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Abstract2

Plasmon photochemistry can potentially play a significant role in photocatalysis. To3

realize this potential, it is critical to enhance the plasmon excited hot carrier transfer4

and collection. However, the lack of atomistic understanding of the carrier transfer5

across the interface, especially when the carrier is still “hot”, makes it challenging6

to design more efficient system. In this work, we apply the non-adiabatic molecular7

dynamics simulation to study hot carrier dynamics in the system of Au nanocluster on8

top of GaN surface. By setting up the initial excited hole in Au, the carrier transfer9

from Au to GaN is found to be on a sub-pico second time scale. The hot hole first cools10

to the band edge of Au d-states while it transfers to GaN. After the hole has cooled11

down to the band edge of GaN, we find some of the charges can return back to Au. By12

applying different external potentials to mimic the Schottky-barrier band bending, the13

returning charge can be reduced, demonstrating the importance of the internal electric14

field. Finally, with the understanding of the carrier transfer’s pathway, we suggest15
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that a ZnO layer between GaN and Au can effectively block the “cold” carrier from16

returning back to Au but still allow the hot carrier to transfer from Au to GaN.17
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Photochemistry relies on photo generated carriers to execute electrochemical reactions.18

Recently, plasmon has been used as a potential photo absorber to generate photo carriers.1–4
19

Due to the involvement of many electrons in a plasmon excitation, the plasmon mode in a20

metal nano-system can have much higher optical oscillator strength than a typical semicon-21

ductor, thus it has higher light absorbing efficiency. It has also been shown recently that22

the collective many-particle plasmon excitation can convert its energy into single-particle23

excitation inside the metal nano-system within 100 fs .2,5 One way to harvest such single24

particle hot carrier is to attach the metal nano-system (e.g., a metallic quantum dot, QD)25

to a semiconductor substrate. In this case, the hot carrier cooling process is accompanied by26

carrier injection and carrier transfer into semiconductor substrates. Questions arise for the27

carrier injection process: (1) what determines the competition between the carrier cooling28

inside the metal-QD and the carrier injection into the substrate? (2) Can the substrate29

harvest hot carrier instead of equilibrium ones (“cold” carrier) at the band edge, which30

can be used to drive the hot carrier nonequilibrium reaction? (3) What is the typical time31

scale for cooling and carrier injection? (4) How the interface electronic structure and band32

alignment influence the hot carrier injection? Answering these questions are important. For33

example, a lot of recent effort has been placed to study the possibility of hot carrier catal-34

ysis in various redox reactions such as water splitting and oxidation,6–11 H2 decomposition35

or production,12–14 and CO2 reduction.15–17 Thus, designing an efficient way to harvest hot36

carriers (not just the “cold” carrier) becomes an important research topic.37

The reported efficiencies of the plasmon assisted catalytical reactions are generally low.18–21
38

Less than 3% solar-to-chemical efficiency is obtained in CsS-Au-TiO2 sandwich system,18
39

which is far below the solar cell light conversion efficiency. In an Au/TiO2 system, the effi-40

ciency of the light induced carrier transferred is only 0.2%.21 It is possible that only a small41

portion of hot carriers has been injected into the carrier collection material during their42

cooling. The transient pump-probe experiments using absorption spectroscopy or non-linear43

optics techniques show that the time scale of the charge transfer from a quantum dot or44
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metal cluster to a semiconductor is on the order of sub-pico second.22–28 However, the exact45

pictures of such carrier injection and carrier cooling processes are difficult to probe experi-46

mentally. To understand such process in the atomic scale, theoretical simulation has been47

used to study this process .29–33 For example, Atwater et al estimate the surface plasmon48

decay rate and the initial hot-carrier distribution in metals using Fermi’s golden rule.29,30
49

The carrier transport is then evaluated by first-principle method based on electron-electron50

and electron-phonon scattering. Bernardi and Zhou use perturbation method to compute the51

electron-phonon coupling.32,33 Combining with the Boltzmann equation, the carrier mobility52

and carrier cooling process are revealed in the bulk system. While such methods are excellent53

in studying bulk systems or interface scattering of large systems, it is not a direct simulation54

of a nano hetero-system as a whole. Thus, it might be difficult to study the carrier injection55

in a heterogeneous nano-system. Another analytical approach to study carrier injection is56

to calculate charge transfer rate with formula like the Marcus theory.34–38 However, such57

calculations can only reveal charge transfer for localized carriers and for equilibrium cold58

carriers instead of hot carriers.59

One alternative approach is to simulate the hot carrier cooling and injection directly using60

nonadiabatic electronic dynamics. In this approach, the time-dependent Schrödinger’s equa-61

tion is followed to directly simulate the change of carrier wavefunction. It is suitable to study62

nano-systems with about one hundred atoms, thus it is complementary to the analytical stud-63

ies based on bulk behaviors.29,30 Pioneer works based on non-adiabatic molecular dynamics64

or time-dependent density function theory have studied the carrier motion for interfacial sys-65

tems, such as Dye-sensitized TiO2,39,40 Ag (and Au) on MoS2,41 Au nanoparticle/nanorod66

on TiO2,42,43 PbSe nanoparticle on TiO2,44 bilayer two-dimension heterostructures,45 and67

graphene on TiO2.46 They all demonstrate the fast carrier transfer within a few hundreds68

femtosecond across the interface. However, most of these works illustrate the details of69

the electron transfer from the band edge of a quantum dot, semiconductor or dye to an-70

other semiconductor.39,40,44 Some other works also demonstrate the delocalization across the71
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metal/semiconductor interface from a plasmon-like adiabatic state near the Fermi level.42,45
72

However, in most cases, the transferred carriers are band edge carrier, instead of hot carriers.73

There are not enough studies of the hot carrier cooling in combination of charge transfer. On74

the other hand, many works43,47–49 use nonadiabatic molecular dynamics to study hot carrier75

cooling (e.g. inside a QD), but no injection process. Thus, there is a lack of study to reveal76

the competition between hot carrier’s cooling and hot carrier injection, and different path-77

ways for hot carrier injections. Furthermore, although Schottky barrier and its related band78

bending exist in almost all the metal-semiconductor interfaces, a detailed understanding for79

the role of the Schottky barrier to the carrier transfer is also lacking.80

In this work, inspired by the recent experimental work of Au nanocluster on GaN for81

the plasmon hot carrier injection,16 we use the non-adiabatic molecular dynamics (NAMD)82

to reveal the details of the hot carrier’s cooling and its injection from the Au metal to the83

GaN substrate. Our NAMD is based on a newly developed algorithm called P-matrix for-84

malism.50,51 Unlike previous NAMD methods where multi-trajectory stochastic simulations85

are used to represent the ensemble of the trajectories to include the detailed balance and86

decoherence effect,40–42,44–46 in our P-matrix formalism, a single run can represent a whole en-87

semble result while including the detailed balance and decoherence effect. In this formalism,88

the decoherence can be introduced naturally, and detailed balance is also satisfied. The effi-89

ciency of this new algorithm allows us to study various situations for relatively large systems90

and relatively long simulation times. By studying the detailed process of the hot carrier’s91

pathway, different sizes of the system, different strength of the applied electric field, and92

addition of a hole-blocking layer, our simulation reveals the competitions between different93

relaxation channels, and finds a surprising result of fast carrier injection from Au nanocluster94

to GaN substrate before the carrier cooling down. After arriving at GaN band edge, some95

carriers return back to Au nanocluster. Such detailed picture of the hot carrier transfer can96

help us design more efficient systems to enhance the hot carrier injection efficiency.97

In our NAMD simulation, we first perform a density functional theory (DFT) ground state98
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Born-Oppenhaimer molecular dynamics (BOMD) simulation. Its nuclear trajectory and the99

time-dependent Hamiltonian H(t) is then used to carry out the time evolution of the wave100

function following the time-dependent Schrödinger’s equation: i∂ψ(t)/∂t =H(t)ψ(t). Differ-101

ent from other NAMD methods, the time-dependent Schrodinger’s equation is reformulated102

following the P-matrix equation in a density matrix formalism.50 In this way, it is possible to103

take into account the detailed balance and decoherence effect at the same time. The detailed104

balance is important in order to describe the cooling process, while the decoherence (dephas-105

ing) also influences the cooling rate. In this approach, we have ignored the back reaction106

from the electron movement to the nuclear movement. This approximation is also called107

classical path approximation (CPA) which are widely used in other NAMD methods.40,41,45
108

Such CPA is appropriate for relatively large systems when hot carriers not highly localized,109

thus the back reaction from the electron movement to the nuclear movement is negligible,110

and the main interest of study is at the electron dynamics, not the nuclear dynamics.111

We perform the plane-wave pseudopotential DFT calculation implemented in PWmat112

package52,53 with the generalized gradient approximation (GGA) exchange correlation func-113

tional.54 The atomic structure is relaxed prior to molecular dynamics (MD) simulations, and114

SG15 pseudopotentials55 are used with 50 Ryd plane wave kinetic energy cutoff. Here, the115

pseudopotential of Au has been modified so that the position of d-orbitals in terms of the116

Fermi level are consistent to the experiment56 (see Supplementary Information (SI)). Al-117

though DFT tends to underestimate work function and ionization energy for Au nanocluster118

and GaN surface, respectively, we find that their energy level difference for Au and GaN119

calculated by DFT is quite consistent with the experiments.57–60 Therefore, the work func-120

tion and ionization energy are not corrected here (see SI). Fig. 1a shows the system we have121

constructed. The non-polar surfaces [112̄0] of GaN attaching the Au nanocluster is used122

to avoid surface reconstruction.61 The Au nanocluster with 30 Au atoms is obtained via a123

simulated annealing using ab initio MD where the temperature is initially increased up to124

1100 K and then cooled down slowly. A relaxation of the whole system is then performed125
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to reduce forces on all the atoms to be below 0.02 eV/Å. The calculated density of states is126

shown in Fig. 1b, where the Fermi level of Au is within the band gap of GaN. Our previous127

work has demonstrated that the hot carrier can be obtained in d-states within 50 fs upon128

the excitation of the plasmon in Ag55 nanocluster.5 In this work, we set up initial hot holes129

at various d-states of Au nanocluster and perform NAMD to investigate their dynamics.130
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Figure 1: a) Structure of Au/GaN system under simulation (relaxed at 0K). It has 30 Au
atoms and 252 GaN atoms. b) Density of states of the 0K structure projected to GaN and
Au, respectively. Fermi energy is set at energy 0 eV.

In our NAMD simulation, the system is firstly simulated with a Born-Oppenheimer elec-131

tronic ground state molecular dynamics (BOMD) at room temperature (300K). Then the132

evaluation of the carrier wavefunction is done as a post-process. The hot-carrier wavefunction133

ψl(t) is evolved following the Schrödinger’s equation, and it is expanded with the adiabatic134

basis φi(t) as ψl(t) = ∑iC
l
iφi(t). Using the density matrix formalism, the density matrix of135

the system is Dij(t) = ∑lwlC
l
i

∗
(t)C l

j(t), under the basis of φi(t), where wl is the weight of ψl.136

Due to this wl, a Dij(t) can represent an ensemble of wavefunction trajectories. Following137

the time-dependent Schrödinger’s equation, the equation of motion for the density matrix138

can be written down as:50
139
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∂

∂t
Dij(t) = −i [V (t),D(t)]ij − (1 − δij)

Dij(t)

τij(t)
(1)

and Vij(t) = δijεi(t) − i ⟨φi(t)∣∂φj(t)/∂t⟩ contains the information of the change of adiabatic140

state φi(t), which implicitly includes the effect of the electron-phonon coupling. The second141

term is used to introduce the decoherence where τij(t) represents the decoherence time142

between state i and j. To introduce the detailed balance, a P-matrix formalism is used143

where the density matrix D is splitted into D = P +PT with Pij describing electronic state144

population transition from state i to j (note Pij ≠ P ∗
ji). More explicitly, the diagonal elements145

of the density matrix (Dii = 2Pii) evolves as:50
146

∂

∂t
Pii = −Re (i [V,P ]ii) (2)

+∑

j

Re (iPijVji) fij (e
−∣∆εij ∣β

− 1)

−∑

j

Re (iPjiVij) (1 − fij) (e
−∣∆εij ∣β

− 1) ,

while the off-diagonal element of P evolves as:147

∂

∂t
Pij = −i [V,P ]ij − iVij (Pii + P

∗
jj) −

Pij
τij

(3)

∆εij = εi−εj, and fij =1 (0) for ∆εij > 0 and fij =0 (1) for ∆εij < 0 for an electron (hole) dynam-148

ics. The last two terms in equation 2 introduce the detailed balance, while the last term in149

equation 3 introduces the decoherence. For details of the derivation, we refer to our previous150

publications.50,51 Combining with CPA, a ground state BOMD simulation is first executed.151

During such simulation, it yields the adiabatic eigen state and eigen energy pairs at MD step152
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Tn as {φi(Tn), εi(Tn)}. The overlapping matrix Sij(Tn, Tn+1) = ⟨φi(Tn)∣φj(Tn+1)⟩ is recorded.153

Here the time step dT of BOMD simulation (dT = Tn+1 − Tn) is around 1 or 2 fs. With the154

overlapping matrix, using the eigen state {φi(Tn)} as the basis set, the Kohn-Sham Hamilto-155

nian at time Tn is: Hij(Tn) = εi(Tn)δij, while the Hamiltonian at next MD time step Tn+1 with156

the same basis {φi(Tn)} becomes: Hij(Tn+1) = ∑k Sij(Tn, Tn+1)εk(Tn+1)Sij∗(Tn, Tn+1). Here157

we assume Sij(Tn, Tn+1) is a unitary matrix. In practice, a Gram-Schmidth approximation158

is used to enforce its unitarity. Knowing Hij(Tn) and Hij(Tn+1) allows us to linearly inter-159

polate the Hamiltonian Hij(t) at any time t within the interval [Tn, Tn+1]. This effectively160

reduces the original plane wave Hamiltonian to a small N ×N Hamiltonian, where N is the161

number of φi(Tn) kept in the basis set.51 To evolve the carrier dynamics following equation162

2 and 3, a small time step dt is used from Tn to Tn+1. Thus, Hij(t) matrix is diagonalized at163

every dt step between Tn and Tn+1 to get its adiabatic states φi(t) under the basis of φi(Tn),164

and φi(t) is used to evaluate Vij(t). In our system, N is more than 300. In practice, it is165

still a challenge to integrate P(t) from Tn to Tn+1 at every dt step following equation 2 and166

3. This is because a small dt is needed due to the possible sharp peaks in evaluating Vij(t)167

caused by the derivative ∂φj(t)/∂t. This happens when two φj(t) states cross each other,168

thus their identities exchanged. Such small dt can result in several thousand steps between169

Tn and Tn+1. Since each t step requires a N ×N matrix diagonalization of Hij(t) to get φi(t)170

to evaluate Vij(t), this can be quite expensive. For a complex system with several hundreds171

adiabatic states like the interfacial system we are studying, the NAMD simulation can take172

days even to accomplish a few MD steps.173

To solve this problem, in the current study, we have modified the implementation of174

NAMD. Instead of diagonalizing the Hamiltonian every dt step from Tn to Tn+1, we split175

dT = Tn+1 − Tn into M time-intervals with equal length δt = dT /M (M is around 100 and δt176

is in the order of 0.01 fs). The start of each time-interval is labeled as tm (thus tm = Tn+mδt)177

with m = 0,1, ...,M . In the modified NAMD, during one δt time-interval from tm to tm+1,178

instead of using Vij(t), the P matrix will be evolved using a fixed basis set φi(tm) which179
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is the adiabatic eigen state obtained at time tm.The corresponding equation is equation 4.180

From tm to tm+1, there is no need for matrix diagonalization, and H(t) is obtained from181

interpolation under the basis φi(tm). The diagonalization of the Hamiltonian is only needed182

at the start of each time-interval (tm) to obtain the basis φi(tm). In this way, the number183

of diagonalization operations can be reduced from several thousands to only 100 within one184

MD step dT . More specifically, we have:185

∂

∂t
Pij,m(t) = −i [Hm(t), Pm(t)]ij . (4)

for t ∈ [tm, tm+1]. Here, Hm(t), Pm(t) mean the matrix under the basis of φi(tm). Thus,186

if we have solved φi(tm) = ∑j Sij(Tn, tm)φj(Tn) (Sm(Tn, tm) is the eigen-vector of the diag-187

onalization performed at time tm), Hm(t) = S(Tn, tm)HTn(t)S
⋆
(Tn, tm), and HTn(t) is the188

interpolated Hamiltonian under φi(Tn) basis. To evolve equation 4 from tm to tm+1, not only189

one does not to diagonalize the Hamiltonian, there is also no sharp peaks to Hm(t). It makes190

the time evolution relatively easy. At time tm+1, one diagonalizes the HTn(tm+1) to obtain191

φi(tm+1), then converts Pm(tm+1) to P′
m+1(tm+1) = S(tm, tm+1)Pm(tm+1)S⋆(tm, tm+1). Here,192

Sij(tm, tm+1) = ⟨φi(tm)∣φj(tm+1)⟩. After this step, the decoherence and detailed balance can193

be added as:194

Pii,m+1(tm+1) = P
′
ii,m+1(tm+1) +∑

j

Re [⟨φj(tm)∣φi(tm+1)⟩P
′
ij,m+1(tm+1)] fij (e

−∣∆εij ∣β
− 1) (5)

−∑

j

Re [⟨φi(tm)∣φj(tm+1)⟩P
′
ji,m+1(tm+1)] (1 − fij) (e

−∣∆εij ∣β
− 1)

for diagonal element of Pii, and195
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Pij,m+1(tm+1) = P
′
ij,m+1(tm+1) (6)

− ⟨φi(tm)∣φj(tm+1)⟩P
′
ii,m+1(tm+1) + ⟨φi(tm+1)∣φj(tm)⟩P ′

jj,m+1
∗
(tm+1)

− P ′
ij,m+1(tm+1)

tm+1 − tm
τij

for off-diagonal elements Pij (i ≠ j). Such Pm+1(tm+1) will be the starting point for the196

next [tm+1, tm+2] interval calculation using equation 4. Note, in equation 5 and 6, the197

⟨φi(tm)∣φj(tm+1)⟩ term is used to approximate Vij ⋅ (tm+1 − tm) term in equation 2 and 3.198

To evaluate equation 4 from tm to tm+1, high order expansion of eiHdt can be used. How-199

ever, we find higher orders give negligible improvement over the first-order formalism. The200

equation 4-6 are approximations of equation 2 and 3. In reality, our test shows that the201

results using equation 4-6 are almost indistinguishable from the results by equation 2 and202

3, although the new equations can be hundreds of times faster if large basis set N is used.203

From the density matrix D, the charge density of system at time t can be computed as204

ρ(r, t) = ∑ijDij(t)φ∗i (r, t)φj(r, t). All the NAMD simulations shown below are tested to205

converge over dt used in equation 4 (dt is set to be 0.0005 fs) and the number of diagonal-206

izations (value of M) between two MD steps is 100. Although ab initio MD takes days, the207

post-processing NAMD only requires a few hours.208

We choose one of the adiabatic eigen states characterized by Au d-states as the initial209

position of the hot hole. For all the NAMD simulations, the initial state is chosen so that210

more than 85% charges are on Au (see SI Fig.1 for one example). Fig. 2a shows evolution of211

the energy and the occupation density (defined as Docc(E, t) = ∑iDii(t)δ(E−εi(t)) changing212

with time starting from the initial state. Combining the Fig. 2a with the density of states213

in Fig. 1b, the whole process can be splitted into three periods: period 1 (from initial hole214

to around -3.2 eV) possesses the highest hole cooling rate. This is due to the high density215

of states from both GaN p- and Au d-states. The density of states reduces during period216
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Figure 2: a) Eigen energy of the adiabatic states and their occupation. The color indicates
the occupy density of states (Docc(E, t) = ∑iDii(t)δ(E − εi(t)) for the excited hole. b)
Density of states of the structure at time=0 (same to Fig. 1b). The Fermi energy is set at
energy zero.

2 (from -3.2 eV to -1.5 eV) because of the low density of states of Au contributed by only217

its s-orbital in this energy range. However, once the hole cools to the edge of GaN valence218

bands around 500 fs, the sudden reduction of density of states with only Au s-states slows219

down the carrier cooling significantly in period 3 (from -1.5 eV to Fermi energy at 0 eV).220

Particularly, the relatively sparcity of the Au eigen states within the GaN band gap may221

prevent the carrier from cooling to the Fermi energy within our simulation time due to the222

phonon bottleneck effect. Since a single-phonon energy is not high enough to satisfy the223

energy conservation between different electronic states, the carrier has to wait for a long224

time for a multi-phonon scattering process to jump to lower energy states. We have tested225

the simulation up to 4 ps, the occupation of the carrier near the Fermi level is still not226

significant at the end of the simulation. In the above simulation, the initial energy of the227

hot hole relative to Fermi energy is relatively low compared to the typical laser energy used228

to excite the plasmon. However, we have also calculated several cases with different initial229
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energies of the hole (all starting from Au d-state), they all show similar cooling rate and230

pathways (SI Fig. 3).231
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Figure 3: Charge on GaN along with time. The red line is averaged over 20 trajectories.
When the charge is counted, charges below the middle line of bottom layer of Au and top
layer of GaN are counted as the charge of GaN; otherwise as the charge of Au.

In addition to the above energy analysis for the hole’s motion, it is possible to analyze232

its spatial transfer pathways across the interface. In a way, this is already partially shown233

in Fig. 2, since the density of states (Fig. 2b) illustrates the dominant character of the234

eigen states within an energy range as GaN, Au or their mix. Fig. 3 shows the charge235

distributed on GaN as a function of time in a more direct way. Here, we have simulated236

20 different initial configurations. The curve is the averaged charge distribution over these237

20 simulations. Note, each P-matrix simulation already includes an ensemble of trajectories238

starting with the same initial wave function and with the same nuclear trajectory. At the239

starting point, the majority of the hole-charges are on Au as aforementioned. However, these240

charges quickly expand to GaN to 50% GaN-occupation within 50 fs. Such fast process is241

also consistent to previous theoretical investigations.41,42 From 50 fs to around 200 fs, the242
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occupation of charge on GaN is a rough plateau around 55%. Together with Fig. 2, we find243

that this period corresponds to the carrier cooling within the Au d-state until it reaches the244

bottom of d-state (period 1). The 55% occupation may be due to similar density of states245

between GaN and Au in this energy region (Fig. 2b). Using a larger Au nanocluster will246

shorten this period. This can be observed in the simulation of a 60-Au nanocluster shown247

in SI Fig. 5, where the net increase of the density of states caused by larger Au cluster248

reduces the “plateau” time but also decreases the distribution of charge in GaN during this249

plateau. After 200 fs in Fig. 3, the hot hole begins to transfer to GaN, and nearly 90%250

of the hole is inside GaN at around 400 fs. Referring back to Fig. 2a and 2b, one can251

see that starting from around 300fs, at the hot carrier’s energy region, the Au only has252

its s-state density of states, and the majority of the density of states comes from GaN. At253

around 400 fs, the carrier reaches the top of the valence state in GaN, and the maximum254

occupation in GaN is also reached. After 400 fs, the occupation inside GaN begins to reduce,255

indicating a back-flow to Au for it to reach the Fermi energy in Au. Overall, our simulation256

demonstrates that the majority of the hot hole tends to cross the interface quickly instead257

of waiting inside Au until it has cooled down to the edge of d-state and all the way to the258

Fermi energy. The carrier immediately spreads out to GaN before it is cooled down to the259

bottom of Au-d states. Although Au nanocluster is only weakly binded to GaN, the vdW260

nature of the interaction does not prevent the hole-charge from jumping from Au to GaN.261

One might wonder whether this fast spread of carrier localization is due to the small size of262

the simulated Au cluster, which might be difficult to contain the carrier wavefunctions (SI263

Fig. 1a). But the similar behavior is observed when we increase the Au nanocluster size264

from 30 to 60 atoms. As shown in SI Fig. 5, the Au 60-atom case is much alike the Au265

30-atom case. Nevertheless, we do see some differences. First, the maximum transfer charge266

to GaN has reduced slightly from 90% to 85%, and the charge plateau before the carrier267

reaches the top of Au-d states has also reduced from about 55% to 45%. But note that all268

these reduction is not inversely proportional to the Au nanocluster size, which has doubled269
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from 30 atoms to 60 atoms. Comparing Fig. 3 with SI Fig. 5, the biggest difference comes270

from the time to reach the maximum. Roughly, the cooling rate in the Au 60-atom case is271

twice as fast as the case in Au 30-atom case. This means that small Au 30-atom nanocluster272

suffers strongly from its phonon-bottleneck effect, and the electron-phonon coupling inside273

the Au nanocluster dominates the initial cooling process, despite the fact more than half of274

the carrier wavefunction is outside the Au nanocluster.275
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Figure 4: a) Total hole charge in GaN under different external potentials. Inset: the scheme
of the applied external potential. b) Charge occupation in the mask region under different
external potentials. Inset: (bottom) localized charge density of one adiabatic state under the
external potential of 8V, (top) its charge density averaged in x-y plane (blue curve), and the
mask function (red curve). To simplify the analysis, charges below the middle line between
bottom layer of Au and top layer of GaN are treated belonging to GaN; otherwise they will
be counted as charge of Au.

After the majority of the hole are transferred to GaN, we observe that some holes return276

back to Au after they cool down to the valence band edge of GaN. In Fig. 3, the hole277

distribution on GaN starts to decrease to only around 40% from 400 fs up to 1200 fs. It278

shows that less than half of the holes stay on GaN, but other holes return back to Au.279

Such back transfer has been observed in previous experimental and theoretical works.22,40,42
280

Particularly, the nonlinear optical technique reveals the returning of the transferred electron281

is on picosecond time scale,22 closing to the time of the hole’s returning in our calculation.282

Thus, it is something to be prevented since it reduces the eventual carrier harvesting. It283
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will be quite useful to engineer the interface to reduce this back transfer. Before we discuss284

different ways to mitigate this back flow, it is worth to discuss first the possible artifacts285

which contribute to this back flow. In a real system, when the charge is transferred out of286

Au, it can move into the bulk of GaN far away from Au nanocluster, thus never returns. To287

show the back flow due to the finite size of the system, we perform a simulation of the same288

system but putting the initial hole in the GaN above the d-state of Au (see SI). We find that289

the “warm” hole (its energy is above the Au d-state) spreads from GaN to Au in very similar290

fashion as the back transfer case shown in Fig.3 (SI Fig.4). Our calculation demonstrates291

that the back flow is non-avoidable given the small GaN layer we can afford. We believe due292

to the limited GaN layers in our simulation, the effect of back flow is probably overestimated.293

Nevertheless, we should still be able to design heterostructures to enhance the hole transfer294

to GaN, as the qualitative trend should still be the same. The relative values of the back295

flow to Au should still be a good indicator.296

The experiments of the heterostructure Au/p-type GaN illustrated in Ref. 16 and 23297

demonstrate the hole harvesting from Au to GaN. The Schottky-barrier band bending in298

this system has been shown to play a central role to assist the hole transfer. The careful299

design of such heterostructure allows the formation of the internal electric field near the300

interface resulting from the band bending in the depletion layers. Such electric field can301

drive the hole away and reduce their back transfer. In order to demonstrate the role of302

the internal electric field, we perform MD and NAMD simulations under different external303

electric fields. Shown in Fig. 4a inset is the scheme of the external potentials added to304

mimic the Schottky barrier band bending. External potentials with values of 0.5V, 4V and305

8V at the vacuum side end of GaN are applied linearly inside GaN, respectively. For all306

these cases, the states near the Fermi energy are still Au states. Thus, thermadynamically,307

the hole should still return to Au. Fig. 4a shows the spatial charge occupation on GaN as a308

function of time under different external potentials. It is interesting to see that by applying309

higher electric field, more holes tend to stay on GaN for a longer time, less likely to return to310
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Au. Even a relatively low external potential of 0.5V can affect the behaviour of the excited311

hole noticeably. It is also interesting to see that the time of the charges arriving at GaN also312

becomes slower when the field strength increases. This is due to a shift of GaN density of313

state. The lack of density of states at higher electric field reduces the initial charge transfer314

rate. In order to further understand the charge distribution inside GaN. Fig. 4b illustrates315

the charge distribution of the localized adiabatic state within a “mask” region at the end316

of GaN in its vacuum side as shown in the inset. We use a mask function to capture such317

state. This mask m(r) is then used to calculate ∫ ρ(r, t)m(r)d3r, and the result is shown318

in Fig. 4b. As we have discussed above, our calculation may overestimate the amount of319

the charge returning to Au and have almost 100% return of the charge to Au if the running320

of our calculation is infinitely long, since the states at Fermi energy is localized inside Au.321

It is thus helpful if we can define a measure of charge density inside GaN, and assume the322

measured charge to disappear into the bulk of GaN in an infinite GaN system. One such323

measure is the trapped charge within that mask. It is reasonable to assume that once the324

charge is “trapped” in this mask region, it can be considered as going to the bulk GaN, and325

never returns. Thus, we can use the highest amplitude of the charge inside the mask region326

during the simulation time to provide a quantitative measure of the total charge captured by327

the bulk GaN. The subsequent decay of the charge within the mask region is due to the back328

flow to higher energy Au state owing to the finite size of the simulated system. Note, this is329

probably a lower-limit estimation, since before it reaches the maximum, some of the charge330

might already return to the Au due to the finite GaN size (hence once again, overestimation331

of the back flow). Besides, the mask function itself only calculates the state near the end of332

GaN, thus can miss other states of GaN. Nevertheless, we can use these numbers to provide333

an estimate. Under the external potentials of 0, 0.5, 4, and 8V, we get the maximum charge334

of 22%, 35%, 50% and 60%, respectively.335

To further understand the details of the charge distribution in real space, Fig. 5 illustrates336

the charge density chosen from one initial state run averaged over x-y plane under different337
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external potentials (from top to bottom: 0V, 0.5V, 4V and 8V) as a function of time.338

All the cases show a sub-picosecond fast charge transfer from Au to GaN. For 0 V, the339

charges on GaN never stay significantly in the mask region. For 0.5 V case, there is a340

slight distribution in this region, but most of the charge escapes to Au eventually. When341

the electric field increases further, the mask regions start to be populated clearly after the342

charges are transferred to GaN, indicating the efficiency of the band bending to assist the343

hole transfer in Au/GaN heterostructure.344
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Figure 6: a) The projected density of states of Au, ZnO and GaN. Inset: relaxed structure
of Au/ZnO/GaN heterostructure at 0K (Red: oxygen atom, Dark grey: zinc atom). b) The
charge distribution of GaN and ZnO compared to the pure Au/GaN system. The mask
region is the same to the pure Au/GaN case (Fig. 4b). Inset: illustration of the role of ZnO
in preventing the hole from returning back to Au after it reaches the band edge of GaN. But
the initial hot hole transfer from Au to GaN is not affected by ZnO.

In addition to the Schottky barrier and its induced internal electric field, following our345

understanding of the charge back flow, we propose to use a hole-block layer to prevent the346

back flow. Such inserted layer separates GaN and Au wavefunction spatially to reduce their347

coupling, hence to prevent the back flow of the equilibrized hole carrier. On the other hand,348

the inserted layer should have a potential barrier low enough so that it will not block the349

initial hot carrier transfer from Au to GaN. We find ZnO is a good choice. Similar to350

GaN, ZnO possesses wide band gap. Its valence band maximum is around 0.8 eV lower351

than that of GaN, roughly at the same level of d-states edge of Au.58 Interestingly, ZnO352
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has quite similar structure (Wurtzite crystal shape) and lattice constants to GaN, which353

brings a great advantage for high quality synthesis as well as theoretical simulation. In our354

calculation, we replace top three layers of GaN by ZnO (Fig. 6a inset), relax the whole355

structure, and compute the projection of the density of states. Fig. 6a shows the position356

of the ZnO states, which is consistent to the experiments.57,58,62,63 By performing MD and357

post-processing NAMD simulations, the time-dependent spatial charge distribution on GaN358

is obtained, and shown in Fig. 6b. Similar to the case of Au/GaN, the hot hole transfers359

to GaN by passing through ZnO. This initial charge transfer is not significantly reduced360

by the existence of ZnO. After the charge reaches the band edge of GaN and becomes an361

equilibrium “cold” carrier, the potential created by ZnO effectively reduces the coupling362

between GaN and Au, and diminishes the back flow to Au. Using the same approach as363

for the external potential case, we obtain the maximum amount of charge transfer in the364

mask region. We get a value of more than 40%, which is much higher than the 22% of the365

pure Au/GaN structure. The effect of the three layer of ZnO is equivalent to an applied366

external potential between 0.5 and 4V. Furthermore, when the amount of charges inside the367

mask region reaches the maximum, its subsequent reduction also becomes slower compared368

to pure Au/GaN case even with an external potential. It further shows the effectiveness of369

ZnO layer lowering the back flow from GaN to Au.370

In summary, we have performed a detailed hot hole dynamics with quantum mechanics371

non-adiabatic molecular dynamics simulation for the heterostructure Au/GaN. By setting372

up the hole initially at Au d-state, the ab initio MD and the post-processing NAMD reveal373

that the time-scale for the hole transfer is less than 200 fs. The excited hole first cools to374

the band edge of Au d-state, while at the mean time spread out into GaN. The majority of375

the charge then quickly cool down further to the edge of GaN. We also observe that some376

of the charge can return back to Au after it reaches the band edge of GaN. To understand377

the role of band bending in Schottky barrier, different external potentials are applied. The378

NAMD simulation shows that the internal electric field can indeed enhance the hole transfer379

20



from Au to GaN. Using a special technique of GaN edge trapping state, we estimate the380

lower limit of total charge transfer amplitude when the external potential is 0, 0.5, 4 and 8V,381

as 22%, 35%, 50% and 60%, respectively. We also propose a ZnO insertion layer between382

GaN and Au to prevent the back flow of the “cold” hole, while keep the initial hot carrier383

flowing from Au to GaN. We find more than 40% electron transfer to GaN when ZnO layer384

is used, this is to compare with the 22% electron transfer without the ZnO hole-block layer.385

Finally, we also find that increasing the Au nanocluster from 30-atom to 60-atom will speed386

up the hot carrier cooling rate significantly, but only slightly reduce the hot carrier transfer387

amplitude from Au to GaN. This indicates that the cooling is predominatly caused by the388

electron-phonon coupling within Au, and the phonon bottleneck plays an important role.389

Our calculation demonstrates that the newly developed P-matrix method can be used to390

study carrier dynamics for systems with hundreds of atoms, and to simulate the dynamics391

for multiple picoseconds.392
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(58) Stevanović, V.; Lany, S.; S. Ginley, D.; Tumas, W.; Zunger, A. Assessing Capability569

28



of Semiconductors to Split Water Using Ionization Potentials and Electron Affinities570

Only. Physical Chemistry Chemical Physics 2014, 16, 3706–3714.571

(59) Beach, J. D.; Collins, R. T.; Turner, J. A. Band-Edge Potentials of n-Type and p-Type572

GaN. Journal of The Electrochemical Society 2003, 150, A899.573

(60) Singh-Miller, N. E.; Marzari, N. Surface Energies, Work Functions, and Surface Relax-574

ations of Low-Index Metallic Surfaces from First Principles. Physical Review B 2009,575

80 .576

(61) Lymperakis, L.; Neugebauer, J.; Himmerlich, M.; Krischok, S.; Rink, M.; Kröger, J.;577
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