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ABSTRACT OF THE THESIS

Improving Scalability and Fault Tolerance in an Application
Management Infrastructure

by
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Professor Amin Vahdat, Chair

This Thesis explores the challenges associated with distributed application

management in large-scale computing environments. In particular, we investigate sev-

eral techniques for extending Plush, an existing distributed application management

framework, to provide improved scalability and fault tolerance without sacrificing per-

formance. One of the main limitations of Plush is the structure of the underlying com-

munication fabric. We explain how we incorporated the use of an overlay tree provided

by Mace, a toolkit that simplifies the implementation of overlay networks, in place of

the existing communication subsystem in Plush to improve robustness and scalability.
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Chapter 1

Introduction

Scalability has always been an important aspect of distributed system design.

However, as the cost of computers continues to drop and the availability of large-scale

computing platforms like PlanetLab [21, 6], Amazon EC2 [11], and the Teragrid [9]

continues to rise, system designers must revisit what it means to make an application

scale. Today it is common for large-scale clusters to contain thousands of computers

or more, providing petabytes of data storage and hundreds of teraflops of computing

capabilities. While clusters of this size and capacity have the potential to significantly

improve an application’s performance, designing and deploying applications that can

scale to thousands of computers and fully utilize all available resources is difficult.

Aside from the difficulties associated with designing applications that can

achieve the maximum performance possible in large-scale platforms, another often over-

looked problem is configuring and managing the computers that will host the applica-

tion. Even if the system designer successfully builds a scalable application, deploying,

monitoring, and debugging the application running on thousands of high-performance

computers introduces many new challenges. This is especially true in computing plat-

forms where there is no common file system running on the computers. In these environ-

ments the developer must manually copy and install the necessary software for running

the application to the cluster resources and cope with any problems or failures that oc-

cur during the file transfer and installation processes. Only after all software has been

1
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successfully installed and the computers correctly configured can the execution begin.

After the execution begins, developers need a way to detect and, if possible,

recover from failures to ensure that the application runs to completion. When running

an application on thousands of resources1, failures—including both application-level

failures and host- or network-level failures—are inevitable. If a failure is detected, the

steps required for recovery vary, and largely depend on application-specific semantics.

For some applications, recovery may simply be a matter of restarting a failed process on

a single computer. For other applications, a single failure may require the entire appli-

cation running across thousands of cluster resources to be aborted and restarted. For all

applications, one fact holds true: a quick and efficient method for failure detection and

recovery is needed for successful execution.

Distributed application management systems help ease the burdens associated

with deploying and maintaining distributed applications in large-scale computing envi-

ronments. They are designed to simplify many tasks associated with managing large-

scale computations, including software installation, failure detection and recovery, and

execution management. The goal is to hide the underlying details related to resource

management and create a user-friendly way to manage distributed applications running

on thousands of computers. In short, application management infrastructures allow the

system designer to focus on fine-tuning the performance of their application, rather than

managing and configuring the resources on which the application will run. There is,

however, an important caveat regarding the use of an application management system:

the management system itself must reliably scale at least as well as the application being

managed.

Many existing application management systems scale to one or two hundred

computers, but few achieve the scalability required in today’s large-scale computing

clusters. In addition, several of the existing systems focus on tasks associated with sys-

tem administration, often making assumptions about the homogeneity of the computing

resources that are not always valid in clusters with thousands of computers. Motivated
1Throughout this Thesis, the term resource is used to generally describe any device capable of hosting an appli-

cation. The most commonly used resource is simply a computer.



3

by the limitations of existing approaches, our intent is to design and implement a scal-

able application management infrastructure that accomplishes the following four goals:

1. User-friendliness - The infrastructure must be easy to use and easily adapted for

a variety of applications.

2. Heterogeneous resource support - The system must be capable of execution in

heterogeneous computing environments.

3. Fault tolerance - The management system must automatically detect and recover

from application and resource failures.

4. Scalability - The infrastructure must scale to hundreds or thousands of resources.

Rather than start from scratch, we chose to use an existing application manage-

ment system as a basis for our work. In particular, we chose Plush [2, 4], a distributed

application management framework initially designed for PlanetLab. Plush provides

several user-friendly interfaces and supports execution in a variety of environments, thus

accomplishing the first two of our four goals. Plush does not provide adequate scala-

bility or fault tolerance, however, based on the size of large-scale computing platforms

in use today. The main problem in Plush is the design of the underlying communica-

tion infrastructure. The simple design achieves good performance and fault tolerance in

small clusters, but is not resilient to failures and does not scale beyond approximately

300 resources. Hence, the majority of our work centers on addressing these limitations

of Plush.

To this end, this Thesis describes the extensions required to improve the scal-

ability and fault tolerance of Plush, and introduces an enhanced system called Plush-

M. Plush-M extends Plush to incorporate a scalable and robust overlay tree in place

of the existing star-based communication subsystem. We leverage the capabilities of

Mace [17], a C++ language extension and library for building distributed systems, to

build our overlay tree. Since Mace provides many useful features for designing scalable

and robust overlay networks, the integration of Plush and Mace enables us to experiment



4

with many different types of overlays for the communication infrastructure in Plush to

ultimately determine the best design.

The remainder of this Thesis is organized as follows. Chapter 2 describes an

overview of Plush and Mace, and motivates our design of Plush-M. Chapter 3 discusses

some of the problems that had to be addressed during the implementation of Plush-M,

and how we overcame these issues. Chapter 4 provides a preliminary evaluation of

the scalability and fault tolerance of Plush-M, while Chapter 5 discusses related work.

Finally, Chapter 6 describes future directions that we plan to explore and Chapter 7

concludes.

This Chapter, in part, is a reprint of the material as it appears in the proceedings

of USENIX Workshop on Large-Scale Computing, 2008, Topilski, Nikolay; Albrecht,

Jeannie; Vahdat, Amin. The Thesis author was the primary investigator and author of

this paper.



Chapter 2

Plush and Mace: A Brief Overview

This chapter briefly describes Plush and Mace. Since the design and imple-

mentation of Plush-M largely consists of the integration of Plush and Mace, it is help-

ful to understand what Plush and Mace do in isolation before discussing the design of

Plush-M in Chapter 3.

2.1 Plush

Plush is a generic, distributed application management infrastructure that pro-

vides a set of “building-block” abstractions for specifying, deploying, and monitoring

distributed applications. The building-block abstractions are part of an extensible appli-

cation specification language that Plush uses to define customized flows of control for

distributed application management. By defining a custom set of blocks for each ap-

plication, developers can specify exactly how their application should be executed and

monitored, including important behaviors related to failure recovery for application-

level errors detected by the Plush monitoring service. Plush also provides advanced

support for multi-phased applications (which are common in grid environments) through

a set of relaxed synchronization primitives in the form of partial barriers [3]. Partial

barriers help applications cope with “straggler” computers by automatically detecting

bottlenecks and remapping uncompleted computations as needed. Applications that use

partial barriers achieve improved performance in failure-prone environments, such as

5
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wide-area testbeds.

Plush’s architecture primarily consists of two key components: the controller

and the clients. The Plush controller, which usually runs directly on the application

developer’s desktop computer (also called the control node), issues instructions to the

clients to help direct the flow of control for the duration of the execution. All computers

aside from the controller that are involved in the application become Plush clients (or

participants). At the start of an execution, all clients connect directly to the server using

standard TCP connections. Plush maintains these connections for the lifetime of the

application. The controller then directs the execution of the application by issuing com-

mands to each client which are then executed on behalf of the developer. This simple

client-server design results in quick and efficient failure detection and recovery, which

are both important aspects of application execution management.

The original design of Plush targeted applications running on PlanetLab. Plan-

etLab is a volatile, resource-constrained wide-area testbed with no distributed file sys-

tem. The initial version of Plush provided a minimal set of automated failure recovery

mechanisms to help application developers deal with the most common problems expe-

rienced on PlanetLab. Over the past few years, Plush was extended to provide generic

application management support in a variety of computing environments. In particular,

Plush now supports execution on Xen virtual machines [5], emulated ModelNet virtual

clients [22], and cluster computers. However, since the size of PlanetLab during the

initial development of Plush was approximately 400 computers worldwide, the current

design does not scale well beyond a few hundred computers. Thus before Plush will be

useful in large-scale clusters, scalability must be revisited.

2.1.1 Plush Communication Subsystem

While a detailed discussion of how Plush manages distributed applications is

outside of the scope this Thesis, it is important to understand why Plush does not provide

the scalability or fault tolerance required in large-scale computing platforms. The main

scalability bottleneck in Plush is the communication subsystem. By default, all clients
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participating in the execution of an application connect directly to the controller, form-

ing a star topology. This star topology, in the majority of the cases, provides optimal

performance, since all of the clients directly link to the control node. Furthermore, the

star topology is easy to maintain, because fault handling in the communication fabric

is relatively simple. For example, in the case of a single client failure, only the failed

client is affected, and the failure is readily detected by the central controller using the

direct connection. Unfortunately, there is a trade-off between performance and scalabil-

ity. The star topology scales well to approximately 300 nodes, but the topology ceases

to function on larger topologies once the OS-defined file descriptor limit per process is

reached on the control node. In addition, resources like spare CPU cycles, bandwidth,

and latency required to communicate with client machines become a bottleneck at the

control node.

For applications running in large-scale clusters, Plush was extended to use a

simple tree topology for communication rather than a star. The tree topology supports a

maximum depth of only two levels, which results in “bushy” trees where each non-leaf

node has a large number of children. The goal was to reduce the number of connec-

tions to the control node while also minimizing the number of network hops between

the controller and all clients. Unfortunately, while the basic tree topology achieves rel-

atively good performance and scalability, it is not very robust to failures. The failure of

intermediate and leaf nodes can lead to unbalanced trees, unaccounted loss of partici-

pant nodes, and large tree reconfiguration penalties. Furthermore, imposing a maximum

tree depth limitation of two requires intermediate nodes (children of the root) to have

sufficient CPU and bandwidth resources available to support large numbers of children

(leaf nodes), similar to the resource requirements necessary at the control node.

Thus, in failure prone environments Plush is essentially limited to utilizing the

star topology with 300 nodes or less. The only way to use the tree topology effectively

is to carefully select reliable and well-connected non-leaf nodes for successful execu-

tion of distributed applications. In order to use Plush in large-scale environments, the

shortcomings of this tree building mechanism must be addressed.
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2.2 Mace

Mace is a C++ language extension and source-to-source compiler designed

to simplify the development of robust distributed systems. Developers define their ap-

plications using an expressive high-level specification language that hides many of the

mundane details associated with implementing distributed applications. The Mace com-

piler translates the high-level specifications into standard C++ implementations. Mace

follows three design principles.

It utilizes service objects to implement individual layers of the system. The

interface for each layer specifies functionality provided by the layer as well as require-

ments for using the layer. The layers in turn are used to construct a complex system’s

hierarchy.

Mace uses events as unified concurrency model for all levels of the system:

within a layer, across layers on a single node, and across the nodes comprising the

system. Each event corresponds to a method implemented by a service object. Thus, for

example, the transition between layers is done via callbacks that are triggered by events.

Mace uses aspects, computations that cut across the object and event bound-

aries, to define tasks that need to be performed when certain conditions are met. Aspects

are used to cleanly specify how to consistently update local state in response to a variety

of cross-layer events, such as node arrivals, departures, and application-level failures.

All of the three principles complement each other and address the complexity

and challenges of building robust high performance distributed system while preserving

the high-level structure.

Furthermore, much of the code needed for failure detection and handling is

automatically generated from semantic information embedded in the system specifica-

tion. This approach significantly improves code readability and reduces the complexity

associated with maintaining the application. Mace’s state transition model further en-

ables the practical model checking of distributed systems implementations to find both

safety and liveness bugs [18].



9

Mace is fully operational and has been in development for over four years.

Many distributed systems have been built using Mace during this time, including sev-

eral that involve the creation of robust overlay networks for data storage and dissemina-

tion [20]. As a result, Mace provides built-in support for the common operations used

in overlay network creation and maintenance.

One particularly useful protocol provided by Mace is RandTree. RandTree is

a protocol that constructs an overlay network based on a random tree. Participants in a

RandTree overlay network use the RanSub protocol [19] to distribute fixed-size random

subsets of global state to all overlay participants, overcoming scaling limitations and

improving routing performance. By ensuring that the received subsets are uniformly

representative of the entire set of participants and are frequently refreshed, nodes will

eventually receive information regarding a large fraction of participants. This allows the

RandTree protocol to dynamically adapt to changing network conditions and reconfigure

in the face of failures. In short, RandTree creates a random tree with a predefined max-

imum degree, and automatically handles reconfiguration when any participating node

fails, including the root.

2.3 Merging Plush and Mace

In summary, Plush is an application management infrastructure that is de-

signed to simplify distributed application execution. Although it is robust for small

clusters, Plush does not provide the scalability or fault tolerance necessary in today’s

large-scale clusters. Mace is a C++ language extension that simplifies the development

of distributed systems and provides built-in support for creating some basic overlay net-

works, including many overlay trees. Thus, by merging the two systems to create a new

system called Plush-M, we can leverage the advantages of both Plush and Mace to create

a scalable application management infrastructure that is based on a robust overlay tree

provided by Mace.

Plush is designed as a monolithic layered application. To utilize an overlay
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Plush-M Communication Fabric

ReceiveData OverlayJoinTransportError TreeStructure

TCP Transport / 
Route Service class

Mace Overlay

Figure 2.1: Plush-M communication fabric interacting with a Mace overlay. The gray
boxes show part of the API used by Plush-M to interact with Mace. The TCP Transport
and Route Service is also provided by Mace.

provided by Mace, the entire communication subsystem in Plush must be replaced.

However, we still want to maintain the layer integrity within Plush itself. We accomplish

these goals by treating the Mace overlay as a black box underneath Plush, exposing only

a simple API for interacting with the overlay network. In the original design of Plush,

the controller had to manage the topology of the communication fabric. By inserting

a Mace overlay as a black box that is used for communication, the details of the over-

lay construction and maintenance are hidden from the controller. The Plush controller

is mostly unaware of the topology of the hosts that are involved in an execution; the

controller knows only the identity of the participating nodes.

This “black box” design not only allows for the independent upgrade of Plush

and Mace, but also gives us the ability to use a variety of overlay services and protocols

provided by Mace since most use the same API (shown in Figure 2.1). We hope to even-

tually provide developers with the functionality required to select the overlay network

protocol that is best suited to handle the communication needs of their application. It is

important to realize that since Mace is a general purpose framework for designing dis-

tributed applications, its integration into Plush-M may introduce a slight overhead when

compared to the simple tree that Plush provides, but we believe that this is a small price

to pay for the improved scalability and fault tolerance.

Although the functionality provided by Mace allows developers to build a va-
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riety of overlay networks, we chose to integrate the RandTree protocol into Plush-M.

There are several reasons why we chose RandTree instead of other tree-building proto-

cols [15, 13]. In particular, RandTree provides the following benefits:

• Simple - RandTree’s design is simple and efficient. Since it does not try to opti-

mize for latency or bandwidth like many other overlay tree-building algorithms,

the tree can be constructed quickly based on random decisions.

• Adaptive - Since RandTree is based on the RanSub protocol, it is adaptive to

changing network conditions, which is an important property to have when trying

to achieve fault tolerance in potentially volatile conditions.

• Mature - The Mace implementation of RandTree is stable and mature, and has

been successfully used by many other developers in the past. This minimizes the

possibility of bugs and design problems that might occur if we implemented a new

protocol from scratch.

This Chapter, in part, is a reprint of the material as it appears in the proceedings

of USENIX Workshop on Large-Scale Computing, 2008, Topilski, Nikolay; Albrecht,

Jeannie; Vahdat, Amin. The Thesis author was the primary investigator and author of

this paper.



Chapter 3

Design and Implementation of Plush-M

This chapter discusses the design and implementation of Plush-M, an exten-

sion of Plush that provides improved scalability and fault tolerance by using Mace’s

RandTree protocol as the underlying communication fabric. We start by describing the

message processing, followed by a discussion of the organization of the new tree topol-

ogy, and then a summary of the overlay construction and disconnection procedures.

Lastly, we discuss the addition of a new auto-upgrade mechanism in Plush-M.

3.1 Message Processing

The guiding principle of integrating Mace as the communication layer for

Plush-M was to minimize code modifications to the original version of Plush that might

lead to logic errors in other areas of application.

Plush’s original communication system followed a layered design, as shown

in Figure 3.1. At the topmost level, a Mesh object was responsible for processing mes-

sages, tracking active nodes, maintaining the overlay, and managing Connection

objects. Each Connection object relied on two additional abstractions, called the

Reader and Writer, for message IO. The Reader object is responsible for read-

ing, buffering, and parsing messages. Parsed messages are passed to the Connection

object via a callback. The Connection object does minor message processing, such

as updating a local timestamp, and in turn, passes the message to the Mesh object for

12
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Figure 3.1: Plush’s original scheme for message reading/writing.

further processing. The sending procedure follows the same path of control as the read

procedure in reverse direction. First, the Mesh object sends the message object to the

respective Connection associated with the host to which the message is addressed.

The Connection object then passes the message to the registered Writer object via

a callback. The Writer composes the message string and writes it out to a socket.

Mace already provides the necessary mechanisms for sending and receiving

messages. To integrate the two systems together, all of the original Plush abstractions

above the communication layer are preserved to minimize modifications, but abstrac-

tions lower than the Connection abstraction are rendered non-functional, with the

exception of the string parsing functionality of Readers. The Connection objects

in Plush are, for the most part, preserved with their existing functionality since they are

integral for Plush’s method of keeping track of remote hosts.

The integrated Plush-M system instantiates Mace’s Transport object inside

a top-level Mesh object. (See Figure 2.1). Sending of messages is accomplished via
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Figure 3.2: Plush-M message IO. Mace handles reading and writing. Connections are
preserved to track connected hosts and incoming message parsing.

calls to the appropriate Transport’s method and providing messages in the form of

strings. For receiving messages, a callback method is registered with the Transport

object that is called on message reception. On message reception, the Mesh examines

the list of the existing active Connection objects, and if the message is from a host

that does not have connection registered, a new one is created. To take advantage of

an existing Plush parsing mechanism, the message string is passed to the corresponding

Connection and Reader objects for parsing and processing. The message is then

passed back from the Reader to the Connection object, and then back up to the

Mesh, following Plush’s original processing path. Figure 3.2 illustrates this procedure.
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Root
Node

Control
Node 

Participants

Figure 3.3: Separation of the control and root nodes in Plush-M. Plush-M uses RandTree
to build its communication infrastructure. As part of the RandTree protocol, RanSub is
used to deliver subsets of global state to all overlay participants. The RanSub links are
shown using dotted lines, while the direct tree connections are shown using thick solid
lines. RanSub links supplement direct tree links, which increases node interconnectivity
and improves message propagation and failure detection.

3.2 Separating Control and Root Nodes

The original Plush design relies on communication via a star or basic tree

topology, with the control node always being the center of the star or root of the tree.

With the introduction of RandTree as a black box beneath the Plush communication

subsystem, the root selection mechanism becomes hidden from Plush. The functionality

of the control node, which includes listening for input from the developer and directing

the flow of control in executions, must be separated from the root node. In fact, the

control node in Plush-M is not even connected to the overlay. Instead, the control node

maintains a direct TCP connection to the root of the tree, as shown in Figure 3.3. This

complicates the design of Plush-M since additional functionality is needed to keep the

control and root nodes informed of each other.

The application developer designates the identity of the control node when

Plush-M is started. Typically this node is chosen to be the developer’s desktop com-

puter. When managing an application using the original design of Plush, the control

node establishes a connection to the required number of computers and invites them to

participate in the execution of the application. Since the root of the tree is no longer

the same computer as the control node, this process is a bit more complex in Plush-M.
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First, the control node randomly selects a root node and sends it an invitation. Once

the control node connects to the newly chosen root, the controller sends all subsequent

invitations that it creates on to the root node for forwarding. The process of extending an

invitation involves first verifying the liveness of the invited node, and then starting the

Plush-M client process on it. For large-scale clusters, the number of outstanding invita-

tions can grow quite large. Thus, in order to reduce the load at the root, the controller

limits the number of outstanding invitations to a predetermined maximum value.

Through the lifetime of the application, different participant nodes may join

and leave the overlay. The root of the tree can also change in Plush-M, which is some-

thing that never occurred in the original design of Plush. When changes to the overlay

occur, Plush-M receives upcalls from Mace. If the root of the tree changes, Mace noti-

fies the old root node (via an upcall) that it is no longer the root. The old root must make

sure the new root knows the identity of the control node. Thus the old root then sends a

SETCTRL message through the overlay to the new root using a multicast “collect call”

provided by Mace. The collect call ensures that the message is successfully delivered to

the new root of the overlay. Upon receiving a SETCTRLmessage, the newly elected root

node must inform the control node of its identity. To accomplish this, the new root sends

a SETROOTmessage to the control node. When the control node receives the SETROOT

message, it updates its state with the new root’s identity, initiates a connection to the new

root, and closes its connection to the former root.

Furthermore, Plush-M ensures that the control node stays connected to the

acting root node of the overlay, in case some of the control messages get lost in tran-

sition. The control node periodically (every two minutes) sends a SETCTRL message

to the node that it believes is the root of the tree. The SETCTRL message is then pro-

cessed in the usual way, using a multicast collect call to traverse the tree up to the root.

The root responds with its SETROOT message as usual. If the control node receives a

SETROOT message from a node other than the one it thought was the root, it updates its

state. This same procedure is used to update the control node when it reconnects after a

disconnection.



17

3.3 Control Node Responsibilities

The control node performs several essential actions throughout the duration of

the application’s execution. First and foremost, it provides a user interface for the appli-

cation developer to interact with the execution. Secondly, the control node is responsible

for tracking outgoing invitations to join the overlay. These invitations are created in re-

sponse to input from the application developer, or as part of an execution. The control

node maintains a queue of records containing the name of each invited node. The record

persists until the control node receives a confirmation of the node joining the overlay,

or until notice of a failure is received. The invitation queue allows the control node to

account for all invitations and limit the number of unconfirmed invitations.

The control node in Plush-M also plays the role of the execution controller

and barrier manager, just like the control node in Plush. The control node ensures that

all participants in the overlay receive any required application-specific software or data,

and if synchronization barriers are specified, ensures the synchronized execution of the

application on all participating nodes. The control node can be disconnected if it is

not actively inviting nodes or controlling an execution, such as during a long-running

computation. Once the control node reconnects, the root tells it the list of participating

nodes in the overlay. Unfortunately, in the current implementation of Plush-M, if the

control node fails while there are outstanding invitations, all of its active state is lost.

In such cases, the control node must reconnect to the root, destroy the existing overlay,

and start over. We are currently exploring ways to restore the state of the control node

without requiring a complete restart of the existing execution.

3.4 Creating the Overlay Tree

All invitations to join the overlay originate at the control node. Note that the

Plush-M controller is responsible for choosing which computers will host the applica-

tion; we only rely on Mace for managing the communication fabric among participants.

Invitations in Plush-M take the form of SETPEER messages that are sent from the con-
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troller to the root node, which then extends the invitation. SETPEER messages serve

two purposes: 1) they test the liveness of the potential participant, and 2) they tell the

potential participant to join the overlay. If SETPEER fails, then either the potential

participant is offline, or the potential participant is online but not currently running the

Plush-M client process. In the latter case, the root node triggers a remote startup mech-

anism that launches the Plush-M client executable on the potential participant, and then

sends the SETPEER message again. If the node is offline or unable to start the Plush-M

client process, the root informs the controller of the failure.

Upon receiving a SETPEER message, each potential participant makes a

downcall to Mace asking to join the overlay. Making the remote node responsible for

initiating the joining of the overlay elegantly avoids complications presented by alter-

native approaches. If the invitation is triggered from the root, the node is immediately

added to the root’s internal list of participants in Mace. In addition, Mace periodically

(every 10 seconds) tests all participants for liveness. Note that there is a possibility of

receiving a TCP error notification for a node being invited, especially if there is a delay

in the time it takes the Plush-M client to start. Such scenario unnecessarily complicates

the invitation process.

Once the node has successfully joined, Mace notifies the parent of the newly

joined node via the peerJoinedOverlay upcall in Plush-M. Once this upcall com-

pletes, the connection has been established, and the job of the Mace subsystem in the

join procedure is complete. The parent node then informs the new child of any relevant

Plush-M specific details. The parent sends SETROOT, INVITE, and SETCTRL mes-

sages to the child to inform it of the identity of the controller and root nodes. The child

node processes these messages, and responds to the INVITE by sending a JOIN mes-

sage to the root. The root node processes the JOIN message and adds the newly joined

host to the table of participating nodes, completing Plush’s portion of the invitation.

Alternatively, if the node takes longer than five minutes to be invited without

completing the invitation cycle it is marked as failed by Plush-M and the connection to

it is terminated.
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3.4.1 Connection Maintenance in Plush-M

The original design of Plush uses “connection” objects internally to help keep

track of the connection status of participating hosts. Retaining this functionality in

Plush-M required the addition of several new Mace upcall methods. Mace calls the

notifyParent method on overlay participants every time there is a change in a

parent node. This method provides the identity of the new parent. It creates a new

Connection object to track the new parent host and deactivates the old parent’s

Connection object by marking it as MOVED. The MOVED status indicates that the

two hosts are no longer directly connected in the overlay. Reports of any errors on

connections that are marked as MOVED are verified rather than being ignored if no

Connection object exists for the node, or reported as errors if the connection is

marked as active. This is explained in more detail in Section 3.5.

The notifyChildren method is called on overlay participants whenever

a child of the participant changes. It provides the identities of all actively connected

children. The method compares the new list of children to the existing list of con-

nections and performs similar bookkeeping as notifyParent by marking some

Connection objects as MOVED and creating new ones if necessary.

The notifyIsRootChanged method is called at the new and former root

when the root is switched. This causes the former root to remove its connection to the

control node, if one exists, and send a SETCTRL message via a collect call. This

message eventually reaches the new root, notifies it of the control node’s identity, and

triggers a SETROOT message to be sent from the new root to the control node.

All three of these methods help keep Plush-M’s internal host and connection

structures current, by invalidating old connections and creating new ones as needed.

This, in turn, allows for better error handling.

3.4.2 Connection Maintenance in Mace

The inner workings of Mace connection handling are hidden from Plush-M

and the interface that Mace exposes to Plush-M is relatively limited in scope. This
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presented a problem as we tried to construct topologies with more than 500 nodes. As

previously mentioned, all invitations are handled from the root, which entails opening

a socket to send messages to remote hosts. As he number of connections grows, a file

descriptor limit is reached by the root node. This, in turn, triggers Mace’s garbage

collection mechanism which closes half of all connections based on the LRU (least

recently used) principle. In some cases, Mace closes the connection to the control node

thus forcing a reconnection, but this also leads to a loss of control messages, and as a

result, a degradation of performance. To prevent the control node’s connection from

going stale, the root sends a no-op keep-alive message to the control node. This is

a temporary solution and we are currently exploring ways to expose more of Mace’s

interface to prevent certain important connections from being garbage-collected.

3.5 Overlay Error Detection

Similar to the upcalls for overlay maintenance, Mace reports network com-

munication errors in the communication fabric through another set of upcalls. Plush-M

relies on this mechanism to track the node connection status for all participants in the

overlay. When a node receives an upcall from Mace indicating a communication error

to another host, the receiving node reacts by deleting the connection object for the dis-

connected host. Then, to ensure any necessary tree reconfigurations are initiated, the

receiving node checks the disconnected host’s position in the overlay tree relative to it-

self. If the disconnected host is the node’s child or parent in the tree, a DISCONNECTED

message is forwarded to the root node. Alternatively, if the disconnected host is neither

a parent or child of the node, the node forwards a GETSTATUS message up to the root.

The root in turn sends a GETSTATUS message to the host in question. If the root node

confirms the disconnection, the root marks the disconnected host as DISCONNECTED,

informs the control node, and tree reconfiguration begins.

During an application’s execution, some nodes might experience network out-

ages and be reported as DISCONNECTED to the root and control nodes. Depending
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on the length of the execution, the control node may later try to re-establish connection

to the DISCONNECTED node(s). If the reconnection is unsuccessful, the disconnected

node is marked as FAILED and is permanently removed from the execution. If the

reconnection is successful, the node is reincorporated into the execution. However, if

this node continues to disconnect frequently, it is assumed to have an unreliable network

connection. After a preset number of disconnects within a specified timeframe, the node

is marked as FAILED and is never re-invited to participate.

3.6 Internal Name Reconciliation

The original design of Plush relies on a structure of type HostID to record

hostname and port usage information about participating nodes. Similarly, Mace relies

on objects of type MaceKey to identify its nodes, which, in our case, also contains the

node’s IP address. When integrating Plush and Mace in the implementation of Plush-M,

a problem arose when nodes had multiple aliased hostnames. When a node receives a

message from another participant in Plush-M, the receiving node initializes a HostID

object with a hostname derived from MaceKey’s IP address. If the node uses an aliased

hostname, the resolution process may produce a different hostname than the name al-

ready registered as a participant. This in turn caused messages to be rejected, since the

resulting hostname is not registered as a valid host. This caused many problems in our

initial implementation of Plush-M.

To address the problems involving conflicting hostnames and ensure the

proper operation of Plush-M, we had to reconcile the two addressing systems. The

first step in this reconciliation involved adding a MaceKey object as a member of the

HostID structure. Since Plush-M extensively relies on HostID objects throughout

the duration of the execution, many additional changes were also required. Plush only

resolves hostnames into IP addresses when a new connection is initialized to a new par-

ticipant. Following the same principle in Plush-M, the MaceKey object is initialized,

which includes resolving the hostname into an IP address, for all nodes that are invited to
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participate in the overlay. Initializing a MaceKey object for all available cluster nodes is

expensive and wasteful, especially if only a fraction of them are required for execution.

Thus MaceKey objects are only initialized for nodes that are involved in an execution.

One caveat of this approach is ensuring that HostIDs with initialized MaceKeys are

never compared to HostIDs without initialized MaceKeys in the Plush-M implemen-

tation. (This can only occur on the control node.)

3.7 Disconnecting the Overlay

Once the execution completes, the overlay must be dismantled before the con-

trol node disconnects from the root. Failure to do so will result in the overlay continuing

to exist even after the control node disconnects. While there is nothing inherently wrong

with keeping the overlay connected, it does waste computing resources. To disassem-

ble the overlay, a disconnect command is issued by the control node. The disconnect

command causes a DISCONNECT message to be sent from the control node to the root

node, and then from the root node to all other nodes in the overlay via a broadcast mech-

anism provided by Mace. When a node receives the DISCONNECT message, it attempts

to terminate the execution of the Plush-M client process. The termination of the pro-

cess is allowed only if the node has no connected children. Thus, the root node must

wait for all of its children to disconnect, and hence the root always disconnects last.

Furthermore, once a node receives the DISCONNECT message, it broadcasts additional

DISCONNECT messages repeatedly to its children until all children have disconnected.

This approach works even in the face of any overlay reconfiguration that occurs as the

nodes start leaving the overlay.

To further speed-up the process of overlay dismantling, each node in the over-

lay starts a two minute timer upon receiving a new DISCONNECT message. When the

timer expires the Plush-M client terminates, even if the node still has connected children.

This scenario, and some other situations involving uncommon errors, has the potential to

leave individual unconnected nodes in an active state running the Plush-M client. These
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unattended nodes eventually detect that they have no active connections left, causing

them to set their two minute expiration timer. If the node does not receive any messages

or start any new connections within the expiration time, the Plush-M client will be ter-

minated. Note that the process of overlay dismantling on large topologies and trees of

greater maximum depths does take longer due to the increased number of network hops

between the root node and the leaf participants. However, with the disconnection time-

out mechanisms described above, the control node is safe to terminate without waiting

for hosts to report their disconnection.

3.8 Client Auto Upgrade

During the development of Plush-M it was essential to have the latest version

of the client present on participating nodes for proper operation. We introduced a new

automatic upgrade mechanism in Plush-M to support this functionality. Since manag-

ing software versions and supporting upgrades are both common actions in a distributed

system, our initial intention was to make this a general abstraction in Plush-M that de-

velopers could use to simplify node configuration and application management. The

automatic client upgrade mechanism in Plush-M is quite simple. Prior to starting the

Plush-M client on each participating node, Plush-M runs a maintenance script on the

node that obtains versioning information for the latest Plush-M client from an external

software repository. If the node is running an outdated version of the Plush-M client,

the maintenance script downloads and installs the latest client from the repository. The

concurrent invitation limit, described in Section 3.2, prevents flooding of the upgrade

repository with requests in this situation. The maintenance script is also capable of per-

forming other tasks, such as removing old data or log files. The upgrade script is copied

from the control node to the root on startup, and then from the root to other nodes joining

the overlay. This, in turn, allows for customization of upgrade script’s functionality.

On long running overlays with a rolling upgrade, which gradually updates

each host’s Plush-M client, we update the entire overlay. By terminating Plush-M clients
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on these hosts, the node recovery procedure will execute the upgrade script, bringing up-

graded client online. In this case, the order of nodes being terminated must be centrally

controlled since there is no upgrade scheduling functions [1] on hosts themselves.

Although the use of the maintenance script and the automatic client upgrade

mechanism works as desired and accomplishes our goals, we find that the upgrade pro-

cedure can be quite expensive, especially if the node has a slow or lossy network con-

nection to the software repository. One possible way to alleviate this problem is to have

several upgrade repositories, that might provide better latencies to different geographical

locations. Since the upgrade script is distributed as part of the upgrade mechanism the

list of upgrade repositories can be easily modified. In addition, our experience shows

that it is important to provide a way to disable the automatic client upgrade mecha-

nism, since clusters that run a common file system do not need to download updates.

We do believe that automating software upgrades is an important aspect of application

management, however further investigation and experimentation is required to improve

performance. We revisit the performance of the automatic upgrade feature in more detail

in Chapter 4.

This Chapter, in part, is a reprint of the material as it appears in the proceedings

of USENIX Workshop on Large-Scale Computing, 2008, Topilski, Nikolay; Albrecht,

Jeannie; Vahdat, Amin. The Thesis author was the primary investigator and author of

this paper.



Chapter 4

Evaluation

Since our overall goal was to improve the scalability and fault tolerance of

Plush, to evaluate our work we tested Plush-M’s ability to connect to several hundred

computing resources. As mentioned previously, Plush-M utilized Mace’s RandTree

overlay that provided the needed scalability and fault tolerance. We performed experi-

ments to measure scalability and fault tolerance in wide-area environments using Plan-

etLab, and in emulated environments using ModelNet. For our PlanetLab experiments,

we used approximately 100 randomly chosen PlanetLab hosts. Although PlanetLab con-

tains almost 1000 hosts, we found it difficult to find more than 100 that were usable and

available to host our experiment at any point in time. (Note that this limitation is due

to the underlying infrastructure of PlanetLab, and has nothing to do with Plush-M.) To

further test scalability, we created emulated ModelNet topologies with varying numbers

of virtual clients using 17 physical machines. For ModelNet topologies with more than

1000 virtual clients, the physical machines began to run out of memory during experi-

ments. Thus, our testing was limited to topologies with 1000 virtual clients, but we are

confident that Plush-M is capable of scaling and recovering from failures in even larger

topologies.

25
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Figure 4.1: Time to construct RandTree in Plush-M using varying number of virtual
ModelNet clients. Maximum of 12 children per node. Emulated on 17 physical ma-
chines.
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Figure 4.2: Average and maximum latency required for a message to be sent from the
Plush-M controller to all participants, and for all participants to send a reply. Maximum
of 12 children per node. Emulated on 17 physical machines.

4.1 Scalability

Our first set of experiments tested the scalability of Plush-M for varying num-

bers of ModelNet emulated clients. The goal was to show that Plush-M scales beyond

Plush’s limit, which is approximately 300 nodes. To verify Plush-M’s scalability, we

measured the completion time for the following two operations: 1) the time to construct

the overlay tree, and 2) the roundtrip time for a message sent from the control nodes

to all participants and then back to the control node. We ran these experiments for 10,

250, 500, 750, and 1000 clients. The results are shown in Figure 4.1 and Figure 4.2. In



27

most of experiments, we limited the construction of RandTree to allow a maximum of

twelve children per node, unless specified otherwise. (Note that the number of children

was picked somewhat arbitrarily. Twelve is simply the default value in the RandTree

library.) Therefore, for a perfectly balanced tree, the depth would be approximately 3

for all experiments except where the number of clients is 10. In addition, we limited the

number of concurrent outstanding invitations to 50. The length of time required for the

control node to connect to the root of the overlay is not included in our measurements.

Also note that the auto-upgrade mechanism was disabled during these experiments.

The overlay tree construction times measured (and shown in Figure 4.1) were

longer than we expected them to be. We speculate that this is due to the start-up time

of the client on the participating nodes. Preliminary testing revealed that increasing

the maximum size of the outstanding invitation queue from 50 to 100 invitations did

not have a significant effect on the connection time. Similarly, changing the maximum

out-degree of the nodes from 12 to 50 also did not have a noticeable effect. Further

investigation of the issue indicated that the problem resulted from a limitation in our

experimental setup. Since multiple ModelNet clients are emulated on a single machine,

there is a limit on how many processes the machine can start simultaneously, and thus

some clients experience a delay when starting the Plush-M process. We believe that the

construction time would be much faster if more machines were available for experimen-

tation.

To test the message propagation time in the overlay, we first waited until the

tree was completely constructed. Then we broadcast a message from the control node

out to all participants and waited for a reply. We measured the time between when we

sent the message until each node replied. The broadcast message triggered the execution

of the ‘hostname’ command on each remote node. By default, all terminal output is sent

back up the tree to the root and then passed to the control node. Figure 4.2 shows our

results. One line indicates the maximum time measured, and the other line indicates

the average time across all participants for the reply message to be received by the

control node. In summary, we were relatively pleased with the measured times, since
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Figure 4.3: Average recovery time of PlanetLab nodes, after failure of 25% of the over-
lay participants.
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Figure 4.4: Average recovery time of ModelNet nodes, after failure of 25% of the over-
lay participants.

we were able to receive replies from most hosts in less than 10 seconds (on average)

for our 1000-node topology. Since the entire topology was emulated on 17 machines,

1000 nodes resulted in 59 concurrent clients running on single physical machine, which

explains the increase in the roundtrip time. Note that in this experiment we were unable

to compare to Plush, since Plush does not support execution on more than 300 nodes.

4.2 Fault Tolerance

Providing fault tolerance in Plush-M largely depends on being able to detect

and recover from failures quickly. Thus, we conducted several experiments to measure



29

the failure recovery time for participants in the overlay when a host-level failure oc-

curred. The goal was to see how long it took for the failed nodes to rejoin the overlay

tree after being manually disconnected to simulate failure. By using RandTree instead

of the default star in Plush, Plush-M incurs some overhead associated with tree commu-

nication and reconfiguration. We wanted to verify that this overhead did not negatively

impact Plush-M’s ability to detect and recovery from failures quickly.

To test failure recovery and fault tolerance in Plush-M, first we started an ap-

plication on all nodes that just executed “sleep” for a sufficiently long period of time.

During the execution of the sleep command, one quarter of the participating nodes were

failed, which essentially amounted to manually killing the Plush-M client process. We

then measured the time required for the failed hosts to detect the failure, restart Plush-M,

and rejoin the overlay (possibly causing a tree reconfiguration). We repeated the exper-

iment with varying numbers of nodes to explore how the total number of participants

affected the recovery time. Plush-M was again run with RandTree using a maximum of

twelve children per node.

4.2.1 Failure Recovery on PlanetLab

Figure 4.3 shows the results from running our failure recovery experiment on

PlanetLab with the number of hosts ranging from 10 to 100. As previously mentioned,

it took a prohibitively long time to find more than 100 working PlanetLab nodes. The

results show the average reconnection time of Plush-M running with automatic upgrade

enabled, Plush-M running without automatic upgrade, and Plush executing over its de-

fault star topology. We could not compare to Plush with the simple tree topology, since

failure recovery that involves a tree reconfiguration is not supported. As Figure 4.3

shows, automatic upgrade in Plush-M was a major contributor to the latency required

for node reconnection. This was largely due to the fact that the failed clients contacted

the software repository to verify that they had the latest Plush-M client installed (as part

of the automatic upgrade mechanism) before rejoining the overlay.

Figure 4.3 also shows that with automatic upgrade enabled, as the number of
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participants increased, so did the average reconnection time. This was expected, since

many PlanetLab nodes were running with high CPU loads and had slow connectivity to

the software version server. With automatic upgrade disabled, the results are much more

promising. The average reconnection latency using Plush-M and Plush was very close.

For Plush-M, the average reconnection time for overlays with more than 12 participants

took approximately 12 seconds. When less than 12 nodes were involved, RandTree

created a tree with one level and all nodes directly linking to the root. In this case

the average time was about 8 seconds. Plush running over its default star topology

performed consistently as the number of nodes increased, with an average reconnect

time of about 7 seconds. The difference between Plush-M and Plush on larger overlays

is likely caused by the overhead of tree reconfiguration. However, this overhead was

relatively small (less than 7 seconds for all experiments), and did not seem to increase

significantly as the number of participants grew.

4.2.2 Failure Recovery on ModelNet

In Figure 4.4, we performed the same failure recovery experiment on Model-

Net. The goal again was to measure how quickly Plush-M recovered and reconfigured

after a failure was detected. Note that we did not repeat the automatic upgrade experi-

ment on ModelNet, since Plush-M ran from a shared partition mounted on all emulated

hosts. A version check would be pointless in this case. Our results show that the re-

connection latency difference between Plush-M and Plush is less than 2 seconds in most

cases, and can again be explained by the overhead associated with the tree reconfigu-

ration during node reconnections. Since variable wide-area network conditions did not

affect our results, the overhead of tree reconfiguration on ModelNet is must less signif-

icant than the overhead of tree configuration on PlanetLab. This result bodes well for

other large-scale cluster environments that are not spread across the wide-area.
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Figure 4.5: Effect of RandTree node degree on average reconnection time after failure
on PlanetLab.

4.2.3 Tree-reconfiguration on PlanetLab

For our final experiment, we wanted to see how the structure of the tree af-

fected the average reconnection latency of a node. To test this, we ran a set of ex-

periments similar to the ones previously described. First, we used Plush-M with the

automatic upgrade feature enabled to run “sleep” on PlanetLab using 100 overlay par-

ticipants. Then we killed the Plush-M clients on 25 participants. The overlay detected

the failure and tried to reconnect the disconnected nodes. We measured the average time

of node reconnection, as before. We repeated this experiment several times, varying the

maximum out-degree allowed in RandTree from 12 to 96. The results are shown in Fig-

ure 4.5. As expected, the average reconnection time decreased as the degree increased.

This is due to the fact that increasing the maximum degree allowed decreased the depth

of the overlay tree, and simplified tree reconfiguration. Nevertheless, compared to the

previous results, the reconnection time was still dominated by the automatic upgrade

mechanism.

This Chapter, in part, is a reprint of the material as it appears in the proceedings

of USENIX Workshop on Large-Scale Computing, 2008, Topilski, Nikolay; Albrecht,

Jeannie; Vahdat, Amin. The Thesis author was the primary investigator and author of

this paper.



Chapter 5

Related Work

Since Plush-M is an extension of Plush, much of the work that is related to

Plush is also related to Plush-M. In this section we revisit some of these projects, focus-

ing the discussion on fault tolerance and scalability.

In the context of remote job execution, Plush-M has similar goals as

cfengine [8] and gexec [10]. However, since Plush-M can be used to actively moni-

tor and manage a distributed application, and also supports automatic failure recovery

and reconfiguration, the functionality provided by cfengine and gexec is only a sub-

set of the functionality provided by Plush-M. Like Plush, cfengine defaults to using a

star topology for communication, with additional configuration support for constructing

custom topologies. This constructed topology typically reflects the administrative needs

of the network, and depending on what topology is used, can impact scalability. gexec

relies on building an n-ary tree of TCP sockets, and propagates control information up

and down the tree. The topology allows gexec to scale to over 1000 nodes, and seems

similar to the approach used in Plush-M.

SmartFrog [12] and the PlanetLab Application Manager (appmanager) [14]

are designed to manage distributed applications. SmartFrog is a framework for building

and deploying distributed applications. SmartFrog daemons running on each participat-

ing node work together to manage distributed applications. Unlike Plush-M, there is no

central point of control in SmartFrog; work-flows are fully distributed and decentral-
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ized. However, communication in SmartFrog is based on Java RMI, which can become

a bottleneck for large numbers of participants and long-lived connections. appmanager

is designed solely for managing long-running PlanetLab services. It does not support

persistent connections among participants. Since it utilizes a simple client-server model,

it most closely resembles the Plush star topology, and has similar scalability limitations.

The scalability also largely depends on the capacity of the server and the number of

simultaneous requests.

Condor [7] is a workload management system for compute-bound jobs. Con-

dor takes advantage of under-utilized cycles on machines within an organization for

hosting distributed executions. The communication topology of Condor uses a central

manager which is directly connected to the machines in the resource pool, construct-

ing a star topology like Plush. The scale of this design is limited by the constraints of

the operating system, such as file descriptor limits, similar to the star topology in the

original design of Plush.

Remote Maintenance Shell (RMS) [16] is a method for service management

and maintenance in grid environments. Its basic functionality provides migration, instal-

lation, restart, and basic version handling for services adapted to work with RMS. RMS

consists of three components: Central Management Station, Mobile Agent, and Main-

tenance Environment. Management Station initiates the maintenance process, stores

necessary data in the Mobile agent, and starts their distribution. Mobile Agent mi-

grates from one host environment to another executing the maintenance process. Main-

tenance Environment provides a framework for maintenance process execution and is

pre-installed on each host. Mobile Agents enable RMS to perform decentralized, asyn-

chronous operation execution. Plush’s upgrade is similar to RMS in the respect that the

upgrade script resembles mobile agent in its functionality, and the fact that it is migrated

from node to node. Nevertheless, Plush-M relies on centralized repository to access the

upgrades, rather than distributing them along with upgrade script. Furthermore, Plush-

M’s upgrade mechanism is much less ambitious in scope and simpler in implementation,

since it primarily handles the upgrade of only one service, which is Plush-M itself.
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of USENIX Workshop on Large-Scale Computing, 2008, Topilski, Nikolay; Albrecht,

Jeannie; Vahdat, Amin. The Thesis author was the primary investigator and author of

this paper.



Chapter 6

Future Work

There are several aspects of the design of Plush-M that warrant further explo-

ration. Even though our experiments were limited to 1000 nodes, we believe that our

current design has the ability to scale to thousands of machines, which is required in to-

day’s large-scale computing platforms. However we are still somewhat dissatisfied with

the initial connection time for our overlay tree. We hope that the heightened times are

due to limitations in our testing infrastructure rather than in the design of our system.

One of the disadvantages of using Plush and Mace is that both systems attempt to hide

the underlying complexities of distributed applications from developers. In this case, it

would ease debugging if some of the underlying mechanisms were exposed.

In addition, we plan to evaluate the scalability and fault tolerance of Plush-

M on much larger topologies. Thus far we have been limited by the unavailability of

physical cluster machines and PlanetLab resources to host our experiments. We plan

to gain access to larger testbeds and perform more extensive testing. While we are

confident that our design will scale to much larger topologies, we need to verify correct

operation in a realistic large-scale computing environment. This will also allow us to

identify additional performance bottlenecks that only appear when large numbers of

participants are present.

Furthermore, treating Mace as a black box posed some limitations. As dis-

cussed in Section 3.4.2 some of the essential connections were garbage collected by
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Mace’s connection management system. The workaround of keepalive messages might

not work all the time. Thus, a more exposed API that provides finer control on connec-

tions would be a great improvement.

One last problem that we hope to address relates to how failed nodes are han-

dled in Plush-M and Mace. Currently, when a node fails repeatedly, Plush-M detects that

the node may be problematic and marks it as failed. This prevents the control node from

attempting to use the node for future computations. However, Plush-M lacks the facility

to indicate the failure to Mace. Hence, Mace continually attempts to reestablish the con-

nection with the failed node during every recovery cycle. By introducing an extension to

Mace that allows Plush-M to mark certain nodes as failed, we can significantly decrease

the traffic associated with overlay maintenance, thus improving performance.

This Chapter, in part, is a reprint of the material as it appears in the proceedings

of USENIX Workshop on Large-Scale Computing, 2008, Topilski, Nikolay; Albrecht,

Jeannie; Vahdat, Amin. The Thesis author was the primary investigator and author of

this paper.



Chapter 7

Conclusions

Plush is an extensible distributed application management infrastructure that

does not provide adequate scalability or fault tolerance for large-scale computing plat-

forms due to the design of its underlying communication fabric. We sought to correct

these issues and allow for greater scalability and robustness without significantly sacri-

ficing functionality and performance. The result is Plush-M, a modified version of Plush,

which implements an interface to Mace communication services and replaces the Plush

communication fabric with a tree-based overlay network called RandTree. RandTree is

built using Mace, a C++ language extension and source to source compiler for building

high-performance distributed systems, and exposes a standard application programming

interface. Even though we utilized only one of the Mace’s overlays, Plush-M is capable

of taking advantage of other overlays designed in Mace that expose a similar application

programming interface.

Based on our experimentation thus far with the current overlay, we believe that

RandTree is a robust tree-based overlay network that allows Plush-M to scale far beyond

the limits of the original Plush design. We believe that the performance bottlenecks

experienced are largely due to limitations in our testing infrastructure. Further testing

will allow us to confirm these speculations. In addition, RandTree provides Plush-M

with advanced failure recovery options, including automatic failure detection and tree

reconfiguration. As a result, Plush-M provides a scalable and fault tolerant solution for
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distributed application management in large-scale computing environments.

This Chapter, in part, is a reprint of the material as it appears in the proceedings

of USENIX Workshop on Large-Scale Computing, 2008, Topilski, Nikolay; Albrecht,

Jeannie; Vahdat, Amin. The Thesis author was the primary investigator and author of

this paper.
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