UC San Diego UC San Diego Previously Published Works

Title

2-Oxoamide inhibitors of phospholipase A2 activity and cellular arachidonate release based on dipeptides and pseudodipeptides

Permalink https://escholarship.org/uc/item/1873f2m1

Journal Bioorganic & Medicinal Chemistry, 17(13)

ISSN 0968-0896

Authors

Barbayianni, Efrosini Stephens, Daren Grkovich, Andrej <u>et al.</u>

Publication Date

2009-07-01

DOI

10.1016/j.bmc.2009.03.069

Peer reviewed

NIH Public Access

Author Manuscript

Bioorg Med Chem. Author manuscript; available in PMC 2010 July 1

Published in final edited form as:

Bioorg Med Chem. 2009 July 1; 17(13): 4833–4843. doi:10.1016/j.bmc.2009.03.069.

2-Oxoamide inhibitors of phospholipase A₂ activity and cellular arachidonate release based on dipeptides and pseudodipeptides

Efrosini Barbayianni^a, Daren Stephens^b, Andrej Grkovich^b, Victoria Magrioti^a, Yuan-Hao Hsu^b, Naomi Cotton^b, Panagiotis Dolatzas^a, Dimitrios Kalogiannidis^a, Edward A. Dennis^{b,*}, and George Kokotos^{a,*}

a Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece

b Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601, U.S.A

Abstract

A series of 2-oxoamides based on dipeptides and pseudodipeptides were synthesized and their activities toward two human intracellular phospholipases A_2 (GIVA cPLA₂ and GVIA iPLA₂) and one human secretory phospholipase A_2 (GV sPLA₂) were evaluated. Derivatives containing a free carboxyl group are selective GIVA cPLA₂ inhibitors. A derivative based on the ethyl ester of an ether pseudodipeptide is the first 2-oxoamide, which preferentially inhibits GVIA iPLA₂. The effect of 2-oxoamides on the generation of arachidonic acid from RAW 264.7 macrophages was also studied and it was found that selective GIVA cPLA₂ inhibitors preferentially inhibited cellular arachidonic acid release; one pseudodipeptide gave an IC₅₀ value of 2 μ M.

Keywords

Dipeptides; Inhibitors; 2-Oxoamides; Phospholipase A2; Pseudodipeptides

1. Introduction

Phospholipase A_2 (PLA₂) enzymes catalyze the hydrolysis of the *sn*-2 ester bond of glycerophospholipids producing free fatty acids and lysophospholipids.^{1,2} The PLA₂ superfamily currently consists of fifteen groups and many subgroups of which a number of enzymes differ in primary sequence, structure and catalytic mechanism.¹ However, the three predominant types of phospholipase A_2 (PLA₂) found in human tissues are the cytosolic (such as the GIVA cPLA₂), the secreted (such as the GV sPLA₂), and the calcium-independent (such as the GVIA iPLA₂) enzymes. GIVA cPLA₂ preferentially hydrolyzes membrane phospholipids containing arachidonic acid (AA), which is converted to a variety of proinflammatory eicosanoids.³ Therefore, inhibiting AA release is of great therapeutic relevance for the development of new anti-inflammatory drugs. In many cases the activity of GIVA cPLA₂ has been shown to be dependent on or linked to the activity of sPLA₂.^{4–6} GVIA

^{*}Corresponding authors. For G.K. phone: +30 210 727 4462; fax: +30 210 727 4761; email: E-mail: gkokotos@chem.uoa.gr; For E.A.D.; phone: +1 858 534 3055; fax: +1 858 534 7390; e-mail: E-mail: edennis@ucsd.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

 $iPLA_2$ appears to be the primary phospholipase for basal metabolic functions within the cell, and perhaps has additional functions in specific cell types; however its role in inflammation is still unclear. 1,2,7,8

The various classes of intracellular and extracellular PLA₂ inhibitors have been summarized in recent review articles.^{9–11} Our laboratories have developed a novel class of GIVA cPLA₂ inhibitors designed to contain the 2-oxoamide functionality and a free carboxyl group. ^{12–20} 2-Oxoamides based on γ -aminobutyric acid (compound AX006, Figure 1) and the nonnatural amino acids γ -(*S*)-norleucine or δ -(*S*)-norleucine (compounds AX062 and AX109, Figure 1) are potent inhibitors of GIVA cPLA₂ presenting in vivo anti-inflammatory and analgesic activity.^{12,13,17} In addition, the 2-oxoamide ethyl ester derivative AX048 (Figure 1), which in vitro inhibits both GIVA cPLA₂ and GVIA iPLA₂, presents a potent antihyperalgesic effect.¹⁵ Most recently, we have reported that an amide based on γ -(*R*)-norleucine is a selective inhibitor of GV sPLA₂.²⁰

To extend our studies on the inhibition of phospholipase A₂ by 2-oxoamides, we synthesized a variety of 2-oxoamides based on dipeptides and pseudodipeptides and we studied their in vitro activity on three human PLA₂ classes: GIVA cPLA₂, GVIA iPLA₂, and GV sPLA₂. Furthermore, to further understand the role and specificity of 2-oxoamide inhibitors in cells, we studied the effect of various 2-oxoamides on arachidonic acid release from RAW 264.7 macrophages.

2. Results and discussion

2.1. Design of inhibitors

Dipeptides are considered to be δ -amino acid analogues, because of the distance between the N- and C-terminal groups (Figure 1). Ether pseudopeptide derivatives may be also considered δ -amino acid derivatives. Thus, in the present work we chose L-norleucine and L-valine as starting materials to synthesize a series of derivatives that contain the 2-oxoamide functionality and an amide group or ether group to replace the two methylenes of the δ -amino acid derivative. The replacement of the peptide bond with a suitable surrogate can increase the stability of peptides toward enzymatic hydrolysis, prolong the half-time of peptide action and improve the transport of peptides into cells.²¹ In addition, using amide bond isosters is a convenient way to elucidate the role of the amide unit in protein-ligand interactions and thus, to understand the structure-biological activity relationship. The methylene ether group constitutes an interesting amide bond surrogate, since the calculated $C_{\alpha}{}^{i}$ - $C_{\alpha}{}^{i+1}$ distance of Ψ [CH₂O] pseudodipeptides (3.7 Å) is almost the same as that in a dipeptide (3.8 Å).²² In the past, ether pseudopeptides have been studied such as renin²³ and cAMP-dependent protein kinase²⁴ inhibitors, as agonists of substance P,²⁵ and as analogues of the antidiuretic drug desmopressin.²⁶

2.2. Synthesis of inhibitors

N-Protected L-norleucine (**1a**) and L-valine (**1b**) were coupled with methyl and ethyl glycinate using 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide (WSCI)²⁷ as a condensing agent in the presence of 1-hydroxybenzotriazole (HOBt) (Scheme 1). Removal of the Boc group, followed by coupling with 2-hydroxyhexadecanoic acid yielded 2-hydroxyamides **3a–c**, which were oxidized either by the Dess-Martin method²⁸ or by the NaOCl/AcNH-TEMPO method^{29,30} to the target compounds **4a–c**. Following similar reactions, *tert*-butyl ester derivatives **8a,b** were prepared as depicted in Scheme 2, starting from Z-protected norleucine and valine. 2-Oxoamides **9a,b**, containing a free carboxyl group, were obtained by treatment of **8a,b** with trifluoroacetic acid.

The synthesis of pseudopeptide derivatives is described in Schemes 3 and 4. Boc-L-norleucinol (10), obtained by reduction of Boc-L-norleucine, 31,32 reacted with ethyl bromoacetate using sodium hydride in the presence of 18-crown- 6^{22} to produce ether 11 (Scheme 3). Removal of Boc group, followed by coupling and oxidation yielded 2-oxoamide 13. Pseudodipeptide derivatives 17 and 18 were synthesized by similar procedures (Scheme 4). However, for the synthesis of *tert*-butyl ester derivative the reaction of Z-L-norleucinol with *tert*-butyl bromoacetate was carried out under phase transfer conditions. 33,34

2.3. In vitro inhibition of GIVA cPLA₂, GVIA iPLA₂ and GV sPLA₂

All the inhibitors synthesized in this work were tested for inhibition of GIVA cPLA₂, GVIA iPLA₂ and GV sPLA₂ using mixed micellar assays. Details for the assays have been published previously. ¹², ¹³, ¹⁶, ¹⁷ The results of the inhibition are presented in Table 1 using either percent inhibition or $X_{I}(50)$ values. Initially, the percent inhibition of each PLA₂ at 0.091 mole fraction of inhibitor was determined. $X_{I}(50)$ values were estimated when the percent inhibition was higher than 90%. The $X_{I}(50)$ is the mole fraction of the inhibitor in the total substrate interface required to inhibit the enzyme by 50%. Data for the reference 2-oxoamide inhibitors AX006 and AX048 are included in Table 1 for comparison.

Dipeptide-based 2-oxoamides **9a** and **9b** containing a free carboxyl group inhibited GIVA cPLA₂ without affecting the activity of the other intracellular enzyme GVIA iPLA₂. This observation is in full agreement with our previous report, that amino acid-based 2-oxoamides containing a free carboxyl group are selective inhibitors of GIVA cPLA₂.^{16,17}

Methyl ester **4a** based on dipeptide Nle-Gly and *tert*-butyl ester **8b** based on dipeptide Val-Gly, inhibited both GIVA cPLA₂ and GVIA iPLA₂, showing a small preference for GIVA cPLA₂. The methyl ester **4b** based on dipeptide Val-Gly lost the activity against both GIVA cPLA₂ and GVIA iPLA₂. To the contrary, the *tert*-butyl ester **8a** and the ethyl ester **4c**, both based on Nle-Gly dipeptide presented potent inhibition of GVIA iPLA₂ with $X_{I}(50)$ values of 0.011 and 0.020, respectively. At the same time, both **8a** and **4c** inhibited very weakly GIVA cPLA₂ and GV sPLA₂.

A bioisosteric replacement of the amide bond in compounds **4c**, **8a** and **9a** by an ether group, resulted to the structurally related compounds **13**, **17** and **18**. Pseudodipeptide derivative **18**, selectively inhibited GIVA cPLA₂, as expected, due to the free carboxyl group. This derivative is the most potent inhibitor of GIVA cPLA₂ [$X_{I}(50) 0.017$] identified in the present work and its potency is comparable to that of the reference 2-oxoamide inhibitor AX006 [$X_{I}(50) 0.024$]. ¹⁵ Interestingly, both ethyl ester **13** and *tert*-butyl ester **17** preferentially inhibited GVIA iPLA₂. In particular, derivative **13** is a potent inhibitor of GVIA iPLA₂ with a $X_{I}(50)$ value of 0.017, while high mole fraction (0.091) of the inhibitor caused only 52% inhibition of GIVA cPLA₂.

Among the compounds tested in this study, only two esters (compounds **8b** and **13**) were able to reduce GV sPLA₂ activity (around 80% inhibition at 0.091 mole fraction). GV sPLA₂ utilizes a catalytic histidine to activate a water molecule as the nucleophile in phospholipid hydrolysis. Although there is no serine nucleophile in GV sPLA₂, the 2-oxoamides may resemble the substrate phospholipids or the transition state such that they would bind to the GV sPLA₂ active site and inhibit the enzyme.

Both the intracellular enzymes GIVA cPLA₂ and GVIA iPLA₂ share the same catalytic mechanism using active site serine as the nucleophilic residue. Thus, compounds designed to inhibit GIVA cPLA₂, may show cross reactivity with GVIA iPLA₂. Very interestingly, ethyl and *tert*-butyl esters **4c**, **8a**, **13** and **17**, based on Nle-Gly or the corresponding ether pseudodipeptide preferentially inhibit GVIA iPLA₂. Up to now, we have shown that 2-

oxoamide esters may inhibit both GIVA $cPLA_2$ and GVIA $iPLA_2$ either with similar potency or with a preference for GIVA $cPLA_2$.¹⁶ However, we identified for the first time in the course of the present work several 2-oxoamides, such as **8a** or **13**, which show higher inhibition against GVIA $iPLA_2$ than GIVA $cPLA_2$. It seems that the replacement of the amino acid unit of a 2oxoamide inhibitor by a dipeptide unit may shift the selectivity in favour of GVIA $iPLA_2$. Since there is a lack of potent and selective inhibitors for GVIA $iPLA_2$.³⁵ the findings of the present study may help in designing 2-oxoamides presenting selectivity for this particular PLA_2 .

2.4. Ex vivo inhibition of cellular arachidonic acid release

Arachidonic acid (AA) is the ideal metabolic indicator of GIVA cPLA₂ activity, since it is the product of GIVA cPLA₂-mediated catalysis. In addition to some of the new 2-oxoamides based on dipeptides and pseudodipeptides that were synthesized in this work, a series of potent 2-oxoamide in vitro inhibitors of GIVA cPLA₂, previously reported by us, 12,13,16,17,19,20 were further tested in a cellular ex vivo system to investigate whether they reduced cellular AA production. For this purpose, RAW 264.7 macrophages were preincubated with 25 μ M concentrations of the inhibitor prior to treatment of the cells with Kdo₂-Lipid A. Subsequently, AA release was quantitated from the supernatants.

The results of our studies for twenty one 2-oxoamides are summarized in Table 2. Note that some of the compounds led to an actual increase or activation of AA release which is not unusual in this kind of assay due to detergent or other non-specific effects. Those compounds giving an activation of AA release were not evaluated further. Compounds **18**, **19**, ¹² **20**, ¹² **25**, **26**, **30**¹⁶ and **35**, ¹⁷ which contain a free carboxyl group and are potent and selective inhibitors of GIVA cPLA₂, induce a significant reduction of AA release. Derivatives **26** and **30**, based on γ -norleucine, cause the highest inhibition percentage in AA release. Both strongly inhibit GIVA cPLA₂. Comparison between compounds **20** and **26** indicates the importance of the long aliphatic chain. Compound **19**, based on γ -aminobutyric acid and compound **25**, based on γ -leucine, cause significant inhibition, though to a lesser extent, of AA production. Moderate inhibitors of GIVA cPLA₂ result to a lower inhibition of AA release (compounds **21**,17 **28**²⁰). Compound **35**, ¹⁷ a δ -norleucine derivative, and compound **18**, based on an pseudodipeptide, which also can be considered as a δ -amino acid analogue, lead to a considerable AA reduction in cells. Both molecules are strong inhibitors of GIVA cPLA₂.

Although production of arachidonic acid can be catalyzed by other phospholipases as well, such as GVIA iPLA₂ and GV sPLA₂, most of the non-selective inhibitors of the three phospholipases tested here, did not show a significant inhibitory effect on AA release. Compounds **23**,¹⁷ **24**,¹⁵ **27**,²⁰ **29**,¹⁶ **31**²⁰ and **36**,²⁰ carry an esterified carboxyl group. In compound **32**,¹⁹ the ester group has been replaced by a sulfonamide group. They all inhibit GIVA cPLA₂ to a high extent, though not selectively, since they inhibit also both GVIA iPLA₂ and GV sPLA₂.

Dipeptide inhibitor **8b** reduced the cellular release of AA by 30%, while derivative **18** reduced AA production by 68%. Interestingly, the 2-oxoamide inhibitor **18**, which contains a free carboxyl group, leads to more than double the AA release inhibition, indicating the importance of selectivity of an inhibitor against GIVA cPLA₂.

2.5. IC₅₀ values for arachidonic acid inhibition

Dose response curves were measured for the seven synthetic inhibitors that reduced AA release the most (see Table 2) in order to calculate the IC_{50} values. All of these contained free carboxylic acids and were specific for GIVA cPLA₂. The IC_{50} values for these seven compounds are summarized in Table 3. The individual dose response curve for the inhibition

of AA release from RAW 264.7 cells stimulated with Kdo₂-Lipid A in the presence of **18** is depicted in Figure 1. Inhibitors **19, 25, 26** and **30** all display IC₅₀ values of approximately 25 μ M whereas **20, 35** and **18** display values of 10, 7 and 2 μ M, respectively. Interestingly, inhibitors **35** and **18**, which contain the carboxylic acid functional group spaced at the δ position relative to the 2-oxoamide moiety, demonstrated the lowest IC₅₀ values at 7 and 2 μ M, respectively. In contrast, the five γ linked inhibitors, **19, 20, 25, 26** and **30**, all displayed higher IC₅₀ values at 25, 10, 25, 25 and 25 μ M. These data suggest that inhibitors with δ structural spacing display more effective AA release inhibition than γ structural spacing within this inflammatory cellular model. Of course, this specificity may relate to the ability of the compound to be taken up by the cell and other factors, but these results demonstrate that the oxoamides are able to inhibit within the cellular milieu.

3. Conclusions

In conclusion, we have synthesized new 2-oxoamides based on dipeptides and pseudodipeptides and we have confirmed that derivatives containing a free carboxyl group are selective GIVA cPLA₂ inhibitors and also preferentially inhibit AA release intracellularly. 2-Oxoamides ethyl and *tert*-butyl esters, based on the dipeptide Nle-Gly or the corresponding ether pseudodipeptide preferentially inhibit the other major intracellular enzyme GVIA iPLA₂. Three of them are potent inhibitors of GVIA iPLA₂ with *X*_I(50) values between 0.011–0.020. We demonstrated that selective GIVA cPLA₂ inhibitors inhibit AA release in RAW 264.7 macrophages and a 2-oxoamide based on a pseudodipeptide inhibits AA release with an IC₅₀ value of 2 μ M.

4. Experimental Section

4.1. General

Melting points were determined on a Buchi 530 apparatus and are uncorrected. Specific rotations were measured at 25 °C on a Perkin-Elmer 343 polarimeter using a 10 cm cell. NMR spectra were recorded on a Varian Mercury (200 MHz) spectrometer. All amino acid derivatives were purchased from Fluka Chemical Co. Electron spray ionization (ESI) mass spectra were recorded on a Finnigan, Surveyor MSQ Plus spectrometer. TLC plates (silica gel 60 F254) and silica gel 60 (70–230 or 230–400 mesh) for column chromatography were purchased from Merck. Visualization of spots was effected with UV light and/or phosphomolybdic acid and/or ninhydrin, both in EtOH stain. THF was dried by standard procedures and stored over molecular sieves or Na. All other solvents and chemicals were reagent grade and used without further purification. Inhibitors **25** and **26** were prepared according to procedures described in the literature.^{13,17}

4.2. Synthesis of 2-Oxoamide Inhibitors

4.2.1. General method for the coupling of 2-hydroxy-hexadecanoic acid with amino components—To a stirred solution of 2-hydroxy-hexadecanoic acid (0.27 g, 1.0 mmol) and hydrochloride amino component (1.0 mmol) in CH_2Cl_2 (10 mL), Et_3N (0.3 mL, 2.2 mmol) and subsequently 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (WSCI) (0.21 g, 1.1 mmol) and 1-hydroxybenzotriazole (HOBt) (0.14 g, 1.0 mmol) were added at 0 °C. The reaction mixture was stirred for 1 h at 0 °C and overnight at room temperature. The solvent was evaporated under reduced pressure and EtOAc (20 mL) was added. The organic layer was washed consecutively with brine, 1N HCl, brine, 5% NaHCO₃, and brine, dried over Na₂SO₄ and evaporated under reduced pressure. The residue was purified by column-chromatography using CHCl₃–CHCl₃/MeOH 99:1 as eluent.

4.2.1.1. Methyl 2-((*S*)-2-(2-hydroxyhexadecanamido)hexanamido)acetate (mixture of diastereomers) (3a): Yield 68%; White solid; mp 78–80 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.53–7.45 (m, 1H), 7.40 (d, J = 8.6 Hz, 1H), 4.59–4.43 (m, 1H), 4.15–4.06 (m,1H), 4.02–3.94 (m, 2H), 3.71 (s, 3H), 1.89–1.53 (m, 4H), 1.23 (br s, 28H), 0.98–0.80 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 175.1 (174.8), 172.7 (172.5), 170.1 (170.0), 72.0 (71.9), 52.4 (52.7), 52.2, 41.1, 34.8 (34.6), 32.0 (31.8), 29.6, 29.5, 29.3, 27.6, 27.5, 25.0, 22.6, 22.3, 22.2, 14.0, 13.8. Anal. Calcd for C₂₅H₄₈N₂O₅: C, 65.75; H, 10.59; N, 6.13. Found: C, 65.49; H, 10.78; N, 6.01.

4.2.1.2. Methyl 2-((S)-2-(2-hydroxyhexadecanamido)-3-methylbutanamido)acetate

<u>(mixture of diastereomers) (3b):</u> Yield 73%; mp 109–111 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.34–7.15 (m, 2H), 4.43–4.27 (m, 1H), 4.10–3.96 (m, 3H), 3.75 (s, 3H), 2.24–2.08 (m, 1H), 1.87–1.63 (m, 2H), 1.26 (br s, 24H), 1.05–0.91 (m, 6H), 0.88 (t, *J* = 6.6 Hz, 3H). Anal. Calcd for C₂₄H₄₆N₂O₅: C, 65.12; H, 10.47; N, 6.33. Found: C, 64.98; H, 10.68; N, 6.18.

4.2.1.3. Ethyl 2-((*S*)-2-(2-hydroxyhexadecanamido)hexanamido)acetate (mixture of diastereomers) (3c): Yield 64%; White solid; mp 77–79 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.31–7.07 (m, 2H), 4.59–4.42 (m, 1H), 4.25–4.06 (m, 3H), 4.02–3.95 (m, 2H), 1.97–1.51 (m, 4H), 1.24 (br s, 31H), 0.97–0.80 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 174.9 (174.5), 172.4 (172.1), 169.7 (169.5), 72.1 (72.0), 61.5, 52.5 (52.7), 41.3, 34.6 (34.8), 31.9, 29.7, 29.4, 29.3, 27.6, 25.0, 22.7, 22.3, 14.1, 13.9. Anal. Calcd for C₂₆H₅₀N₂O₅: C, 66.35; H, 10.71; N, 5.95. Found: C, 66.19; H, 10.99; N, 5.89.

4.2.1.4. *tert*-Butyl 2-((*S*)-2-(2-hydroxyhexadecanamido)hexanamido)acetate (mixture of diastereomers) (7a): Yield 69%; White solid; mp 50–52 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.37–7.26 (m, 1H), 7.23–7.08 (m, 1H), 4.58–4.45 (m, 1H), 4.15–4.03 (m, 1H), 3.97–3.81 (m, 2H), 1.98–1.52 (m, 4H), 1.44 (s, 9H), 1.24 (br s, 28H), 0.98–0.79 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 174.9 (174.6), 172.4 (172.1), 168.6 (168.7), 82.2, 72.1 (72.0), 52.9 (52.5), 42.0, 34.8 (34.6), 32.1, 31.8, 29.6, 29.5, 29.3, 27.9, 27.6, 27.5, 25.0, 22.6, 22.3, 22.2, 14.0, 13.8. Anal. Calcd for C₂₈H₅₄N₂O₅: C, 67.43; H, 10.91; N, 5.62. Found: C, 67.28; H, 11.08; N, 5.47.

4.2.1.5. tert-Butyl 2-((S)-2-(2-hydroxyhexadecanamido)-3-methylbutanamido)acetate

(mixture of diastereomers) (7b): Yield 81%; White solid; mp 81–83 °C; ¹H NMR (200 MHz, CDCl₃) δ 7.25 (d, J = 8.8 Hz, ½H), 7.16 (d, J = 8.8 Hz, ½H), 6.96 (t, J = 4.8 Hz, ½H), 6.88 (t, J = 4.8 Hz, ½H), 4.34–4.22 (m, 1H), 4.18–4.03 (m, 1H), 3.92–3.81 (m, 2H), 2.23–2.05 (m, 1H), 1.84–1.48 (m, 2H), 1.42 (s, 9H), 1.21 (br s, 24H), 0.93 (t, J = 5.8 Hz, 6H), 0.84 (t, J = 6.6 Hz, 3H); ¹³C (50 MHz, CDCl₃) NMR δ 174.7 (175.0), 171.7 (171.4), 168.8 (168.6), 82.4, 72.3 (72.0), 58.1 (57.9), 42.0, 34.9 (34.6), 31.9, 30.8 (30.7), 29.7, 29.6, 29.4, 29.3, 28.0, 25.0, 22.6, 19.3, 18.1, 14.1. Anal. Calcd for C₂₇H₅₂N₂O₅: C, 66.90; H, 10.81; N, 5.78. Found: C, 66.65; H, 10.98; H, 5.62.

4.2.1.6. Ethyl 2-((S)-2-(2-hydroxyhexadecanamido)hexyloxy)acetate (mixture of

<u>diastereomers</u>) (12): Yield 69%; Waxy white solid; ¹H NMR (200 MHz, CDCl₃) δ 7.03–6.92 (m, 1H), 4.25–3.95 (m, 6H), 3.65–3.42 (m, 2H), 1.83–1.53 (m, 4H), 1.25 (br s, 31H), 0.95–1.79 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 174.2 (173.9), 170.8 (170.7), 73.2 (73.1), 72.2 (71.8), 68.0 (68.1), 61.0, 48.5 (48.8), 34.9 (34.7), 31.8, 31.0, 29.6, 29.5, 29.4, 29.3, 28.1, 24.9, 24.8, 22.6, 22.5, 14.0, 13.9. Anal. Calcd for C₂₆H₅₁NO₅: C, 68.23; H, 11.23; N, 3.06. Found: C, 68.04; H, 11.34; N, 2.91.

4.2.1.7. *tert*-Butyl 2-((*S*)-2-(2-hydroxyhexadecanamido)hexyloxy)acetate (mixture of diastereomers) (16): Yield 77%; Oil; ¹H NMR (200 MHz, CDCl₃) δ 7.05 (d, *J* = 8.8 Hz, 1H), 4.17–3.96 (m, 2H), 3.93 (s, 2H), 3.73 (br s, 1H), 3.57 (dd, *J*₁ = 9.6 Hz, *J*₂ = 3.6 Hz, 1H), 3.45 (dd, *J*₁ = 8.8 Hz, *J*₂ = 3.6 Hz, 1H), 1.90–1.55 (m, 4H), 1.45 (s, 9H), 1.23 (br s, 28H), 0.98–1.78 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 174.2 (174.0), 170.1, 82.0, 73.2, 72.2 (71.7), 68.4

(68.6), 48.7 (48.9), 34.7 (35.0), 31.9, 31.0, 29.6, 29.5, 29.3, 28.2, 28.0, 24.9, 24.8, 22.6, 22.5, 14.0, 13.9. Anal. Calcd for C₂₈H₅₅NO₅: C, 69.23; H, 11.41; N, 2.88. Found: C, 69.01; H, 11.59; N, 2.73.

4.2.2. General method for the oxidation of 2-hydroxy-amides. Method A—To a solution of 2-hydroxy-amide (1 mmol) in dry CH_2Cl_2 (10 mL) Dess-Martin periodinane was added (0.64 gr, 1.5 mmol) and the mixture was stirred for 1 h at room temperature. The organic solution was washed with 10% aqueous NaHCO₃, dried over Na₂SO₄ and the organic solvent was evaporated under reduced pressure. The residue was purified by column-chromatography using CHCl₃ as eluent.

4.2.2.1. (*S*)-Methyl 2-(2-(2-oxohexadecanamido)hexanamido)acetate (4a): Yield 85%; White solid; mp 65–67 °C; $[\alpha]_D = -21.8 (c \ 0.5 \ CHCl_3)$; ¹H NMR (200 MHz, CDCl₃) δ 7.50 (d, *J* = 8.4 Hz, 1H), 6.74 (t, *J* = 5.4 Hz, 1H), 4.49–4.37 (m, 1H), 4.17–3.95 (m, 2H), 3.75 (s, 3H), 2.89 (t, *J* = 7.6 Hz, 2H), 2.05–1.47 (m, 4H), 1.24 (br s, 26H), 0.97–0.81 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 198.3, 170.9, 170.0, 160.0, 53.0, 52.4, 41.1, 36.8, 31.9, 31.8, 29.6, 29.5, 29.4, 29.3, 29.0, 27.4, 23.0, 22.6, 22.3, 14.1, 13.8; MS (ESI): *m/z* (%): 477 (77) [M +Na]⁺; Anal. Calcd for C₂₅H₄₆N₂O₅: C, 66.04; H, 10.20; N, 6.16. Found: C, 66.19; H, 10.13; N, 6.21.

4.2.2.2. (*S*)-Ethyl 2-(2-(2-oxohexadecanamido)hexanamido)acetate (4c): Yield 76%; White solid; mp 63–65 °C; $[\alpha]_D = -20.8 (c \ 0.5 \ CHCl_3)$; ¹H NMR (200 MHz, CDCl₃) δ 7.51 (d, *J* = 8.4 Hz, 1H), 6.76 (t, *J* = 5.2, 1H), 4.50–4.36 (m, 1H), 4.19 (q, *J* = 7 Hz, 2H), 4.12–3.91 (m, 2H), 2.88 (t, *J* = 7.4 Hz, 2H), 2.05–1.45 (m, 4H), 1.26 (br s, 29H), 0.95–0.80 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 198.3, 170.9, 169.5, 160.1, 61.6, 53.0, 41.3, 36.8, 32.0, 31.9, 29.6, 29.5, 29.4, 29.3, 29.0, 27.5, 23.0, 22.6, 22.3, 14.1, 13.8; MS (ESI): *m/z* (%): 491 (100) [M+Na]⁺, 469 (55) [M+]⁺; Anal. Calcd for C₂₆H₄₈N₂O₅: C, 66.63; H, 10.32; N, 5.98. Found: C, 66.58; H, 10.39; N, 5.91.

4.2.2.3. (*S*)-*tert*-**Butyl 2**-(**2**-(**2**-**oxohexadecanamido**)**hexanamido**)**acetate** (**8a**): Yield 85%; White solid; mp 38–39 °C; $[\alpha]_D = -17.2$ (*c* 0.5 CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 1H), 6.57 (t, *J* = 5 Hz, 1H), 4.48–4.35 (m, 1H), 4.03–3.80 (m, 2H), 2.89 (t, *J* = 8 Hz, 2H), 2.02–1.52 (m, 4H), 1.45 (s, 9H), 1.24 (br s, 26H), 0.97–0.79 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 198.3, 170.7, 168.5, 160.1, 82.4, 53.1, 42.0, 36.8, 32.0, 31.9, 29.6, 29.5, 29.4, 29.3, 29.0, 28.0, 27.5, 23.1, 22.6, 22.3, 14.1, 13.8; MS (ESI): *m*/*z* (%): 519 (100) [M +Na]⁺, 497 (32) [M+H]⁺; Anal. Calcd for C₂₈H₅₂N₂O₅: C, 67.70; H, 10.55; N, 5.64. Found: C, 67.58; H, 10.73; N, 5.58.

4.2.2.4. (*S*)-Ethyl 2-(2-(2-oxohexadecanamido)hexyloxy)acetate (13): Yield 88%; White solid; mp 41–43 °C; $[\alpha]_D = -8.4$ (*c* 0.5 CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.29 (d, J = 9.6 Hz, 1H), 4.21 (q, J = 7.4 Hz, 2H), 4.06 (s, 2H), 4.05–3.91 (m, 1H), 3.64 (dd, $J_I = 9.6$ Hz, $J_2 = 4.0$ Hz, 1H), 3.52 (dd, $J_I = 9.4$ Hz, $J_2 = 3.8$ Hz, 1H), 2.90 (t, J = 6.6 Hz, 2H), 1.71–1.48 (m, 4H), 1.24 (br s, 29H), 0.96–0.80 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 199.2, 170.3, 159.9, 72.5, 68.2, 60.9, 49.4, 36.8, 31.9, 30.9, 29.6, 29.5, 29.4, 29.3, 29.0, 28.0, 23.1, 22.6, 22.4, 14.1, 13.9; MS (ESI): m/z (%): 478 (100) [M+Na]⁺; Anal. Calcd for C₂₆H₄₉NO₅: C, 68.53; H, 10.84; N, 3.07. Found: C, 68.65; H, 10.71; N, 3.12.

4.2.2.5. (*S*)-*tert*-Butyl 2-(2-(2-oxohexadecanamido)hexyloxy)acetate (17): Yield 93%; white solid; Low mp; $[\alpha]_D = -10.8 (c \ 0.5 \ CHCl_3)$; 1H NMR (200 MHz, CDCl₃) δ 7.26 (d, $J = 8.8 \ Hz$, 1H), 4.03–3.85 (m, 3H), 3.61 (dd, $J_I = 9.4 \ Hz$, $J_2 = 4.0 \ Hz$, 1H), 3.49 (dd, $J_I = 9.4 \ Hz$, $J_2 = 4.0 \ Hz$, 1H), 2.89 (t, $J = 7.2 \ Hz$, 2H), 1.69–1.48 (m, 4H), 1.45 (s, 9H), 1.23 (br s, 26H), 0.96–0.79 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 199.2, 169.4, 160.0, 81.7, 72.4, 68.7, 49.4,

36.7, 31.8, 31.0, 29.6, 29.5, 29.4, 29.3, 29.0, 28.0, 23.1, 22.6, 22.4, 14.0, 13.9; MS (ESI): *m*/*z* (%): 506 (57) [M+Na]⁺; Anal. Calcd for C₂₈H₅₃NO₅: C, 69.52; H, 11.04; N, 2.90. Found: C, 69.57; H, 11.08; N, 2.83.

4.2.3. General method for the oxidation of 2-hydroxy-amides. Method B—To a solution of 2-hydroxy-amide (1.0 mmol) in a mixture of toluene (3 mL) and EtOAc (3 mL) a solution of NaBr (0.11 g, 1.1 mmol) in water (0.5 mL) was added followed by AcNH-TEMPO (2.2 mg, 0.01 mmol). To the resulting biphasic system, which was cooled at 0 °C, an aqueous solution of 0.35 M NaOCl (3.1 mL, 1.1 mmol) containing NaHCO₃ (0.25 g, 3 mmol) was added dropwise under vigorous stirring, at 0 °C over a period of 1 h. After the mixture had been stirred for a further 15 min at 0 °C, EtOAc (10 mL) and H₂O (10 mL) were added. The aqueous layer was separated and washed with EtOAc (20 mL). The combined organic layers were washed consecutively with 5% aqeous citric acid (10 mL) containing KI (0.04 g), 10% aqueous Na₂S₂O₃ (10 mL), and brine and dried over Na₂SO₄. The solvents were evaporated under reduced pressure and the residue was purified by column-chromatography using CHCl₃ as eluent.

4.2.3.1. (S)-Methyl 2-(3-methyl-2-(2-oxohexadecanamido)butanamido)acetate (4b):

Yield 73%; White solid; mp 118–119 °C; $[\alpha]_D = -20.9 (c \ 1 \text{ CHCl}_3)$; ¹H NMR (200 MHz, CDCl₃) δ 7.46 (d, J = 9.2 Hz, 1H), 6.53–6.37 (m, 1H), 4.24 (dd, $J_I = 6.6 \text{ Hz}$, $J_2 = 9.2 \text{ Hz}$, 1H), 4.05 (dd, $J_I = 5.2$, $J_2 = 9.6 \text{ Hz}$, 2H), 3.77 (s, 3H), 2.91 (t, J = 7.4 Hz, 2H), 2.22 (m, 1H), 1.61 (m, 2H), 1.26 (br s, 22H), 0.98 (t, J = 5.8 Hz, 6H), 0.88 (t, J = 6.6 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 198.3, 170.9, 170.0, 160.2, 58.6, 52.5, 41.1, 36.8, 31.9, 31.0, 29.6, 29.4, 29.3, 29.0, 23.1, 22.7, 19.2, 18.0, 14.1; Anal. Calcd for C₂₄H₄₄N₂O₅: C, 65.42; H, 10.07; N, 6.36. Found: C, 65.55; H, 9.97; N, 6.41.

4.2.3.2. (S)-tert-Butyl 2-(3-methyl-2-(2-oxohexadecanamido)butanamido)acetate (8b):

Yield 90%; White solid; mp 58–61 °C; $[\alpha]_D = -17.2$ (*c* 1 CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.50 (d, J = 8.8 Hz, 1H), 6.59–6.45 (m, 1H), 4.34–3.18 (m, 1H), 4.01 (dd, $J_I = 18.2$ Hz, $J_2 = 5.4$ Hz, 1H), 3.85 (dd, $J_I = 18.2$ Hz, $J_2 = 4.8$ Hz, 1H), 2.89 (t, J = 6.8 Hz, 2H), 2.28–2.19 (m, 1H), 1.64–1.48 (m, 2H), 1.45 (s, 9H), 1.24 (br s, 22H), 0.96 (t, J = 5.8 Hz, 6H), 0.87 (t, J = 6.6 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 198.3, 170.1, 168.5, 160.2, 82.4, 58.5, 41.9, 36.8, 31.9, 31.1, 29.6, 29.5, 29.4, 29.3, 29.0, 28.0, 23.1, 22.6, 19.2, 18.0, 14.1; MS (FAB): m/z (%): 483 (24) [M+H]⁺; Anal. Calcd for C₂₇H₅₀N₂O₅: C, 67.18; H, 10.44; N, 5.80. Found: C, 67.31; H, 10.39; N, 5.68.

4.2.4. General method for the cleavage of *tert***-butyl protecting group**—A solution of the *tert*-butyl ester derivative (1 mmol) in 50% TFA/CH₂Cl₂ (10 mL) was stirred for 1h at room temperature. The organic solvent was evaporated under reduced pressure. The residue was purified by recrystallization [EtOAc/petroleum ether (bp 40–60 °C)].

4.2.4.1. (S)-2-(2-(2-Oxohexadecanamido)hexanamido)acetic acid (9a): Yield 61%;

Colorless oil; ¹H NMR (200 MHz, CDCl₃) δ 7.66 (d, J = 8.8 Hz, 1H), 7.20-7.05 (m, 1H), 4.60-4.43 (m, 1H), 4.06 (d, J = 3.6 Hz, 2H), 2.88 (t, J = 3.8 Hz, 2H), 1.83–1.59 (m, 4H), 1.25 (br s, 26H), 0.89 (t, J = 8.0 Hz, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 198.1, 172.6, 171.4, 160.1, 53.0, 41.4, 36.9, 32.1, 31.9, 29.6, 29.4, 29.3, 29.0, 27.5, 23.0, 22.7, 22.3, 14.1, 13.8; MS (ESI): m/z (%): 442 (100) [M+H]⁺; Anal. Calcd for C₂₄H₄₄N₂O₅: C, 65.42; H, 10.07; N, 6.36. Found: C, 65.19; H, 10.32; N, 6.25.

4.2.4.2. (*S*)-2-(3-Methyl-2-(2-oxohexadecanamido)butanamido)acetic acid (9b): Yield 68%; White solid; mp 87–89 °C; $[\alpha]_D = -1.8 (c \ 0.5 \ CHCl_3)$; ¹H NMR (200 MHz, CDCl₃) δ 7.71 (d, *J* = 9 Hz, 1H), 7.21–7.06 (m, 1H), 4.45–4.34 (m, 1H), 4.18–4.01 (m, 2H), 3.03–2.72

(m, 2H), 2.25–2.04 (m, 1H), 1.68–1.45 (m, 2H), 1.25 (br s, 22H), 0.97 (t, J = 5.8 Hz, 6H), 0.88 (t, J = 6.6 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 198.0, 172.3, 170.9, 160.4, 58.6, 41.3, 36.9, 31.9, 31.1, 29.6, 29.4, 29.3, 29.0, 23.0, 22.7, 19.1, 18.1, 14.1; MS (ESI): m/z (%): 425 (100) [M–H]⁻; Anal. Calcd for C₂₃H₄₂N₂O₅: C, 64.76; H, 9.92; N, 6.57. Found: C, 64.65; H, 9.87; N, 6.63.

4.2.4.3. (*S*)-2-(2-(2-oxohexadecanamido)hexyloxy)acetic acid (18): Yield 88%; White solid; mp 64–66 °C; $[\alpha]_D = -5.2$ (*c* 0.5 CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.32 (d, J = 8.8 Hz, 1H), 4.14 (s, 2H), 4.07–3.95 (m, 1H), 3.66 (dd, $J_I = 9.6$ Hz, $J_2 = 4.8$ Hz, 1H), 3.55 (dd, $J_I = 9.6$ Hz, $J_2 = 3.6$ Hz, 1H), 2.90 (t, J = 7.4 Hz, 2H), 1.75–1.46 (m, 4H), 1.25 (br s, 26H), 0.98– 0.80 (m, 6H); ¹³C NMR (50 MHz, CDCl₃) δ 199.1, 174.6, 160.2, 72.9, 67.8, 49.5, 36.8, 31.9, 30.8, 29.6, 29.4, 29.3, 29.0, 28.0, 23.2, 22.6, 22.4, 14.1, 13.9; MS (ESI): m/z (%): 450 (100) [M+Na]⁺; Anal. Calcd for C₂₄H₄₅NO₅: C, 67.41, H, 10.61, N, 3.28. Found: C, 67.59, H, 10.64, N, 3.14.

4..5. General method for the synthesis of dipeptides—The dipeptides were prepared following the general method 4.2.1.

4.2.5.1. (*S*)-Methyl 2-(2-(*tert*-butoxycarbonylamino)hexanamido)acetate (2a). 38,39: Yield 65%; White solid; mp 95–96 °C; $[\alpha]_D = -17.8 (c \ 1 \text{ CHCl}_3)$; ¹H NMR (200 MHz, CDCl₃) δ 6.85–6.73 (m, 1H), 5.12 (d, *J* = 8.2 Hz, 1H), 4.22–4.07 (m, 1H), 4.03 (d, *J* = 5.6 Hz, 2H), 3.74 (s, 3H), 1.93–1.72 (m, 1H), 1.69–1.48 (m, 1H), 1.43 (s, 9H), 1.39–1.21 (m, 4H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 172.6, 170.1, 155.7, 80.0, 54.4, 52.3, 41.0, 32.2, 28.2, 27.6, 22.3, 13.9.

4.2.5.2. (*S*)-Methyl 2-(2-(*tert*-butoxycarbonylamino)-3-methylbutanamido)acetate (2b): Yield 73%; White solid; mp 104–106 °C; $[\alpha]_D = -15.7$ (*c* 1 CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 6.64 (m, 1H), 5.09 (d, *J* = 7.6 Hz, 1H), 4.06–3.96 (m, 3H), 3.76 (s, 3H), 2.19 (m, 1H), 1.42 (s, 9H), 0.99 (d, *J* = 7.0 Hz, 3H), 0.94 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 171.9, 170.1, 155.7, 80.0, 59.7, 52.3, 41.0, 30.8, 28.2, 19.2, 18.0. Anal. Calcd for C₁₃H₂₄N₂O₅: C, 54.15; H, 8.39; N, 9.72. Found: C, 53.92; H, 8.52; N, 9.61.

4.2.5.3. (*S*)-Ethyl 2-(2-(*tert*-butoxycarbonylamino)hexanamido)acetate (2c).⁴⁰: Yield 69%; Oil; $[\alpha]_D = -14.8 \ (c \ 1 \ CHCl_3)$; ¹H NMR (200 MHz, CDCl₃) δ 7.00–6.85 (m, 1H), 5.23 (d, *J* = 7.2 Hz, 1H), 4.22–4.05 (m, 3H), 4.02–3.93(m, 2H), 1.91–1.69 (m, 1H), 1.66–1.45 (m, 1H), 1.40 (s, 9H), 1.35–1.18 (m, 7H), 0.86 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 172.7, 169.6, 155.6, 79.8, 61.3, 54.3, 41.1, 32.3, 28.2, 27.5, 22.3, 14.0, 13.8.

4.2.5.4. (*S*)-*tert*-Butyl 2-(2-(benzyloxycarbonylamino)hexanamido)acetate (6a): Yield 64%; White solid; mp 80–82 °C; $[\alpha]_D = -8.4$ (*c* 0.5 CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.41–7.26 (m, 5H), 6.62–6.49 (m, 1H), 5.41 (d, *J* = 8.0 Hz, 1H), 5.12 (s, 2H), 4.29–4.11 (m, 1H), 3.92 (d, *J* = 4.6 Hz, 2H), 1.98–1.77 (m, 1H), 1.75–1.59 (m, 1H), 1.47 (s, 9H), 1.42–1.21 (m, 4H), 0.89 (t, *J* = 7 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 171.9, 168.7, 156.1, 136.2, 128.5, 128.1, 128.0, 82.3, 67.0, 54.9, 42.0, 32.4, 28.0, 27.5, 22.3, 13.8. Anal. Calcd for $C_{20}H_{30}N_2O_5$: C, 63.47; H, 7.99; N, 7.40. Found: C, 63.28; H, 8.15; H, 7.28.

4.2.5.5. (*S*)-*tert*-Butyl 2-(2-(benzyloxycarbonylamino)-3-methylbutanamido)acetate (6b): Yield 81%; White solid; mp 139–141 °C; $[\alpha]_D = -6.8 (c \ 0.5 \ CHCl_3)$; ¹H NMR (200 MHz, CDCl₃) δ 7.42–7.28 (m, 5H), 6.47–6.35 (m, 1H), 5.39 (d, $J = 8.6 \ Hz$, 1H), 5.12 (s, 2H), 4.11–4.00 (m, 1H), 4.99–3.83 (m, 2H), 2.28–2.05 (m, 1H), 1.47 (s, 9H), 0.99 (d, $J = 7.0 \ Hz$, 3H), 0.94 (d, $J = 7.0 \ Hz$, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 171.2, 168.6, 156.0, 136.1, 128.5,

128.2, 128.0, 82.4, 67.1, 60.3, 42.0, 31.0, 28.0, 19.2, 17.6. Anal. Calcd for $C_{19}H_{28}N_2O_5$: C, 62.62; H, 7.74; N, 7.69. Found: C, 62.39; H, 7.91; N, 7.55.

4.2.6. (S)-Ethyl 2-(2-(*tert*-butoxycarbonylamino)hexyloxy)acetate (11)—To as stirred solution of Boc-L-Nle-ol (0.50 g, 1.9 mmol) in dry THF (15 mL), cooled at 0 °C under nitrogen, NaH (0.05 g, 2.1 mmol) was added. The reaction mixture was stirred for 45 min at 0 °C, followed by addition of 18-crown-6 (0.25 g, 0.9 mmol) and subsequently a solution of ethyl bromoacetate (0.47 g, 2.8 mmol) in dry THF (4 mL) was added dropwise at 0 °C. The reaction mixture was stirred for 1 h at 0 °C and overnight at room temperature. The organic solvent was evaporated under reduced pressure and the residue was purified by column-chromatography using CHCl₃ as eluent. Yield 55%; Oil; $[\alpha]_D = -13.9$ (*c* 1 CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 4.85–4.78 (m, 1H), 4.17 (q, *J* = 7.4 Hz, 2H), 4.03 (s, 2H), 3.72–3.58 (m, 1H), 3.56–3.41 (m, 2H), 1.62–1.21 (m, 18H), 0.85 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 170.3, 155.6, 78.9, 73.3, 68.4, 60.7, 50.3, 31.5, 28.3, 28.1, 22.5, 14.1, 13.9. Anal. Calcd for C₁₅H₂₉NO₅: C, 59.38; H, 9.63; N, 4.62. Found: C, 59.16; H, 9.82; N, 4.51.

4.2.7 (S)-tert-Butyl 2-(2-(benzyloxycarbonylamino)hexyloxy)acetate (15)—To a stirred solution of Z-L-Nle-ol (0.20 g, 0.8 mmol) in benzene (0.8 mL), *tert*-butyl bromoacetate (0.47 g, 2.4 mmol) and subsequently aq. NaOH 50% (0.8 mL) and the phase transfer catalyst Bu₄NHSO₄ (0.07 g, 0.2 mmol) were added. The reaction mixture was vigorously stirred for 2 h. EtOAc (10 mL) and H₂O (10 mL) were added and the aqueous layer was separated and extracted with EtOAc (2×10 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The organic solvent was evaporated under reduced pressure and the residue was purified by column-chromatography using petroleum ether (bp 40–60 °C)/EtOAc 8:2 as eluent. Yield 74%; Oil; $[\alpha]_D = -12.2$ (*c* 1 CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.34–7.22 (m, 5H), 5.30 (d, *J* = 8 Hz, 1H), 5.06 (s, 2H), 3.91 (s, 2H), 3.80–3.62 (m, 1H), 3.55 (dd, *J*₁ = 9.0 Hz, *J*₂ = 4.0 Hz, 1H), 3.46 (dd, *J*₁ = 9.2 Hz, *J*₂ = 4.2 Hz, 1H), 1.62–1.45 (m, 2H), 1.43 (s, 9H), 1.37–1.21 (m, 4H), 0.85 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (50 MHz, CDCl₃) δ 169.5, 156.0, 136.6, 128.3, 128.0, 127.8, 81.5, 73.0, 68.7, 66.3, 50.9, 31.4, 28.0, 27.9, 22.4, 13.8. Anal. Calcd for C₂₀H₃₁NO₅: C, 65.73; H, 8.55; N, 3.83. Found: C, 65.52; H, 8.71; H, 3.70.

4.3. In vitro PLA₂ Assays

Phospholipase A_2 activity was determined using the previously described modified Dole assay ¹² with buffer and substrate conditions optimized for each enzyme as described previously ¹², ¹³, ¹⁶, ¹⁷: (i) GIVA cPLA₂ substrate mixed-micelles were composed of 400 μ M Triton X-100, 97 μ M PAPC, 1.8 μ M ¹⁴C-labeled PAPC, and 3 μ M PIP₂ in buffer containing 100 mM HEPES pH 7.5, 90 μ M CaCl₂, 2 mM DTT and 0.1 mg/ml BSA; (ii) GVI iPLA₂ substrate mixed-micelles were composed of either (a) 400 μ M Triton X-100, 99 μ M DPPC, and 1.5 μ M ¹⁴C-labeled DPPC in buffer containing 200 mM HEPES pH 7.0, 1 mM ATP, 2 mM DTT and 0.1 mg/ml BSA or (b) 400 μ M Triton X-100, 98.3 μ M PAPC, and 1.7 μ M ¹⁴C-labeled PAPC in buffer containing 100 mM HEPES pH 7.5, 2 mM ATP and 4 mM DTT; and (iii) GV sPLA₂ substrate mixed-micelles were composed of 400 μ M Triton X-100, 99 μ M DPPC, and 1.5 μ M ¹⁴C-labeled DPPC in buffer containing 50 mM Tris pH 8.0 and 5 mM CaCl₂.

4.2. In vitro PLA₂ Inhibition Studies

Initial screening of compounds at 0.091 mole fraction inhibitor in mixed-micelles was carried out. We considered compounds displaying 25% or less inhibition to have no inhibitory affect (designated N.D.). We report average percent inhibition (and standard error, n = 3) for compounds displaying more than 25% and less than 90% enzyme inhibition. If the percent inhibition was greater than 90%, we determined its $X_{I}(50)$ by plotting percent inhibition vs. inhibitor molar fraction (7 points; typically 0.005 to 0.091 mole fraction). Inhibition curves

were modeled in Graphpad Prism using either a linear (x, y intercept = 0) or non-linear regression (one-site binding model - hyperbola, BMAX = 100) to calculate the reported $X_{I}(50)$ and associated error values.

4.5. Inhibition of arachidonic acid release RAW 264.7 cell culture and AA quantitation

RAW 264.7 macrophages were maintained in a humidified atmosphere at 37 °C with 5% CO_2 , as described elsewhere.³⁶ The cells were cultured in DMEM media that was supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 units/mL penicillin, 100 µg/ml streptomycin, and non-essential amino acids. The cells were plated at a confluency of 2×10^6 cells per well in 6 well tissue culture plates and allowed to adhere overnight. Inhibitors were added to the medium 30 min before Kdo₂-Lipid A was added and the supernatants were collected at 1 hour following stimulation. Subsequently, AA was extracted from the supernatants and quantitated by HPLC-MS, as described elsewhere.^{36,37} AA release levels were normalized to pmol AA release per million cells though DNA quantitation using the Broad Range DNA Quant-Kit (Invitrogen). IC 50 values were determined by estimating the concentration of inhibitor.

Acknowledgments

The project is co-funded by the European Social Fund and National Resources (EPEAEK II) (G.K.) and by NIH Grants GM 20,501, GM 64,611, and U54 GM069338 (E.A.D).

References

- 1. Schaloske RH, Dennis EA. Biochim Biophys Acta 2006;1761:1246. [PubMed: 16973413]
- 2. Kudo I, Murakami M. Prostag Oth Lipid M 2002;68-69:3.
- 3. Leslie CC. Prostaglandins Leukot Essent Fatty Acids 2004;70:373. [PubMed: 15041029]
- Mounier CM, Ghomashchi F, Lindsay MR, James S, Singer AG, Parton RG, Gelb MH. J Biol Chem 2004;279:25024. [PubMed: 15007070]
- Satake Y, Diaz BL, Balestrieri B, Lam BK, Kanaoka Y, Grusby MJ, Arm JP. J Biol Chem 2004;279:16488. [PubMed: 14761945]
- 6. Shirai Y, Balsinde J, Dennis EA. Biochim Biophys Acta 2005;1735:119. [PubMed: 15967714]
- 7. Winstead MV, Balsinde J, Dennis EA. Biochim Biophys Acta 2000;1488:28. [PubMed: 11080674]
- 8. Balsinde J, Balboa MA. Cellular Signalling 2005;17:1052. [PubMed: 15993747]
- 9. Magrioti V, Kokotos G. Anti-Inflammatory Anti-Allergy Agents Med Chem 2006;5:189.
- 10. Lehr M. Anti-Inflammatory Anti-Allergy Agents Med Chem 2006;5:149.
- 11. Reid RC. Curr Med Chem 2005;12:3011. [PubMed: 16378502]
- Kokotos G, Kotsovolou S, Six DA, Constantinou-Kokotou V, Beltzner CC, Dennis EA. J Med Chem 2002;45:2891. [PubMed: 12086476]
- Kokotos G, Six DA, Loukas V, Smith T, Constantinou-Kokotou V, Hadjipavlou-Litina D, Kotsovolou S, Chiou A, Beltzner CC, Dennis EA. J Med Chem 2004;47:3615. [PubMed: 15214789]
- Constantinou-Kokotou V, Peristeraki A, Kokotos CG, Six DA, Dennis EA. J Pept Sci 2005;11:431. [PubMed: 15635664]
- Yaksh TL, Kokotos G, Svensson CI, Stephens D, Kokotos CG, Fitzsimmons B, Hadjipavlou-Litina D, Hua XY, Dennis EA. J Pharmacol Exp Ther 2006;316:466. [PubMed: 16203828]
- Stephens D, Barbayianni E, Constantinou-Kokotou V, Peristeraki A, Six DA, Cooper J, Harkewicz R, Deems RA, Dennis EA, Kokotos G. J Med Chem 2006;49:2821. [PubMed: 16640343]
- Six DA, Barbayianni E, Loukas V, Constantinou-Kokotou V, Hadjipavlou-Litina D, Stephens D, Wong AC, Magrioti V, Moutevelis-Minakakis P, Baker S, Dennis EA, Kokotos G. J Med Chem 2007;50:4222. [PubMed: 17672443]

- Moutevelis-Minakakis P, Neokosmidi A, Filippakou M, Stephens D, Dennis EA, Kokotos G. J Pept Sci 2007;13:634. [PubMed: 17631670]
- Antonopoulou G, Magrioti V, Stephens D, Constantinou-Kokotou V, Dennis EA, Kokotos G. J Pept Sci 2008;14:1111. [PubMed: 18618424]
- 20. Antonopoulou G, Barbayianni E, Magrioti V, Cotton N, Stephens D, Constantinou-Kokotou V, Dennis EA, Kokotos G. Bioorg Med Chem 2008;16:10257. [PubMed: 18993078]
- Spatola, AF. Chemistry and biochemistry of amino acids, peptides and proteins. Weinstein, B., editor. Vol. 7. Dekker; New York: 1983. p. 267
- 22. Rubini E, Gilon C, Selinger Z, Chorev M. Tetrahedron 1986;42:6039.
- 23. TenBrink RE, Pals DT, Harris DW, Johnson GA. J Med Chem 1988;31:671. [PubMed: 3279210]
- 24. Ho M, Uhrin A, Huang M. Bioorg Med Chem Lett 1994;4:553.
- 25. Roubini E, Laufer R, Gilon C, Selinger Z, Roques BP, Chorev M. J Med Chem 1991;34:2430. [PubMed: 1714957]
- Hedenström M, Yuan Z, Brickmann K, Carlsson Y, Ekholm K, Johansson B, Kreutz E, Nilsson A, Sethson I, Kihlberg J. J Med Chem 2002;45:2501. [PubMed: 12036358]
- 27. Sheehan JC, Cruickshank PA, Boshart GL. J Org Chem 1961;26:2525.
- 28. Dess DB, Martin JC. J Am Chem Soc 1991;113:7277.
- 29. Ma Z, Bobbitt JM. J Org Chem 1991;56:6110.
- 30. Leanna MR, Sowin TJ, Morton HE. Tetrahedron Lett 1992;33:5029.
- 31. Kokotos G. Synthesis 1990:299.
- 32. Kokotos G, Noula C. J Org Chem 1996;61:6994. [PubMed: 11667598]
- 33. Altmann KH, Chiesi CS, Garcia-Echeverria C. Bioorg Med Chem Lett 1997;7:1119.
- Chiou A, Markidis T, Constantinou-Kokotou V, Verger R, Kokotos G. Org Lett 2000;2:347. [PubMed: 10814319]
- Baskakis C, Magrioti V, Cotton N, Stephens D, Constantinou-Kokotou V, Dennis EA, Kokotos G. J Med Chem 2008;51:8027–8037. [PubMed: 19053783]
- 36. Buczynski MW, Stephens DL, Bowers-Gentry RC, Grkovich A, Deems RA, Dennis EA. J Biol Chem 2007;282:22834. [PubMed: 17535806]
- Deems RA, Buczynski MW, Bowers-Gentry RC, Harkewicz R, Dennis EA. Methods Enzymol 2007;432:59. [PubMed: 17954213]
- Pierson ME, Comstock JM, Simmons RD, Kaiser F, Julien R, Zongrone J, Rosamond JD. J Med Chem 1997;40:4302. [PubMed: 9435899]
- 39. Mendre C, Rodriguez M, Laur J, Aumelas A, Martinez J. Tetrahedron 1988;44:4415.
- 40. Johnson RL, Bontems RJ, Yang KE, Mishra RK. J Med Chem 1990;33:1828. [PubMed: 1971310]

713

0

AX062

AX048

AX109

 $\begin{aligned} R^1 &= (CH_2)_3 CH_3, \ CH(CH_3)_2 \\ R^2 &= H, \ Me, \ Et, \ Bu^t \end{aligned}$

OEt

Figure 2.

Dose response curve for the inhibition of AA release from RAW 264.7 cells by inhibitor **18**. RAW 264.7 cells were preincubated with the indicated concentrations of **18** prior to stimulation with Kdo₂-Lipid A and AA quantitation. The data is graphically expressed in terms of percent inhibition of AA release as a function of the concentration of **18**. The curve is a fit of the data to a nonlinear regression function using the Sigma Plot program. Based on the maximal inhibition observed in this assay, half maximal inhibition occurs at about 2 μ M of **18**.

Figure 3.

Dose-response curves for 2-oxoamide inhibitors of GVIA iPLA₂. Inhibition of the activity of human GVIA iPLA₂ by inhibitors (a) **8a** and (b) **13** was tested on mixed-micelles containing 100 μ M PAPC and 400 μ M Triton X-100. Inhibition curves were generated by Graphpad Prism using a non-linear regression (one-site binding model - hyperbola) to calculate the reported $X_{I}(50)$ values.

Scheme 1.

Reagents and conditions: (a) HCl.H-Gly-OR², Et₃N, WSCI, HOBt, CH₂Cl₂; (b) 4N HCl/ Et₂O; (c) CH₃(CH₂)₁₃CHOHCOOH, Et₃N, WSCI, HOBt, CH₂Cl₂; (d) Dess-Martin reagent, CH₂Cl₂; (e) NaOCl, AcNH-TEMPO, NaBr, NaHCO₃, EtOAc/PhCH₃/H₂O 3:3:0.5, 0 °C.

Scheme 2.

Reagents and conditions: (a) HCl.H-Gly-OBu^t, Et₃N, WSCI, HOBt, CH₂Cl₂; (b) H₂, 10% Pd/ C, EtOH; (c) CH₃(CH₂)₁₃CHOHCOOH, Et₃N, WSCI, HOBt, CH₂Cl₂; (d) Dess-Martin reagent, CH₂Cl₂; (e) NaOCl, AcNH-TEMPO, NaBr, NaHCO₃, EtOAc/PhCH₃/H₂O 3:3:0.5, 0 °C; (f) 50% TFA/CH₂Cl₂.

Scheme 3.

Reagents and conditions: (a) BrCH₂COOEt, NaH, 18-crown-6, THF; (b) 4N HCl/Et₂O; (c) $CH_3(CH_2)_{13}CHOHCOOH$, Et₃N, WSCI, HOBt, CH_2Cl_2 ; (d) Dess-Martin reagent, CH_2Cl_2 .

Scheme 4.

Reagents and conditions: (a) BrCH₂COOBu^t, Bu₄NHSO₄, 50% NaOH, C₆H₆; (b) H₂, 10% Pd/C, EtOH; (c) CH₃(CH₂)₁₃CHOHCOOH, Et₃N, WSCI, HOBt, CH₂Cl₂; (d) Dess-Martin reagent, CH₂Cl₂; (e) 50% TFA/CH₂Cl₂.

Table 1

ed on dipeptides and pseudodipeptides.^a

NIH-PA Author Manuscript

Structure

N.D.^a

N.D.^a

 0.061 ± 0.017

11

Barbayianni et al.

GV sPLA₂

GVIA iPLA₂

GIVA cPLA₂

% Inhibition

 $X_{I}(50)$

% Inhibition

 $X_{\mathrm{I}}(50)$

 0.035 ± 0.014

/

Bioor

 \sim

Med Chem. Author manuscript; available in PMC 2010 July 1.

N.D.^a

NIH-PA Author Manuscript

~
~
_
- T
Τ
1
~
The second secon
_
~
0
_
<
_
b b
_
~
r -
_
S
SC
ISCI
uscrij
uscrip

Structure

NIH-PA Autho	GV sF
r Manuscript	GVIA iPLA ₂
NIH-PA Author Manuscript	GIVA cPLA2
NIH-PA Author Manus	

	Barbay	ianni e
V sPLA ₂	% Inhibition	81
5	$X_{\mathrm{I}}(50)$	
GVIA iPLA ₂	% Inhibition	
	$X_{\mathrm{I}}(50)$	0.017 ± 0.002
GIVA cPLA ₂	% Inhibition	52
	X _I (50)	

57

NIH-PA Author Manuscript

a Average percent inhibition and standard error (n = 3) reported for each compound at 0.091 mole fraction. N.D. signifies compounds with less than 25% inhibition (or no detectable inhibition).

 $b_{\text{Data taken from ref. 15.}}$

Table 2 Effect of 2-oxoamide inhibitors on Kdo₂-Lipid A stimulated AA release from RAW 264.7 macrophages.

NIH-PA Author Manuscript