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Abstract: We discuss the cumulant approach to spectral properties of large random matrices. In
particular, we study in detail the joint cumulants of high traces of large unitary random matrices and
prove Gaussian fluctuation for pair-counting statistics with non-smooth test functions.

Keywords: random matrices; cumulants; Central Limit Theorem

1. Introduction

Random Matrix Theory has its origins in the works of statisticians in the 1920s and
nuclear physicists in the 1950s. In the pioneering papers [1–3], Eugene Wigner introduced
an ensemble of random matrices that now have his name and computed the limiting
spectral distribution. The main ingredient of the proof was the method of moments that
allowed Wigner to study asymptotics of the traces of powers of a random symmetric
(Hermitian) matrix with independent identically distributed (i.i.d.) components. Since then,
the method of moments has been successfully used to study spectral properties of large
random matrices on many occasions. It works particularly well when a random matrix has
many independent components. We refer the reader to [4–13] and references therein.

The purpose of this paper is to discuss several applications of the cumulant technique
in Random Matrix Theory. The cumulant approach is especially useful if point correlation
functions are given by the determinantal or Pfaffian formulas.

The paper is organized as follows. In the Methods section, we give a brief overview
of the known results. Several novel results related to the joint cumulants of traces of high
powers and pair counting statistics of eigenvalues of a large random unitary matrix are
formulated and proved in the Results section. The Discussion section is devoted to brief
comments on the future lines of research.

Throughout the paper, the notation aN = O(bN) means that the ratio aN/bN is
bounded from above in absolute value. The notation aN = o(bN) means that an/bN → 0 as
N → ∞. The notation aN = Ω(bN) means that the ratio aN/bN is bounded from above in
absolute value by a power of log N. Finally, we sometimes use the notation a ∨ b for the
maximum of a and b.

2. Methods
2.1. Determinantal Point Process and Cluster Functions

The ideas of the cumulant approach in Random Matrix Theory go back at least to
the 1995 paper [14] by Costin and Lebowitz, which studied a so-called sine random point
process, namely, a determinantal random point process with the correlation kernel

K(x, y) =
sin(π(x− y))

π(x− y)
. (1)

In other words, the k-point correlation functions of the random point process are
given by

ρk(x1, . . . , xk) = det[K(xi, xj)]1≤i,j≤k, k ≥ 1. (2)
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We refer the reader to [15,16] for an introduction to determinantal random point processes.
The sine random point process appears as a scaling limit of many ensembles of random
matrices, including the Circular Unitary Ensemble defined below in (11).

The main result of [14] states that #[0, L], the number of particles in an interval [0, L],
has Gaussian fluctuation in the limit L→ ∞ with logarithmically growing variance. Namely,

#[0, L]− L√
log L

D−−−→ N(0, 1/π2). (3)

To study the limiting distribution of the counting random variable #[0, L], Costin and
Lebowitz suggested using the so-called cluster (Ursell) k-point functions. For k = 1, 2, 3,
the cluster functions are given by

r1(x1) = ρ1(x1),

r2(x1, x2) = ρ2(x1, x2)− ρ1(x1)ρ1(x2),

r3(x1, x2, x3) = ρ3(x1, x2, x3)− ρ2(x1, x2)ρ1(x3)− ρ2(x1, x3)ρ1(x2)−
− ρ2(x2, x3)ρ1(x1) + 2ρ1(x1)ρ1(x2)ρ1(x3).

For arbitrary k ≥ 1, one has

rk(x1, . . . , xk) = ∑
π

(−1)|π|−1(|π| − 1)!
|π|

∏
j=1

ρ|Bj |(xi : i ∈ Bj), (4)

where the sum at the r.h.s. of (4) is over all partitions π of the set {1, 2, . . . , k} into blocks
B1, . . . , Bm, |π| = m stands for the number of blocks in a partition π, and |Bi| denotes the
cardinality of a block Bi.

For determinantal random point processes, (2) and (4) imply

rk(x1, . . . , xk) =
(−1)k−1

k ∑
σ∈Sk

K(xσ(1), xσ(2))K(xσ(2), xσ(3)) . . . K(xσ(k), xσ(1))

= (−1)k−1(K(x1, x2)K(x2, x3) . . . K(xk, x1) + . . .
)
,

where the sum in the first line is over all permutations in the symmetric group Sk, and the
sum in the second line is over all (k− 1)! cyclic permutations in Sk, with the first of such
cyclic permutations being 1→ 2→ 3→ . . .→ k→ 1.

Cluster point functions are closely related to the cumulants of #[0, L]. Denote by Ik(L)
the integral of the k-point cluster function over the k-dimensional cube [0, L]k :

Ik(L) =
∫
[0,L]k

rk(x1, . . . , xk)dx1 . . . dxk, k ≥ 1. (5)

Furthermore, denote by κj(L), j = 1, 2, 3, . . . , the cumulants of the counting random
variable #[0, L]. Recall that the moment and cumulant generating functions are related by

∞

∑
j=1

κj

j!
zj = log

( ∞

∑
j=0

mj

j!
zj). (6)

It follows from (4) and (6) that the j-th cumulant of #[0, L] can be written as a linear
combination of the integrals Ik(L), 1 ≤ k ≤ j. Namely, the following relation holds for the
generating functions:

∞

∑
j=1

κj(L)
j!

zj =
∞

∑
j=1

Ij(L)
j!

(ez − 1)j. (7)
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To prove the Central Limit Theorem for the normalized random variable #[0,L]−E#[0,L]√
Var#[0,L]

, it is

sufficient to show that

Var#[0, L]→ ∞ as L→ ∞ and κj(L) = o((Var#[0, L])j/2) for j > 2 (8)

since (8) would imply that all cumulants starting with the third one of the normalized
counting random variable #[0,L]−E#[0,L]√

Var#[0,L]
go to zero as L→ ∞.

It is not hard to see that if a random point process is such that Var#[0, L] grows linearly
in L and the cluster function integrals satisfy

Ij(L) = o(Lj/2), j > 2, (9)

a routine application of (7) and (8) finishes the proof of the Central Limit Theorem for
the counting function. However, the sine random point process exhibits a more delicate
behavior—the variance of the number of particles grows only logarithmically, namely:

Var#[0, L] =
1

π2 log L + O(1). (10)

Thus, a more subtle analysis of the asymptotics of Ij(L) is required for j > 2. The
proof ([14]) of the Central Limit Theorem (3) follows from the bounds∫ L

0

∫ L

0

sin(π(x1 − x2))

π(x1 − x2)

sin(π(x2 − x1))

π(x2 − x1)
dx1dx2 = L− 1

π2 log L + O(1),∫
[0,L]k

sin(π(x1 − x2))

π(x1 − x2)

sin(π(x2 − x3))

π(x2 − x3)
. . .

sin(π(xk − x1))

π(xk − x1)
dx1 · · · dxk = L + O(log L).

Remarkably, the result can be generalized to the case of any determinantal random
point field on a locally compact Hausdorff phase space E, equipped with a σ-finite measure
µ on the Borel σ-algebra provided the correlation kernel is Hermitian and locally trace class
and the variance goes to infinity. Namely, the following holds:

Theorem 1 ([17,18]). Let (X,F ,Pn) be a family of determinantal random point fields with hermi-
tian locally trace class correlation kernels Kn and In be a family of Borel subsets of E with compact
closure. Then, if Varn#(In)→ ∞ as n→ ∞, the normalized counting random variable #(In)−E#(In)√

Var#(In)

converges in distribution to a standard normal N(0, 1).

Remark 1. The multivariate version of the theorem also holds (see [17,18]). It is worth noting that
the univariate result allows a very nice probabilistic interpretation ([19]). Namely, one can show that
the counting random variable #(I) is equal in distribution to a sum of independent non-identically
distributed Bernoulli random variables with the probabilities of success given by the eigenvalues of
the integral operator KI f (x) =

∫
I K(x, y) f (y)µ(dy) on L2(I, µ). However, we are not aware of a

simple probabilistic interpretation of the multivariate CLT result.

Analogous results hold for linear statistics L f = ∑i f (xi), where f is a bounded
measurable test function, e.g., with a compact support, and the summation is over all
points of a random point field.

Theorem 2 ([17,18]). Let (X,F ,Pn) be a family of determinantal random point fields with hermi-
tian locally trace class correlation kernels Kn and fn be a bounded, measurable, compactly supported
function on the phase space E such that

VarL fn → ∞, sup | fn(x)| = o
(
(VarL fn)

ε
)
, EL| f |n = O((VarL fn)

δ),
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for any ε > 0 and some δ > 0 as n→ ∞. Then, the normalized linear statistic
L fn−EL fn√

VarL fn
converges

in distribution to N(0, 1) as n→ ∞.

For additional results in this direction, we refer the reader to [20–22]. Moreover, the
connection between integrals of cluster point functions and cumulants can be exploited to
study significantly more challenging problems regarding empirical spectral distribution of
spacings and extreme spacings in determinantal random point processes (see, e.g., [23,24]).

2.2. Linear Statistics in Classical Compact Groups

For many ensembles of large random matrices, the variance of a linear statistic either
stays finite or grows slower than any power of the dimension, provided the test function
is sufficiently smooth. Therefore, Theorem 2 is not typically applicable even if the point
correlation functions are determinantal. It is instructive to consider classical compact
groups. In this paper, we focus our attention on random unitary matrices. However, many
results can be extended to the orthogonal and symplectic matrices without much difficulty.

Let V be a unitary matrix chosen at random with respect to the Haar measure on the
unitary group U(N). We are interested in studying statistical properties of the eigenvalues
of V, which we denote by eiθj , 1 ≤ j ≤ N, −π ≤ θ1, . . . , θN < π. The joint probability
density of the eigenvalues is given by the formula ([25]):

pN(θ1, . . . , θN) =
1

(2π)N N! ∏
1≤j<k≤N

∣∣∣eiθj − eiθk
∣∣∣2. (11)

The joint distribution of the eigenvalues is known as the Weyl measure, and the ensemble
is known in Random Matrices as the Circular Unitary Ensemble ([26–28]). Remarkably, if a
test function f on the unit circle is sufficiently smooth, the variance of the linear statistics
∑N

j=1 f (θj) stays finite as N → ∞. Moreover,

Theorem 3 ([29,30]). Let f be a real-valued function on the unit circle satisfying

∞

∑
−∞
| f̂k|2|k| < ∞, (12)

where
f̂k =

1
2π

∫ π

−π
f (x)e−ikxdx, k ∈ Z (13)

are the Fourier coefficients of f . Then,

N

∑
j=1

f (θj)− f̂0N D−−−→ N(0,
∞

∑
−∞
| f̂k|2|k|). (14)

Remark 2. One can show that the result of Theorem 3 follows from the Strong Szego Theorem for
Toeplitz determinants ([30]).

Remark 3. It follows from Theorem 3 that the real and imaginary parts of the traces of the powers
of a random unitary matrix, Tr Vk = ∑N

j=1 eikθj , k ≥ 1, converge to independent normal random
variables with mean zero and variance k/2 as N → ∞. In ([31]), Johansson proved that the rate of
convergence to normal law is O(N−δN) for some δ > 0. Recently, the results have been further
improved in [32,33].

Many joint moments of the traces of powers of a random unitary matrix V coincide
with the corresponding joint moments of the limiting normal random variables. Namely,
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let Zj, j ≥ 1, be a sequence of independent standard complex normals. Then, for any k ≥ 1
and non-negative integers aj, bj, 1 ≤ j ≤ k satisfying

N ≥ (
k

∑
j=1

jaj) ∨ (
k

∑
j=1

jbj), (15)

one has ([29]):

E
[

k

∏
j=1

Tr(V j)aj Tr(V j)bj

]
= δab

k

∏
j=1

jaj aj! = E
[

k

∏
j=1

(
√

jZj)
aj(
√

jZj)
bj

]
, (16)

where the delta symbol δab is one if a = (a1, . . . , ak) coincides with b = (b1, . . . , bk) and is
zero otherwise. For a beautiful survey of this and related results for random matrices from
classical compact groups, we refer the reader to [34].

To better understand (16) and related phenomena, one can study the joint cumulants
of the traces of powers of a random matrix. Let {Xα∈A} be a family of random variables.
The joint cumulants are defined as (see, e.g., [35]):

κi1,...,in := κ(Xi1 , . . . , Xin) = ∑
π

(|π| − 1)!(−1)|π|−1 ∏
B∈π

E
(

∏
i∈B

Xi

)
, (17)

where the sum is over all partitions π of the set {i1, . . . , in}, B goes over the list of all blocks
of the partition π, and |π| denotes the number of blocks in the partition.

We recall that the joint moments are expressed in terms of the cumulants as

E(X1, . . . , Xn) := E ∏
1≤i≤n

Xi = ∑
π

∏
B∈π

κ(Xi : i ∈ B). (18)

We will use the notation TN,k := Tr(Vk) for the traces of powers of V and denote by

κ
(N)
p (k1, . . . , kp) the joint cumulants of TN,k1 , . . . , TN,kp , i.e.,

κ
(N)
p (k1, . . . , kp) := κ(TN,k1 , . . . , TN,kp). (19)

For a determinantal random point process with a correlation kernel K(x, y), the cumu-
lants of a linear statistic L f = ∑i f (xi) can be computed as ([18]):

κp(L f ) =
p

∑
m=1

(−1)m

m ∑
(p1,...,pm):

p1+...+pm=p, p1,...,pm≥1

p!
p1! · · · pm!

× (20)

∫
f p1(x1)K(x1, x2) f p2(x2)K(x2, x3) · · · f pm(xm)K(xm, x1)dx1 · · · dxm. (21)

For the CUE, the point correlation functions are given by the determinantal Formula (2)
with the correlation kernel

KN(x, y) =
1

2π

N−1

∑
j=0

eij(x−y).
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This allows one to obtain the following formula in the CUE case, provided the test function
f is sufficiently smooth ([36], see also [37–39]):

κp(L f ) = ∑
k1,...,kp∈Z

k1+...+kp=0

p

∏
j=1

f̂kj

p

∑
m=1

(−1)m−1

m ∑
(p1,...,pm):

p1+...+pm=p, p1,...,pm≥1

p!
p1! · · · pm!

×

max
(

0, N −max
(
0,

p1

∑
i=1

ki, . . . ,
p1+...+pm−1

∑
i=1

ki
)
−max

(
0,−

p1

∑
i=1

ki, . . . ,−
p1+...+pm−1

∑
i=1

ki
))

,

that can be rewritten as

κp(L f ) = ∑
k1,...,kp∈Z

k1+...+kp=0

p

∏
j=1

f̂kj

p

∑
m=1

(−1)m

m ∑
(p1,...,pm):

p1+...+pm=p, p1,...,pm≥1

1
p1! · · · pm!

×

∑
σ∈Sp

JN(p1, . . . , pm, kσ(1), . . . , kσ(p)), (22)

where JN is a piece-wise linear function defined by the following formula

JN(p1, . . . , pm; k1, . . . , kp) :=

min

(
N, max

(
0,

p1

∑
i=1

ki,
p1+p2

∑
i=1

ki, . . . ,
p1+...+pm−1

∑
i=1

ki
)
+ max

(
0,−

p1

∑
i=1

ki, . . . ,−
p1+...+pm−1

∑
i=1

ki
))

(23)

for positive integers p1, . . . , pm ≥ 1, p1 + . . . + pm = p, and integers k1, . . . , kp, satis-
fying ∑

p
i=1 ki = 0. Since the joint cumulants are symmetric and multilinear, it follows

from (22) and (23) that κ
(N)
p (k1, . . . , kp) can be computed as

Lemma 1 ([40]).

(i) If p > 1 and either k1 + . . . + kp 6= 0 or ∏
p
i ki = 0, or both, then

κ
(N)
p (k1, . . . , kp) = 0. (24)

(ii) If p > 1, ∏
p
i ki 6= 0, and ∑

p
i=1 ki = 0, then

κ
(N)
p (k1, . . . , kp) =

p

∑
m=1

(−1)m

m ∑
(p1,...,pm):

p1+...+pm=p, p1,...,pm≥1

1
p1! · · · pm!

× (25)

∑
σ∈Sp

JN(p1, . . . , pm; kσ(1), . . . , kσ(p)).

Remark 4. Alternatively, one can rewrite the last formula as

κ
(N)
p (k1, . . . , kp) =

p

∑
m=1

(−1)m

m ∑
(C1,...,Cm):

C1∪...∪Cm={1,...,p}

(26)

min

(
N, max

(
0, ∑

i∈C1

ki, . . . , ∑
i∈C1∪...∪Cm−1

ki
)
+ max

(
0,− ∑

i∈C1

ki, . . . ,− ∑
i∈C1∪...∪Cm−1

ki
))

,

where the summation is over all ordered collections of non-empty disjoint subsets C1, . . . , Cm,
m ≥ 1, of the set {1, . . . , p} such that ∪jCj = {1, . . . , p}.
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It should be emphasized that the exact combinatorial structure manifested in Lemma
1 is specific to the classical compact groups and the sine determinantal point process.

To finish the proof of (14) and (16), using the cumulants, one observes that for

p

∑
i=1
|ki| ≤ 2N and

p

∑
i=1

ki = 0 (27)

the expression for JN(p1, . . . , pm; k1, . . . , kp) simplifies, namely:

JN(p1, . . . , pm; k1, . . . , kp) =

max

(
0,

p1

∑
i=1

ki,
p1+p2

∑
i=1

ki, . . . ,
p1+...+pm−1

∑
i=1

ki

)
+ max

(
0,

p1

∑
i=1

(−ki), . . . ,
p1+...+pm−1

∑
i=1

(−ki)

)
. (28)

One then uses a combinatorial lemma from [36] to show that all joint cumulants
κ
(N)
p (k1, . . . , kp) of order three and higher (p > 2) are identically zero, provided

∑
p
i=1 |ki| ≤ 2N:

Lemma 2 ([36]). Let k1, . . . , kp, p ≥ 2 be arbitrary real numbers such that ∑i ki = 0. Then,
the sum

∑
σ∈Sp

p

∑
m=1

(−1)m

m ∑
(p1,...,pm):

p1+...+pm=p, p1,...,pm≥1

1
p1! · · · pm!

max
(
0,

p1

∑
i=1

kσ(i), . . . ,
p1+...+pm−1

∑
i=1

kσ(i)
)

equals |k1| = |k2| if p = 2 and zero if p > 2.

Remark 5. The lemma is related to the combinatorial proof of the Strong Szego Theorem. We refer
the reader to [41–44] for recent applications of the cumulant method for determinantal processes to
study linear statistics of Hermitian unitary invariant random matrices and free fermions processes.

2.3. Multivariate Linear Statistics and Number Theory Connections

This subsection is devoted to the discussion of multivariate linear statistics of the form

SN( f ) = ∑
1≤j1,j2,...,jn+1≤N

f (LN(θj2 − θj1), . . . , LN(θjn+1 − θj1)), (29)

where θ = (θ1, . . . , θN) ∈ TN comes from the CUE (or, in general, the Circular Beta
Ensemble with arbitrary β > 0), the scaling factor LN satisfies 1 ≤ LN ≤ N, and f is a
sufficiently smooth test function defined on the unit circle (when LN = 1) or the real line
(when LN → ∞.)

The study of such multivariate linear statistics in [40,45–47] was motivated by con-
nections between Random Matrices and Number Theory (see, e.g., [48–51] and references
therein.) The local case (LN = N) is of a particular interest for the CUE since the multivariate
linear statistic

SN( f ) = ∑
1≤j1,j2,...,jn+1≤N

f (N(θj2 − θj1)c, . . . , N(θjn+1 − θj1)c), (30)

where f ∈ C∞
c (R) and (θ − φ)c is the phase difference on the unit circle (i.e., the difference

modulo 2π) and corresponds to multivariate linear statistics of the (rescaled) zeros of
the Riemann zeta function studied by Montgomery [52,53], Hejhal [54], and Rudnick
and Sarnak [55] (see, e.g., [40]). We also point out a recent related preprint [56], where
multivariate linear statistics have been studied for the determinantal random process with
the projection correlation kernel on the unit sphere Sd, d > 1 .
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To study the limiting distribution of (30), we write using the Fourier transform

SN( f ) =
1

(2π)n/2Nn ∑
k∈Zn

f̂
( k1

N
, . . . ,

kn

N
) n+1

∏
j=1

TN,kj
(31)

where kn+1 = −∑n
j=1 k j, and f̂ (t) = 1

(2π)n/2

∫
Rn f (x)e−it·xdx, t = (t1, . . . , tn).

The proof of the Gaussian fluctuation for (SN( f )− ESN( f ))/
√

N presented in [40]
relies on a detailed study of the joint cumulants κ

(N)
p (k1, . . . , kp), p > 1, for the arguments

ki = O(N), 1 ≤ i ≤ p. It is combinatorial in nature. One of the key ingredients of the proof
is the fact that joint cumulants scale with N. Namely,

cp(t1, . . . , tp) :=
1
N

κ
(N)
p (t1N, . . . , tpN) (32)

does not depend on N. Moreover, it is a piece-wise linear, bounded function of t1, . . . , tp on
the hyperplane t1 + . . . + tp = 0 (it is identically zero when t1 + . . . + tp 6= 0.)

Lemma 3 ([40]). Rescaled joint cumulants cp defined in (32) can be written for p > 1 and
∑

p
i=1 ti = 0 as

cp(t1, . . . , tp) =
p

∑
m=1

(−1)m

m ∑
(p1,...,pm):

p1+...+pm=p, p1,...,pm≥1

1
p1! · · · pm! ∑

σ∈Sp

j(p1, . . . , pm; tσ(1), . . . , tσ(p)), (33)

where j(p1, . . . , pm; t1, . . . , tp) is defined for positive integers p1, . . . , pm, p1 + . . . + pm = p, and
real numbers t1, . . . , tp, as

j(p1, . . . , pm; t1, . . . , tp) :=

min

(
1, max

(
0,

p1

∑
i=1

ti,
p1+p2

∑
i=1

ti, . . . ,
p1+...+pm−1

∑
i=1

ti
)
+ max

(
0,

p1

∑
i=1

(−ti), . . . ,
p1+...+pm−1

∑
i=1

(−ti)
))

. (34)

Moreover, the following holds:

(i) cp(t1, . . . , tp), p > 1, is a bounded symmetric piece-wise linear function on ∑
p
i=1 ti = 0.

(ii) cp(t1, . . . , tp) = 0 if p > 1 and ∑
p
i=1 ti 6= 0.

(iii) c1(0) = 1 and c1(t) = 0 for t 6= 0.

We finish this section with a discussion of the multivariate linear statistics for non-
smooth functions. For simplicity, we assume that n = 1 and restrict our attention to the
global regime (LN = 1). Then,

SN( f ) =
N

∑
i,j=1

f (θi − θj). (35)

In [45], we proved that if f is an even real-valued function on the unit circle such that both
f ′ belongs to L2(T), then

SN( f )−ESN( f ) D−−−→ 2
∞

∑
m=1

f̂mm(ϕm − 1), (36)

where ϕm are i.i.d. exponential random variables with E(ϕm) = 1. We note that the
condition ∑k | f̂k|2k2 < ∞ is necessary and sufficient for (36) to hold. If the series ∑k | f̂k|2k2

is slowly diverging so that the sequence of partial sums VN = ∑|k|≤N | f̂k|2k2 is slowly
varying in the sense of Karamata ([57]), then the Central Limit Theorem holds ([46]):
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SN(F)−ESN( f )√
VN

D−−−→ N(0, 2).

The case of the linearly growing variance will be studied in the next section, where we will
consider a class of even test functions f for which f̂kk → C 6= 0 as k → ∞. The values of
the cumulant function κ

(N)
p (k1, . . . , kp) for ki = O(N), 1 ≤ i ≤ p play an important role in

the analysis.

3. Results

We study the Circular Unitary Ensemble of random matrices (11). In particular, we are
interested in the joint distribution of the traces of high powers of a unitary matrix V. As
before, we denote by κ

(N)
p (k1, . . . , kp) the joint cumulants of Tr Vk1 , . . . , Tr Vkp , 1 ≤ i ≤ p.

In what follows, ki = O(N), 1 ≤ i ≤ p, and we are looking for scenarios when the joint
cumulants vanish.

We start by considering the joint cumulants of Tr Vk and Tr V−k for k ≥ N. While the
distribution in this case is well understood (see, e.g., [58]), it is instructive to consider the
cumulant approach that will be further expanded later in this section. We are interested in
the values of the joint cumulants κ

(N)
p (k1, . . . , kp), p > 1, where

k1 = . . . = kq = k and kq+1 = . . . = kp = −k, 0 ≤ q ≤ p, k ≥ N.

It follows from Lemma 1 that κ
(N)
p (k, . . . , k,−k, . . . ,−k) = 0 unless p is even and p = 2q.

We then have k1 = . . . kq = k and kq+1 = . . . = k2q = −k. We will use the Formula (26).
Since k ≥ N, one has

min

(
N, max

(
0, ∑

i∈B1

ki, . . . , ∑
i∈B1∪...∪Bm−1

ki
)
+ max

(
0,− ∑

i∈B1

ki, . . . ,− ∑
i∈B1∪...∪Bm−1

ki
))

= N (37)

unless each subset Bj has an equal number of elements equal to k and −k, in which case the
l.h.s. of (37) is zero. A routine combinatorial analysis produces

κ
(N)
2q (k, . . . , k,−k, . . . ,−k) = N

q

∑
m=1

(−1)m−1

m ∑
(q1,...,qm):

q1+...+qm=q, q1,...,qm≥1

(
q!

q1! · · · qm!

)2
. (38)

Therefore, the cumulant generating function CN(x, y) can be written as

log
(
E exp(x Tr Vk + y Tr V−k)

)
= N log

(
∞

∑
m=0

1
(m!)2 (xy)m

)
= N log

(
I0(
√

4xy)
)
, (39)

where

I0(u) =
1

2π

∫ 2π

0
eu cos θdθ =

∞

∑
m=0

1
(m!)222m u2m (40)

is the modified Bessel function of the first kind.
A more elementary way to derive (39) relies on the observation by Rains ([58]) that the

kth powers of the eigenvalues of V are i.i.d. random variables uniformly distributed on the
unit circle provided k ≥ N. Thus, Tr Vk, for k ≥ N, is given by the sum of N i.i.d. uniform
random variables on the unit circle. The traces of different powers are still correlated for
finite N. However, a significant portion of the joint cumulants vanishes.
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Proposition 1. Let si, 1 ≤ i ≤ l be l > 1 distinct positive integers and ai, bi be non-negative
integers such that ai + bi ≥ 1 for all i. Suppose that

|
l

∑
i=1

nisi| ≥ N ∀ n1, . . . , nl ∈ Z : −bi ≤ ni ≤ ai, 1 ≤ i ≤ l,
l

∑
i=1
|ni| > 0. (41)

Let p = ∑l
1(ai + bi) and (k1, . . . , kp) ∈ Zp be such that the first a1 coordinates of the vector are

equal to s1, the next b1 coordinates are equal to −s1, the further next a2 coordinates are equal to s2,
the following b2 coordinates are equal to −s2, etc, . . . , and the last bl coordinates are equal to −sl .

Then,
κ
(N)
p (k1, . . . , kp) = 0. (42)

Moreover, for 0 ≤ ni ≤ ai, 0 ≤ mi ≤ bi, 1 ≤ i ≤ l , one has

E
[ l

∏
i=1

(Tr Vsi )ni (Tr V−si )mi
]
= δnm

l

∏
i=1

E
[
|

N

∑
j=1

ϕj|2ni
]
, (43)

where {ϕi} are i.i.d. uniform random variables on the unit circle, and δnm is the delta symbol.

Proof of Proposition 1. While the proof does not depend on the value of l, we will assume
that l = 2 in order to simplify the notations. It follows from (41) that the joint cumulant is
zero unless

ai = bi, 1 ≤ i ≤ 2, (44)

since otherwise ∑
p
1 ki 6= 0. Therefore, from now on, we can assume that (44) holds. As

before, we will use (26) to compute the joint cumulants. We call a subset Bj balanced if the
number of times s1 appears in it is equal to the number of times −s1 appears in it, and the
same holds for s2 and −s2. It follows from (41) that unless unless each subset Bj is balanced,
the l.h.s. of (37) is N. Otherwise, the l.h.s. of (37) is zero. We obtain that for a1 = b1 = c
and a2 = b2 = d,

κ
(N)
p (s1, . . . , s1,−s1, . . . ,−s1, s2, . . . , s2,−s2, . . . ,−s2) = N ∑

m≥1

(−1)m−1

m

∑
c1+...+cm=c, c1,...cm≥0
d1+...+dm=d, d1,...dm≥0

ci+di≥1, 1≤i≤m

(
c!

c1! · · · cm!

)2( d!
d1! · · · dm!

)2
, p = 2(c + d).

Therefore, the coefficient in front of (xy)c(zw)d in the cumulant generating function

CN(x, y, z, w) := log
(
E exp(x Tr Vs1 + y Tr V−s1 + z Tr Vs2 + w Tr V−s2)

)
coincides with the corresponding coefficient in the power series expansion of

N log

(
∞

∑
m=0

1
(m!)2 (xy)m

∞

∑
m=0

1
(n!)2 (zw)n

)
= N log

(
I0(
√

4xy)I0(
√

4zw)
)

= N log
(

I0(
√

4xy)
)
+ N log

(
I0(
√

4zw)
)

= log

(
E exp(x

N

∑
j=1

φj + y
N

∑
j=1

φj + z
N

∑
j=1

ηj + w
N

∑
j=1

ηj)

)
,

where {φi}, {ηi} are i.i.d. uniform random variables on the unit circle, and φ denotes the
complex conjugate. The identity (43) follows from the derived identity for the cumulants
and the Formula (18), expressing moments in terms of cumulants.
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To illustrate the utility of the cumulant approach, we formulate and prove below the
Central Limit Theorem for pair-counting statistics for a class of non-smooth test functions.
We consider

SN( f ) =
N

∑
i,j=1

f (θi − θj), (45)

where (θ1, . . . , θN) is a random CUE point configuration, and f is an even real-valued
function on the unit circle such that

f̂kk→ C 6= 0 as k→ ∞. (46)

Remark 6. f (θ) = log | sin(θ/2)| satisfies the above test function requirements.

Theorem 4. Let f be a real even function on the unit circle, satisfying (46). Then,

SN( f )−ESN( f )√
N

D−−−→ N(0, σ2(C)), (47)

where the limiting variance can be computed as

σ2(C) = 4C2
(

3− 2
∫ 1

0

1
y
(
(1 + 1/y) log(1 + y)− 1

)
dy
)

(48)

−4C2
(

2
∫ 1

0

1
y
(1 + y) log(1 + y)dy +

∫ 1

0

1− y
y

log(1− y)dy
)

. (49)

Proof of Theorem 4. We start with the following formula for the variance of SN( f ):

Proposition 2 ([45]). Let f be a real even function on the unit circle such that f ∈ L2(T). Then,

Var[SN( f )] = 4

(
∑

1≤s≤N−1
s2( f̂ (s))2 + N2 ∑

N≤s
( f̂ (s))2 − N ∑

N≤s
( f̂ (s))2

)
(50)

−4

 ∑
1≤s,t

1≤|s−t|≤N−1
N≤max(s,t)

(N − |s− t|) f̂ (s) f̂ (t) + ∑
1≤s,t≤N−1
N+1≤s+t

((s + t)− N) f̂ (s) f̂ (t)

. (51)

Since the test function f satisfies (46), we have

∑
1≤s≤N−1

s2( f̂ (s))2 = N(1 + o(1)), ∑
N≤s

( f̂ (s))2 =
1
N

+ O(
1

N2 ),

and the two double sums in (51), up to a negligible error, are equal to the Riemann sums of
converging integrals. As a result,

Var[SN( f )] = 4C2N
(

2−
∫

D1

(1− |x− y|) 1
xy

dxdy−
∫

D2

(x + y− 1)
1

xy
dxdy

)
(1 + o(1)), (52)

where

D1 = {(x, y) : x, y > 0, |x− y| ≤ 1, max(x, y) ≥ 1}, D2 = {(x, y) : 0 < x, y ≤ 1, x+ y ≥ 1}.
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The integrals in (52) can be trivially simplified as∫
D1

(1− |x− y|) 1
xy

dxdy = −2 + 2
∫ 1

0

1
y
(1 + y) log(1 + y)dy

+2
∫ ∞

1

1
y
(
(1 + y) log(1 + 1/y)− 1

)
dy, (53)∫

D2

(x + y− 1)
1

xy
dxdy = 1 +

∫ 1

0

1− y
y

log(1− y)dy,

which leads to (48) and (49).
To prove the theorem, we will study asymptotics of the higher moments of SN( f ).

We start by truncating f . Namely, we replace it by f̃ (x) = ∑|k|≤N log N f̂keikx. It follows
from (50) and (51) that Var[SN( f )− SN( f̃ )] = Var[SN( f − f̃ )] = o(N). Therefore, without
a loss of generality, we can assume that the Fourier coefficients f̂k are zero for |k| > N log N.
Whenever it does not lead to ambiguity, we will use the notation f for the truncated version
of a test function. Recall that

SN( f ) = ∑
k

f̂k|TN,k|2 = ∑
k

f̂kTN,kTN,−k, (54)

where we use the notation TN,k = Tr Vk. Let us fix a positive integer m > 2. We have

E(SN( f )−ESN( f ))m = ∑
k1,...,km∈Z

f̂k1 · · · f̂km E
[

m

∏
i=1

(
TN,ki

TN,−ki
−ETN,ki

TN,−ki

)]
.

Let us denote km+i = −ki, 1 ≤ i ≤ m. Applying

Lemma 4. 9.2 from [45] (see also Lemma 4.1 in [40]), one rewrites

E
[

m

∏
i=1

(
TN,ki

TN,−ki
−ETN,ki

TN,−ki

)]
= E

[
m

∏
i=1

(
TN,ki

TN,km+i
−ETN,ki

TN,km+i

)]
(55)

as ∑∗π ∏B∈π κ(TN,ki
: i ∈ B), where the sum is over all partitions π of {1, . . . , 2m} that do not

contain atoms and two-element subsets of the form {i, i + m}, i = 1, . . . , m. Therefore,

E(SN( f )−ESN( f ))m =
∗
∑
π

∑
k1,...,km 6=0

f̂k1 · · · f̂km ∏
B∈π

κ(TN,ki
: i ∈ B). (56)

For a given partition π, denote

Σπ = ∑
k1,...,km 6=0

f̂k1 · · · f̂km ∏
B∈π

κ(TN,ki
: i ∈ B) (57)

and

Sπ = ∑
k1,...,km 6=0
|ki |≤N log N

1
|k1|
· · · 1
|km| ∏

B∈π

[
min(N, ∑

i∈B
|ki|)1∑i∈B ki=0

]
. (58)

Clearly,
Σπ = O(Sπ). (59)

Following [40,45], we denote

[i] := {i, i + m}, 1 ≤ i ≤ m, (60)
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and introduce the equivalence relation ∼π on the set {[1], . . . , [m]} :

[i] ∼π [j] (61)

if and only if there is a sequence of blocks B1, . . . , Bq, q ≥ 1, of the partition π such that

B1 ∩ [i] 6= ∅, B1 ∩ [i1] 6= ∅; B2 ∩ [i1] 6= ∅, B2 ∩ [i2] 6= ∅; . . . ; Bq ∩ [iq−1] 6= ∅, Bq ∩ [j] 6= ∅, (62)

for some 1 ≤ i1, . . . , iq−1 ≤ m. We call a partition π optimal if the cardinality of every equivalence
class is 2. We claim that for each optimal partition π, the corresponding sum Σπ = σmNm/2×
(1 + o(1)), and for each suboptimal partition, Σπ = o(Nm/2).

The first part of the claim immediately follows from the variance computations above, as the
m−dimensional sum (57) then factorizes into the product of m/2 two-dimensional sums, each equal
σ2N(1 + o(1)).

Next, we will show that the suboptimal partitions give negligible contributions o(Nm/2).
One of the key ingredients is the following upper bound on Sπ .

Lemma 5. Let π be a partition of {1, . . . , 2m} that does not contain atoms and two-element subsets
of the form {i, i + m}, i = 1, . . . , m. Then,

Sπ = Ω(Nm/2), (63)

i.e., Sπ ≤ Nm/2(log N)d for some d and all sufficiently large N. Moreover, if π contains at least
one block of size less than 4, then

Sπ = Ω(N
m−1

2 ). (64)

Proof of Lemma 4. The proof uses mathematical induction on m. Without a loss of gen-
erality, we can assume that the equivalence relation ∼π has only one equivalence class.
Otherwise, the sum Sπ factorizes over the equivalence classes, and the argument is applica-
ble to each equivalence class separately.

If π does not contain an equivalence class of size less than 4, the bound (63) follows
since the number of terms in the product on the r.h.s. of (58) is not bigger than m/2, each
cumulant is O(N), and the partial sums of the harmonic series grow logarithmically.

Suppose now that π contains a block of size 2, say B1 = {i, j + m}, 1 ≤ i 6= j ≤ m.
Then, {i + m, j} cannot be a block of the partition. Consider the block of the partition
that contains i + m. Without a loss of generality, we can assume that this block is B2, i.e.,
i + m ∈ B2. Construct a partition π′ of the set {1, . . . , 2m} \ {i, i + m}, where we discard
B1 and replace i + m in B2 by j + m. It follows from the construction that Sπ ≤ Sπ′ and by
the inductive hypothesis, Sπ′ = Ω(N

m−1
2 ).

Now, suppose that π has a block of size 3, say B1 = {i, j, l +m}, 1 ≤ i, j, l ≤ m, l 6= i, j.
Consider the block of π that contains l, say l ∈ B2. Construct a partition π′ of the set
{1, . . . , 2m} \ {l, l + m}, where we discard B1 and replace l in B2 by i and j. Then, Sπ ≤ Sπ′

and, again, applying the inductive hypothesis, Sπ′ = Ω(N
m−1

2 ).

Remark 7. A similar argument shows that if π contains a block of size 4 of the form
{i, j, l, l + m}, 1 ≤ i, j, l ≤ m, then Sπ = Ω(N

m−1
2 ).

Finally, if π contains a block of size 4 of the form B1 = {i, j, n+m, l +m}, 1 ≤ i, j, n, l ≤ m,
such that {i, j} 6= {n, l}, we consider two cases, namely, |kn| > |kl | and |kn| ≤ |kl |. In the first
case, we construct a partition π′ of the set {1, . . . , 2m} \ {n, n + m}, where we discard B1 and
replace n in its block by i, j, and l + m. In the second case, we do the same procedure with l instead
of n. In both cases, the sum is bounded from above by a sum of dimension one less, and we again
obtain Sπ = Ω(N

m−1
2 ) by the inductive assumption.
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Now we are ready to finish the proof of the theorem. Recall that we could assume without a
loss of generality that the equivalence relation ∼π has only one equivalence class. Note that (59)
and (63), Lemma 4 and Remark 7 prove Σπ = o(Nm/2) for all suboptimal partitions π, except the
ones that comprise the blocks of size 4 of the form {i, j, j + m, l + m}, 1 ≤ i, j, l ≤ m, i 6= l. Since
ki + k j + k j+m + kl+m = 0, and k j+m = −k j, we obtain kl+m = −ki. It follows from the direct
computations (see, e.g., [40]) that

κ
(N)
4 (ki, k j,−k j,−ki) =



0, if 1 ≤ |ki| = |k j| ≤ N/2,
N − 2|ki|, if N/2 < |ki| = |k j| ≤ N,
−N, if |ki| = |k j| ≥ N,
||ki| − |k j|| − N, if 1 ≤ ||ki| − |k j|| ≤ N − 1, N ≤ max(|ki|, |k j|),
N − |ki| − |k j|, if 1 ≤ |ki| 6= |k j| ≤ N − 1, N + 1 ≤ |ki|+ |k j|,
0, else.

. (65)

In particular, |κ(N)
4 (ki, k j,−k j,−ki)| ≤ min(|ki|, |k j|). Without a loss of generality, we can assume

that π = {B1, . . . , Bm/2}, where

B1 = {1, 2, 2 + m, 3 + m}, B2 = {3, 4, 4 + m, 5 + m}, . . . , (66)

Bm/2−1 = {m− 3, m− 2, 2m− 2, 2m− 1}, Bm/2 = {m− 1, m, 2m, m + 1}. (67)

Then,

Σπ = ∑
k1,...,km 6=0

f̂k1 · · · f̂km

m/2

∏
i=1

κ
(N)
4 (k2i−1, k2i,−k2i,−k2i+1). (68)

Since the fourth cumulant function vanishes unless the sum of the arguments is zero, one has
k1 = k3 = k5 = . . . = km−1. Moreover, the fourth cumulant function vanishes unless the sum of
the absolute values of the arguments is at least 2N. Therefore, |k1|+ |k2i| ≥ N, 1 ≤ i ≤ m, and

|Σπ | ≤ Const ∑
k1 6=0,

|k1|≤N log N

∑
k2,k4,k6,...,km 6=0
|k2i |≤N log N

1
|k1|m/2

m/2

∏
i=1

1
|k2i|

m/2

∏
i=1

min(|k1|, |k2i|)1|k1|+|k2i |≥N . (69)

Splitting the summation with respect to k1 into two parts, corresponding to |k1| ≤
√

N and
|k1| >

√
N correspondingly, one arrives at the bound:

|Σπ | ≤ 2× Const
(

∑
0<k1≤

√
N

1 ∑
k2,k4,k6,...,km 6=0
|k2i |≤N log N

m/2

∏
i=1

1
|k2i|

+ ∑
|k1|≥

√
N

1
|k1|m/2 ∑

k2,k4,k6,...,km 6=0
|k2i |≤N log N

1
)

.

The right-hand side is = o(Nm/2) for m > 2. Therefore, we have shown that Σπ = o(Nm/2) for
all suboptimal partitions.

If m = 2q + 1 is odd, then cleraly there are no optimal partitions, which implies

E(SN( f )−ESN( f ))2q+1 = o(Nq+1/2). (70)

If m = 2q is even, then there are exactly (2q − 1)!! optimal partitions, and for each such
partition π, one has Σπ = σ2q(C)Nq(1+ o(1). When we combine these results together, we obtain

E(SN( f )−ESN( f ))2q = (2q− 1)!!σ2q(C)Nq(1 + o(1). (71)

The bounds (70) and (71) finish the proof.

4. Discussion

We have discussed several applications of the cumulant technique in Random Matrix
Theory, specifically for the ensembles with determinantal k-point correlation functions. The
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suggested approach to the fluctuations of multivariate linear statistics of the eigenvalues
of random unitary matrices can be extended to other classes of test functions and other
classical groups.
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