enterprise, the ordering of
an exam requires knowledge of the imaging capacity of a given
imaging clinic (e.g., how busy the clinic is, whether a given
modality and protocol are available), and some experience in
selecting the most appropriate imaging exam for the patient’s
problem. It is these two problems that the first module in open-
SourcePACS tackles by providing order entry components to
coordinate the requisition and referral process.

openSourcePACS’ image order entry consists of two parts: 1)
a referral order server (ROS) that maintains (per imaging site)
a database of available procedures and site-specific information
(e.g., address, hours of operation, contact information, etc.) and
2) Struts-based user interface panels that tie together applica-
tion logic with the database’s contents. In addition, the ROS
provides a user database template that can be extended to main-
tain a history of user (physician) orders and access rights to the
system. The ROS database thus handles the first difficulty of pro-
viding site-specific information. The web-based interface logic
embeds requisite fields for completing an imaging requisition—
specifically, the patient’s chief complaint and at least one reason
for examination (RFE). The RFEs reflect the ordering physi-
cian’s hypotheses, and are stated in terms of rule-in/rule-out
diagnoses. Both types of fields can be specified as free-text—as
in the traditional requisition form. Based on the free-text entry of
the RFEs, the ROS can suggest potential diagnostic codes (e.g.,
systematized nomenclature of medicine (SNOMED); ICD-9),
which in turn helps drive the selection of the procedure type
and associates codified entries with the exam. To generate these
codes, a statistical analysis of past records was performed [18],
determining likely mappings. The suggestion system is designed
to provide high recall (100%) over precision (60%), thus ensur-
ing that the appropriate code will be in the suggestion list.

The use of specific diagnostic codes, in theory, permits some
structuring of the information that can be carried throughout
the imaging workflow. Using the web interface, a physician

can thus login to a selected imaging site and order a study by
providing patient information and entering the chief complaint
and an RFE; the system then prints a “prescription” for the
imaging study. Ideally, scheduling of the imaging exam should
occur with the order entry process by the referring physician.
However, though support for (web-based) scheduling and calen-
dar protocols are ever-more common functions of many work-
flow management systems, most radiology information systems
(RIS) are still “closed” and thus a generic solution was not feasi-
ble during the initial openSourcePACS implementation. Further
avenues for linking scheduling into the order entry process are
being investigated, including the use of HL7 messages.

B. imageServer

The second openSourcePACS module, imageServer, provides
a logical operations layer for image management, handling the
functions typically attributed to a PACS image acquisition gate-
way and router [19]: receiving and forwarding images; execut-
ing image postprocessing; archiving images to storage; and re-
sponding to queries for images. Though DICOM services (e.g.,
C-MOVE, C-STORE, C-FIND) can provide much of this base
functionality, it is in this component where the need to ab-
stract DICOM processes becomes evident in order to support
heterogeneous computing environments, newer communication
frameworks, and additional features (e.g., non-DICOM image
implementations, advanced querying). The imageServer imple-
mentation follows an agent-based architecture, though the de-
sign is influenced by concepts from web services and distributed
computing paradigms to provide for both extensibility and scal-
ability (Fig. 2). Agents exist on a given system (e.g., a server,
an imaging workstation, etc.) and create a dynamic network of
published services. The services provided by an agent are classi-
fied into five different categories, with an agent supplying one or
more of these services: gateway, routing, querying, processing,
and source/receiving. As with the DICOM application entity
(AE) title, each agent is assigned a unique identifier (UID) in
the network, assigning an IP address and port number for activ-
ity. There are no constraints on the implementation of an agent
other than inter-agent communication must be through defined
extensible markup language (XML) messages. For example,
the supplied base agents in openSourcePACS are implemented
as a Java servlet, capable of parsing the XML text passed as
parameters; equally, a simple object access protocol (SOAP)
implementation could be used.

Two assumptions were made in the design of the imageServer:
1) that network capacity is steadily increasing in terms of speed
and, hence, the sending of (large) image studies and multiple
messages in a distributed data environment is acceptable and
2) that sufficient disk space is available in the network to store
images as required. We acknowledge that while these statements
are usually true, they must be balanced by the rising quantity
and size of imaging studies.

1) Gateway Services: The image gateway service is the
starting point for initiating image management, being the portal
for commands, queries, and imaging data into the system, and
the means of managing all other agents in a distributed fashion.

BUI et al.: openSourcePACS: AN EXTENSIBLE INFRASTRUCTURE FOR MEDICAL IMAGE MANAGEMENT 97

Fig. 2. Imageserver uses an agent-based framework to link together services for image management; a simple example is shown. (a) One agent acts as a gateway
for receiving an XML document representing a sequence of commands; the gateway determines which agents with routing capabilities are available to handle
the command based on current load estimates. (b) The routing agent receives and executes the commands, ascertaining what potential resources may be required,
including accessing other services in the openSourcePACS network. (c) Agents specify their capabilities in terms of services, including querying, processing,
source, and receiving. In the example XML request, the routing agent is directed to search for a given patient’s past images with a specific modality criterion;
more complex queries are enabled in openSourcePACS through a query-by-example syntax. (d) The discovered images are subsequently processed, accessing
two additional agents (processing services A and C): the routing agent is responsible for establishing an imaging processing pipeline. (e) Finally, the images are
forwarded to the requested receiving agents—in this case, an imaging workstation and a PACS.

All requests in openSourcePACS are sent to a gateway, which
in turn redirects than to an available router for processing. The
role of the gateway is summarized twofold.

1) Agent discovery and status. At the outset, a gateway is
configured with an initial list of other agents providing ser-
vices. The image gateway implements three methods for
continually updating this set of agents: i) when new agents
come online, they can directly inform the gateway of their
services through a predefined XML message interchange;
ii) a universal description, discovery, integration (UDDI)
registry can be queried; and iii) a Rendezvous-based proto-
col can be used to actively find new agents within a subnet.
The first approach provides an explicit means for agents
to become part of an openSourcePACS network; the latter
two web service-based and automated discovery protocols
are more proactive techniques. A gateway service hence
maintains knowledge of the state of the complete network,
allowing it to appropriately assign requests to the avail-
able agents. The configuration of the network is passed
on to other agents; when changes to the network occur,
this information is immediately propagated. The time be-
tween searches can be altered, depending on the expected
dynamic nature of the number of agents in the network.
Notably, the methods that the gateway uses to search and
continually update the status of the agents is configurable:
depending on the setup, one or more of these protocols
can be used and/or additional search methods can be used
in the gateway service so long as the appropriate interface
is implemented.

2) Load balancing. The image gateway service is addition-
ally responsible for load balancing the requests across the
set of routers. To make an informed decision, a periodic
update of each known router’s load is performed. When
a new request is received by the gateway, a round-robin
scheduling algorithm is used to select the next router that

is below a given capacity threshold (in the situation where
all routers are above the threshold, the next router in the list
is used). By default, router load is a simple computation
based on the number of outstanding requests that may be
queued by the router, versus the router’s configured capac-
ity (the maximum queue size). More sophisticated metrics
can be substituted on a per-agent basis; because the load
calculation is reported by the agent itself, additional self-
reporting statistics can be incorporated (e.g., average time
to complete each request).

One agent serves as the gateway in an openSourcePACS en-
vironment; theoretically, while this “singleton” limitation can
lead to a potential processing bottleneck, the actual request to
the gateway itself is constrained in nature and thus high through-
put is possible. Also, as the gateway service is implemented as
a Java servlet, several instances can be running simultaneously
(i.e., in different threads, but under the same virtual machine),
thus enabling the gateway to scale accordingly. Basic fault tol-
erance can be established by creating a master gateway (e.g.,
through an election process among agents or outright config-
uration); when this service fails, another agent implementing
gateway functionality can take over. Arguably, the image gate-
way service is comparable to a centralized job submission pro-
cess used in grid computing (e.g., a submission node in Con-
dor [20], a job manager in Globus [21]), with similar principles
for load-balancing across the network; such frameworks are in
fact currently being explored to replace the gateway service in
openSourcePACS.

2) Receiving DICOM Images Via the Gateway: As de-
scribed, the gateway service does not directly replace a clas-
sic PACS image acquisition gateway: in a DICOM environ-
ment, for example, scanners may push the images directly to
a gateway without an intermediate command (or re-routing).
openSourcePACS’ gateway service implements a secondary
process for handling DICOM C-STOREs. When the C-STORE

98 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 1, JANUARY 2007

process is completed, the appropriate XML is automatically gen-
erated and sent to the servlet, which can then choose a router,
as given earlier, to initiate processing.

3) Routing Services: Agents providing the routing services
are the nexus of the imageServer, handling the requests passed
on by the gateway. Received requests are automatically queued
and processed individually in a first-in–first-out (FIFO) order. A
request consists of one or more of the following commands in
the following order, represented using XML (Fig. 2); the router
parses the statements to determine the required resources and
sequence of actions, returning the results to the request initiator.
Specific services describing the processing of these requests are
described in later sections.

1) Image querying. A key ability of a PACS is the retrieval
of past image studies. Unfortunately, DICOM C-FIND
and many PACS implementations provide very little flex-
ibility in efficiently querying clinical archives: for ex-
ample, clinical PACS queries are often driven by patient
ID (e.g., prefetching) and as such, database indexing oc-
curs by this field—but broader queries combining differ-
ent potential information values (e.g., anatomy, modality,
demographics, clinical outcome) cannot be readily an-
swered. The escalating need for PACS to support such
retrievals can be seen in the growing number of research-
oriented image repositories that expand upon current clin-
ical data models (e.g., Lung Image Database Consortium,
LIDC [22], [23]; American College of Radiology Imag-
ing Network, ACRIN [24], [25]). Indeed, as such “non-
clinical” image databases become more common [26], it
will not be possible to assume a given database schema
for querying. Furthermore, the query language itself may
not be “fixed”—while a relational database may be used
to store DICOM study information, direct access (e.g.,
via the structured query language, SQL) may not be pro-
vided: concerns regarding clinical performance impact
and security are common reasons. Yet eventually, more
complex querying methods need to be supported. Hence,
other (non-DICOM) querying methods may be available,
and should be supported in a unified fashion. openSour-
cePACS therefore abstracts the querying process, allowing
new query objects to be posited to a router and returning
a set of image references.

2) Image processing. A request may require that a given
imaging study be processed; for example, quantitative
magnetic resonance (qMR) values may be extracted in
postprocessing, or a 3-D reconstruction may be desired.
The router attempts to match the requested processing
algorithm with an available processing service (see later),
resulting either in altered images (i.e., the raw image data
is replaced with the result), or additional images being
generated. Available processing services are published
in an UDDI registry, declaring the expected inputs and
outputs. Processing requests can consist of a chain of
operations, establishing a pipeline for image manipulation
such that the output of one operation serves as the input
to a new image-processing step.

3) Image forwarding. The transmission of images to a spe-
cific location is the usual purpose for a router, ensuring
that a study is sent to the appropriate archive and/or review
workstations. The images sent to the openSourcePACS
gateway and/or the results from querying and processing
can be sent to any agent implementing receiving services.
For example, a user querying for certain types of DICOM
images and/or processing may have the results sent to a
secondary server. Requests processed by a router can ex-
plicitly state to which computer(s) a set of images are sent.
Alternatively, for traditional PACS routing in which ac-
quired images are sent by default from the acquisition de-
vice to the gateway, a rule-based approach using DICOM
header fields is used to select where the (clinical) images
are dispatched.

4) Image archiving. Archiving is considered a special case
of image forwarding requests, in that the series/studies
are specifically sent for storage to a PACS; in openSour-
cePACS, archival services are represented by any agent
providing querying, source, and retrieval services. Both
generated images and series sent to the openSourcePACS
gateway can be archived into a PACS.

In addition to these service definitions, XML messages to
the router may specify “pass-through” information that is not
parsed, but sent to the underlying service; this ability permits
customization of a given service to use supplementary data.

Though an assumption of openSourcePACS is that communi-
cation networks are becoming faster and storage space is becom-
ing cheaper, routing agents and the overall architecture attempts
to minimize the amount of data transfer and replication; three
techniques are employed to this end. 1) All imaging is assigned a
uniform resource locator (URL) that is used in a planning phase
by the router to minimize the number of “data hops” that must
be made to execute a request. 2) Data can be selectively moved
to an intermediate shared storage point. 3) A standard lossless
data compression algorithm (e.g., gzip) is used to internally pass
images between agents when necessary. The use of a URL to
represent the imaging data allows the router to create a plan
that can attempt to localize the usage of resources and agents:
as each agent provides information on its location also in terms
of a URL, similar IP addresses and subnets are preferentially
selected over similarly available services available elsewhere
in the openSourcePACS system (on the assumption that like
IPs provide for some sense of proximity). For example, if two
agents both implement the same image-processing algorithm,
the agent that is “closer” to the data source will be used. Fur-
thermore, by representing the data via a URL, data copying and
the need for redundant storage may be reduced (at the cost of
increased network traffic). Following this same idea, the rout-
ing agent can also select to temporarily copy the imaging data
to shared network storage between agents, thereby facilitating
dissemination and intermediary processing. Planning thus takes
into account the sequence of actions represented by a given
request (i.e., querying to retrieve images, ensuing processing,
forwarding/archiving), determining which available agents and
services can best accomplish the given task(s); semaphores are

BUI et al.: openSourcePACS: AN EXTENSIBLE INFRASTRUCTURE FOR MEDICAL IMAGE MANAGEMENT 99

implemented on each agent to provide resource locking. Col-
lectively, these approaches attempt to strike a balance between
limiting the amount of network traffic, reducing storage (via
shared resources), and overall performance through localization.
Given the complexity of this scheme, an important consideration
is guaranteeing service; the base routing agent in openSour-
cePACS provides checks for service availability and transaction
management (akin to standard database constructs). All errors
in transmission or processing are automatically retried for a
configured number of attempts before automatically logging an
error and reporting a problem to the initial requestor.

4) Querying Services: Agents implementing querying ser-
vices take as input a set of constraints that describe the target
image series, and output a list of one or more imaging stud-
ies in terms of URLs; beyond this condition, the execution of
a query is largely left to the agent. A uniform XML querying
syntax is defined in openSourcePACS, following a query-by-
example (QBE) paradigm that subsumes a standard DICOM
C-FIND; each agent is accountable for parsing this XML into
its own underlying query language. For example, openSour-
cePACS provides a default archive implementation with query-
ing services that uses a relational database (PostgreSQL) to
keep track of images in a file system. The XML query is trans-
formed automatically into SQL statements that can be executed
directly against this repository via JDBC (Java database connec-
tor). Equivalently, a web service querying implementation can
be used to provide a mapping to a DICOM-compliant PACS.
The free-form nature of the XML query allows new fields to be
added to any given queryable agent: the agent is responsible for
determining how best to map these fields to its own data source.
On receipt of a query, the routing agent determines whether
the request involves a query to specific image repositories, or
is more general in nature. A query can opt to specify one or
more specific agents to query by their UID; otherwise, a general
query occurs, and all known queryable agents receive the re-
quest (determined by the router through the gateway’s working
configuration). The routing agent sends the request to each de-
termined agent, and awaits receipt of a result set that is passed on
to the next stage in the routing process. The authors’ experience
with teleradiology infrastructures and other PACS applications
has highlighted the fact that a certain subset of queries involves
discovery and retrieval of recently processed imaging studies
for purposes of (internal) image management. To expedite these
searches in openSourcePACS, the imageServer provides addi-
tional indexing of all image studies handled by the gateway and
routers: a recent log of all forwarded imaging series (including
those that are archived) are maintained centrally in a database;
requests for these images are first searched for within this data
store before being broadcast to all queryable agents.

5) Processing Services: Processing services present a
“pipeline” for analytic procedures involving image data. For ex-
ample, voxel-based analysis of diffusion tensor imaging (DTI)
data between two population groups requires accurate warping
to a common frame of reference—a nonstandard task that may
be used for both clinical and research purposes. Accurate warp-
ing of DTI data from different subjects can involve multiple
steps, including image de-noising, skull stripping, geometric

distortion correction, and registration to create an atlas that con-
verges to the centroid of the population being studied [27]. This
progression of steps represents distinct processing stages from
which individual images (and ancillary processing data) may be
passed between a chain of algorithms. Fundamentally, an image
pipeline may be abstracted to a directed acyclic graph (DAG)
that captures a more complex processing architecture with mul-
tiple end points representing generation of several new images.
Given the increased computational complexity associated with
some image-processing methods, coupled with the higher res-
olution and number of image slices within a series, image pro-
cessing can be overly time consuming. By way of illustration,
creation of an atlas of ten subjects (image volumes at 1 mm3

resolution with a matrix size of 256 × 256 × 128 and two chan-
nels of data) can take approximately 12 h running on a standard
Pentium-IV computer. openSourcePACS therefore takes advan-
tage of the available grid computing systems to distribute the
processing load when images can be handled individually (i.e.,
computations within a slice can be made independent of other
images). Specifically, openSourcePACS allows Java-based algo-
rithms to be spawned on a Condor-based grid, with the images
and required code automatically copied locally to the participat-
ing grid clients. These services may also invoke non-Java algo-
rithms through a wrapper, such as those provided in the insight
toolkit (ITK) [28], which offers a growing library of C/C++
methods for advanced image processing; and the visualiza-
tion toolkit (VTK) for 3-D image-processing [29]. Similar dis-
tributed image-processing approaches, described in [30]–[33],
also detail pipeline and parallel imaging processing.

6) Sources and Receivers: The last set of services that an
imageServer agent can declare represents sources and receivers
of imaging data. Source services indicate that an agent is capa-
ble of transmitting an image to a specified location; receiving
services indicate that an agent can handle the converse operation
and store a transmitted image. With the generalization of imag-
ing beyond DICOM standards, a problem arises in consideration
of how images can be uniformly sent and received between dif-
ferent agents, as potential mismatches can occur (e.g., what if a
source agent knows how to transmit via DICOM, but the target
receiving agent only knows an HTTP-based protocol?). open-
SourcePACS solves this issue by providing a “lowest common
denominator” protocol of DICOM C-MOVE/C-STORE as part
of the base agent implementation, allowing all agents to commu-
nicate using this method, should a mismatch happen. However,
by default, the routing agent will use the preferred communica-
tion protocol specified by source and receiving agents involved
in a request.

7) Basic PACS Server Implementation: With the preceding
concepts, in openSourcePACS a conventional images archive
is therefore defined as an agent providing both sources and re-
ceiver services, coupled with querying. A rudimentary PACS
agent is implemented under openSourcePACS, supporting both
direct DICOM communications and XML messages via the im-
ageServer framework. All the images received by this agent
are stored using the underlying file system, organized in a
hierarchical scheme by DICOM study/series UIDs to provide
ready lookup. The agent uses a PostgreSQL database to save

100 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 1, JANUARY 2007

image file locations and DICOM header information, making it
searchable across all fields via SQL; by default, the tables are
indexed by patient ID, modality, and anatomy. Interestingly, be-
cause of the abstracted image operations, this agent can support
multiple different DICOM implementations via mapping: for
example, [9], [34], and the authors’ own DICOM implementa-
tions can be “plugged in” to this agent and dynamically instan-
tiated via Java reflection methods. Correspondingly, the XML
messages for executing DICOM C-MOVE, C-STORE, and C-
FIND commands are mapped to an underlying DICOM imple-
mentation.

C. imageViewer

The third openSourcePACS module, imageViewer, provides
a graphical user interface (GUI) for image display. Data transfer
between imageServer and imageViewer is supported in three
ways: 1) via standard DICOM C-MOVE and C-STORE pro-
cesses, thus copying images to the local file system for viewing;
2) via network file shares; and 3) via Java-specific (compressed)
data streams that bypass DICOM and high-level protocols (e.g.,
HTTP) to provide low-level data transfer at more optimal speeds,
copying the data to storage local to the imageViewer applica-
tion. When possible, the latter of the methods is used to provide
faster on-demand access to images.

The principles behind the imageViewer were threefold: 1) the
development of an extensible application programmer’s inter-
face (API), providing standard manipulation and layout tools;
2) the creation of new methods for manipulating images using
gesture-based interactions; and 3) the support for image docu-
mentation processes used in many common clinical, research,
and educational imaging-based applications. imageViewer in-
tegrates querying and receiver agents from the imageServer to
enable access to imaging studies.

1) Application Programmer’s Interface: The imageViewer
uses the Java advanced imaging (JAI) package [35] for opti-
mized low-level manipulation on raw (DICOM) imaging data
and memory management through image caching; in addition,
fast file input/output (I/O) is available. The choice of using JAI
was primarily to enable cross-platform display beyond that of
the chief graphic algorithms in Java (e.g., Java2D), with the
added benefit of: 1) platform-specific native libraries (Microsoft
Windows, Sun Solaris) to enhance operational speed; 2) access
to commonly employed data structures for image processing
[e.g., histograms, regions of interest (ROI)]; and 3) the ability
to import and export images to a range of popular graphical
formats.

The present imageViewer class hierarchy roughly corre-
sponds to a model-view-controller (MVC) paradigm. At the
heart of the model components are Java classes that capture
the (raw) imaging data and ancillary information: a DICOM-
specific image reading class was implemented via JAI, allowing
for on-demand image reading. Following the standard DICOM
data model, groups of images are collected into a single series,
which in turn aggregated to make up a study. imageViewer view
classes render the DICOM images into image panels (extending
the Java Swing JPanel class). Panels can be clustered together

into a group, representing a single series; and grouped instances
can be recursively spatially (i.e., graphically) clustered, captur-
ing a study or other arbitrary type of image collection that is
visually manipulated as a unit. More complicated renderings of
a sequence of images can also be handled using this hierarchy.
For example, an image panel can be associated with a study,
using Java3D to render a 3-D texture-based visualization of the
dataset. [36] presents a similar method for volume rendering.

Associated with each view is a rendering pipeline, borrowing
from the JAI paradigm. The base rendering pipeline consists of
the usual affine transformations and color maps that may be ap-
plied to a DICOM image (window/level, rotations/flips, scaling,
translations); however, it is configurable such that new opera-
tions can be inserted (or substituted) into the sequence by ref-
erencing new Java classes. To illustrate, a published computed
radiography (CR) edge-sharpening algorithm [37] was easily
implemented and inserted at the beginning of the pipeline; like-
wise, algorithms for optimal window/level settings have been
developed to replace presets [38]. Benefits in the pipeline ar-
chitecture include JAI chains and delayed processing: changes
to the parameters of an operation within the sequence only re-
quire re-rendering of the image in subsequent steps—a complete
re-rendering of the entire image is only necessary if the first op-
eration in the pipeline is affected. Moreover, the rendering steps
of the pipeline only occur if the image is presently being viewed
(e.g., if an image in a series is not displayed, the image process-
ing is delayed until needed), thereby providing faster response
time. Lastly, the controller follows mouse events at each success
view level, propagating user input/responses to the appropriate
view/model; each view grouping can be separately controlled
and/or selectively joined/separated to perform an operation.

Atop these core components, the imageViewer provides for
image tools, configurable user interface components, and layout
mechanisms for images, completing the set of functions needed
to construct a basic imaging workstation (Fig. 3). The rendering
pipeline illustrates several of the elementary operations available
as tools to the user: manual window-level manipulation (or, invo-
cation of presets, automated window/level selection) and inverse
color mapping; free-form rotations and horizontal/vertical flips;
magnification, including a “magic lens” function; and transla-
tion (i.e., image panning). Additional tools include cine, annota-
tions, and undo/redo functions. All of these actions can be asso-
ciated with user-defined key mappings, graphical toolbars, and
menus. With the complexity of image grouping/clustering sup-
plied by the underlying view and model, imageViewer also sup-
ports dynamic changes in layout that can combine multiple panel
sizes/scaling behaviors; new layouts can be defined using XML.

Additional support for reading non-DICOM medical images,
such as the increasingly popular Analyze data format and raw-
data images are also a part of the imageViewer package. Other
conventional image types (e.g., Tagged Image File Format,
TIFF) are supported directly through JAI.

2) Gesture-Based Interaction: Our observation of PACS
imaging workstations in the past several years is that most em-
ploy standard user interface paradigms for interaction, including
menu bars, tool palettes, and keyboard strokes. However, effi-
ciency and functionality are sometimes contradictory objectives

BUI et al.: openSourcePACS: AN EXTENSIBLE INFRASTRUCTURE FOR MEDICAL IMAGE MANAGEMENT 101

Fig. 3. Basic imageViewer application, allowing for the display of DICOM images using Java advanced imaging (JAI). Standard image workstation tools,
including annotations, are available through the imageViewer. In addition to the traditional menu- and toolbar-based user interface widgets, the upper-right panel
shows the use of the mouse gesture interface to select a command; in this case, the user has drawn a spiral-shape to invoke the DICOM presentation selection
mode in order to capture a key image. The bottom-right panel in the display shows a texture-based 3-D volume rendering of the image series. Patient identifying
information in this figure has been masked.

for a well-designed image-viewing workstation. Thus, a goal
of the imageViewer was to create simplified user interfaces
focusing on imaging. In addition to providing standard GUI
widgets in imageViewer, an alterative method of user interac-
tion, gesture recognition, is implemented, with the goal of pro-

viding smoother, faster manipulation of images in a manner that
is not as disruptive to the primary task of reading/interpreting a
study [39]. The user can draw a predefined shape (i.e., gesture)
anywhere on the screen to invoke a command: using a mouse
(or other input device), a graphical representation of the gesture

102 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 1, JANUARY 2007

Fig. 4. Left panel shows the Java application that is used to store demonstrative shapes that the classifier is trained on (in this example, an “O”). The trained
classifier learns to discriminate amongst a given set of shapes. In the imageViewer, the user can then associate a given action with a gesture (middle panel) as part
of the configuration process. Drawing a given gesture (a “>”) on the screen (right panel, top) invokes the corresponding command (right panel, bottom; in this
example, the magic lens function).

is drawn on-screen in real-time, overlaying the current display
(Fig. 3, top right). This functionality allows for “uncluttering” of
the display, removing GUI widgets and preserving space for the
key focal point of any image review workstation—the images.
Gesture recognition itself has been explored in other application
contexts, including: handwriting recognition, personal device
assistants (PDAs), web browser manipulation, computer draw-
ing programs, and computer games [40]–[44]. The set of ges-
tures is configurable such that a gesture from a training set can
be dynamically assigned to one of a set of common image ma-
nipulation functions (e.g., window-level setting, rotation, image
layout settings, measurement, annotation), allowing the user to
tailor the display and the functionality of the application to
his/her preferences.

imageViewer’s gesture-recognition engine combines two ba-
sic algorithms to classify 2-D “strokes” drawn by a user: a
linear interpolation algorithm and adaptation of [45] are used.
The first algorithm is a straight-line interpolation that derives
a simple signature for linear-type shapes (e.g., a straight line,
“L” shapes, “V” shapes), analyzing the predominant direction
of sequential line segments to formulate a pattern based on eight
directions. Based on this decomposition, the directional signa-
ture is compared against known patterns to attempt to classify
the gesture, associating it with an imageViewer action. Failing
this first classification method, a linear classifier algorithm is
employed, using different shape features to characterize a best-
fit (e.g., bounding box angle, end cosine, end length, time to
draw, etc.) [45]. The gesture engine is trainable, allowing a user
to select a (sub)set of the features to use in training; and to

create/supply a set of exemplar gestures. Fig. 4 shows an exam-
ple of how gestures are trained, linked to a given command in
the imageViewer, and executed. For example, a circular mouse
motion may represent invocation of a rotation tool. Likewise, a
box-like shape may indicate a region for magnification.

A pilot study involving 15 individuals (radiologists, physi-
cians, novice users) examining the efficacy of this gesture-based
interface was completed. This preliminary testing showed an
improvement of 20%–60% in the total time required to select
and invoke an image-manipulation tool using the gesture-based
interface (as compared to a toolbar and menu-based interface),
even with only 90% accuracy in initial gesture classification by
the engine; further details on this gesture-based approach and
more formal evaluation will be reported in future work.

3) Supporting Documentation: An important role for the im-
ageViewer is to facilitate documentation processes. In consid-
ering the role of the radiologist reviewing images (or any other
image expert), often specific images and regions are used as the
basis for documenting disease state—distilling a large imaging
dataset into a few sentinel slices. Capturing how the expert views
these images and provides interpretation is a critical part of the
communication process, as this information is often relayed to
other clinicians to guide treatment [1]. Directly supporting these
tasks, DICOM has come to include presentation states (PS) [46]
and structured reporting (SR) [47]; imageViewer implements
both of these standards. A suite of tools are implemented in the
imageViewer, allowing a user to annotate an image with drawing
tools (lines, arrows, boxes, circles, polygons, freehand) and text.
In addition, pixel and ROI value readouts can be imprinted on

BUI et al.: openSourcePACS: AN EXTENSIBLE INFRASTRUCTURE FOR MEDICAL IMAGE MANAGEMENT 103

the image. These annotations are overlaid on the base DICOM
image, and can be edited and/or deleted. With the current image
state (i.e., affine transforms, window/level), the annotations can
be explicitly saved as a DICOM PS instance associated with the
original study; review of the images by another party can thus
access the viewing state and annotations. Additional free-text
comments not shown inline with the image (e.g., a label or short
description) can also be added to an image as part of a DICOM
SR object; particularly, information on the findings present on
the image can be elaborated upon. Dependent on the application
using the imageViewer API, the DICOM PS and SR objects can
be stored into a PACS with the archived image study.

D. Reporting/Result Viewing

The last openSourcePACS module handles the tasks of in-
tegrating and reporting results to a broader audience than im-
ageViewer users. Note that here, “reporting” does not refer to
the process in clinical image review (e.g., a radiologist dictat-
ing image findings to generate a document)—but rather, to the
dissemination of image findings. Two issues are considered in
openSourcePACS.

1) Access to other (non-imaging) clinical data sources. In
order for image findings to be properly understood, the ap-
propriate clinical context must be provided. Stand-alone
PACS, while providing some insights for a given patient
through past imaging studies, does not give a complete
understanding of a patient’s state—further objective in-
formation, such as from pathology, laboratory, and other
data sources are often needed for proper assessment. In
fact, the integration of PACS with clinical repositories is
a goal of the Integrated Healthcare Enterprise (IHE) [48],
which demonstrates workflow management and data shar-
ing between clinical systems (e.g., hospital information
systems, HIS; RIS; etc.); in a similar vein is the National
Health Information Infrastructure initiative in the United
States, which encourages data interchange among the ar-
ray of clinical systems [49]. To this end, openSourcePACS
leverages the authors’ DataServer system [50], which en-
ables real-time querying and retrieval of information from
clinical and research databases. DataServer facilitates ac-
cess by creating a single, uniform XML representation,
abstracting underlying data sources and access mecha-
nisms; like openSourcePACS, its objective is to enable
generalized access to data, irrespective of the querying
protocol and providing a mapping between disparate data
representations. Given that each potential data source may
implement different access protocols (e.g., HL7 versus a
relational database or SOAP object), DataServer provides
a library of methods for tailoring connections, transform-
ing an XML-based query into a specified format (e.g.,
SQL) and in turn, translating the results into a given
(XML) data representation. Querying DataServer itself
occurs via a servlet, much like the querying component of
the imageServer. Supplementary Java classes are included
in openSourcePACS to execute DataServer queries, al-
lowing for the logical grouping of information around

specified clinical attributes (e.g., data source, report
types, etc.).

2) Integrated web-based visualization of results. Given ac-
cess to the DICOM presentations states, structured re-
porting, and other clinical information, the final aspect of
openSourcePACS is to construct a comprehensive display
that puts the image findings into perspective. Specifically,
the goal of this interface is to facilitate the distribution of
results, such as to a clinician (e.g., the referring physician),
students (e.g., medical students, residents), or researchers.
Construction of such GUIs and the integrative data model
unifying such data is chiefly application dependent; as
such, openSourcePACS’ strategy is to provide a set of
web-based widgets that can be re-used in multiple future
applications. Two implementation approaches have been
used. First, an asynchronous JavaScript and XML (AJAX)
framework was used to create dynamic HTML compo-
nents that can be adapted using stylesheets. Customized
graphics [e.g., exporting the DICOM images and associ-
ated presentation states to a static portable network graph-
ics (PNG) format] are generated server-side and made ac-
cessible via a secure web server. However, the multitude
of different web browsers and nuances in rendering imple-
mentations makes identical cross-browser rendering chal-
lenging (e.g., Microsoft Internet Explorer version 6, for
instance, does not properly support PNG transparency).
To this end, a second set of GUI components that can
integrate the clinical data, imaging, and DICOM objects
was developed using the multimedia scripting language,
Laszlo, which can create Macromedia Flash presenta-
tions [51]. Laszlo itself provides basic GUI components,
much akin to those found in Java’s Swing package (e.g.,
windows, menus, scrollable views, tabbed panes, but-
tons, text/graphic canvases). Using these core components,
openSourcePACS provides demographic, DICOM PS/SR,
document (e.g., clinical reports), and laboratory widgets.

Though the primary intent of this last module is to support the
creation of web-based interfaces, it also serves to make available
the results of the review process (via DICOM PS/SR) in other
nongraphical formats, such as XML [52], and thus accessible in
turn through DataServer.

IV. EXAMPLE APPLICATION: RAPID PRIMARY

CARE/SPECIALIST COMMUNICATION

The functionality encompassed by openSourcePACS lends it-
self to a variety of different applications, including the develop-
ment of imaging-based teaching files, image-analysis worksta-
tions, and web-based referrals/teleradiology. To demonstrate its
utility, an application supporting primary care/specialist com-
munication was prototyped along the lines of a “wet-read.”
In many hospital environments, radiologists are often asked to
perform review of imaging studies that require immediate in-
terpretation for the sake of ruling in/out a given differential
diagnosis; this process is known as a preliminary read or “wet-
read” (in film-based environments, radiologists were asked to
interpret urgent cases on developing films before drying—hence

104 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 1, JANUARY 2007

the term “wet-read”). The communication between the request-
ing physician and the radiologist in a preliminary read is often
terse, with a reason for examination and targeted “yes/no ques-
tions” that need to be answered (e.g., patient has dyspnea; does
he have pneumonia?). It is understood that the radiologist’s re-
sponse in this situation is only an initial impression. This model
is readily extended to enable community-based physicians (e.g.,
primary care physicians) to request preliminary reads by experts
(e.g., subspecialist radiologists at an academic medical center)
with rapid turn-around response as soon as a patient completes a
study at an imaging center. This problem has been considered in
the context of urgent care [53]. Other related work in this area
includes web-based teaching files, which provide the tools to
capture images with annotations to effectively create presenta-
tion states for instructional purposes [54]–[56]; however, order
entry and result views, as in openSourcePACS, are typically not
handled in these applications.

All four modules of the openSourcePACS implementation
were used in this project, building a web-based referral, review,
and reporting system.

1) Image order entry module. Minimal customization was
required to adapt the image order entry system to this ap-
plication: only the list of available imaging procedures
needed to be configured, with information on the tar-
get imaging center to produce an image requisition. The
user database template was customized to handle refer-
ring physicians. Additionally, the ROS was augmented to
maintain a list of completed and outstanding requests per
user, linking to study results when finished. Web pages
supporting the login process and for showing a history
of requested studies were created (Fig. 5). The existing
implementation does not attempt to solve the problem of
scheduling the imaging exam, leaving this step as a manual
process.

2) imageServer. Given the loose coupling of order entry to
image acquisition and in the absence of a requisition ID, it
is necessary to match the studies to the initial request. The
DICOM image-receiving process that communicates with
the gateway agent was combined with a reconciliation
module. A matching mechanism based on the data fields
for first name, last name, gender, date of birth, and re-
ferring physician are pulled from the DICOM header and
compared against the ROS entries. Simple string matching
is initially performed; however, failing such analysis, more
heuristic approaches are taken, as suggested by [57]: name
variants (e.g., nicknames) are referenced, and variations in
the date (e.g., due to typos, for example) can be suggestive
of potential matches. The study date is also compared to
the ROS order date (the study should be completed after
the order). Finally, further matching is done by compar-
ing states of anatomy and contrast in the DICOM header
descriptions versus those of the ROS procedure name. An
aggregate score, based on the number of exact matches,
potential (variant) matches, and nonreconcilable fields,
is then computed to indicate the overall likelihood of a
match. A Swing-based GUI was created to allow manual
inspection and to perform any correction. Once a match is

Fig. 5. Web pages were developed to customize the image order entry com-
ponent of openSourcePACS for the primary care/specialist loop application.
The “New order” page shows the basic openSourcePACS ROS, allowing an
authorized physician to request a new imaging study; required fields include the
reason for exam and the patient’s chief complaint, in order to create specific
questions for the radiologist. The “Order list” page is a new page that shows
a physician his/her history of image orders and the status of the preliminary
read; clicking on an item brings up the corresponding information and when
completed, the results (see Fig. 6).

validated, both sets of information are forwarded via the
gateway to a specific imaging workstation designated for
preliminary reads.

3) imageViewer. The imageViewer API was used to create
a rudimentary review workstation. A worklist was at-
tached to the main display, indicating all available patient
data on the workstation with any outstanding requests.
A response module was also added to facilitate the pre-
liminary read process: radiologists reviewing the study
were required to explicitly answer each of the differential
diagnosis questions posited by the referring physician (as

BUI et al.: openSourcePACS: AN EXTENSIBLE INFRASTRUCTURE FOR MEDICAL IMAGE MANAGEMENT 105

Fig. 6. Web-based results view display created for the openSourcePACS primary care/specialist communication loop application (patient information is fictitious).
When a radiologist completes the preliminary review, the system generates a website that pulls together the DICOM presentation states (PS) and comments in the
associated DICOM structured reporting object. Patient demographics and study information are presented at the top of the interface. The reasons for exam and
the radiologist’s answers are given in the left-side panel with icons (in this case, a brain tumor was found, thus indicated by a check mark; edema was not found,
indicated by “X”; and additional findings are given). Selecting a reason for exam on the left, calls up the image slices chosen by the radiologist. The DICOM PS
is shown in the middle of the display. Additionally, related image slices selected by the radiologist can be seen by choosing from the thumbnail views on the right.

given in the original order entry). Evidence in response to
each question uses the DICOM presentation state, captur-
ing the specific image view and annotations. A DICOM
SR object was instantiated for each question, consisting
of a single response (positive finding, negative finding,
uncertain), and one or more presentation states (i.e., anno-
tated images). Incidental findings and additional free-text
comments can be also be added, and are stored as part
of the SR instance. When all questions are answered, the
workstation marks the study as complete, and forwards
the completed dataset to the reporting module.

4) Reporting. Finally, on receipt of a completed preliminary
read, the reporting module was used to generate a result
view that integrated the original request for examination,
differential diagnosis, and image findings from the radiol-
ogist (Fig. 6). The website and its graphical components

are automatically published. Further code was added to in-
form the ROS of the completed result status (and thus the
referring physician), adding a link to directly access the
web page, and thus completing the primary care/specialist
communication loop.

This application directly facilitates the practice of evidence-
based radiology [58]. Presently, this system is being adapted
at the authors’ institution to provide an integrated oncology
consultation (e.g., lung cancer), incorporating digital pathology
slides and findings, laboratory, and other clinical documents.

Also, this openSourcePACS application is being evaluated
by a private company at a site in Melbourne, FL, in support
of communication between a primary care center, a dedicated
imaging facility, and local community physicians [59]. The
imaging facility digitally captures CT, MR, and CR imaging.
Given the relatively low volume of imaging with an average of

106 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 1, JANUARY 2007

45 studies/day (relative, at least, to an academic medical center),
the entire system was implemented on a single server, running
both the Apache Server and Postgres database (dual 2.4-GHz
Intel Xeon processor system, 1-GB RAM, Redhat Linux 9, 34-
GB hard drive), and integrated with an existent local PACS
(NeuroStar). At the time of writing, this system has been pi-
loted for over three months, and now references in excess of
2500 new DICOM imaging studies with associated (annotated)
reports. Initial feedback from users is being incorporated to
refine the system before rollout.

V. DISCUSSION

openSourcePACS aims to provide a solid foundation upon
which imaging- and PACS-based applications can be built. The
majority of the code, including the primary care/specialist com-
munication loop application, has already been released to the
open source community under the Gnu Lesser General Pub-
lic License (LGPL) [60]; the remainder of the code base is
presently being prepared for general release. Releasing source
code is a necessary but not a sufficient condition for successful
dissemination of software: potential users must have a means to
receive additional assistance and guidance [61], [62]. Moreover,
a motivation behind open source is to sustain development and
interest in a project so that it grows beyond the original vision.
To this end, a full and active website with mailing lists, API
and documentation (e.g., Javadocs), source code control, and
forums (e.g., a wiki) were implemented for public developers
and users.1 Complete binary and source code distributions can
be freely downloaded. Since a formal presentation at the Radio-
logical Society of North America (RSNA) in November 2005, a
conservative estimate of approximately 50–60 downloads have
occurred per month2 and a small group of users (∼20) outside of
the initial development group has joined the mailing lists. We an-
ticipate that this group will grow in size as more components of
openSourcePACS are released and further development occurs.

More significantly, support for such a project and its clinical
deployment requires a large degree of technical maintenance
that may be beyond academic boundaries and what is found
in open source forums. For example, problems arising from
software bugs may require immediate attention in a “24/7/365”
operation. In this light, service-oriented commercial entities that
are early adopters of openSourcePACS may become important
in providing consulting and operational services, while still con-
tributing back to the open source community as a whole. Indeed,
a sharp contrast exists in comparing the level of support offered
by commercial PACS vendors versus openSourcePACS. More-
over, many commercial PACS provide aspects of the same func-
tionality described in openSourcePACS. However, a tradeoff
exists between the proprietary (if not typically closed) systems
of the former, against the more modular premise and functional
extensibility of the latter.

1http://www.mii.ucla.edu/openSourcePACS
2Compiled statistics for the openSourcePACS website actually indicate that

on average, over 90 downloads have occurred per month since the RSNA presen-
tation; however, given the nature of web statistics, it is likely that some of these
downloads may be from automated web crawlers; thus, a more conservative
number is provided.

Several additions to openSourcePACS are presently being
pursued. A complete implementation of the Web Access to DI-
COM Persistent Objects (WADO) standard is being completed
within the imageServer as an additional method for requesting
and transmitting images and associated data from archives to
the imageViewer. By extension, the web-based viewing com-
ponents (e.g., from openLaszlo) will be able to more readily
access and process images in native web browser formats. No-
tably, many other software packages and projects already pro-
vide some WADO support (e.g., dcm4che [9]), which can be
leveraged herein. Integration of openSourcePACS with other ex-
istent and well-established open source projects (e.g., dcm4che,
OsiriX [10]) is being pursued as a means to further the overall
goals of a comprehensive open source solution. Additionally, the
imageServer is being extended to handle non-DICOM images,
as may be generated through more complex image analyses or
nonstandard modalities.

It is important to acknowledge that openSourcePACS does not
yet provide a full clinical picture archiving and communication
system: while several key components have been completed,
more robust services are needed. For example, quality of ser-
vice (QoS) and true fault tolerance—a vital aspect of any clinical
environment—are not available. Similarly, full archive capabil-
ities (e.g., automatically transitioning and retrieving older im-
ages from tertiary storage) and backup strategies are not tackled.
However, recognizing that alternative (hardware) solutions are
available (e.g., redundant array of inexpensive disks, RAID),
we believe that the given architecture for openSourcePACS can
be extended to address these issues using existing techniques.
The overall performance of this architecture will also need to
be further tested under high loads and varying conditions (i.e.,
stress-tested). For example, load balancing performance by the
gateway is dependent on choosing appropriate metrics consid-
ering the capabilities of a given node versus overall (global)
system performance, and perhaps even the urgency of a given
request (e.g., clinical retrieval over research processing). Load
simulations and real-world deployments of this framework will
be reported in future work.

Also, for openSourcePACS to be deployable in clinical envi-
ronments, proper certification of the software will be required—
as is conducted by commercial vendors. In the United States,
approval would be required from the Federal Drug Administra-
tion (FDA); in Europe and other regions, corresponding certi-
fication would also be needed. Such regulatory approvals are
being investigated by the authors.

Notably, openSourcePACS can work with existing PACS in-
frastructures, and can evolve to handle new capabilities—as
illustrated by the many future technical directions for the open-
SourcePACS project.

1) Peer-to-peer searching. The routing services in the image-
Server broadcast queries to known sources (PACS) in or-
der to find images. In a small (confined) network of agents,
this technique is relatively efficient, as network traffic is
limited and minimal processing need occur at the point of
origin (i.e., the routing agent). Still, as image repositories
continue to grow and are linked together for research and
clinical purposes (e.g., Biomedical Informatics Research

BUI et al.: openSourcePACS: AN EXTENSIBLE INFRASTRUCTURE FOR MEDICAL IMAGE MANAGEMENT 107

Network [63], National Digital Mammography Archive
[64], efficiently searching for a given image becomes mo-
re difficult and different approaches are required to scale
in a large, highly distributed network environment. The
need for new search methods beyond classic distributed
database mechanisms is highlighted in [65] the analysis of
which has shown to only effectively scale to∼1000 nodes.
One possibility under investigation is to adopt peer-to-peer
(P2P) searching techniques, whereby agents propagate
searches only to other “local” agents—the query “spreads”
over a network; newer techniques have been shown to
guarantee the discovery of targeted data in such networks
with a controlled number of data hops [66], alleviating the
disadvantages associated with earlier P2P networks.

2) Cohort searching. Presupposing the creation of large
imaging networks and efficient search methods, the open-
SourcePACS concept of open querying can empower
researchers to automatically create large imaging-based
patient cohorts in a retrospective manner; specific data
warehouses have been proposed for this purpose [67].
Given proper authorization to use imaging data for re-
search, agent querying services in imageServer can be
used to find patients’ images that meet clinical and/or
image-specific criteria. An automated de-identification
package (e.g., removing patient identifiers from image
headers and other clinical data), already in DataServer
[68], is being generalized for use with openSourcePACS.

3) Content-based image retrieval. Medical content-based im-
age retrieval (CBIR) has been an ongoing pursuit of mul-
tiple research groups [69], with good results in highly
focused domain areas. In the long term, the ability to
search for like images will become a powerful tool with
several potential applications, including medical decision
support (e.g., find patients with similar tumors in the same
anatomical brain location); as the amount of imaging ac-
cumulates, the value of CBIR will clearly increase.

4) Integrated multimedia patient records. The allure of the
electronic medical record (EMR) is perhaps best given
by the longitudinal, virtual patient record [70], seam-
lessly accessing and integrating imaging and all other
modes of communication (text, graphical, video, audio)
all into a comprehensive display. The juxtaposition of
openSourcePACS and DataServer is a step in this direc-
tion, though the complexity of re-organizing and filter-
ing the wealth of clinical information into a single inter-
face is an ongoing challenge and topic of research [18].
Indeed, as new imaging modalities become commonly
available, novel techniques to visualize this data must be
contemplated.

Past works in imaging and open source projects have re-
mained fragmented, only offering niche solutions. Thus, devel-
opers are often left with the task of re-inventing or integrat-
ing dissimilar software components; ultimately, it is hoped that
openSourcePACS, as an umbrella framework for all these ef-
forts, can serve as starting point to foster new developments
in PACS and the use of imaging in support of evidence-based
medical practice, research, and education.

ACKNOWLEDGMENT

The authors would like to thank G. Weinger and S. Barretta
for their work on the implementation of openSourcePACS; and
W. Hsu for his review of the literature.

REFERENCES

[1] B. Kaplan and N. T. Shaw, “People, organizational, and social issues:
Evaluation as an exemplar,” in IMIA Yearbook of Medical Informatics,
Stuttgart, Germany: Schattauer Verlag, 2002, pp. 91–102.

[2] M. van Herck and L. Zjip. (2005, Sep.). Conquest DICOM software web-
site. [Online]. Available: http://www.xs4all.nl/∼ingenium/dicom.html

[3] P. Sau (2005, Mar.). CDMEDIC PACS website, version 6.2. [Online].
Available: http://sourceforge.net/projects/cdmedicpacsweb/

[4] RainbowFish Software (2005, Sep.). Introduction, PACSOne Server web-
site. [Online]. Available: http://www.pacsone.net/index.htm

[5] MiniWebPACS main website. (2005, Sep.). [Online]. Available: http://
miniwebpacs.sourceforge.net/

[6] T. Sakusabe (2005, Jan.). DIOWave Visual Storage main website [Online].
Available: http://diowave-vs.sourceforge.net/

[7] OFFIS Computer Science Institute (2005, Mar.). DCMTK—DICOM
Toolkit main website. [Online]. Available: http://dicom.offis.de/dcmtk

[8] S. M. Moore, S. A. Hoffman, and D. E. Beecher, “DICOM shareware:
A public implementation of the DICOM Standard,” in Proc. SPIE,
Medical Imaging 1994-PACS: Design and Evaluation, vol. 2165, pp.
772–781.

[9] G. Zeilinger (2005, Feb.). dcm4che, A DICOM implementation in JAVA,
website. [Online]. Available: http://sourceforge.net/projects/dcm4che/

[10] A. Rosset, L. Spadola, and O. Ratib, “OsiriX: An open-source software for
navigating in multidimensional DICOM images,” J. Digit. Imag., vol. 17,
no. 3, pp. 205–216, Sep. 2004.

[11] P. Puech and L. Boussel (2005, Sep.). DICOM Works main website.
[Online]. Available: http://dicom.online.fr/

[12] M. Kanellopoulos (2005, Aug.). Sante viewer main website. [Online].
Available: http://users.forthnet.gr/ath/mkanell/viewer/viewer.html

[13] A. M. Loening and S. S. Gambhir, “AMIDE: A free software tool for
multimodality medical image analysis,” Mol. Imag., vol. 2, no. 3, pp. 131–
137, 2003.

[14] C. Rorden (2005, Sep.). ezDICOM software, website. [Online].
Available: http://www.psychology.nottingham.ac.uk/staff/cr1/ezdicom.
html#users

[15] K. Muto, Y. Emoto, T. Katohji, H. Nagashima, A. Iwata, and S. Koga,
“PC-based web-oriented DICOM server,” (InfoRad Presentation) Radiol-
ogy(P), 2000.

[16] National Institutes of Health (2005, Sep.). imageJ: Image processing and
analysis in Java, website. [Online]. Available: http://rsb.info.nih.gov/ij/

[17] S. T. C. Wong, D. Tjandra, H. Wang, and W. Shen, “Workflow-enabled
distributed component-based information architecture for digital medical
imaging enterprises,” IEEE Trans. Inform. Technol. Biomed., vol. 7, no. 3,
pp. 171–183, Sep. 2003.

[18] A. A. Bui, R. K. Taira, S. El-Saden, A. Dordoni, and D. R. Aberle,
“Automated medical problem list generation: A practical method to create
a patient TimeLine,” in Proc. MedInfo 2004,, pp. 587–591.

[19] H. K. Huang, PACS: Basic Principles and Applications. New York:
Wiley-LISS, 1999.

[20] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-
tice: The Condor experience,” Concurr. Comput. Pract. Exp., vol. 17, no.
2–4, pp. 323–356, Feb.–Apr. 2005.

[21] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid: Enabling
scalable virtual organizations,” Int. J. Supercomput. Appl., vol. 15, no. 3,
pp. 200–222, 2001.

[22] L. P. Clarke, B. Y. Croft, E. Staab, H. Baker, and D. C. Sullivan, “National
Cancer Institute Initiative: Lung image database resource for imaging
research,” Acad. Radiol., vol. 8, no. 5, pp. 447–450, May 2001.

[23] S. G. Armato, III, G. McLennan, M. F. McNitt-Gray, C. R. Meyer,
D. Yankelevitz, D. R. Aberle, C. I. Henschke, E. A. Hoffman, E. A.
Kazerooni, H. MacMahon, A. P. Reeves, B. Y. Croft, and L. P. Clarke,
and Lung Image Database Consortium Research Group, “Lung Image
Database Consortium: Developing a resource for the medical imaging
research community,” Radiology, vol. 232, pp. 739–748, 2004.

[24] B. J. Hillman, “The American College of Radiology Imaging Network
(ACRIN): Research educational opportunities for academic radiology,”
Acad. Radiol., vol. 9, pp. 561–562, May 2002.

108 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 11, NO. 1, JANUARY 2007

[25] M. S. Brown, S. K. Shah, R. C. Pais, Y. Z. Lee, M. F. McNitt-Gray,
J. G. Goldin, A. F. Cardenas, and D. R. Aberle, “Database design and
implementation for quantitative image analysis research,” IEEE Trans.
Inform. Technol. Biomed., vol. 9, no. 1, pp. 99–108, Mar. 2005.

[26] M. W. Vannier and R. M. Summers, “Sharing images,” Radiology,
vol. 228, pp. 23–25, 2003.

[27] S. Ardekani and U. Sinha, “Geometric distortion correction of high-
resolution 3T diffusion tensor brain images,” Magn. Reson. Med., vol. 54,
no. 5, pp. 1163–1171, 2005.

[28] Insight Segmentation and Registration Toolkit website (2005, Sep.). [On-
line]. Available: http://www.itk.org

[29] The Visualization Toolkit website (2005, Sep.). [Online]. Available:
http://public.kitware.com/VTK/index.php

[30] K. Liakos, A. Burger, and R. Baldock, “A scalable mediator approach
to process large biomedical 3-D images,” IEEE Trans. Inform. Technol.
Biomed., vol. 8, no. 3, pp. 354–359, Sep. 2004.

[31] Y. Kawaski, F. Ino, Y. Mizutani, N. Fujimoto, T. Sasama, Y. Sato,
N. Sugano, S. Tamura, and K. Hagihara, “High-performance com-
puting service over the Internet for intraoperative image processing,”
IEEE Trans. Inform. Technol. Biomed., vol. 8, no. 1, pp. 36–46, Mar.
2004.

[32] S. Hastings, S. Oster, S. Langella, T. M. Kurc, T. Pan, U. V. Catalyurek,
and J. H. Saltz, “A grid-based image archival and analysis system,”
J. Amer. Med. Inform. Assoc., vol. 12, no. 3, pp. 286–295, May.–Jun.
2005.

[33] J. Montagnat, V. Breton, and I. E. Magnin, “Using grid technologies
to face medical image analysis challenges,” in Biogrid ‘03, Proc. IEEE
CCGrid03, Tokyo, Japan, May. 12–15, 2003, pp. 588–593.

[34] Trispark Corp (formerly SoftLink) (2005, Sep.). Java DICOM
Toolkit (JDT) website. [Online]. Available: http://www.trispark.
com/jdt/features.htm

[35] Sun Java Advanced Imaging (JAI) main website (2005, Sep.). [Online].
Available http://java.sun.com/products/java-media/jai/index.jsp

[36] S. Saladi, P. Pinnamaneni, and J. Meyer, “Texture-based 3-D brain imag-
ing,” in Proc. 2nd IEEE Int. Symp. Bioinformatics and Bioengineering
(BIBE ’01), Mar. 2001, p. 136.

[37] P. Vuylsteke, E. Schoeters, N. V. Agfa-Gevaert, and B. Mortsel, “Image
processing in computed radiography,” in Proc. Comput. Tomography and
Image Processing, 1999, pp. 87–101.

[38] R. E. Wendt, III, “Automatic adjustment of contrast and brightness of
magnetic resonance images,” J. Digit. Imag., vol. 7, no. 2, pp. 95–97,
May 1994.

[39] J. D. N. Dionisio, A. A. Bui, R. Ying, C. Morioka, and H. Kangarloo,
“A gesture-driven user interface for medical image viewing,” in Proc.
Radiology, 2003, p. 807.

[40] T. R. Henry, S. E. Hudson, and G. L. Newell, “Integrating gesture and
snapping into a user interface toolkit,” in Proc. 3rd ACM Symp. User
Interface Software and Technology (UIST), 1990, pp. 112–122.

[41] S. Keates, R. Potter, C. Perricos, and P. Robinson, “Gesture recognition—
Research and clinical perspectives,” in Proc. RESNA’ 97, Pittsburgh,
PA, 1997, pp. 333–335.

[42] J. I. Hong and J. A. Landay, “SATIN: A toolkit for informal ink-based
applications,” in Proc. 13th ACM Symp. User Interface Software and
Technology (UIST), 2000, pp. 63–72.

[43] A. C. Long, Jr., J. A. Landay, L. A. Rowe, and J. Michiels, “Visual
similarity of pen gestures,” in Proc. CHI 2000, ACM Conf. Human Factors
in Computing Systems, 2000, vol. 2, no. 1, pp. 360–367.

[44] J. A. Landay and B. A. Myers, “Sketching interfaces: Toward more human
interface design,” IEEE Comput., vol. 34, no. 3, pp. 56–64, Mar. 2001.

[45] D. Rubine, “Specifying gestures by example,” in Proc. 18th Annu. Conf.
Computer Graphics and Interactive Techniques, 1991, vol. 25, no. 4,
pp. 329–337.

[46] Digital Imaging and Communications in Medicine Standards Commit-
tee. DICOM Supplement 23: Structured Reporting Storage SOP Classes,
National Electrical Manufacturers Association, Rosslyn, VA, 2000.

[47] Digital Imaging and Communications in Medicine Standards Committee,
Working Group 11. DICOM Supplement 33: Grayscale Softcopy Pre-
sentation State Storage, National Electrical Manufacturers Association,
Rosslyn, VA, Sep. 1999.

[48] E. L. Siegel and D. S. Channin, “Integrating the healthcare enterprise: A
primer,” Radiographics, vol. 21, pp. 1339–1341, 2001.

[49] W. W. Stead, B. J. Kelly, and R. M. Kolodner, “Achievable steps to-
wards building a National Health Information Infrastructure in the United
States,” J. Amer. Med. Inform. Assoc., vol. 12, no. 2, pp. 113–120, Mar.–
Apr. 2005.

[50] A. A. Bui, G. S. Weinger, S. J. Barretta, J. D. N. Dionisio, and H. Kangar-
loo, “DataServer: An XML gateway for medical research applications,”
Ann. NY Acad. Sci., vol. 980, pp. 236–246, 2002.

[51] OpenLaszlo main website (2005, Sep.). [Online]. Available: http://www.
openlaszlo.org

[52] A. Tirado-Ramos, J. Hu, and K. P. Lee, “Information object-definition-
based unified modeling representation of DICOM structured reporting:
A case study of transcoding DICOM to XML,” J. Amer. Med. Inform.
Assoc., vol. 9, no. 1, pp. 63–72, 2002.

[53] W. M. Tellis and K. P. Andriole, “Integrating multiple clinical information
systems using the Java message service framework,” J. Digit. Imag.,
vol. 17, no. 2, pp. 80–86, Jun. 2004.

[54] B. Henderson, S. Camorlinga, and J. C. Degagne, “A cost-effective web-
based teaching file system,” J. Digit. Imag., vol. 17, no. 2, pp. 87–91, Jun.
2004.

[55] E. Weinberger, R. Jakobovits, and M. Halsted, “MyPACS.net: A web-
based teaching file authoring tool,” Amer. J. Roentgenol., vol. 183, no. 3,
pp. 679–582, Sep. 2002.

[56] A. Rosset, O. Ratib, A. Geissbuhler, and J. P. Valle, “Integration of a
multimedia teaching and reference database in a PACS environment,”
Radiographics, vol. 22, no. 6, pp. 1567–1577, 2002.

[57] G. B. Bell and A. Sethi, “Matching records in a national medical patient
index,” Commun. ACM, vol. 44, no. 9, pp. 83–88, 2001.

[58] A. A. Bui, R. K. Taira, J. D. N. Dionisio, D. R. Aberle, S. El-Saden, and
H. Kangarloo, “Evidence-based radiology: Requirements for electronic
access,” Acad. Radiol., vol. 9, pp. 662–669, Jun. 2002.

[59] A. A. Bui, R. K. Taira, D. Goldman, J. D. N. Dionisio, D. R. Aberle,
S. El-Saden, J. Sayre, T. Rice, and H. Kangarloo, “Effect of an imaging-
based streamlined electronic health care process on quality and costs,”
Acad. Radiol., vol. 11, no. 1, pp. 13–20, Jan. 2004.

[60] Free Software Foundation (1999, Feb.). Gnu Lesser General Public Li-
cense. [Online]. Available: http://www.gnu.org/∼copyleft/lesser.html

[61] E. S. Raymond (2000, Sep.). The Cathedral and the Bazaar.
[Online]. Available: http://www.catb.org/∼esr/writings/cathedral-bazaar-/
cathedral-bazaar

[62] K. Johnson (2001, Jun.). A descriptive process model for open
source software development, M.Sc. thesis Dep. Comput. Sci. Univ.
Calgary. [Online]. Available: http://sern.ucalgary.ca/students/theses-
/KimJohnson/toc.htm

[63] S. Santini and A. Gupta, “The role of Internet imaging in the Biomedical
Informatics Research Network,” in Proc SPIE, 2003, vol. 5018, Internet
Imaging IV, pp. 99–110.

[64] B. G. Beckerman and M. D. Schnall, “Digital information management:
A progress report on the National Digital Mammography Archive,” Proc
SPIE, 2002, vol. 4615, Biomedical Diagnostic, Guidance, and Surgical-
Assist Systems IV, pp. 98–108,

[65] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin,
and A. Yu, “Mariposa: A wide-area distributed database system,” VLDB
J., vol. 5, pp. 48–63, 1996.

[66] N. Sarshar, P. O. Boykin, and V. P. Roychowdhury, “Percolation search
in power law networks: Making unstructured peer-to-peer networks scal-
able,” in Proc IEEE 4th Int. Conf. Peer-to-Peer Computing (P2P 2004),
pp. 2–9.

[67] S. T. C. Wong, K. Soo Hoo, R. C. Knowlton, K. D. Laxer, X. Cao,
R. A. Hawkins, W. A. Dillon, and R. L. Arenson, “Design and application
of a multimodality image data warehouse framework,” J. Amer. Med.
Inform. Assoc., vol. 9, no. 3, pp. 239–254, 2002.

[68] R. K. Taira, A. A. Bui, and H. Kangarloo, “Identification of patient name
references within medical documents using semantic selectional restric-
tions,” in Proc. AMIA Fall Symp., 2002, pp. 757–761.

[69] H. Müller, N. Michoux, D. Bandon, and A. Geissbuhler, “A review of
content-based image retrieval systems in medicine: Clinical benefits and
future directions,” Int. J. Med. Inform., vol. 73, pp. 1–23, 2004.

[70] E. H. Shortliffe, “The evolution of electronic medical records,” Acad.
Med., vol. 74, no. 4, pp. 414–419, 1999.

Alex A. T. Bui (M’03), photograph and biography not available at the time of
publication.

Craig Morioka, photograph and biography not available at the time of
publication.

BUI et al.: openSourcePACS: AN EXTENSIBLE INFRASTRUCTURE FOR MEDICAL IMAGE MANAGEMENT 109

John David N. Dionisio, photograph and biography not available at the time of
publication.

David B. Johnson, photograph and biography not available at the time of
publication.

Usha Sinha, photograph and biography not available at the time of publication.

Siamak Ardekani, photograph and biography not available at the time of
publication.

Ricky K. Taira, photograph and biography not available at the time of
publication.

Denise R. Aberle, photograph and biography not available at the time of
publication.

Suzie El-Saden, photograph and biography not available at the time of
publication.

Hooshang Kangarloo, photograph and biography not available at the time of
publication.

