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Abstract

There is substantial evidence to suggest that brain circuits have
evolved to be highly efficient and robust while consuming rel-
atively minimal energy. These circuits possess unique struc-
tural and functional properties, such as sparsity, complexity,
and small-world nature. Studies suggest that brain network
development is shaped by a trade-off between minimal wiring
cost and efficient communication. However, it is not entirely
clear which factors are most influential, and to what extent
each factor contributes to this development. Our examination
of several potential underlying factors reveals that, with con-
nectivity guaranteed by a fixed degree distribution, minimiz-
ing wiring cost has the greatest impact on network structure,
compared to factors such as maximizing the clustering coeffi-
cient or coefficient of variation for wiring length distribution.
While the cost-efficiency balance is capable of optimally re-
producing brain networks in five different species without de-
gree constraints, minimizing wiring cost remains the primary
determinant.

Keywords: Brain Connectivity; Cost-Efficiency; Wiring Op-
timization

Introduction

Neural connections are shaped by experience from a long his-
tory of evolution. Remarkably, simple connectivity patterns
can improve the efficiency of learning rules, demonstrating
how the brain can use anatomy to compensate for biological
limitations in known synaptic plasticity mechanisms (Raman
& O’Leary, 2021). With more detailed connectomics pro-
vided by experiments, we may further reveal how brain con-
nections are formed by the requirements of effective learning
and limitations of energy consumption.

Then, what are the major constraints driving brain network
connections? Recent studies show that the wiring cost of
the brain scales with the number of neurons and synapses,
suggesting the brain has evolved to minimize this cost (Ahn,
Jeong, & Kim, 2006). Neuroscientists have also noted at a
very early stage that the localization of neuronal components
seemed to “save circuits”, that is, minimize the cost of cre-
ating and maintaining neural connections (y Cajal, 2019). In
fact, wiring minimization can lead to an optimal layout where
most neurons are located close to their actual positions as ad-
dressed in an experiment with C.elegans connectome (Chen,
Hall, & Chklovskii, 2006).

Moreover, the brain’s structural and functional networks
may also evolve to be highly efficient, with a high degree
of small-worldness, characterized by a balance between local
clustering and global integration, suggesting that connectivity1

efficiency is also an important principle of brain organization
(Achard & Bullmore, 2007). Network modularity, or the de-
gree to which the brain is composed of distinct, specialized
modules, may also be a constraint on brain evolution. Studies
have found that the modularity of the brain’s functional net-
works increases with brain size, suggesting that modularity is
also an important principle of brain organization (Bullmore
& Sporns, 2009). If we consider the cost-efficiency pol-
icy in brain network structure, two quite contradictory con-
straints are low wiring cost and high efficiency, character-
ized respectively by physical cost and functional value of the
topology, for instance, fewer processing steps on average. By
reconstructing biological neural networks, evidence is pro-
vided to support the hypothesis of trade-offs between mul-
tiple constraints of brain networks (Yuhan, Shengjun, Hilge-
tag, Changsong, & Olaf, 2013). From another perspective, re-
searchers also tried to explore possible factors considering the
wiring length distribution of the network. The corresponding
principle of maximum entropy was brought up to depict con-
nections of different lengths (Song, Zhou, & Li, 2021), which
was distinguished in species.

It is acknowledged that multiple factors interact to shape
the development of brain structural networks during evolu-
tion, thus it would be important to consider the contribution
of each factor as well as the interplay of all these factors.
Here, by reconstructing structures of biological neural net-
works with wiring optimization models in 5 species includ-
ing C.elegans, drosophila, mouse, macaque, and human, we
try to compare the influence of each possible factor that influ-
ences the development of a brain network structure, explore
and discuss the possible trade-off between features that may
lead to an “optimal” design of networks.

Materials and Methods
Data resources and modification

To reproduce the network structure of neural systems consid-
ering wiring cost, the ground truth connectivity matrix, 3-D
coordinate or distance between each pair of nodes in the net-
work are necessary data for reconstruction and validation.
We used connectivity and distance matrices of drosophila,
mouse, macaque, and human in 3D scale, as provided in
(Song et al., 2021). The network connectivity for drosophila

3brain is available online in the FlyCircuit 1.2 database
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(http://www flycircuit.tw) which includes 2106 connections
among the 49 LPUs. Labeled with green fluorescent pro-
tein, single neurons were imaged at high resolution. Mouse
brain template was reconstructed based on tract-tracing data,
which contains 112 areas and 6542 connections, can be
found on the Allen Institute Mouse Brain Connectivity At-
las (http://connectivity.brain-map.org). The network con-
nectivity for template macaque brain was a recent ver-
sion of the online CoCoMac database (http://cocomac.g-
node.org/main/index.php), derived from literatures on tract-
tracing experiments in macaque brain, which includes 103
cortical areas and 2518 connections using a more detailed
parcellation of the motor regions (Yuhan et al., 2013). Hu-
man brain template is reconstructed from diffusion weighted
magnetic resonance imaging, based on deterministic tractog-
raphy algorithms(Betzel & Bassett, 2018) and includes 128
cortical areas and 4736 connections.

For C.elegans the network is reconstructed at neuronal
scale, whereas the connections are measured among brain
areas for the other species. Network connectivity data of
C.elegans is provided by (Cook et al., 2019) and includes
all 302 neurons and 5515 connections. The spatial layout
of C.elegans neurons was rearranged into 3D coordinates
(Fig.1C) by combining the 2D layout provided in (Yuhan et
al., 2013) that contains 277 neurons and a 3D layout (Fig.1B)
from Openworm (Sarma et al., 2018), a relatively detailed
modeling work of nematodes. The 2D x-y coordinate for 277
neurons was kept since the 3D data exhibits a worm body
with a sine curve. We first estimated the x-y position for 25
missing neurons and then aligned the third dimension coordi-
nate to each node. The estimation was done by reconstruct-
ing a triangle for the missing neuron with the prepositions of
2 closest neighbors. The method was also tested within the
277 neurons, the error is overall around 2.5% compared to
the mean distance between 2 nodes in the network, less than
0.95% the longest distance.

Reconstructing Methods with constraints

Generative Models We tested two generative models to re-
construct the brain networks. For one we consider a degree
restraint to reproduce null models with the same degree dis-
tribution as the real connection matrix, and then optimize the
target feature with a convex optimization algorithm provided
in Matlab as in Song et al. (2021).

In another method as applied in Yuhan et al. (2013), with-
out demanding the same degree distribution, the feature is op-
timized by a simulated annealing algorithm with provided lo-
cations of nodes or distances between each pair of nodes. The
simulated annealing started with a random network, an ini-
tial temperature 7Ty and then decreased temperature as 7,1 =
T,/n. At each temperature, the network is rewired for 1000
steps. At each step, we exchange the connections within four
random nodes, and accept the changes with the probability
exp(—AL/T). The program is terminated when AL < 107°.

Both methods are utilized to generate reconstructions that
individually optimize a specific feature of the network to val-
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Figure 1: The spatial layout for neurons in C.elegans neural
network. (A)2D layout for 277 neurons. (B)3D layout of 302
neurons with the sine-curved body. (C)Modified 3D layout
of 302 neurons. Red dots represent the 25 neurons added in
estimated x-y coordinates.

idate the impact of each feature.

Complex network quantification indicators We gener-
ated theoretically-optimized models for the constraints of fea-
tures listed below.
Modularity(Q) is calculated as defined in Newman
(2004):
0= 2 Yl e,

i

where, A;; = 1 when there is a projection between node i and
node j, and 0, otherwise. K is the total number of links in this
network, 0 is the Kronecker delta (§;; = 1 if i = j, and O oth-
erwise), and ¢; is the index of the community where node i is
assigned. This measure quantifies the quality of the division
of a network into modules or communities. High value indi-
cates that the network has dense connections within commu-
nities and sparse connections between communities, which
can be useful for understanding the organization of the net-
work and identifying functional groups or clusters.
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Clustering coefficient(CC) for a undirected network graph
G = (V,E) is defined as Watts and Strogatz (1998):

_ 2|{ejk 1V, Vi € Niyeji € E}|

G ki(ki—1)

1 n
CC:;;G

where C; is clustering coefficient of node v; that measures
the degree to which this node tends to be clustered into its
neighborhood, N; = {v; : ¢;; € E'} indicates its neighborhood
and |{ejx : vj,vk € Nj,eji € E}| is the number of connections
between neighbors of v;. The clustering coefficient suggests
the local connectivity or cliquishness of the network. A high
value indicates that the network has tightly connected local
groups, where neighbors of a node are also connected to each
other. This can be useful for understanding the resilience
of the network to perturbations, as well as its potential for
promoting redundancy, cooperation, or information-sharing
among nodes. During the optimization, we calculate Q and
CC with the BCT toolbox within Matlab.

Total shortest path length(L,) and total wiring
length(L,), as two extreme points of a trade-off considered
in Yuhan et al. (2013), were used to represent the effect of
the processing efficiency and the physical cost respectively.
For a specific network, L, is the sum of the lowest step num-
ber between all pairs of nodes if one can reach another on
the network graph, whose small value indicates a “’small-
world” property, where nodes can be reached quickly from
other nodes, promoting efficient information flow or trans-
portation. In contrast, a large average path length suggests a
less efficient network in terms of information flow. L, is the
summation of the length of existing connections, assuming
that the connections between nodes have an associated cost
proportional to their length.

Entropy(H) of a wiring length distribution, can be calcu-
lated by:

k
H ==Y pilog(pi)
i=1

14

where we categorize edges into k bins by order of wiring
length, and p; indicates the probability of a wiring length be-
ing in " bin. Entropy of wiring lengths in a complex network
can provide insights into the diversity and distribution of con-
nection distances between nodes. Higher values indicate a
more diverse distribution of wiring lengths, suggesting that
the network has a mix of short and long connections, while
lower values imply a more uniform or predictable distribu-
tion of wiring lengths, indicating that the network has a more
regular structure with connections of similar lengths.

Coefficient of variation for distribution over lengths of
each connection (CV;) or degree of each node(CV,) is given
by CV = 6 /u where G and u represent the standard deviation
and mean value of the distributions respectively, suggesting a
tradeoff between small physical cost and large structural di-
versity of the network considering wiring lengths distribution
for CV; or connection number of nodes for CV;.

Among the factors addressed here, the modularity(Q),
clustering coefficient(CC) and L, can be used to depict in-
formation transmission efficiency of a network from different
perspectives. The entropy of wiring length distribution (H),
CV; and L, can be particularly useful for studying spatial net-
works, where the nodes have specific spatial positions and
the connections between nodes have associated physical dis-
tances or costs.

Evaluation Methods

To quantify the difference between actual connectivity and re-
constructed networks that are both binary, we calculate scores
such as the recall rate or the recovery rate. As the recall rate
only considers the correct predictions of existing connections,
considering the brain network structures are usually sparse
(much fewer 1 than O exists in the binary connection ma-
trix), we choose the recovery rate calculated as in Yuhan et al.
(2013). We use the calculation proposed in Costa, Kaiser, and
Hilgetag (2007) to compute the recovery rate as R = /RoR).
RO =K, /K; and R| = K,9/K) are the recovery rate of 1 and
0, where K,1 and K, are the number of overlapping entries
with value 1 and 0, respectively.

Results

Given degree distribution of real connectome,
minimizing L, outweighs other individual feature
optimizations

As addressed in Song et al. (2021), Brain connections be-
come structurally diverse by maximizing entropy to sup-
port efficient inter-regional communication, providing poten-
tial organizational principles for brain networks. By using
Shannon entropy to quantify the structural diversity of brain
networks, researchers found that the distribution of wiring
lengths across multiple species, including drosophila, mouse,
macaque, human, and C.elegans, follows the principle of
maximum entropy under constraints of limited wiring mate-
rials and spatial locations of brain regions or neurons. The
generative model, under the strict restraint of the same de-
gree distribution in real data, showed that for 5 species, the
generated network exhibits high similarity with the real net-
work.

We first replicate the results from a previous study using
the original data provided (Song et al., 2021). The target func-
tion (F) to be optimized was a combination of wiring length
entropy H and total wiring length Lj:

F=H-\L,

where the coefficient A is differently chosen for each species
and can be actually understood as a trade-off between two
features. We also apply the method to a modified 3D layout
for C.elegans and found a recovery rate of less than 45.47%
using 277 neurons.

Then, we evaluate the impact of the two factors individ-
ually by maximizing H and minimizing L, separately and
obtain higher or the same recovery rate with minimized L,
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for all 5 species compared to the original generative model
that combines minimizing cost with the principle of maxi-
mum entropy (Table.1). The recovery rate grows along with
a growing portion of total wiring length (L) in optimizing
function.

Table 1: Recovery rate with degree constraint.

Species Max H  Songetal. (2021) Min L,
C.elegans  35.27% 30.34% 47.46%
Drosophila  62.55% 69.71% 69.71%
Mouse 58.35% 63.76% 64.11%
Macaque 59.12% 70.36% 71.48%
Human 56.36% 73.85% 74.14%

We also reproduce the network structure by optimizing
other features while maintaining the same degree of distribu-
tion as the real connectivity. Despite being constrained by the
given degree distribution, we find that minimizing the total
wiring length, L, is overall more effective than other features
in reproducing the network structures of all five species (Fig.
2), despite the fact that maximizing the clustering coefficient
was more effective in reproducing the drosophila brain.

Maximizing the coefficient of variation (CV) of wiring
length distribution can also reproduces the brain structures
well. Besides, maximizing modularity or minimizing the to-
tal shortest path length produced similar results as maximiz-
ing entropy, and the clustering coefficient produced a mildly
improved reconstruction.

Table 1 shows that minimizing wiring length (L,) under the
given network degree distribution resulted in the most accu-
rate reproduction of brain network structures among the five
species studied. This indicates that complex-network features
related to degree distribution, along with wiring cost, play a
crucial role as a trade-off.

Thus, as the connection degree is fixed, the total wiring
length is minimized due to the higher energy cost of remote
connections. This aligns with the idea of the Wiring Opti-
mization principle, that nature favors layouts with minimal
wiring length given a fixed pattern of connections (Chklovskii
& Koulakov, 2004). In order to minimize the cost, brain cir-
cuits will develop in a way that optimizes the spatial connec-
tivity of connections between neurons or brain components
(Chklovskii & Stevens, 1999).

Without the constraint of the actual degree distribution,
the cost-efficiency trade-off leads to optimal reconstruc-
tion. In the section above, we fix the degree distribution as
in the real brain network, which assures connectivity while
reconstructing the network structure. Thus, we further com-
pare the factors without this precondition by generating ran-
dom networks and optimizing each factor with a simulated
annealing algorithm as in Yuhan et al. (2013).

Without fixing the degree distribution, the reconstruction
accuracy is not as high as in Table 1, but we still observe
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Figure 2: Recovery rate of connectivity matrix generated by
single factor optimization. The overall performance of each
factor is calculated as the mean recovery rate in 5 species
and decays by order: total wiring length (L, : 0.6538), coeffi-
cient of variation (CV] : 0.5869) of wiring length distribution,
clustering coefficient (CC : 0.5689), modularity (Q : 0.5502),
entropy (H : 0.5433) of wiring length distribution and total
shortest path length(Lg : 0.5330). * Tagged models are sig-
nificantly better than null model.

that minimizing total wiring length L, resulted in signifi-
cantly higher recovery rates than minimizing total shortest
path length L,. The cost-efficiency trade-off is also repro-
duced as in Yuhan et al. (2013), an objective function com-
bining the wiring cost and processing efficiency constraints:

=(1-o)L; +oL,

where the L, and L,, are normalized by largest Lg and L,,. And
we attain the best recovery rate when o is close to 1 for all 5
species, which means the trade-off has a distinct bias toward
wiring cost.

Table 2: Recovery rate without degree constraint with simu-
lated annealing algorithm (Yuhan et al., 2013).

Species MinL, MinL, Trade-off
Celegans  43.41% 31.68% 46.13%(o.=0.8)
Drosophila  74.12% 40.84% 74.12%(a.=1)
Mouse 60.54% 34.16% 60.92%(o.=0.8)
Macaque 63.28% 51.18% 63.62%(o.=0.6)
Human 69.72% 39.86% 69.81%(o.=0.8)

To further analyze the two constraints, we compare the re-
constructed networks illustratively (Fig.3). The connectiv-
ity with minimizing L, shows more modular structures while
minimizing L, does not.

Besides minimizing L, and L,, we also test maximizing
maximizing Entropy (H), the coefficient of variation of de-
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Figure 3: The reconstruction of neural networks in 5 species. Illustration of (A) real connectivity and connectivity reproduced

by (B) minimizing L, and (c) minimizing L,.

gree distribution (CV,) and wiring length distribution (CV})
for celegans, drosophila, mouse, macaque and human data.
Though not as influential as L,, maximizing CV; is still a
more important factor comparing with maximizing CV; or H
in reconstruction (Table 3).

Table 3: Recovery rate for maximizing CV,, CV; and H.

Species Max CV; MaxCV; MaxH
Celegans 47.15%  27.90% 29.27%
Drosophila 51.01%  64.38% 42.35%
Mouse 56.60% 44.24%  38.81%
Macaque 62.26%  45.72% 49.67%
Human 61.52%  53.00%  43.38%

We then compare differences in modularity (Q), clustering
coefficient (CC), and the small-world characteristic (CC /Lg)
between real connectivity and theoretical reproductions. For
each feature f, we estimate it for model network f;, and
real network structure f, then the difference is given by
E = (fm — fr)/fr in Figure 4.

With minimum L,, the reconstructed network derives less
modular structure than the actual network. In contrast, for
minimum L, the reconstructed one has overall higher O than
real connectome, especially for drosophila (Fig.4). By min-

imizing L, with C.elegans spatial layout, a larger clustering
coefficient but less degree of small-worldness is derived, indi-
cating a much larger total shortest path length than real con-
nectome. Reconstructions of maximizing CV; and CV; in 4
species show similar features to the actual networks except
that maximizing CV; or H also derives little modular struc-
ture as minimizing L,.

Discussion

Our study demonstrates that when utilizing the given de-
gree distribution of real connectome, minimizing total wiring
length resulted in the highest recovery rate among the sin-
gle target optimization models tested in all five species. This
suggests that when network connectivity is fixed, minimizing
link costs serves as a trade-off between cost and communica-
tion efficiency. Therefore, it may not be necessary to consider
an additional optimal compromise between entropy and link
costs as previously proposed in Song et al. (2021).

When the degree distribution constraint is removed, we
evaluated the trade-off between efficiency and cost by opti-
mizing the wiring individually and as a combination. Al-
though minimizing wiring cost had a greater impact on recon-
structing the network structures, the optimal balance between
connectivity efficiency and cost was still crucial in achiev-
ing maximum similarity between the reconstructed and real
networks. This highlights that the brain’s network seeks to
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Figure 4: The difference of features between real and recon-
structed neural networks. Circles stand for the reconstruc-
tion of Min(L,), triangles for Min(L),), stars for Max(CVy),
squares for Max(CV;), and points for Max(H). The differ-
ence of feature f between model network f,, and real net-
work structure f, is calculated by E = (f,, — f)/ f+. Different
features are suggested by colors as in the legend.

achieve its complex functions with limited energy consump-
tion through large connectivity and high communication effi-
ciency.

Optimized neuroanatomy, as demonstrated in examples
such as (Cherniak, Mokhtarzada, & Nodelman, 2002), shows
that the most complex biological structures can arise from
simple physical energy minimization processes. While
wiring cost does play a significant role in determining the
structure of neural systems, it is simply a constraint imposed
by the limitations of energy and resources. It is widely ac-
knowledged that the cost of wiring brain connections comes
from factors such as volume, metabolic demands, signal de-
lays and attenuation, and guidance defects during develop-
ment (Chklovskii & Koulakov, 2004). However, to achieve
an optimal structure that balances efficiency and function,
a network must also meet other requirements. Recent re-
search has highlighted the importance of characteristics such
as a modular structure and widely distributed hubs (Bertolero,
Yeo, Bassett, & D’Esposito, 2018), small wiring cost, and
high efficiency within each hemisphere with minimal con-
nections between hemispheres (Assaf, Bouznach, Zomet,
Marom, & Yovel, 2020).

We believe a relatively optimized brain network should at-
tain higher robustness and efficiency for flexible functions
while keeping costs low in real brains. To achieve this,
the brain network should possess features such as a flexible
connection topology, efficient information transmission, and
minimal wiring costs. Flexibility in the network allows for
multiple pathways between nodes, ensuring robustness in in-

formation transmission. The presence of short paths or small-
world properties characterizes efficient information transmis-
sion. However, it is important to note that there is a trade-off
between minimizing costs and maximizing robustness or ef-
ficiency. For example, while long-distance connections may
not greatly reduce path length, they can add diversity to brain
area inputs and outputs, resulting in more complex brain dy-
namics (Betzel & Bassett, 2018). Therefore, minimizing
wiring length should not be the ultimate goal during network
formation, but rather a constraint to be considered in con-
junction with other factors. In other words, neural networks
tend to balance the trade-off between efficiency and robust-
ness while being constrained by the cost of wiring.
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