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Abstract 

The goal of this study is to assess and quantify the potential employment accessibility benefits of shared-

use automated vehicle (AV) mobility service (SAMS) modes across a large diverse metropolitan region 

considering heterogeneity in the working population. To meet this goal, this study proposes employing a 

welfare-based (i.e. logsum-based) measure of accessibility, obtained via estimating a hierarchical work 

destination-commute mode choice model. The employment accessibility logsum measure incorporates the 

spatial distribution of worker residences and employment opportunities, the attributes of the available 

commute modes, and the characteristics of individual workers. The study further captures heterogeneity of 

workers using latent class analysis (LCA) to account for different worker clusters valuing different types 

of employment opportunities differently, in which the socio-demographic characteristics of workers are the 

LCA model inputs. The accessibility analysis results in Southern California indicate: (i) the accessibility 

benefit differences across latent classes are modest but young workers and low-income workers do see 

higher benefits than high- and middle-income workers; (ii) there are substantial spatial differences in 

accessibility benefits with workers living in lower density areas benefiting more than workers living in 

high-density areas; (iii) nearly all the accessibility benefits come from the SAMS-only mode as opposed to 

the SAMS+Transit mode; and (iv) the SAMS cost per mile assumption significantly impacts the magnitude 

of the overall employment accessibility benefits.   

 

Keywords: Accessibility, Employment Accessibility, Automated Vehicles, Shared Automated Vehicle 

Mobility Services, Consumer Surplus, Logsums, Shared Mobility 
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1 Introduction 

1.1 Motivation 

Car manufacturers, technology companies, and ridesourcing companies are currently trying to develop 

fully-automated or driverless vehicles (AVs) (Muoio, 2016) with which most of them initially plan to offer 

mobility services rather than sell the AVs to individual consumers (Waymo, 2017; Wingfield, 2017). 

Companies and researchers envision these shared AV mobility service (SAMS) modes to be similar to 

existing vehicle-based shared mobility service modes—like those provided by Didi, Uber and Lyft—except 

the vehicles will be driverless and completely controlled by the mobility service provider, rather than 

individual drivers (Fagnant and Kockelman, 2014; Hyland and Mahmassani, 2018; Spieser et al., 2014). 

Researchers expect SAMS to be considerably cheaper than existing vehicle-based mobility services due 

mainly to the elimination of driver costs (Fagnant and Kockelman, 2015). 

The recent academic (Fagnant and Kockelman, 2015; Mahmassani, 2016) and non-academic (Hars, 

2010; Thompson, 2016) literature identifies significant potential economic and environmental benefits of 

AVs and SAMS modes, as well potential pitfalls. These potential benefits and the major transportation 

system implications of AVs and SAMS modes have motivated significant research in recent years related 

to understanding the impacts of AVs and SAMS modes on: trip generation (Truong et al., 2017);  land-use, 

energy, and emissions (Wadud et al., 2016); residential location choice (Zhang and Guhathakurta, 2018); 

and vehicle miles traveled and associated emissions (Auld et al., 2017; Fagnant and Kockelman, 2014; 

Hyland and Mahmassani, 2020). The present study aims to understand and quantify another potentially 

substantial impact of SAMS modes, namely, improved access to employment opportunities. 

One of the main design objectives of transportation systems is to connect people to their jobs and other 

employment opportunities. However, many commuters face challenges accessing employment 

opportunities that ultimately limit their economic potential and quality of life, particularly low-income 

households that do not own personal vehicles and live in job-poor neighborhoods (Blumenberg and Ong, 

2001). Employment accessibility challenges vary from country-to-country, state-to-state, city-to-city, and 

neighborhood-to-neighborhood; nevertheless, there are a few common challenges across most large non-

Northeast Corridor (and non-Chicago) metropolitan areas in the United States that are particularly 

burdensome for workers in Southern California, including: (i) high parking costs and/or limited parking 

availability in dense employment and residential areas; (ii) long commute distances between residential 

areas and employment opportunities; and (iii) poor transit service quality in many areas. The combination 

of long commute distances and poor transit service quality are particularly burdensome for individuals who 

cannot physically operate a vehicle or cannot afford to purchase, insure, maintain, fuel, and park a personal 

vehicle. Moreover, the challenges have increased in recent decades for car-less workers as the spread of 

employment opportunities away from central business districts and into the suburbs makes planning and 

operating efficient transit routes challenging in many cases and unviable in others (Hu, 2015).  

Fortunately, SAMS modes can help address these employment accessibility challenges as they (i) 

nearly eliminate the need to park in high parking cost areas (Zhang et al., 2015) and (ii) allow travelers to 

enjoy the accessibility benefits of personal vehicle travel, which Kawabata and Shen (2006) show are 

significant compared to transit in most areas (especially Southern California), without having to own and 

operate an expensive personal vehicle. While commuters will still need to pay for SAMS modes for 

commute trips, the purchasing, maintenance, and insurance costs associated with vehicle ownership can be 

spread across several SAMS users. Even operating (i.e. fuel) costs can be spread across multiple passengers 
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if workers are willing to share rides with other travelers during the commute trip. SAMS modes also have 

the potential to improve employment accessibility for people who are unable to operate a personal vehicle 

due to various physical disabilities and impairments. 

1.2 Research Goals and Objectives 

Given these beneficial aspects of SAMS modes in terms of employment accessibility, the goal of this 

study is to quantify the employment accessibility benefits of adding two SAMS commute modes to the 

transportation system (i.e. the choice set of commuters), relative to the existing transportation system, using 

a systematic and theoretically valid methodology that can: 

1. Provide a monetary measure of employment accessibility benefits for economic (e.g. cost-benefit) 

analyses 

2. Capture the key employment accessibility benefits of SAMS modes 

3. Incorporate heterogeneity in the population of workers with respect to the types of employment 

opportunities that are valuable to different segments of the working population 

To meet this overarching goal and satisfy the methodological constraints, this study employs the logsum 

measure of accessibility, which is a welfare-based accessibility measure that can be converted to monetary 

terms for economic analyses. To capture the key employment accessibility benefits of SAMSs, this study 

adds two commute modes – SAMS-only and SAMS+Transit – to the mode choice set of workers and 

captures the beneficial attributes of the two SAMS modes. Lastly, to capture heterogeneity among workers, 

this study clusters workers based on their socio-demographic attributes using latent class analysis (LCA) 

methods.  

Specific objectives of the study include determining: (i) the distribution of benefits across worker 

segments to understand the equity implications of the SAMS commute modes; (ii) the spatial distribution 

of benefits across rural, suburban, and urban regions to understand the land value and associated spatial 

implications of the SAMS commute mode benefits; (iii) the relative accessibility benefits of the SAMS-

only and the SAMS+Transit commute modes to understand the market for each; and, (iv) the implications 

of SAMS cost-per-mile on overall employment accessibility benefits from the SAMS commute modes.  

1.3 SAMS Commute Modes 

This study analyzes the employment accessibility benefits of adding two SAMS modes to the choice 

set of commuters, namely, the SAMS-only and SAMS+Transit commute modes. This subsection describes 

these two modes and their potential commuting benefits relative to existing travel modes.  

In this study, the SAMS-only commute mode is effectively a ride-hailing/ridesourcing service with 

driverless vehicles. From a user-perspective the main difference between SAMS and current ride-hailing 

services is the travel cost/price (and the fact that the vehicle does not have a driver). The study assumes, as 

a result of the elimination of labor/driver costs and improved operational efficiency due to central control 

of the AV fleet, the SAMS-only mode is considerably cheaper than current ridesourcing services and even 

cheaper than the average cost per mile of personal vehicle travel. From a commute mode attributes 

perspective, the SAMS-only mode in this study is quite similar to a personal vehicle (e.g., the same in-

vehicle travel times and zero walk distances) with three notable exceptions. First, the SAMS commute mode 

does not include any parking costs. Second, the cost per mile of SAMS is slightly lower than the personal 

vehicle cost per mile. Third, on the negative side, commuters need to wait a few minutes at their residence 

for the SAMS vehicle to pick them up for work.  
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In this study, the SAMS+Transit commute mode involves an inter-modal commute trip wherein the 

commuter takes a SAMS ride from home to a convenient transit station/stop before using the transit network 

to travel from this transit stop/station to her workplace. The SAMS+Transit mode does not require the 

commuter to pay for parking at the transit station. Additionally, the travel times for the SAMS portion of 

the trip are commensurate with personal vehicle travel. However, the SAMS portion of the trip does include 

a short wait time. Ideally, the SAMS+Transit mode would provide a cost-effective alternative to SAMS-

only and personal vehicle travel while allowing commuters to utilize the transit network for longer distance 

commutes, overcoming the transit first-mile problem. In addition to connecting commuters to previously 

inaccessible (via walking) transit stations, the SAMS+Transit mode should also reduce the total travel time 

and number of transfers compared to a transit-only trip. This would be particularly beneficial in low-density 

areas where transit stations are not accessible by walking and also in cases where commuting with transit 

requires a significant number of inefficient transfers between bus and/or rail lines.  

In summary, in this study the SAMS-only mode is commensurate with the personal vehicle mode 

except it eliminates parking costs, has lower per mile costs, and involves a pickup wait time. The SAMS 

portion of the SAMS+Transit commute option has the same characteristics. The study assumes AV/SAMS 

travel times remain the same as current personal vehicle travel. The study also assumes the disutility of in-

vehicle travel time is the same in AVs/SAMS as current personal vehicle travel. Hence, the employment 

accessibility benefit results in this study are likely conservative compared to other studies that assume 

reduced travel times (Meyer et al., 2017) and in-vehicle travel time disutility (Vyas et al., 2019)  with SAMS 

modes. Finally, the study assumes that the SAMS modes impact commute mode choice and work 

destination locations; however, it assumes worker residences and employment locations remain fixed. 

1.4 Research Contributions and Manuscript Outline 

This appears to be the first study to quantify the employment accessibility benefits of SAMS modes 

for an entire metropolitan region using a logsum- or welfare-based approach. While Childress et al. (2015) 

present logsum-based accessibility measures associated with the impact of AVs on accessibility,  their study 

provides few methodological details and only one set of computational results. The current study presents 

and discusses the implications of a variety of employment accessibility results; the current study also 

presents a detailed methodology that involves clustering workers into classes based on their socio-

demographics. In addition to improving destination choice model parameter estimates, clustering workers 

is especially valuable for evaluation purposes as analysts, planners, and policymakers can easily see the 

impact(s) of SAMS modes on different worker clusters. To illustrate the usefulness of the proposed 

methodology, this study generates a synthetic population of workers in the six-county Southern California 

Association of Governments (SCAG) region, then applies the LCA, mode choice, and destination choice 

model parameters, which were estimated on a sample of workers from the SCAG region, to quantify the 

employment accessibility benefits of SAMS modes for every member of the synthetic working population.  

The remainder of the paper is structured as follows. The next section provides background information 

related to accessibility analysis/measurement in general and in the context of AVs/SAMS modes. Section 

3 presents the study’s conceptual framework while Section 4 describes the data and research methodology 

to quantify the employment accessibility benefits of SAMS modes. Section 5 presents and discusses a 

variety of computational results. The final section concludes the paper with a summary of the study and a 

discussion of limitations and future research.  
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2 Background 

The current study builds upon and applies the methods and ideas from several existing areas of 

research, including: (employment) accessibility measurement and analysis; logsums as a measure of 

consumer surplus and accessibility; and accessibility analysis of AVs and SAMS modes. This section aims 

to present background information on these topics, in order to provide context for the current study. A 

review of all the relevant literature in each of these areas is beyond the scope of the paper; therefore, where 

possible, recent review articles are provided for the reader’s reference. 

2.1 Accessibility Measures 

This sub-section introduces common accessibility measures in the literature and describes the 

reasoning behind choosing the logsum-based accessibility measure in this study.  

Adapting the definition in Geurs and van Wee (2004) and to a lesser extent several other definitions 

(Ben-Akiva and Lerman, 1979; Hansen, 1959), this study defines employment accessibility as the extent to 

which land-use and transport systems, particularly the available commute modes, enable individual workers 

to reach employment opportunities. Geurs and van Wee (2004) suggest four theoretically important 

components of accessibility, namely, land-use components, transportation components, temporal 

components, and individual components. As the current study considers employment accessibility, the land-

use component consists of the spatial distribution, type, and number of employment opportunities (by type) 

throughout the analysis area. The transportation components in the current study include the modal 

attributes of driving alone, taking transit, and walking to work as well as using the SAMS-only or 

SAMS+Transit modes to commute in the future. Modal attributes include travel costs, travel times, and 

other service quality attributes. These modal attributes are heavily dependent on the underlying 

transportation infrastructure in the analysis area. The current study assumes workers commute during the 

peak period; hence, the modeling framework does not include temporal differences in employment 

accessibility. Finally, via using the logsum measure of accessibility and clustering users based on socio-

demographic characteristics, the current study models the individual component of accessibility in 

significant detail.  

Four of the most common accessibility measures in the academic literature and used in practice are 

(Handy and Niemeier, 1997; Miller, 2018): 

• Distance (or travel time or travel cost) to the nearest destination of interest (e.g. bus stop, freeway 

interchange, school, hospital, retail job, office job, etc.) 

• Cumulative activities/opportunities of a specific type within a specified distance or travel time or 

travel cost (known as the “isochrone” or “contour” measure) 

• Gravity/entropy model denominators (known as Hansen’s measure (Hansen, 1959)) 

• Expected maximum random utility-based measure (e.g. logit model “logsums”; (Ben-Akiva and 

Lerman, 1979)) 

The distance/time/cost to the nearest destination measure is the most straightforward accessibility 

measure and the easiest to calculate. Handy and Niemeier (1997) employ this measure to analyze 

accessibility to supermarkets and convenience stores for communities in the Bay Area of California. For 

grocery shopping, this simple accessibility measure can be useful. However, for other activity/opportunity 

types, such as employment opportunities, the nearest destination of interest measure provides limited 

information for planning and policy analysis. Hence, this study does not use the distance/time/cost to the 

nearest destination measure for employment accessibility analysis.  
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The isochrone/contour measure is the most common accessibility measure in practice and has been 

widely applied to cities across the country (Owen and Murphy, 2018). The measure provides the number 

of opportunities that can be reached from an origin of interest within a specified threshold of travel time, 

distance, and/or cost by various modes. Some examples of the application of this method to measure 

accessibility found in the literature include: calculating the number of jobs reachable by socially 

disadvantaged residents in Montreal, Canada based on travel time and travel cost thresholds (El-Geneidy 

et al., 2016); assessing the gains in job accessibility for people belonging to different wage groups with the 

opening of a new light-rail line in the Twin Cities, Minnesota region (Fan et al., 2012); and, creating a 

space- and time-sensitive accessibility measure for subregions within the SCAG region (Chen et al., 2011). 

The two main shortcomings of this method are (i) the results are highly dependent on the isochrone travel 

time or distance cut-off value and (ii) the relative value of an opportunity within the isochrone is 

independent of the travel time/distance from the origin of interest to the opportunity. The current study aims 

to capture employment accessibility improvements as a monetary value considering the opportunities and 

the travel cost to these opportunities via several commute modes. This is not possible using the isochrone 

method and hence it is not chosen to measure employment accessibility in this study. 

The gravity model denominator, or Hansen’s measure, also considers the number of opportunities 

available at destinations surrounding an origin of interest; however, the measure weights the opportunities 

as a function of the impedance between the origin of interest and each opportunity’s location. The 

impedance function typically captures travel time and/or generalized cost. Hence, this measure overcomes 

the shortcomings of the isochrone measure listed in the previous paragraph. Grengs (2010) uses the gravity 

model denominator to measure accessibility to jobs for people living in different places and using different 

travel modes in the city of Detroit. Liu et al. (2004) present a geographical information systems (GIS) tool 

that combines both the gravity model-based approach and the cumulative opportunities within a certain 

impedance level method to measure accessibility. The main shortcoming of the gravity model denominator 

is its inability to easily differentiate between individuals in terms of the value of opportunities. That is, 

without explicit segmentation, the value of an additional employment opportunity in the education sector 5 

miles away from the origin of interest is the same for everyone who resides in the origin, including people 

with and without any college or high school education. Hence, the basic gravity model method cannot be 

used in the current study to measure accessibility improvements for different segments of the population 

with the introduction of SAMS. 

 Ben-Akiva and Lerman (1979) address these shortcomings by linking accessibility to consumer 

surplus and illustrating that the logsum value obtained from work destination-commute mode choice models 

is an accessibility measure consistent with random utility theory under the typical MNL assumptions. They 

postulate that accessibility is equivalent to consumer surplus, determined by calculating the expected value 

of the maximum utility an individual derives from a set of mode and destination alternatives available to 

him/her, as shown in Eqn. 1.  

𝐸[𝐶𝑆𝑛] =
1

𝛼𝑛
𝐸 [max

𝑗
(𝑉𝑛𝑗 + 𝜀𝑛𝑗)] 

(1) 

where 𝐸[𝐶𝑆𝑛] is the expected value of consumer surplus for individual n which denotes the accessbility 

measure for the individual’s choice set; 𝑉𝑛𝑗 is the deterministic component of utility of alternative 𝑗; 𝜀𝑛𝑗 is 

the random component of utility; 𝛼𝑛 the marginal utility of income (𝛼𝑛 = 𝑑𝑈𝑛𝑗/𝑑𝑌𝑛𝑗 and 𝑌𝑛 is the income 

of decision-maker 𝑛). Assuming the random component of utility follows an independent and identical 
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Gumbel distribution, and that utility is linear in income (i.e. 𝛼𝑛 is constant with respect to income), then 

the expectation in Eqn. 1 transforms into Eqn. 2, as shown in Small and Rosen (1981): 

𝐸[𝐶𝑆𝑛] =
1

𝛼𝑛
ln (∑ 𝑒𝑉𝑛𝑗

𝑗∈𝐽

) + 𝐶 (2) 

where 𝐶 is an unknown constant capturing the fact that analyst cannot measure absolute levels of utility.  

By using this method to measure employment accssibility, it is possible to find accessibility measures 

at a disaggregate level for different individuals or classes of the population with varied employment 

opportunity preferences and different mode and destination choice sets. Moreover, this method can also be 

used to quantify the difference in expected consumer surplus that arises from an investment or policy or the 

introduction of two new SAMS commute modes that impacts the observable component of utility, 𝑉𝑛𝑗 . 

Equation 3 shows the result of comparing the expected consumer surplus of decision-maker 𝑛 before 

(subscript 0) and after (subscript 1) the implementation of a policy/investment/technology, where the 

constant 𝐶 in Eqn. 2 drops out when calculating the difference in expected consumer surplus. The current 

study extends and utilizes the formulation in Eqn. 3 extensively to analyze the increase in consumer 

surplus/accessibility associated with the inclusion of two SAMS commute modes in the mode choice sets 

of commuters.  

Δ𝐸[𝐶𝑆𝑛] =
1

𝛼𝑛
[ln ( ∑ 𝑒𝑉𝑛𝑗

1

𝑗∈𝐽1

) − ln ( ∑ 𝑒𝑉𝑛𝑗
0

𝑗∈𝐽0

)] 

(3) 

Niemeier (1997) employs the logsum accessibility measure to analyze employment accessibility via 

estimating a joint work destination-commute mode choice model. Several other recent studies have 

employed the logsum-based accessibility measure including Zondag et al. (2015) in Netherlands. Standen 

et al. (2019) use the logsum measure to appraise non-motorized modes such as walking and biking. 

Moreover, in limited applications, the logsum has provided significant value in transportation and land-use 

policy analysis and investment decisions (de Jong et al., 2007; Kohli and Daly, 2016; Villanueva et al., 

2018; Zondag et al., 2015).  

2.2 Accessibility Analysis of AVs and SAMS Modes 

There are a few studies in the existing literature that examine the potential accessibility benefits of 

AVs and SAMS modes. Meyer et al. (2017) examine the accessibility improvements of AVs under three 

different conditions: (i) AVs can only operate on highways; (ii) AVs can operate anywhere but SAMS 

modes do not exist (only personally-owned AVs do); and (iii) AVs can operate anywhere and SAMS modes 

exist. Unlike the current study, Meyer et al. (2017) focus on the accessibility benefits associated with the 

improved travel times (assuming AVs significantly increase roadway capacities) and the study also 

explicitly captures induced demand. However, Meyer et al. (2017) use the gravity model denominator 

measure of accessibility rather than the logsum-based measure and their analysis does not capture variations 

in accessibility as a function of the attributes of individual travelers, nor does it capture the relative worth 

of opportunities across segments of the population, whereas, the current study does capture these effects. 

Milakis et al. (2018), using the four components of accessibility identified by Geurs and van Wee 

(2004), survey seventeen international experts to examine how the experts expect AVs to impact 
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accessibility. According to the qualitative study, the experts expect AVs to have wide-ranging impacts on 

land-use, transportation, temporal, and individual components of accessibility. However, the experts 

disagree in terms of how AVs will impact accessibility in the future. The current study aims to provide 

quantitative insights into how SAMS may impact employment accessibility. 

Similar to the current study, Childress et al. (2015) also use destination-mode choice model logsums 

to evaluate the impacts of AVs. However, the accessibility analysis section of their study includes limited 

methodological details and only one set of results. The current study provides a much more in-depth 

description of the employment accessibility analysis methodology as well as a wide range of results relating 

to the employment accessibility impacts of SAMS modes using destination-mode choice logsum measures. 

Moreover, the current study also clusters workers based on their socio-demographic characteristics to 

improve the ability of the model to capture accessibility differences across the working population. 

Interestingly though, similar to the current study, Childress et al. (2015) also find little difference in the 

impact of AVs on accessibility across households with high and low incomes. 

3 Conceptual Framework 

This study’s conceptual framework is grounded in the consumer welfare-based accessibility theory 

presented in Section 2.1. Moreover, what underpins the conceptual framework is the study’s definition of 

employment accessibility as the extent to land-use and transport systems, particularly the available 

commute modes, enable individual workers to reach employment opportunities.  

3.1 Employment Accessibility for Representative Worker 

Figure 1 graphically depicts, at a high level, each of the components of employment accessibility 

captured in this study. From a conceptual standpoint, it is useful to think about employment accessibility 

from an individual’s perspective. As such, Figure 1 displays a representative worker, his/her relevant 

attributes, the attributes of all the destinations in his/her region, and the attributes of the modes the worker 

can use to move between his/her home and all the destinations in the region. Moreover, the figure 

conceptually illustrates how the study determines the accessibility benefits of the SAMS commute modes. 

The top-most box in Figure 1 includes the attributes of a representative worker. As data on each 

individual worker’s willingness and ability to do specific jobs is not available, the current study uses socio-

demographic variables as a proxy for willingness and ability to do specific jobs (i.e. benefit from new 

employment opportunities of a specific type). Other relevant attributes include the worker’s residential 

location and car ownership. Naturally where the worker lives determines his/her spatial proximity to all the 

employment opportunities in the region and whether the worker owns a car determines his/her ability to 

choose the car mode to get to work.  

The next box contains the land-use and transportation system with two sets of sub-boxes denoting the 

destinations in the region and the commute modes (and their attributes) for the representative worker to 

travel to each destination. The destination attributes include its distance from the worker’s residence, the 

number of jobs by type, the income distribution across workers, and the diversity of employment 

opportunities. In general, a destination is more attractive when it is closer to the worker’s residence due to 

the disutility of commute travel. A destination is also more valuable if it has more employment 

opportunities, particularly more employment opportunities of the type the representative worker values. 

Similarly, if the destination has a wage distribution consistent with the representative worker’s wage, the 

destination is typically more valuable to the worker. Finally, the figure shows that the attributes of every 
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destination in the entire region matters, when conceptualizing (and measuring) accessibility for a 

representative worker.  

The second sub-box within the land-use transportation system box is the mode choice set for each 

destination. As mentioned previously, the attributes of all the destinations in the region matter. Moreover, 

the ability to travel from the worker’s residence to each of these destinations also matters. As such, these 

mode choice sub-boxes illustrate the attributes of the mode choice set between the worker’s residence and 

a destination. On the left-hand-side of the figure, representing the current transportation system, there are 

three main commute modes—Walk, Auto, and Transit. On the right-hand-side of the figure, representing a 

future transportation system, there are five main commute modes—Walk, Auto, Transit, SAMS-only, and 

SAMS+Transit. Notably, this is the only difference between the two sides of the diagram. Hence, all the 

change in accessibility between the two sides stems from the two additional commute modes. When the 

SAMS modes come into operation, the expected utility of most workplace locations is likely to increase as 

a direct result of the time- and cost-efficiency of these new modes. 

The two employment accessibility boxes denote the extent to which the land-use and transportation 

system enables the representative worker to reach employment opportunities, he/she individually values, 

by means of the available transport modes. Finally, the last box, denotes the difference between the 

representative worker’s current employment accessibility level and their accessibility level in the future 

with the two SAMS commute modes.  
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Figure 1: Conceptual Framework
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3.2 Research Hypotheses 

Effectively, this study tests two main hypothesis that involve the interrelation between two new SAMS 

commute modes (i.e. the transportation component of accessibility), the spatial distribution of employment 

opportunities of various types (i.e. the land-use component), and the characteristics of workers (i.e. the 

individuals). The interrelationship between these three components manifests itself as follows: individual 

workers benefit from an efficient and affordable transportation system, including the available commute 

modes (such as SAMS and SAMS+Transit), to access employment opportunities that they, individually, 

value. As such, new commute modes with beneficial attributes will improve overall employment 

accessibility as workers can use these new modes to more efficiently and/or more affordably travel to 

employment opportunities throughout the region.  

The first hypothesis is that new commute modes with attributes similar to SAMS+Transit and SAMS-

only will provide substantial improvements in employment accessibility for workers. Classical choice 

theory implies that additional choices necessarily increase utility – an assumption implied in the MNL 

choice modeling framework employed in this study. However, the degree to which the additional choices 

increase utility or accessibility/consumer welfare depends entirely on the attributes of the additional 

choices. In the case of the SAMS-only mode proposed in this study, the fact that it provides many of the 

benefits of personal vehicle travel with the added benefit of eliminating parking costs and the only 

disadvantage being a short wait time, this mode should provide significant value to commuters. The 

SAMS+Transit mode should also provide significant accessibility benefits as it addresses the first-mile 

problem associated with transit-based commute travel. 

The second hypothesis is that the benefits of the SAMS modes will vary across the working population. 

The variation in SAMS accessibility benefits is likely to arise from several underlying factors. One factor 

is the baseline accessibility of each worker. For workers who do not own a personal vehicle, live far away 

from employment opportunities and therefore cannot walk, and/or do not live near efficient transit services, 

a new commute mode, like SAMS, that is reasonably priced, efficient, and spatially ubiquitous should 

provide significant value. Conversely, for workers who own a car, live within walking distance of numerous 

employment opportunities, and/or live near high-quality transit lines, the new SAMS commute modes are 

unlikely to provide substantial employment accessibility benefits.  

To test these two hypotheses, it is also necessary to capture heterogeneity in the worker population, 

particularly in terms of the employment opportunities that are valuable to individual workers. For example, 

the employment opportunities in the education sector are typically more valuable to workers with a college 

degree than workers without a college degree. Similarly, employment opportunities in the retail sector are 

more valuable to young workers who currently have low incomes than middle-aged workers who currently 

have high incomes.   

3.3 Modeling Scope and Assumptions 

AVs and SAMS modes are expected to have wide-ranging impacts on transportation systems and land-

use in metropolitan regions. Trying to model all the potential impacts simultaneously is beyond the scope 

of this study. Hence, this study assumes the introduction of SAMS modes will mainly impact the mode 

choice and subsequent destination choice of workers. Conversely, this study assumes no major changes in 
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the residential locations of workers nor in the workplace locations of employers. Future research can 

explore these choice dimensions jointly. 

This study also assumes no major changes in the road network travel times in a future with AVs and 

SAMS modes. This assumption is made for several reasons. First, this study aims to provide somewhat 

conservative estimates of the employment accessibility benefits of SAMS modes. This reasoning is also 

why the current study does not assume the disutility of IVTT will decrease when workers commute via 

SAMS models or personal AV modes, unlike other studies in the literature (Vyas et al., 2019). Second, it 

is not clear what overall impact AVs and SAMS modes will have on network congestion and whether policy 

makers will implement congestion pricing mechanisms or other policies to try to mitigate congestion 

(Simoni et al., 2019). While AVs are expected to improve the stability and throughput of traffic (Talebpour 

and Mahmassani, 2016), the benefits (including accessibility benefits) of AVs and SAMS modes are 

expected to significantly increase demand for vehicle-based travel, thereby pushing congestion levels back 

toward current levels, if travelers are unwilling to share rides with other travelers (Meyer et al., 2017). 

Capturing the feedback loop between the impact of accessibility benefits and traffic flow benefits of AVs 

and SAMS modes on travel demand, and the subsequent impact of increased travel demand on network 

congestion, is left for future research.  

This study also refrains from forecasting future travel demand, land-use arrangements, socio-

demographic characteristics, technological innovations, infrastructure decisions, and the interrelationships 

between these factors 20-30 years into the future in Southern California, despite the fact that SAMS modes 

are unlikely to exist at full-scale in the next 20 years (Anderson et al., 2016; Shladover, 2018). Although 

analyzing the impacts of SAMS under (a handful of) future scenarios based on forecasts of travel demand, 

land-use-changes, population characteristics, technology innovations, technology adoption, SAMS 

business models, and infrastructure changes is likely a beneficial planning exercise it is beyond the scope 

of the current study, as these complex and interrelated factors would likely mask the comparison of interest 

in this study, which is employment accessibility with (A) personal vehicle, transit, and walk as the main 

commute modes vs. (B) personal vehicle, transit, walking, SAMS, and SAMS+Transit as the main commute 

modes. Hence, the current study employs 2012 data (based on the most recent year of the CHTS and SCAG 

datasets) and aims to provide valuable quantitative insights into the benefits of two SAMS modes on 

employment accessibility. The study does not aim to provide reliable forecasts of employment accessibility 

when SAMS are finally operating at full-scale in the future. However, when reliable data becomes available 

in the future, the proposed methodological framework can be adapted to incorporate the new data and 

provide more context-specific measures of the employment accessibility benefits arising from SAMS 

modes. It is worth noting that most studies in the academic literature that analyze the potential impacts of 

AVs on transportation systems use existing data and avoid making extensive predictions about the future 

(Auld et al., 2017; Childress et al., 2015; Narayanan et al., 2020; Perrine et al., 2020; Zhao and Kockelman, 

2018).  

Although this study is conservative in terms of the modal attributes of the SAMS mode, in one way 

the study possibly overestimates the benefits of SAMS because it assumes all workers are willing to use 

AV and take SAMS rides. This contrasts with recent research that indicates the willingness-to-use AVs and 

SAMS requires potential users to trust AV technology despite many travelers currently not trusting AV 

technology (Bansal et al., 2016; Kyriakidis et al., 2015). Trust concerns surrounding AV technology include 

safety, security, data privacy, and liability (Fagnant and Kockelman, 2015). For more travel behavior and 
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human factors research related to the adoption of AVs and  usage of SAMS, please refer to recent survey 

papers by Becker and Axhausen (2017) and Gkartzonikas and Gkritza (2019). 

4 Research Methodology 

4.1 Overview 

Figure 2 displays the methodological framework for this study. The data sources and relevant variables 

are shown in blue text boxes; the models, software, and calculations are shown in orange text boxes; and 

the dashed white boxes show the model/calculation outputs. The research methodology clearly involves a 

variety of different data sources, models, and calculations to quantify the employment accessibility benefits 

(i.e. consumer surplus) associated with the inclusion of two SAMS modes in the mode choice sets of 

workers.  

The remainder of this section: describes the data sources and variables; presents the LCA clustering 

approach; details the hierarchical destination-mode choice modeling procedure; and shows how this study 

employs the logsum measure of accessibility presented in Section 2. The population synthesis procedure, 

destination choice set generation procedure, and the OLS car cost per mile model are relatively 

straightforward; thus, they are only described briefly in the subsections below. 
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Figure 2: Flowchart Illustrating the Methodological Framework of the Study 

4.2 Data 

This subsection provides an overview and description of the data sources employed in this study 

(displayed in Figure 2) as well as information on dataset preparation for different models and calculations. 

The analysis area is the SCAG region that includes the counties of Imperial, Los Angeles, Orange, 

Riverside, San Bernardino and Ventura. The analysis (i.e. research methodology) requires a variety of data, 

including:  

1. A sample of workers in the SCAG region and data on their commute modes, destination choices, 

socio-demographics, and other travel and activity characteristics.  
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2. Distances, mode-dependent travel times (wait, walk, in-vehicle), and transit fares between each 

pair of Origin-Destination (OD) zones (i.e. home and work census tracts) in the SCAG region, as 

well as parking costs in each destination zone 

3. Driving costs between OD zones 

4. The number of employment opportunities, employment entropy, and the wage distribution in 

destination zones 

5. Population density and land use entropy in OD zones 

6. Marginal distributions of household attributes across census tracts 

A sample of SCAG workers is available in the 2012 California Household Travel Survey (CHTS) 

(National Renewable Energy Laboratory, 2017) and it contains detailed travel (e.g. commute mode) and 

activity information (e.g. work location) on 42,116 persons belonging to 15,713 households in the SCAG 

region. The publicly available version of the CHTS dataset provides location information at the census tract 

level. Therefore, this study analyzes the impacts of SAMS modes on employment accessibility at the census 

tract level of spatial aggregation. Since the study focuses on employment accessibility, the final dataset 

only includes employed persons. The study uses the CHTS data, directly or indirectly, in all six models and 

calculations in Figure 2. 

The travel time, (driving) distance, and transit fare data between OD zones (i.e. OD skim matrices) are 

available from the SCAG metropolitan planning organization (MPO). The SCAG MPO’s regional travel 

demand model and 2012 model validation report (SCAG, 2016) provides details on the available data. The 

SCAG dataset includes OD skim matrix information across travel analysis zones (TAZs) that have different 

spatial boundaries than census tracts. To convert from TAZs to census tracts, this study utilizes the SCAG 

network data and the information on census tract boundaries. The former includes TAZ IDs for each node 

in the SCAG network and the latter allows one to convert TAZ IDs to census tract IDs. Finally, as mentioned 

previously, the study only considers the peak-hour travel times. 

Unfortunately, the SCAG dataset does not include an OD skim matrix for walking distance or walking 

time. Assuming the walking distance for commute trips is similar to driving distance (implicitly assuming 

workers can and do walk alongside roadways), to calculate walking times between OD zones, this study 

divides the driving distance by a walking speed of 3 miles per hour – around the average pedestrian walking 

speed (Fitzpatrick et al., 2006). 

This study also assumes the in-vehicle travel times (IVTT) of the SAMS modes are equivalent to the 

drive-alone mode. However, the SAMS modes include a five-minute wait time at the beginning of the trip. 

In the SAMS+Transit option, the study assumes the SAMS trip segment would not be greater than 10 miles 

and not more than 50% of the total travel distance. For simplicity, the study only allows SAMSs to be a 

transit access mode, not a transit egress mode. Additionally, total transfers (including the SAMS to transit 

transfer) for the SAMS+Transit option will be less than or equal to two. Given these constraints and using 

the car and transit total travel time OD skim matrices, the transfer point that minimizes overall travel time 

can be determined. After determining the transfer point, it is possible to obtain OD skim matrices for total 

travel, in-vehicle, wait, transfer, and egress travel times for the SAMS+Transit mode. The base travel cost 

for SAMS is set at $0.30/mile for this study. This value is toward the lower end of estimates in the literate 

that range from $0.20/mile to $0.74/mile (Chen et al., 2016; Chen and Kockelman, 2016; Johnson and 

Walker, 2016; Loeb et al., 2018; Perrine et al., 2020). The results section analyzes the impacts of SAMS 

cost on employment accessibility benefits through a sensitivity analysis. 
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Driving cost data for different makes and models of cars is not directly available from any source. 

Therefore, this study estimates driving cost per mile, as a function of vehicle characteristics, using two 

different sets of data sources. The first is the aforementioned CHTS data that provides information on the 

vehicle each respondent owns. The second is the five-year cost of car ownership data from Edmunds (2019) 

and Kelley Blue Book (KBB, 2019). The study estimates the cost per mile for the drive-alone mode for 

each worker in the CHTS sample by first developing and then applying an ordinary least squares (OLS) 

regression model based on observations of cost per mile data collected from Edmunds (2019) and Kelley 

Blue Book (2019). 297 observations of total cost of ownership were drawn from these sources that 

represented vehicles of different make, model, cylinder type, age, and category. These websites report five-

year cost estimates of new and used vehicles assuming the vehicles are driven 15,000 miles per year. The 

costs include tax credits, insurance, maintenance, repairs, taxes and fees, financing, depreciation, and fuel. 

Categorical variables in the OLS cost per mile model include: four purchasing price categories, three body 

types, five cylinder categories, and several vehicle ages. The purpose of the vehicle cost model is to more 

accurately reflect the actual cost each worker spends while driving alone to work, based on the make, model 

and age of his/her vehicle, rather than assuming a flat driving cost per mile. The car total cost per mile 

results are shown in Table 7 in the Appendix and they illustrate that there are significant differences in the 

costs per mile across vehicle types.  

Data on the number of employment opportunities, by job category, in each destination zone is available 

in the 2012 Longitudinal Employer-Household Dynamics (LEHD) database (US Census Bureau, 2012). 

This study uses the LEHD database to create destination choice sets as well as to characterize the 

destinations in the work destination choice model. The analysis converts the 20 job categories in the LEHD 

database to eight categories following the classification structure used in the US EPA’s Smart Location 

Database (US EPA, 2014). The Smart Location Database (US EPA, 2014) contains data on employment 

entropy, population density and distribution of wage, whereas Mitra and Saphores (2017) present and 

contain the land use entropy measures employed in this analysis. 

Finally, the marginal distribution of household (HH) attributes (e.g. HH income, HH size, number of 

HH workers) across census tracts is available in the 2012 American Community Survey (ACS) (US Census 

Bureau, 2013). This study uses the ACS marginal distributions and the sample of CHTS workers to create 

a synthetic population of workers in the SCAG region.  

4.3 Clustering Workers 

The first step of the research methodology (see Figure 2) involves clustering workers based on their 

socio-demographic attributes. The study assumes clustering workers based on socio-demographic attributes 

can partially capture how different workers value different types of employment opportunities. For instance, 

a cluster representing high-income, high-education workers may value education jobs significantly more 

than retail jobs; whereas, the reverse may be true for low-income, young workers. Hence, the LCA model 

captures socio-demographic differences in order to subsequently capture the fact that a new travel mode 

that improves travel times/costs to destinations with education jobs will improve accessibility for high-

income, high-education workers more than a new travel mode that improves travel times/costs to 

destinations with retail jobs.  

 To cluster workers in the CHTS sample, this study employs the LCA clustering approach. In 

comparison to other clustering methods, LCA provides the advantage of statistically confirming the number 

of classes as well as incorporating multivariate discrete categorical data (Dean and Raftery, 2010; Greene 
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and Hensher, 2003), the latter property being necessary for the socio-demographic data in this study. The 

mathematical formulation of the LCA model is provided in Eqn. 7-9 (Linzer and Lewis, 2011).  

Let 𝑉 denote the set of manifest variables, indexed by 𝑣 ∈ 𝑉; and let 𝐾𝑣 denote the set of outcomes 

for each manifest variable 𝑣 ∈ 𝑉, indexed by 𝑘 ∈ 𝐾𝑣, wherein the subscript 𝑣 denotes the fact that the 

number of possible outcomes varies across manifest variables 𝑣 ∈ 𝑉. Moreover, let 𝐶 denote set of classes, 

indexed by 𝑐 ∈ 𝐶; and let 𝑁, once again, denote the set of individuals, indexed by 𝑛 ∈ 𝑁. Finally, let 𝑌𝑛𝑣𝑘  

equal 1, if individual 𝑛 ∈ 𝑁 has outcome 𝑘 ∈ 𝐾𝑣  on variable 𝑣 ∈ 𝑉, and 0 otherwise. The LCA model 

approximates the observed joint distribution of the manifest variables as the weighted sum of a finite 

number, |𝐶|, of constituent cross-classification tables, where the analysts sets |𝐶| (Linzer and Lewis, 2011). 

The probability an individual 𝑛 ∈ 𝑁  in class 𝑐 ∈ 𝐶 produces a specific set of |𝑉| outcomes on the 

manifest variables 𝑉, assuming conditional independence of the outcomes 𝑌𝑛𝑣𝑘 given class memberships, 

is the product: 

𝑓(𝑌𝑛; 𝜋𝑐) = ∏ ∏ (𝜋𝑣𝑐𝑘)𝑌𝑛𝑣𝑘

𝑘∈𝐾𝑣𝑣∈𝑉

 (7) 

where, 𝜋𝑣𝑐𝑘 is the class-conditional probability a member of class 𝑐 results in outcome 𝑘 on variable 𝑣. 

𝜋𝑣𝑐𝑘 is a model parameter that needs to be estimated and has the property: ∑ 𝜋𝑣𝑐𝑘𝑘∈𝐾𝑣
= 1 for all 𝑣 ∈ 𝑉 

and 𝑐 ∈ 𝐶.  

The probability density function across all |𝐶| classes is simply the sum of class-conditional 

probabilities (𝑓(𝑌𝑛; 𝜋𝑐) weighted by 𝑝𝑐: 

𝑃(𝑌𝑛|𝜋𝑣𝑐𝑘 , 𝑝𝑐) = ∑ 𝑝𝑐

 𝑐∈𝐶

𝑓(𝑌𝑛; 𝜋𝑐) = ∑ 𝑝𝑐

 𝑐∈𝐶

∏ ∏ (𝜋𝑣𝑐𝑘)𝑌𝑛𝑣𝑘

𝑘∈𝐾𝑣𝑣∈𝑉

 (8) 

where, 𝑝𝑐 is the unconditional probability that an individual will belong to class 𝑐 before considering the 

outcomes on the manifest variables (𝑌𝑛𝑣𝑘). 𝑝𝑐 is another model parameter that needs to be estimated.  The 

𝑝𝑐 values are also known as the mixing probabilities and the “prior” probabilities of latent class 

membership, with property: ∑ 𝑝𝑐𝑐∈𝐶 = 1 

The study estimates the LCA models (i.e. 𝑝𝑐 and 𝜋𝑣𝑐𝑘)  using the poLCA package in the programming 

language R, which utilizes Expectation Maximization (EM) and Newton-Raphson algorithms (Linzer and 

Lewis, 2011). Once parameter estimates for 𝑝𝑐 and 𝜋𝑣𝑐𝑘 are obtained, the posterior probability that 

individual 𝑛 belongs to a specific class 𝑐, can be calculated using Bayes’ formula: 

𝑃 ̂(𝑐𝑛|𝑌𝑛) =
𝑝𝑐𝑓(𝑌𝑛; 𝜋𝑐)

∑ 𝑝𝑐′ 𝑐′∈𝐶 𝑓(𝑌𝑛; 𝜋𝑐′)
 (9) 

In addition to choosing the number of clusters |𝐶|, the analyst also determines the manifest variables. 

To find latent classes of workers, this study considered the socio-demographic attributes of the workers in 

the CHTS. The final model includes four categorical variables, namely, gender, age, education, and 

household income. The study also considered number of vehicles per licensed driver in the household, but 

it was excluded because it did not help meaningfully distinguish between workers in the dataset.  
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4.4 Hierarchical Destination-Mode Choice Model 

This section provides an overview of the modeling procedure to obtain parameter estimates for a 

hierarchical destination-mode choice model. The parameter estimates are necessary inputs to calculate 

logsum-based measures of accessibility.  

Let 𝑖𝑛 denote the census tract of worker 𝑛’s residence (i.e. commute trip origin) and 𝑂 the set of all 

origin census tracts, 𝑖𝑛 ∈ 𝑂. Moreover, let 𝐷𝑛 denote the work destination locations worker 𝑛 considers, 

indexed by 𝑗 ∈ 𝐷𝑛, where 𝐷𝑛 ⊆ 𝐽. Additionally, let 𝑀𝑗𝑛
 denote the commute modes worker 𝑛 considers 

when considering work destination 𝑗, indexed by 𝑚 ∈ 𝑀𝑗𝑛
. Finally, let 𝑀0 = {𝐶𝑎𝑟, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑊𝑎𝑙𝑘} be the 

set of all commute modes before the introduction of SAMS modes, and let 𝑀1 =

{𝐶𝑎𝑟, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑊𝑎𝑙𝑘, 𝑆𝐴𝑀𝑆, 𝑆𝐴𝑀𝑆 + 𝑇𝑟𝑎𝑛𝑠𝑖𝑡} be the set of all commute modes after the introduction of 

SAMS modes, where 𝑀𝑗𝑛
⊆ 𝑀0 

Given the nature of the CHTS data (National Renewable Energy Laboratory, 2017), it is not possible 

to determine the set of work destinations each worker actually considers. Hence, this study generates a 

random sample of 29 work destination census tracts, along with the destination census track where the 

worker currently works 𝑗𝑛, to populate the destination choice set for each worker, i.e. |𝐷𝑛| = 30. The study 

draws the 29 destinations from the LEHD data, which provides job flows between pairs of census tracts. 

The method does not assume all destinations in the SCAG region can be in 𝐷𝑛; rather, a search distance of 

50 miles was imposed around 𝑖𝑛 beyond which it seemed unreasonable to commute on a regular basis.  

Mitra and Saphores (2019) find that only 6.4% of long-distance (50+ mile) trips in California are commute 

trips. However, this search distance was sometimes extended when the number of destinations was 

inadequate (e.g. around rural areas where commutes can be quite long). Besides decreasing computational 

time, limiting the number of alternatives in the choice set also minimizes the risk of overwhelming the 

model with unreasonable destination locations (Ortúzar and Willumsen, 2011).  

It is also necessary to determine the modes available to each worker to commute to each of the 

destinations in their destination choice set.  The walk, car, and transit modes are considered available for 

each worker for each destination unless (i) the total travel time between the worker’s origin, 𝑖𝑛, and a 

potential destination 𝑗 ∈ 𝐷𝑛 is greater than three hours for a mode, or (ii) the worker does not own a personal 

car, in which case, the car is not available in their choice set.  

Figure 3 displays this hierarchical destination-mode choice structure for an example worker 𝑛 with 

origin location 𝑖𝑛. This hierarchical structure assumes workers determine their work location before 

choosing their commute mode; however, it also assumes they consider the attributes of the potential 

commute modes in each destination, along with the other destination attributes, when determining their 

work location. The assumption that the mode choice is nested within the employment destination choice is 

(i) based on the fact that employment location is typically considered to be a more important and longer 

term decision than mode choice, (ii) something that can be statistically tested and verified within the 

hierarchical discrete choice modeling framework, and (iii) consistent with much of the existing literature 

that assumes mode choice is a lower-level choice than work destination choice (Boyce, 2002; Ortúzar and 

Willumsen, 2011). Newman and Bernardin (2010) find a reverse ordering for Knoxville, TN but mention 

that in large metropolitan areas with a developed transit system and choice riders, having mode choice at 

the lower level is useful and likely superior.   
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Figure 3: Hierarchical Structure of Destination-Mode Choice Model 

Given the MNL assumptions described in Section 2.2, the probability 𝑃𝑚|𝑗
𝑖𝑛  that worker 𝑛 residing in 

origin 𝑖𝑛 chooses mode 𝑚 ∈ 𝑀𝑗𝑛
 given the choice of destination 𝑗 ∈ 𝐷𝑛 can be expressed as (González et 

al., 2016): 

𝑃𝑚|𝑗
𝑖𝑛  =

𝑒
𝑉𝑚|𝑗

𝑖𝑛  

∑ 𝑒
𝑉

𝑚′|𝑗

𝑖𝑛  
𝑚′∈𝑀𝑗𝑛

 (10) 

where 𝑉𝑚|𝑗
𝑖𝑛 is the systematic component of utility that worker 𝑛 derives from taking mode 𝑚 to commute 

between her origin 𝑖𝑛 and potential destination 𝑗. The term 𝑉𝑚|𝑗
𝑖𝑛 = ∑ 𝛽𝑎𝑋𝑎,𝑚|𝑗

𝑖𝑛
𝑎∈𝐴𝑚  is the product sum of a 

vector of coefficients to be estimated (𝛽) and a vector of attributes (𝑋𝑚|𝑗
𝑖𝑛 ) associated with mode 𝑚 between 

𝑖𝑛 and 𝑗, and worker 𝑛, with both vectors having rank |𝐴𝑚|, where 𝐴𝑚 is the set of mode choice level 

attribute indices.  

The MNL model involves the independence of irrelevant alternatives (IIA) property, which is 

appropriate for the walk, drive-alone, and transit choice set used in this study to estimate parameter 

coefficients because these three modes have distinct characteristics and are not close substitutes 

(McFadden, 1974). The parameter values for the SAMS-only and SAMS+Transit modes are not directly 

estimated. Rather, the utility function parameters for the SAMS-only mode are based on the drive-alone 

parameter estimates and the SAMS+Transit mode parameters are based on the average of the drive-alone 

and transit parameter estimates. This calls into question the IIA property holding for the five-mode choice 

set; however, because the SAMS and SAMS+Transit modes do not currently exist it is not possible to 

estimate a nested or cross-nested logit model and obtain parameter estimates for the new modes or for the 

nesting coefficients. 

The natural log of the denominator in Eqn. 10 is the mode choice logsum (i.e. inclusive value) that 

represents the maximum expected utility a worker obtains from all mode options, 𝑀𝑗𝑛
, at destination 𝑗 

(Small and Rosen, 1981; Zhao et al., 2012). Equation 11 displays the mode choice logsum 𝐼𝑗
𝑖𝑛, which can 

be used in the upper-level destination choice model as a measurable attribute of potential destination 𝑗 ∈

𝐷𝑛 (Ortúzar and Willumsen, 2011). 

Level 1:  𝑫𝒏: 

Level 2:  𝑴𝒋𝒏
: 

𝑖𝑛 

𝑗    ………………… |𝐷𝑛| 

𝐶𝑎𝑟 
𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑊𝑎𝑙𝑘 

𝐶𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 

1    …………… 

𝑊𝑎𝑙𝑘 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 
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𝐼𝑗
𝑖𝑛 = 𝑙𝑛 ∑ 𝑒

𝑉𝑚|𝑗
𝑖𝑛  

𝑚∈𝑀𝑗𝑛
  (11) 

At Level 1, the choice scenario involves a worker selecting a destination considering the attributes of 

the destination locations (particularly employment opportunities) as well as the distance and mode choice 

logsum (𝐼𝑗
𝑖𝑛) from 𝑖𝑛 to potential destination 𝑗. Equation 11 displays the mathematical formulation of the 

destination choice model, where 𝑃𝑗
𝑖𝑛 indicates the probability worker 𝑛 with origin 𝑖𝑛 chooses destination 

𝑗. 

𝑃𝑗
𝑖𝑛 =

𝑒
𝜇𝐼𝑗

𝑖𝑛+∑ 𝛽𝑏∙𝑋𝑏𝑗𝑏∈𝐴𝑑

∑ 𝑒𝜇𝐼𝑘
𝑖𝑛+∑ 𝛽𝑏∙𝑋𝑏𝑘𝑏∈𝐴𝑑

𝑘∈𝐷𝑛

 (12) 

In Eqn. 12, 𝑋𝑗 is a vector of attributes describing destination 𝑗; 𝛽 is a vector of coefficients, to be estimated, 

that convert the destination attributes into utility units; and, 𝜇 is the parameter coefficient for the mode 

choice logsum (𝐼𝑗
𝑖𝑛) that verifies the destination-mode choice structure if 𝜇 < 1. The term 𝜇𝐼𝑗

𝑖𝑛 connects the 

mode choice model in Level 2 with the destination choice model in Level 1. Both 𝛽 and 𝑋𝑗 have rank |𝐴𝑑| 

where 𝐴𝑑 is the set of destination choice level attribute indices. 

Let 𝑃𝑚𝑗
𝑖𝑛  represent the probability worker 𝑛 with origin 𝑖𝑛 chooses commute mode 𝑚 and employment 

destination 𝑗. Assuming a hierarchical choice wherein the commute mode choice is nested within the work 

destination choice, Eqn. 13 shows that 𝑃𝑚𝑗
𝑖𝑛  is the product of Eqn. 12 and Eqn. 10. The hierarchical choice 

model can be estimated simultaneously or sequentially. Given the size of the CHTS dataset, this study 

estimates the hierarchical choice model sequentially.  

𝑃𝑚𝑗
𝑖𝑛 = 𝑃𝑚|𝑗

𝑖𝑛 ∙ 𝑃𝑗
𝑖𝑛 (13) 

The natural log of the denominator in Eqn. 12 is the destination choice logsum that represents the 

maximum expected utility a worker obtains from all work destination choice options 𝐷𝑛. Equation 14 shows 

that multiplying the destination choice logsum by 1/𝛼, where 𝛼 is still the marginal utility of income, 

provides the consumer surplus for the hierarchical destination-mode choice, which is our measure of 

employment accessibility. Consistent with much of the literature (Ortúzar and Willumsen, 2011; Train, 

2009), this study uses the marginal disutility of travel cost parameter from the mode choice model, to obtain 

the 𝛼 value.  

𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑛 =  𝐶𝑆𝑛 =
1

𝛼
𝑙𝑛 ∑ 𝑒𝜇𝐼𝑗

𝑖𝑛+∑ 𝑋𝑎𝑗𝑎 𝛽𝑎

𝑗∈𝐷𝑛

+ 𝐶 (14) 

This study estimates one set of mode choice parameter values, 𝛽𝑎, for all workers. However, the study 

estimates separate destination choice parameter values, 𝛽𝑏, for each separate worker cluster.  

4.5 Logsum Measure of Employment Accessibility 

To apply the estimated hierarchical destination-mode choice model, a 5% representative population 

was generated for each census tract of the SCAG region. The representativeness of the population was 

established by using the marginal distribution of four household level variables – household size, household 

income, number of workers in the household, and number of household vehicles. Values for these four 
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variables come from the 2012 American Community Survey (ACS). Other synthetic population generation 

inputs include the household and person dataset from the CHTS sample (National Renewable Energy 

Laboratory, 2017). 

The generation of the synthetic population was carried out using the ‘Population Synthesis’ tool in 

TransCAD (Caliper, 2019), which employs the Iterative Proportional Fitting (IPF) algorithm to match the 

marginal distribution of the census tracts with the joint distribution of the household attributes (Beckman 

et al., 1996). After creating the synthetic population, 44 out of the 3,951 census tracts had missing data, 

which is mostly due to the absence of households or workers in these census tracts according to the ACS 

data.  

To quantify the employment accessibility benefits of the two SAMS modes, this study defines two sets 

of commute modes:  

• Pre-SAMS Modes, 𝑀0: Walk, Drive Alone and Transit 

• Post-SAMS Modes, 𝑀1: Walk, Drive Alone, Transit, SAMS-only, SAMS+Transit 

This study assumes that the SAMS-only mode has many of the same modal attributes as the Drive Alone 

mode, except the SAMS-only mode has zero parking cost, a different cost per mile, and a wait time. The 

SAMS+Transit mode is treated as a mix between the Drive Alone and Transit modes.  

Given the synthetic population, the parameter estimates from the hierarchical destination-mode choice 

model (and the assumed parameters for the SAMS-only mode and the SAMS+Transit mode), Eqn. 15 

displays the formula to determine the increase in employment accessibility as a result of two new SAMS 

commute modes. The superscripts 1 and 0 represent the model with and without SAMS respectively. 

∆𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = ∆𝐶𝑆 =
1

𝛼
[ln (∑ 𝑒𝑉𝑗𝑚

1

𝑗,𝑚

) − ln (∑ 𝑒𝑉𝑗𝑚
0

𝑗,𝑚

)] (15) 

5 Results and Discussion 

5.1 Characteristics of the Latent Classes 

This section presents the LCA model results. To ensure optimality of the classification, this study 

considered class sizes up to 10 and for each class size the specified model was run 50 separate times with 

a random set of initial probabilities conditional on the class and manifest variables. This was required to 

increase the prospect of reaching a global maximum solution rather than a local maximum. The model with 

four classes was found to have the lowest cAIC (i.e., consistent AIC) and second lowest BIC. 
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Figure 4: Class-Conditional Probabilities 
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Figure 4 displays the estimates for 𝜋𝑣𝑐𝑘, the class-conditional probability a member of class 𝑐 results 

in outcome 𝑘 on variable 𝑣. Figure 4 shows that the class-conditional probabilities for education and income 

vary the most across the classes. Conditional on being in Class 1, the probability of having a college degree 

and making more than $100k per year is the highest across classes. Conversely, conditional on being in 

Class 2, the probability of not having a college education and making less than $50k per year is the highest 

across classes. Conditional on being in Class 4, the likelihood of being younger than 25 is much higher than 

for other worker classes. Figure 4 also shows that there is not much difference in the class-conditional 

probabilities for gender, with the female probabilities of ranging from 42% to 50%. Other than Class 4, the 

class-conditional age probabilities are consistent across Classes 1, 2, and 3.  

Table 1 labels the classes based on their class-conditional probabilities in the final four columns. The 

third column displays the estimates for the parameter 𝑝𝑐, the unconditional probability that an individual 

will belong to class 𝑐. The second column displays the results of the assignment of the sample workers to 

classes considering the posterior probability 𝑃 ̂(𝑐𝑛|𝑌𝑛). Each worker 𝑛 was assigned to the class 𝑐 with the 

highest posterior probability.  

The workers in Class 2 have low education attainment levels and live in households with annual 

incomes below $50k. This class of workers only makes up 8.3% of the sample of CHTS workers. On the 

other hand, the workers in Class 1 have high education attainment levels and live in households with annual 

incomes above $50k with most household annual incomes above $100k. This class of workers makes up 

32.4% of the CHTS sample. The workers in Class 4 are most notably young, with low education attainment 

(likely because they are young) and live in households with a wide range of incomes. This class of workers 

makes up only 9.5% of workers in the CHTS sample. Finally, the workers in Class 3 have a relatively even 

distribution of ages and education levels. However, their household annual incomes are noticeably in the 

middle-income levels and this class has a disproportionately high number of female workers. The workers 

in Class 3 make up 50% of workers in the CHTS sample.  

Table 1 Characteristics of the Classes with respect to Four Manifest Variables 

Class Proportion Assign 

from Post. Prob 

Unconditional 

Class Prob. 

Class Representation 

Gender Age Education Income 

1 0.324 0.280 - - Graduate / Bachelors Upper Middle / High 

2 0.083 0.140 - - Below High School Low / Lower Middle 

3 0.498 0.433 Female - - Middle 

4 0.095 0.147 - 16-25 High School / Some 

College  

- 

Table 2 displays the distribution of socio-demographic and travel characteristics across the four worker 

classes and the significance of their differences with respect to the p-values of chi-square and ANOVA 

tests. Once again, workers in the CHTS sample were assigned to the class with the highest posterior 

probability.  The second column of Table 2 also shows the distribution of socio-demographic and travel 

characteristics for all workers (i.e. without clustering). The first four variables, from the LCA model, verify 

a statistically (and practically) significant difference between the four classes in terms of the four manifest 

variables.  

In addition to the socio-demographic differences in the classes, there are significant differences in the 

distribution of variables pertaining to household/person characteristics, travel characteristics, and work 

location attributes. The most important is the current employment sector of workers because the study 

assumes that different workers value different employment types differently; hence, in the destination 
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choice model it is valuable to cluster workers based on the type of jobs they are likely to value. As expected, 

Table 2 illustrates significant differences between the classes in terms of current employment type. 

Moreover, the crosstab values between employment sector and class (considering the LCA class attributes) 

are unsurprising. Class 1 workers, who have the highest education and household incomes, have more jobs 

in education and offices than the other three classes. Class 2 workers, who are predominately male without 

college degrees and have low household incomes, have a much higher percentage of industrial jobs than 

the other worker classes. Class 3 workers, who are in medium income households, have the highest 

percentages of jobs in healthcare and public administration sectors. Finally, Class 4 workers, who are the 

youngest, are more likely to have jobs in entertainment and retail than the other worker classes.  

The employment type results, specifically the statistical significance across clusters, provide some 

evidence that the LCA method, which used only four socio-demographic manifest variables, clustered 

workers in a manner that should be effective in terms of differentiating the types of employment 

opportunities different segments of the working population value.  

Table 2: Distribution of Socio-demographic and Travel Characteristics Across Classes 

Characteristics 
All Class 

(N= 12,733) 

Class 1 

(N= 4,125) 

Class 2 

(N=1,055) 

Class 3 

(N=6,343) 

Class 4 

(N=1,210) 

Significance of 

Difference 

Household/Person 

Gender 

Male 

Female 

 

52.49 

47.51 

 

56.56 

43.44 

 

68.91 

31.09 

 

47.23 

52.77 

 

51.82 

48.18 

Pr(> χ2) = 0.00 

Age (years) 

16-25 

26-35 

36-45 

46-55 

56-65 

66+ 

 

9.68 

13.28 

19.33 

28.68 

23.96 

5.07 

 

0.24 

10.06 

22.11 

34.35 

27.78 

5.45 

 

2.94 

13.84 

29.57 

35.36 

14.31 

3.98 

 

0.03 

17.75 

19.50 

29.10 

27.65 

5.96 

 

98.35 

0.33 

0.00 

1.32 

0.00 

0.00 

Pr(> χ2) = 0.00 

Education 

Below High School 

High School Graduate 

Some College Credit 

Associate Degree 

Bachelor’s Degree 

Graduate Degree 

 

5.32 

15.58 

17.39 

11.16 

27.57 

22.98 

 

0.00 

0.36 

1.62 

0.68 

40.87 

56.46 

 

58.86 

38.01 

3.13 

0.00 

0.00 

0.00 

 

0.00 

18.45 

26.39 

20.09 

25.67 

9.41 

 

4.63 

32.89 

36.36 

9.83 

16.28 

0.00 

Pr(> χ2) = 0.00 

Household Income ($1,000) 

Low (<25) 

Lower Middle (25 to <50) 

Middle (50 to <100) 

Upper Middle (100 to <200) 

High (200+) 

 

8.43 

15.43 

35.06 

32.47 

8.60 

 

0.00 

0.00 

11.22 

64.63 

24.15 

 

52.61 

35.73 

9.86 

1.80 

0.00 

 

5.74 

22.21 

54.74 

17.31 

0.00 

 

12.81 

14.79 

35.12 

29.09 

8.18 

Pr(> χ2) = 0.00 

HH Size 3.19 3.03 3.93 2.99 4.11 Pr(> F) = 0.00 

HH Vehicle per Driver 

Low (<1 Vehicle) 

High (1+ Vehicles) 

 

15.62 

84.38 

 

9.76 

90.24 

 

26.35 

73.65 

 

15.59 

84.41 

 

27.59 

72.41 

Pr(> χ2) = 0.00 

Employment Sector 

Retail 

Office 

Industrial 

Service 

 

9.11 

10.38 

18.70 

14.29 

 

3.49 

12.90 

12.65 

16.99 

 

12.70 

3.03 

42.46 

14.22 

 

9.16 

10.75 

20.05 

13.07 

 

24.88 

6.28 

11.49 

11.49 

Pr(> χ2) = 0.00 
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Characteristics 
All Class 

(N= 12,733) 

Class 1 

(N= 4,125) 

Class 2 

(N=1,055) 

Class 3 

(N=6,343) 

Class 4 

(N=1,210) 

Significance of 

Difference 

Entertainment 

Education 

Healthcare 

Public Administration 

8.60 

18.43 

11.66 

8.83 

5.31 

26.86 

12.07 

9.72 

13.74 

3.51 

8.06 

2.27 

7.20 

17.01 

12.42 

10.33 

22.64 

10.17 

9.42 

3.64 

Job Count 1.25 1.20 1.40 1.26 1.24 Pr(> F) = 0.00 

Work Hour (per week) 37.39 40.34 36.68 37.19 28.60 Pr(> F) = 0.00 

Work Flexibility 

No 

Low 

High 

 

41.98 

44.39 

13.63 

 

32.88 

50.58 

16.54 

 

53.33 

35.65 

11.01 

 

45.65 

41.49 

12.86 

 

44.24 

45.94 

9.82 

Pr(> χ2) = 0.00 

Travel 

Commute Distance (miles) 9.68 10.44 8.60 9.78 7.51 Pr(> F) = 0.00 

Commute Mode 

Walk 

Drive Alone 

Transit 

 

3.67 

91.51 

4.82 

 

3.49 

93.55 

2.96 

 

6.73 

79.15 

14.12 

 

2.96 

93.08 

3.96 

 

5.29 

87.11 

7.60 

Pr(> χ2) = 0.00 

Work Location 

Population Density 14.75 14.66 15.09 15.00 14.01 Pr(> F) = 0.28 

Employment Density 7.66 7.94 8.47 6.69 8.97 Pr(> F) = 0.06 

Land Use Entropy 0.52 0.52 0.53 0.50 0.53 Pr(> F) = 0.00 

Employment Entropy 0.54 0.54 0.53 0.53 0.54 Pr(> F) = 0.37 

Note: Data on land use entropy was collected from Mitra & Saphores (Mitra and Saphores, 2017), who created this index based on 

eight land use categories.  

5.2 Specification and Estimation Results of the Hierarchical Logit Model  

This section presents the final model specification and estimation results of the hierarchical 

destination-mode choice model. Since the focus of the paper is on accessibility analysis, this section does 

not include a detailed discussion of each parameter estimate. The destination and mode choice models were 

specified considering the variables in Table 2. For the lower-level mode choice model, the specification 

includes household-, person-, mode-, and some destination-specific variables. All destination-specific 

variables were considered for the destination choice model along with the mode choice logsum. These 

variables were incorporated in the models in different combinations and the final set of variables for each 

model were identified based on their significance, impact on the sign and significance of other variables, 

and the overall goodness-of-fit of the model.  

Table 3 shows the mode choice model estimation results for the combined dataset containing all 

four classes. Among the three alternatives in the mode choice model (‘Walk’, ‘Drive Alone’ and ‘Transit’), 

‘Walk’ was specified as the base alternative. As the mode choice data was only available at a spatially 

aggregate level, the mode choice model estimation results were relatively sensitive to changes in the 

specification of the mode-specific variables. The final model specification of the mode-specific parameters 

includes only parameters that are consistent with transportation theory (i.e. cost and travel time showing a 

negative marginal utility). The total travel time includes access time, wait time, transfer time, in-vehicle 

travel time, and egress time. According to the parameter estimates, the value of total travel time savings 

(VOTTTS) is $19.7 per hour. Given this baseline, walk time is $14.3 per hour more onerous, resulting in a 

value of walk time savings of $34.1 per hour. Similarly, wait time is $11.6 per hour more onerous, giving 

a value of wait time savings of $31.4 per hour. These values are consistent with most value-of-time ranges 

in the existing literature (Frei et al., 2017; Wardman, 2004). The opposite of the coefficient for ‘Total Travel 
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Cost’, 𝐵𝑐𝑜𝑠𝑡, is treated as the ‘Marginal Utility of Income’ parameter to measure consumer 

surplus/accessibility; i.e. 𝛼 = −𝐵𝑐𝑜𝑠𝑡 

In terms of the individual-specific variables in the mode choice model, there are several notable results.  

Relative to males, females prefer driving alone and taking transit to walking to work. Age is only found to 

be significant for drive-alone and the two positive coefficients indicate that older workers (age 46-55 and 

66+) are more likely to choose drive-alone than walk. The coefficients for household income are only 

significant for transit, where they suggest a consistently decreasing tendency to choose transit over walk 

when income increases from middle to high. There is a significant negative association between the choice 

of drive-alone and having some work flexibility. This is also true for transit, which is an indication that an 

inflexible work schedule requires workers to choose faster commute modes. Also, as expected, tendency to 

choose drive-alone is positively associated with household size, and negatively associated with high 

population density at work locations. While in the case of transit, a higher diversity of land uses at work 

locations tends to increase workers preference for transit as a commute mode. 

Table 3: Hierarchical Logit Model (Lower Level: Mode Choice) Estimation Results 

Parameters Coefficients 

Total Access and Egress Time (mins) 

Total Wait Time (mins) 

Total Travel Time (mins) 

Total Travel Cost ($) 

-0.021*** 

-0.017 

-0.029*** 

-0.088*** 

Mode (Base: Walk) Drive Alone Transit 

Constant -1.004** -0.088 

Gender: female 0.565*** 0.581*** 

Age (base: 16-25) 

Age: 26-35 

Age: 36-45 

Age: 46-55 

Age: 56-65 

Age: 66 and above 

0.145 

0.141 

0.422* 

0.335 

0.997*** 

-0.432 

-0.257 

-0.195 

-0.276 

-0.130 

HH Size 0.109* 0.044 

HH Vehicle per Driver: high (base: low) 1.201*** 0.031 

HH Income (base: low) 

HH Income: lower middle 

HH Income: middle 

HH Income: upper middle 

HH Income: high 

-0.117 

0.282 

0.244 

0.021 

-0.334 

-0.522* 

-0.686** 

-1.488*** 

Work Flexibility (base: no) 

Work Flexibility: low 

Work Flexibility: high 

-0.587*** 

-0.378 

-0.455** 

-0.408 

Land Use Entropy at Destination 1.582 0.961* 

Population Density at Destination (persons/acre) -0.013* 0.001 

Model Results 

Log-Likelihood  

Wald χ2 

AIC 

BIC 

-3340.284 

488.190 

6756.568 

7035.680 

Note: Sig. codes:  0.01‘***’ 0.05‘**’ 0.10‘*’ 
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Table 4 displays the results of the destination choice model which was estimated separately for each 

of the four classes. The log of distance parameter is statistically significant and negative in all four models, 

clearly indicating that workers prefer employment locations closer to their residence locations. Except 

public administration, which is negative for the relatively high-income classes – Class 1 and Class 3 – all 

the job type count variables are positive and have a high statistical significance. The interpretation of the 

job type count variables (with a positive coefficient) is that workers are more likely to choose a destination 

location with more jobs of a specific type. Hence, looking at Class 4, the very young cluster, an additional 

retail job in a destination is significantly more impactful than an entertainment job, which is significantly 

more impactful than a health care job, which is significantly more impactful than an office job wherein the 

office job has no statistically significant value for members of Class 4.  

The signs on the percentage of medium and high-income workers in the destination are consistent with 

the representation of the income levels of the four classes. For example, High (Medium) Wage Worker 

Percentage is positive (negative) and statistically significant for Class 1, which is the group composed of 

workers from high-income and upper-middle income households. Employment entropy, which represents 

the diversity of employment opportunities, is positive and statistically significant for Class 1 and Class 3, 

which are the two highest income and education attainment classes, indicating diversity in employment 

opportunities is more valuable for these workers.  

The significant differences in the magnitudes of the coefficient estimates for the employment types (as 

well as employment entropy and wage-levels) across the four classes, confirm that (1) different types of 

workers value different types of employment opportunities at different levels, and (2) the LCA clustering 

approach using only age, income, gender, and education variables effectively captures major differences.  

Table 4: Hierarchical Logit Model (Upper Level: Destination Choice) Estimation Results 

Parameters  

Coefficients 

Class 1 

(N=3,766) 

Class 2 

(N=849) 

Class 3 

(N=5,663) 

Class 4 

(N=1,078) 

Log of Distance 

Retail Jobs 

Office Jobs 

Industrial Jobs 

Service Jobs 

Entertainment Jobs 

Education Jobs 

Health Jobs 

Public Administration Jobs 

Medium Wage Workers (%) 

High Wage Workers (%) 

Employment Entropy 

Mode Choice Logsum 

-0.733*** 

0.143*** 

0.029*** 

0.052*** 

0.024** 

0.133*** 

0.091*** 

0.133*** 

-0.022*** 

-0.013*** 

0.026*** 

0.276* 

0.371*** 

-0.668*** 

0.112* 

--- 

0.082*** 

0.044** 

0.118*** 

--- 

--- 

0.011* 

0.034*** 

--- 

--- 

0.554*** 

-0.718*** 

0.138*** 

0.025*** 

0.055*** 

--- 

0.162*** 

0.080*** 

0.104*** 

-0.018*** 

0.011*** 

0.023*** 

0.515*** 

0.427*** 

-0.917*** 

0.356*** 

--- 

0.049*** 

--- 

0.159*** 

0.106*** 

0.095*** 

--- 

--- 

--- 

--- 

0.618*** 

Log-Likelihood  

Wald χ2 

AIC 

BIC 

-8150 

2480 

16327 

16408 

-3280 

495.6 

6576 

6614 

-15632 

2870 

3128 

31368 

-4782 

765.2 

9579 

9614 

Note: Number of jobs are in thousands; Sig. codes:  0.01‘***’ 0.05‘**’ 0.10‘*’ 
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As expected, the coefficient for the mode choice logsum is positive and significant in all classes, 

indicating that in addition to distance to destinations, the modal attributes between worker origins and 

destinations impact the choice of destinations.  Moreover, the mode choice logsum coefficient estimates 

are all less than 1, which verifies the nesting of mode choice under employment destination choice. The 

relative magnitudes of the mode choice logsum coefficient estimates across the four worker classes provide 

insight into which groups may benefit the most from the introduction of SAMS. Table 4 indicates that 

improvements in commute mode choice alternatives may improve accessibility the most for Class 4 

followed by Class 2, Class 3, and Class 1. Interestingly, this indicates that the high-income class (Class 1) 

and the middle-income class (Class 3) may be less sensitive to changes in mode choice alternatives than 

the low-income class (Class 2) and the young worker class (Class 4).  

5.3 Employment Accessibility Improvements in the SCAG Region 

This section presents the employment accessibility analysis results.  The accessibility results were 

calculated using the parameter estimates presented in Table 3 and Table 4, for workers in the synthetic 

population. The study assumes that the individual-specific mode choice coefficients (e.g. age, income, work 

flexibility, population density, etc.) for the SAMS-only mode are the same as the drive-alone mode in Table 

3; whereas, for the SAMS+Transit mode, the study assumes the individual-specific mode choice 

coefficients are an average of the drive-alone mode and transit mode in Table 3. Section 3 describes how 

the study determines modal attributes for the SAMS-only mode (i.e. the same as drive-alone but with no 

parking costs and a five-minute wait time at the origin) and the SAMS+Transit mode (i.e. a mix of drive-

alone and transit).  

5.3.1 Employment Accessibility Benefits across Worker Classes 

Table 5 displays summary statistics comparing the consumer surplus/accessibility benefits across the 

classes. All values correspond to the 5% synthetic working population in the SCAG region. With respect 

to the total benefit, Class 3 sees the largest increase in accessibility from the introduction of the SAMS 

modes because Class 3 represents the largest portion of workers in the synthetic population. Considering 

the median benefit across the workers in each class, Class 4 sees the largest accessibility improvement 

($9.09 per work trip), whereas Class 1 sees the smallest ($6.3). A look at the 25th and 75th percentiles in 

accessibility benefits suggest that most workers would receive a benefit between $5 and $10 per work trip 

from the introduction of SAMS modes. To provide additional insights, Figure 5 displays a histogram of 

accessibility benefit values for the synthetic workers in each worker class. 

Interestingly, Table 5 shows that the employment accessibility benefits across worker classes are 

relatively consistent, with the mean and median benefit values ranging between $6.34 and $9.2. Although 

there is a relatively even distribution of benefits across the four worker classes, the young worker class 

(Class 4) and the low-income class (Class 2) do benefit the most and second-most respectively from the 

SAMS modes, respectively. Considering the results in Table 4, the difference in overall benefits from 

SAMS across the worker classes shown in Table 5 is coming directly from the sensitivity to changes in 

mode choice alternatives (i.e. the coefficients for Mode Choice Logsum) in the destination choice model. 
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Table 5: Employment Accessibility Improvements Across Classes 

Statistics 
Class 

1 2 3 4 

Total Benefit ($) 504,056 197,000 842,098 246,638 

Benefit per Capita ($) 

Minimum 

Maximum 

25th Percentile 

50th Percentile 

75th Percentile 

Mean 

Std. Deviation 

 

2.70 

20.53 

5.72 

6.34 

7.20 

6.61 

1.35 

 

4.56 

25.51 

7.87 

8.48 

9.18 

8.62 

1.31 

 

3.70 

22.12 

6.31 

6.86 

7.58 

7.06 

1.22 

 

4.30 

29.91 

8.43 

9.09 

9.85 

9.20 

1.39 

 

 

 

 

 

Figure 5: Distribution of Employment Accessibility Benefits in Each Class 

5.3.2 Employment Accessibility Benefits from each SAMS Mode 

Table 5 displays the benefits of adding both the SAMS-only mode and the SAMS+Transit mode to the 

commute choice set of workers. This section aims to illustrate the percentage of overall SAMS benefits 

obtainable from each of the two SAMS modes, individually. Let 𝑀𝑆 ={SAMS-only, SAMS+Transit} be 

the set of SAMS modes, indexed by 𝑚𝑆 ∈ 𝑀𝑆. Equation 16 displays the formula for determining the 

percentage of the overall SAMS accessibility benefit that is obtainable from just adding one of the two 

SAMS modes to the workers’ choice sets. It is important to note that Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑠  ≠
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Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝐴𝑀𝑆𝑜𝑛𝑙𝑦 + Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝐴𝑀𝑆+𝑇𝑟𝑎𝑛𝑠𝑖𝑡; therefore, it is necessary to calculate 

Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑚𝑠 for each SAMS mode individually added to the workers mode choice sets.  

%𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝐴𝑀𝑆 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑠 =
Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑚𝑠

Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑠
 (16) 

Figure 6 displays the share of the total SAMS accessibility benefits from the two SAMS modes – 

SAMS-only and SAMS+Transit – obtainable from just incorporating one of the two SAMS modes into 

each worker’s mode choice set. The results suggest that just adding the SAMS-only mode can provide at 

least 98% of the total accessibility benefits of both SAMS modes for all four classes. Conversely, just 

adding the SAMS+Transit mode only provides 2-4% of the accessibility benefits of both SAMS modes 

across the four classes. These results imply that SAMSs may provide very little benefit to workers as a 

mode to access transit in Southern California. Moreover, SAMS access modes seem unlikely to positively 

impact transit ridership in a significant way, at least not for commute trips, based on the models developed 

in this study.  

 
Figure 6: Share of SAMS Employment Accessibility Benefits Obtainable from just One SAMS Mode Alone 

5.3.3 Spatial Distribution of Employment Accessibility Benefits 

To understand the spatial distribution of accessibility improvements from the SAMS modes, three sets 

of maps were generated for the SCAG region; the maps illustrate the whole SCAG region (Figure 7), the 

City of Los Angeles (Figure 8), and Orange County (Figure 9). Figure 7a, Figure 8a and Figure 9a display 

the accessibility improvements by census tract in the respective administrative areas, when using the base 

modal attributes for the SAMS modes. Figure 7b, Figure 8b and Figure 9b display the accessibility 

improvements by census tract when assuming service quality (i.e. wait time) is a function of population 

density (see Section 4.3.2 for further analysis). Figure 8c and Figure 9c display the median household 

income across census tracts; whereas, Figure 8d and Figure 9d display population density across census 

tracts.  

The reason behind choosing the City of Los Angeles (LA) and Orange County is that they have 

different demographic distributions. For example, household income and population density vary 

significantly across census tracts in LA; whereas, household income and population density are relatively 

consistent across Orange County census tracts.  
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Figure 7 clearly shows that the census tracts that benefit the most from SAMS modes are in the 

periphery of the SCAG region, where population density is lowest. The same inference can be drawn when 

looking at the accessibility improvements in LA (Figure 8) and to a lesser extent Orange County (Figure 

9). The significant differences in employment accessibility improvements from SAMS modes in low- vs. 

high-density areas stem from the distances between residential locations and employment opportunities in 

low- vs high-density areas and (related to commute distances) the ability to walk or take transit to work in 

low- vs high-density areas. In low-density areas where employment opportunities are far away from 

residential locations, walking is unviable, and transit service is usually poor or nonexistent, workers would 

benefit significantly from a fast and relatively affordable travel mode like the SAMS-only mode. 

Conversely, in high-density areas where employment opportunities are close to residences, walking is a 

reasonable option in some cases, and transit service can be good or adequate, the benefit of another 

commute mode like the SAMS-only mode is not as large as for workers in low-density areas. The low 

accessibility improvements shown in Downtown LA as well as in the cities of Anaheim, Fullerton and 

Santa Ana in the northwestern region of Orange County exemplify this effect.  

Figure 8 also shows that low-income census tracts seem to receive relatively lower accessibility 

improvements from SAMS modes than high-income census tracts in LA. As there is nothing in the 

modeling framework and the parameter estimates to suggest low-income households receive lower 

accessibility improvements from SAMS modes (in fact the opposite is the case according to the class-

dependent results in Table 5), the relationship between income and accessibility improvements in LA shown 

in Figure 8 is likely coming from the strong relationship between density and income in LA. That is, high-

density census tracts are also low-income census tracts, and high-density census tracts see lower 

accessibility improvements from SAMS modes in general, as discussed in the previous paragraph.  

Figure 8 and Figure 9 also display disadvantaged areas that represent vulnerable low-income 

communities that are unduly subjected to several polluting sources, according to the California 

Environmental Protection Agency (CalEPA) for Senate Bill 535  (SCAG, 2019). The SCAG disadvantaged 

areas in LA experience accessibility benefits that are slightly higher than the other low-income areas but 

not as high as the high-income areas, which are in less-dense areas.  
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Figure 7: Employment Accessibility Benefits of SAMS modes with (a) Density-independent and (b) Density-

dependent, SAMS Wait Times, across the SCAG Region Census Tracts

(b) 

(a) 
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Figure 8: LA City Census: (a) Baseline Employment Accessibility Benefits; (b) Employment Accessibility Benefits with Density-Dependent SAMS Wait Times; (c) Median 

Household Income; (d) Population Density  

(a) (b) 

(c) (d) 
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Figure 9: Orange County Census Tracts: (a) Baseline Employment Accessibility Benefits; (b) Employment Accessibility Benefits with Density-Dependent SAMS Wait Times; (c) Median 

Household Income; (d) Population Density

(a) 

(d) (c) 

(b) 
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5.3.4 Employment Accessibility Benefits with Density-dependent SAMS Wait Times 

In the previous analyses, the SAMS wait time attribute value was set to five minutes for all members 

of the synthetic population. This is an unlikely assumption given the relative ease of having available 

vehicles near travelers in dense urban areas, and relative difficulty of having available vehicles near 

travelers in rural areas, from a SAMS fleet operations perspective (Hyland and Mahmassani, 2018). This 

subsection analyzes an alternate, possibly more realistic, scenario wherein SAMS wait times are dependent 

on population density. This section assumes highly dense areas have more available vehicles nearby 

resulting in low average wait times (Loeb et al., 2018; Zhang and Guhathakurta, 2018). To analyze this 

scenario, the wait times are apportioned according to the population density. The population density in 

SCAG, which ranges from 0.01 to 146.79 persons per acre in the census tracts with non-zero households, 

was divided into quartiles with each origin census tract receiving a wait time between 10 to 3 minutes. The 

quartiles were further segmented into two for increased resolution of wait times. Hence, the synthetic 

workers in the lowest density tracts were assigned a 10-minute wait time; whereas, synthetic workers in the 

highest density tracts were assigned a 3-minute wait time.  

Table 6 displays summary statistics of accessibility improvements across classes for the case where 

SAMS wait times are dependent on population density. Similarly, Figure 7b, Figure 8b, and Figure 9b 

display the accessibility improvements in the census tracts of SCAG, LA, and Orange County, respectively, 

for the case with density-dependent SAMS wait times.  

Table 6: Employment Accessibility Improvements Across Classes with Density-dependent SAMS Wait Times 

Statistics 
Class 

1 2 3 4 

Total Benefit ($) 513,974 201,805 860,895 251,710 

Benefit per Capita ($) 

Minimum 

Maximum 

25th Percentile 

50th Percentile 

75th Percentile 

Mean 

Std. Deviation 

 

2.88 

20.85 

5.83 

6.47 

7.35 

6.74 

1.39 

 

4.61 

26.07 

8.06 

8.68 

9.41 

8.83 

1.34 

 

3.76 

22.56 

6.45 

7.02 

7.75 

7.22 

1.26 

 

4.60 

30.54 

8.56 

9.28 

10.07 

9.39 

1.43 

 

Comparing the employment accessibility benefits of SAMS in Table 6 with Table 5, there is only a 

small difference in benefits, with all classes seeing around a 2% increase in accessibility benefits when 

SAMS wait times depend on population density. The increase in overall benefits suggests that the increase 

in benefits of SAMS in high density areas (from lower wait times) outweighs the reduction in benefits in 

low density areas (from higher wait time).  

Figure 7 through Figure 9 shed additional light on this effect. In Figure 7, the distribution of benefits 

appears to be similar, at least in the peripheral low-density areas, in both the density-dependent and density-

independent cases. Contrasting with the maps of population density in Figure 8 and Figure 9, a closer look 

at the high-density tracts of LA (Figure 8) and Orange County (Figure 9) reveal slight increases in the 

accessibility benefits in a majority of these tracts. These findings are consistent with the results in Table 6 

that indicate slight overall increases in benefits with density-dependent wait times.  
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5.3.5 Sensitivity Analysis on Accessibility Benefits with Changes in SAMS Costs 

This section and Figure 10 present the results of a sensitivity analysis on employment accessibility 

benefits from SAMS modes with respect to changes in the expected SAMS cost per mile attribute value. 

Conducting the sensitivity analysis simply involves changing the modal attributes for the SAMS modes in 

the dataset for the synthetic population of workers and recalculating the accessibility/consumer surplus 

values. 

The original cost per mile for the SAMS modes was $0.30/mile; whereas, this section considers cost 

per mile values of $0.10/mile, $0.20/mile, $0.40/mile and $0.50/mile. Figure 10 presents the median 

accessibility benefit for all five cost scenarios, across all four clusters. When moving from a higher to lower 

cost per mile, all four classes experience a constant linear increase in the median accessibility benefit per 

capita.  

The fact that the employment accessibility benefits of SAMS decrease as the expected cost per mile 

increases is unsurprising. However, it is important to note the magnitude of the decrease in accessibility 

benefits. According to Figure 10, for Class 4 (Class 1, respectively), accessibility benefits decrease from 

$10.16 ($7.35) per commute trip, to $8.18 ($5.46) per commute trip, as SAMS cost per mile increases from 

$0.10 to $0.50; this represents a 19.5% (25.7%) decrease in accessibility benefits.  Hence the SAMS cost 

per mile significantly impacts overall accessibility. However, the SAMS modes can still provide 

accessibility benefits even at cost values comparable to the current cost per mile of personal vehicle travel 

in a sedan.  

 
Figure 10: Sensitivity Analysis on Employment Accessibility Benefits with Respect to Changes in SAMS Cost  
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6 Conclusion  

This study assumes shared-use AV-enabled mobility service (SAMS) modes exist in the future and 

are competitive with existing commute modes. Given this assumption, the study analyzes the potential 

employment accessibility benefits of adding two new SAMS modes to the mode choice sets of workers – 

SAMS-only and SAMS+Transit. The main employment accessibility benefits of the SAMS modes captured 

in this study arise from the ability of SAMS modes to (i) avoid parking costs in dense urban areas that 

personal car users need to pay and (ii) use the temporally and spatially ubiquitous roadway network to 

provide transport services that are significantly faster and more reliable than public transit service between 

many residences and employment locations, in Southern California.  

To analyze the impact of the SAMS modes on employment accessibility, the study first estimates 

hierarchical destination-mode choice models using the CHTS data. Next, the study applies the parameter 

estimates from the hierarchical choice models to a 5% synthetic population of workers in Southern 

California to obtain welfare-based measures of employment accessibility before and after the introduction 

of SAMS modes. Another important component of the methodology is the clustering of workers based on 

their socio-demographics before estimating destination choice models. The purpose of clustering workers 

is to improve the explanatory power of the destination choice models as different worker segments value 

different types of employment opportunities at different levels. The agent-based modeling framework and 

accessibility analysis methodology is relatively data-intensive; however, this allows analysts to investigate 

the potential wide-ranging employment accessibility benefits of SAMS in significant detail.  

The results of the analysis provide several valuable insights into the potential impacts of SAMS modes 

on employment accessibility. First, although the difference in magnitudes of accessibility benefits from 

SAMS are not huge, there are noticeable differences in benefits across the four worker classes. The results 

indicate that the young worker class and the class of workers from low-income households may receive 

larger employment accessibility benefits from SAMS modes than the classes of workers from high- and 

middle-income households.  

Second, results show significantly higher benefits of SAMS in suburban and rural areas than dense 

urban areas, assuming service prices and service quality are the same everywhere. However, even when 

assuming service quality is lower in less dense areas, the overall results do not change significantly. This 

finding implies that the benefits of SAMS modes, from an employment accessibility perspective, will be 

higher in less-dense suburban areas than higher density urban areas.  

A third notable finding is that the magnitude of employment accessibility benefits is heavily dependent 

on the service price of SAMS in the future. For example, the findings in this study indicate that the 

employment accessibility benefits decrease by 26% for workers in Class 1 (the high-income, high-education 

attainment class) as the SAMS service price increases from $0.10/mile to $0.50/mile.  

A fourth finding indicates that most of the accessibility advantages from the SAMS modes come from 

the SAMS-only mode rather than the SAMS+Transit mode. This finding indicates that first-mile SAMS 

modes are unlikely to (i) provide significant value to commuters and therefore (ii) increase commute-based 

transit ridership significantly, without major changes and re-designs of transit networks, such as those 

proposed in Pinto et al. (2019).  

As far as the authors are aware, this is the first study to provide an in-depth theoretically- and 

methodologically-sound analysis of the potential employment accessibility benefits of SAMS using the 
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logsum-based measure of accessibility. Moreover, the results in this paper provide valuable insights into 

the potential impacts of SAMS on different clusters of the working population and different regions of 

Southern California. The four insights described above should have immediate value to transport planners 

and policy makers.  

The modeling framework employed in this study has significant potential to provide further insights 

into the impacts of SAMS modes on employment accessibility. The disaggregate agent-based modeling 

framework enables the calculation of accessibility/consumer surplus for all workers in the dataset as well 

as any worker segment or subsegment. For example, the authors are currently using the proposed modeling 

framework and employment accessibility analysis methodology to explore subsegments of different worker 

classes, considering their socio-demographics and residence locations, to gain additional insights into the 

potential impacts of SAMS modes on employment accessibility. 

Other areas of future research include (i) capturing spatial competition for jobs (Merlin and Hu, 2017) 

when measuring employment accessibility using the logsum-based approach to capture the spatial 

balance/imbalance between workers and employment opportunities in different areas; (ii) integrating the 

hierarchical destination-mode choice model presented in this study with residential location choice (or other 

activity-based travel demand sub-models), firm location choice, and/or traffic and transit network 

assignment models to provide more accurate and theoretically sound employment accessibility estimates; 

(iii) capturing how improvements in employment accessibility from SAMS modes may induce persons 

currently out of the workforce to enter or re-enter the workforce, which the current study does not do. 

This study includes several limitations related to data availability. One example includes the temporal 

dimension of employment accessibility. This study assumes all commuters travel during the peak commute 

period. A more realistic model would capture work and commute trip start and end times.  Future research 

that captures off-peak start and end times may find even larger benefits for the SAMS modes which have 

high availability throughout the day, unlike transit. Another data limitation relates to the aggregate nature 

of the modal attributes used in the study. Higher resolution modal attribute data between all relevant origin-

destination pairs would likely improve the mode choice model parameter estimates.  

This study also assumes homogeneity of worker preferences for employment opportunities within each 

cluster. This is unrealistic as, for example, some workers in the high-education, high-income segment may 

only value jobs in the health sector and others may only value jobs in the education sector. The study also 

assumes homogeneity in terms of the ability/flexibility of workers to choose (i.e. switch) jobs; whereas 

some workers may be able to easily switch jobs, other workers are likely more constrained by other life 

factors (e.g. spouse’s work location, children’s school, etc.). 

A final limitation of the study is the sequential rather than simultaneous estimation of the hierarchical 

destination-mode choice model. As the study aims to provide first-order estimates of the employment 

accessibility benefits of SAMS, more advanced model estimation procedures are left for future research.  
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Appendix 

Table 7: Car Total Cost Per Mile Model Results 

Parameter Coef. t-value 

Intercept/Constant 0.657 15.32 

Purchase Price Base = Low 

High 0.306 14.23 

Luxury 0.678 14.62 

Vehicle Type Base = Truck 

Sedan -0.095 2.89 

SUV -0.076 2.13 

Age Base = 0-1 years 

Age 2-3 -0.108 5.01 

Age 4-6 -0.208 9.64 

Age 8+ -0.392 3.87 

Fuel Type Base = Hybrid 

3-4 Cylinders ICE 0.039 1.98 

5-6 Cylinders ICE 0.071 2.15 

8+ Cylinders ICE 0.15 1.87 

EV -0.071 1.26 

 

Model Statistics 

Sample Size 297 

F (11,285) 73.16 

Prob > F 0.000 

R-squared 0.8102 

Root MSE 0.14811 

LL (null) -94.9 

LL (model) 151.904 

Df 12 

AIC -279.81 

BIC -235.48 

 




