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Role of Prohibitins in Aging and
Therapeutic Potential Against
Age-Related Diseases
Misa Belser1* and David W. Walker2,3*

1Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA,
United States, 2Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA,
United States, 3Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States

A decline in mitochondrial function has long been associated with age-related health
decline. Several lines of evidence suggest that interventions that stimulate mitochondrial
autophagy (mitophagy) can slow aging and prolong healthy lifespan. Prohibitins (PHB1 and
PHB2) assemble at the mitochondrial inner membrane and are critical for mitochondrial
homeostasis. In addition, prohibitins (PHBs) have diverse roles in cell and organismal
biology. Here, we will discuss the role of PHBs in mitophagy, oxidative phosphorylation,
cellular senescence, and apoptosis. We will also discuss the role of PHBs in modulating
lifespan. In addition, we will review the links between PHBs and diseases of aging. Finally,
we will discuss the emerging concept that PHBs may represent an attractive therapeutic
target to counteract aging and age-onset disease.
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INTRODUCTION

There are two prohibitin subunits, prohibitin 1 (PHB1) and prohibitin 2 (PHB2), which together form a
ring structured heterodimeric complex about 20–25 nm in diameter (Artal-Sanz and Tavernarakis, 2009a).
PHBs are evolutionarily conserved and ubiquitously expressed in many types of tissues. PHB1 weighs
32 kDa and PHB2 weighs 34 kDa (Artal-Sanz and Tavernarakis, 2009a). Although PHBs are largely found
in the inner mitochondrial membrane, they have also been found in the nucleus, cytosol, plasma
membrane, endoplasmic reticulum, andmacrophage phagosomes (Garin et al., 2001; Signorile et al., 2019).

PHBs were named “prohibitins” because they were initially found to prohibit initiation of DNA
synthesis (McClung et al., 1989). PHBs have a diverse range of functions associated with aging, such
as apoptosis, cellular senescence, cancer, and mitochondrial metabolism (Artal-Sanz and
Tavernarakis, 2009a). PHBs also assist with protein folding of complexes in the electron
transport chain (Nijtmans et al., 2002). PHB1 and PHB2 form a complex which acts as a
chaperone by binding to products of mitochondrial translation and preventing their degradation
by metalloproteases (Nijtmans et al., 2002). PHB2 acts as a protein-lipid scaffold (Artal-Sanz and
Tavernarakis, 2009a). Both subunits of the PHB complex have N-terminal domains to anchor them
in the inner mitochondrial membrane (Artal-Sanz and Tavernarakis, 2009a).

PROHIBITINS AND MITOPHAGY

Mitophagy is the breakdown of damaged mitochondria via autophagy (Pickles et al., 2018).
Mitophagy and mitochondrial dynamics (fission/fusion) are linked in maintaining
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mitochondrial quality control (Youle and van der Bliek, 2012).
Excessive mitochondrial fusion/impaired mitochondrial
fission is an underlying factor in the age-related decline in
mitophagy, which is associated with senescence and aging
(Rana et al., 2017; Aparicio et al., 2019; D’Amico et al.,
2019). PHB2 binds to microtubule-associated protein 1A/
1B-light chain 3 (LC3) to promote degradation of the
mitochondria by an autophagosome (Tanida et al., 2008;
Wei et al., 2017). Through oligomycin + antimycin (OA)-
induced mitophagy, it was found that the mitochondrial
membrane must be ruptured before PHB2 can bind to LC3
(Wei et al., 2017).

When there is a loss of mitochondrial membrane potential,
PTEN-induced kinase 1 (PINK1) is unable to be degraded by
presenilins-associated rhomboid-like protein (PARL),
accumulates on the outer mitochondrial membrane, and
recruits Parkin to mediate mitophagy (Jin et al., 2010).
Parkin then ubiquitinates the mitochondrial fusion-
promoting factor Mitofusin (Mfn) (Poole et al., 2010;
Tanaka et al., 2010; Ziviani et al., 2010) and other
mitochondrial proteins (Chan et al., 2011; Wang et al.,
2011), promoting the segregation and autophagic turnover
of the dysfunctional mitochondria (Youle and Narendra, 2011;
Ashrafi and Schwarz, 2013).

A second study found further support that PHBs can
promote mitophagy. This study found a new axis for
mitophagy by PHB2: PHB2-PARL-PGAM5-PINK1 (Yan
et al., 2020). Loss of PHB2 prevented mitophagy by
destabilizing PINK1, which inhibited recruitment of Parkin,
optineurin, and ubiquitin. Conversely, increasing PHB2 levels
was found to increase mitophagy by promoting Parkin
recruitment. Additionally, this study discovered that a
synthesized ligand for PHBs, FL3, suppressed cancer by
inhibition of mitophagy by PHB2. FL3 is a flavagline that
has been shown to have a cardioprotective effect (Qureshi
et al., 2015).

PROHIBITINS AND CELLULAR
SENESCENCE

It is known that after a certain number of divisions, cells
become senescent and stop dividing (Campisi and d’Adda di
Fagagna, 2007). The number of senescent cells increases
exponentially with age (He and Sharpless, 2017). As a
result, a better understanding of the aging process may
result from studying alterations in senescent cells. Levels of
PHB2 decrease in senescing cells. The amount of mRNA
coding for both PHB1 and PHB2 also decreases for yeast
cells undergoing senescence (Piper et al., 2002). In addition,
PHB1 and PHB2 levels decline for CEF chick embryo
fibroblasts and HF19 human fibroblasts undergoing
senescence (Coates et al., 2001). However, neither of these
studies conclude that the decline in PHBs during senescence
directly affects aging.

An early study on PHBs compared PHB1 levels in human cells
between cells with low population doubling level (PDL) and cells

with high PDL (Liu et al., 1994). PHB1 mRNA and protein levels
were similar between low PDL cells and high PDL cells. However,
aWestern blot detected two PHB1 isoforms for low PDL cells, but
only one PHB1 isoform for high PDL cells. This finding suggests
that PHB1 in low PDL cells is post-translationally modified, but
PHB1 in high PDL cells is not (Liu et al., 1994). The conclusion of
Liu et al. (1994) that PHB1 mRNA and protein levels remain the
same is also inconsistent with the results of Coates et al. (2001)
and Piper et al. (2002).

PHB1 induces senescence in cells by synergizing with
heterochromatin protein 1γ (HP1γ) to reduce transcription
facilitated by E2F1 (Rastogi et al., 2006a). E2F1 is a
transcription factor that acts as a regulator of promotors
involved in cell division (DeGregori et al., 1995; Rastogi et al.,
2006a). PHB1 recruits HP1γ to E2F1-controlled promoters to
repress them. This recruitment was observed in senescent cells
but not quiescent cells (Rastogi et al., 2006a). In addition, the
study found that PHB1 depletion resulted in a reduced senescent
phenotype.

Petunia flowers with silenced PhPHB1 senesce faster than
unsilenced flowers (Chen et al., 2005). This finding suggests that
PhPHB1 modulates the beginning of cellular senescence in flora.
Silenced flowers also underwent fewer cellular divisions, with
their petals containing only about 15% of the number of cells in
the petals of the control group (Chen et al., 2005). Flowers with
silenced PhPHB1 also had higher respiration rates and higher
levels of catalase transcripts, which help protect cells from
reactive oxygen species (ROS) (Chen et al., 2005). This finding
suggests that there were higher ROS levels for the flowers with
silenced PhPHB1. In endothelial cells, ROS have been shown
through knockdown of PHB1 to lead to senescence (Schleicher
et al., 2008).

ROLE OF PROHIBITINS IN MODULATING
LIFESPAN

PHB1 and PHB2 are the genes that encode the prohibitin proteins
in yeast, Phb1p and Phb2p (Coates et al., 2001). Levels of Phb1p
appear to be contingent on the levels of Phb2p in Saccharomyces
cerevisiae. Deletion of PHB1 leads to a lack of Phb2p and deletion
of PHB2 results in an absence of Phb1p (Berger and Yaffe, 1998).
As a result, it was thought that depletion of either Phb1p or Phb2p
would have the same effect on lifespan as the depletion of both
Phb1p and Phb2p. However, it was discovered that the loss of
both Phb1p and Phb2p had a greater effect on replicative lifespan
than the loss of either alone (Piper et al., 2002). This finding was
consistent with the results of Coates et al. (1997) but was
inconsistent with Berger and Yaffe’s (1998) study, which
found that the phb1-null phb2-null mutation had a less severe
effect on replicative lifespan than the phb1-null mutation in
MYY290 or MYY291 yeast cells with wild-type mitochondrial
genomes.

There are different models of aging in yeast, which include
replicative lifespan and chronological lifespan (Longo et al.,
2012). Replicative lifespan measures the number of times a cell
can divide, while chronological lifespan measures how long a
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non-dividing yeast cell stays alive (Longo et al., 2012). Deletion of
PHB1 does not affect the chronological lifespan of S. cerevisiae
cells stuck in G0 (Artal-Sanz and Tavernarakis, 2010). Piper et al.
(2002) discovered that the chronological lifespan of yeast was
relatively unchanged after the loss of Phb1p and Phb2p.

There are conflicting findings regarding the effect of PHB1
gene deletion on replicative lifespan in S. cerevisiae. One study
observed that deletion of the PHB1 encoding gene in yeast
haploid cells increases replicative lifespan by approximately
30%, while overexpression of the gene results in about a 20%
decrease in lifespan (Franklin and Jazwinski, 1993). The deletion
of the gene was thought to increase lifespan by allowing cells to
divide for longer than they normally would have. In contrast,
another study discovered that deletion of either PHB1 or PHB2
reduces the replicative lifespan in S. cerevisiae and leads to
changes typical in aging, such as a longer duration of cell
division and larger cell size (Coates et al., 1997; Smith et al.,
2015). Since both Franklin and Jazwinski (1993) and Coates et al.
(1997) were examining replicative lifespan, it may be beneficial to
examine the factors that contribute to different results when
measuring replicative lifespan in yeast. It has also been noted that
different effects on lifespan can be observed when measuring the
replicative lifespan of yeast, depending on the type of strain and
the growth medium used (Longo et al., 2012).

In C. elegans, the relationship between knockdown of PHBs
and longevity is dependent upon genotype (Artal-Sanz and
Tavernarakis, 2010). Either PHB1 or PHB2 knockdown with
RNAi decreases lifespan of wild type worms (Artal-Sanz and
Tavernarakis, 2009b). However, knockdown of PHB1 through
RNAi has been shown to increase the lifespan of certain C. elegans
mutants. Notably, daf-2 mutants live 150% longer with either
PHB1 or PHB2 knockdown (Artal-Sanz and Tavernarakis,
2009b). DAF-2 is a transmembrane insulin receptor kinase
that modulates longevity in C. elegans (Kimura et al., 1997).
Other C. elegansmutants found to live longer with knockdown of
PHBs include electron transport chain mutants, mutants with
changes in the metabolism of fat, and diet restriction mutants
(Artal-Sanz and Tavernarakis, 2009b). In all these cases,
knockdown of PHBs decreased intestinal fat and mitochondria
levels. These findings suggest that although knockdown of PHBs
decreases lifespan in wild type worms, knockdown of PHBs can
increase lifespan in mutants with changed growth factor
signaling, altered fat processing, or impaired mitochondrial
performance (Artal-Sanz and Tavernarakis, 2010). As a result,
the question of whether knockdown of PHBs increases or
decreases lifespan in worms is dependent on the state of
metabolism.

Although there are several studies examining the effects of
depletion of PHBs on lifespan, experiments examining the effects
of upregulation of PHBs on lifespan are notably lacking.

PROHIBITINS AND OXIDATIVE
PHOSPHORYLATION

PHBs affect enzymes involved in metabolic processes, including
oxidative phosphorylation. PHB1 acts as an inhibitor for pyruvate

carboxylase and allows for insulin-stimulated regulation of
glucose and fatty acid oxidation (Vessal et al., 2006). This
regulation by PHB1 downregulates oxidative phosphorylation
and instead supports metabolism through anaerobic glycolysis,
which may have a role in aging. PHB1 can be modified through
phosphorylation, but fibroblasts become less able to
phosphorylate PHB1 as the cells undergo senescence (Liu
et al., 1994). Since PHB1 regulates oxidative phosphorylation,
this change in modifications over time may be related to the 40%
decrease in oxidative activity of mitochondria as people age
(Petersen et al., 2003).

PHB1’s role in metabolism may have importance in cancer
because its role as an inhibitor of pyruvate carboxylate facilitates
the shifting from oxidative phosphorylation to anaerobic
glycolysis (Vessal et al., 2006). PHB1 overexpression has been
reported in cancer cells (Yang et al., 2018). This overexpression
may help rapidly growing cancer favor anaerobic glycolysis over
oxidative phosphorylation, to reduce the high oxidative stress that
would occur if oxidative phosphorylation was used (Vessal et al.,
2006).

There are changes in PHB1 localization in reaction to
oxidative stress. A study found that under oxidative stress,
PHB1 relocated from the mitochondria to the cell nucleus,
where it can regulate transcription (Sripathi et al., 2011).
However, another study found that PHB1 translocated from
the nucleus to the mitochondria in the presence of the ROS
H2O2 (Lee H. et al., 2010). Another study found that
overexpression of PHB1 made neonatal rat cardiomyocytes
less susceptible to apoptosis in response to oxidative stress by
H2O2 (Liu, X. et al., 2009).

PHBs also support complexes involved in the electron
transport chain. PHB2 can help facilitate normal
mitochondrial respiration through its interaction with
sphingosine-1-phosphate (S1P), a lipid mediator, by
supporting the proper assembly of complex IV of the electron
transport chain (Strub et al., 2011). PHBs may also help support
complex I of the electron transport chain. A study found that
PHB1 can protect complex I from the rotenone inhibitor and
upregulation of PHB1 is connected to decreased manufacture of
ROS (Zhou et al., 2012).

PROHIBITINS IN AGE-RELATED DISEASES

Degenerative diseases such as Alzheimer’s disease, Parkinson’s
disease, diabetes, and cancer are often age-related. PHBs have
been implicated in each of these diseases.

Prohibitins and Alzheimer’s Disease
In a 2007 paper, researchers observed the frontal cortex of
sporadic Alzheimer’s disease (AD) cases and did not observe
changes in PHB1 levels (Ferrer et al., 2007). This finding was
consistent with another paper published in 2008 that also
examined the frontal cortex and found that levels of PHB1 for
AD cases were similar to the levels in control cases (Pérez-Gracia
et al., 2008). However, a later study in 2017 found a change in
PHB1 levels when studying the olfactory bulb (OB) (Lachén-
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Montes et al., 2017). An early sign of AD is olfactory dysfunction
(Zou et al., 2016). In intermediary and progressive AD phases,
Lachén-Montes et al. (2017) observed PHB2 depletion. There
were also lower levels of PHB1 isoforms that were
phosphorylated. This result is consistent with observations that
fibroblasts become less able to phosphorylate PHB1 with age (Liu
et al., 1994).

Lachén-Montes et al. (2017) found that AD is associated with
PHB2 depletion, which is consistent with another study that
observed neurodegeneration and cognitive and behavioral
disablements in neuron-specific PHB2-deficient (Phb2NKO) mice
(Merkwirth et al., 2012). Cognitive and behavioral disabilities in the
mice were assessed using the Morris water maze paradigm, the
elevated zero maze test, and open field tests. These impairments
were associated with abnormal mitochondrial structure and
hyperphosphorylated tau, a protein found mainly in neurons.

There is evidence that suggests the drug PDD005, which
targets PHB1 and PHB2, can protect against
neurodegenerative diseases such as AD and Parkinson’s
disease (PD). PHB1 and PHB2 levels increase in the brains of
aged mice when they are treated with PDD005 (Guyot et al.,
2020). In contrast, the levels of the cytokine IL-1β decreased,
suggesting that PDD005 and its interactions with PHB1 and
PHB2 reduce inflammation in the brain. The authors discovered
that PDD005 increases the expression of the signaling molecule
GSK-3β, which can promote the destabilization of β-catenin
through phosphorylation (Wu and Pan, 2010). This β-catenin
interacts with nuclear factor-κ-light-chain-enhancer of activated
B cell (NF-kβ) components to prevent transcription of
proinflammatory molecules (Ma and Hottiger, 2016).

Prohibitins and Parkinson’s Disease
There is not much research studying the relationship between
PHBs and Parkinson’s disease (PD). It is known that
dysfunctional mitochondria play a significant role in the
development of PD and in preventing the death of neuron
cells (Pickrell and Youle, 2015). PHBs are involved in
mitochondrial control by promoting mitophagy to prevent the
buildup of dysfunctional mitochondria observed in aging,
suggesting that PHBs may protect against PD (Wei et al.,
2017). This idea has been supported by a study on PD
demonstrating that decreased levels of PHB1 increased the
susceptibility of dopamine sensitive neurons to 1-methyl-4-
phenyl-pyridnium (MPP+) instigated death while
overexpression of PHB1 made them less susceptible (Dutta
et al., 2018). MPP+ acts as a neurotoxin and is the oxidized
product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) (Sian et al., 1999). MPTP administration has been
shown to result in dopaminergic neuron degeneration
(Muñoz-Manchado et al., 2016). However, MPTP has the
limitation of not inducing some of the characteristics of PD
(Sian et al., 1999).

There are also lower PHB1 levels in the substantia nigra, a
brain structure known to be vulnerable in PD, with an estimated
60% loss of neurons in this region by the time of presentation of
motor symptoms (Ferrer et al., 2007).

Prohibitins and Diabetes
Another age-related disease that PHBs have been found to be
implicated in is diabetes. Knockout of the gene for PHB2 in
mouse pancreatic β-cells first leads to defective mitochondrial
performance and defective secretion of insulin, then a decline in
β-cells and continuing changes in glucose homeostasis,
culminating in extreme diabetes (Supale et al., 2013).

Another study investigated the effects of PHB1 on diabetic
cardiomyopathy. This study created a model of type 2 diabetes by
feeding rats a diet high in fat while treating them with a low dose
of streptozotocin, which is a toxin to pancreatic β-cells (Dong
et al., 2016). PHB1 overexpression was achieved through
lentiviral transduction. This transduction improved the
deleterious effects in rats with diabetic cardiomyopathy, such
as resistance to insulin, dysfunction of the left ventricle, fibrosis,
and programmed cell death (Dong et al., 2016). However, the
precise process in which PHB1 improves diabetic
cardiomyopathy is not known.

Although increasing PHB1 levels helps reduce the effects of
type 2 diabetes, it does not seem to be because PHB1 levels are
lower in people with type 2 diabetes than in people who do not
have type 2 diabetes. Levels of PHB1 in the serum of type 2
diabetic subjects are similar to the levels observed in control
subjects (Kakarla et al., 2019).

Prohibitins, Cancer, and Apoptosis
There have been many studies describing the relationship
between PHBs and cancer (Koushyar et al., 2015). However,
there is disagreement between studies about whether PHBs
repress or support cancer and whether PHBs protect cancer
cells from apoptosis or make them more susceptible.

High levels of PHBs are commonly observed in tumors. Coates
et al. (2001) discovered that there are Myc oncoprotein binding
sites in the promoters for PHB1 and PHB2 and that increasing
Myc levels induces expression of PHB1 and PHB2. These findings
suggest that levels of PHBs are often increased in tumors due to
upregulation by oncoproteins.

Overexpression of PHB1 and PHB2 has been observed in
blood-related cancers. PHB1 and PHB2 levels in lymphoma
and leukemia cells were compared to healthy peripheral blood
mononuclear cells (Ross et al., 2017). PHB1 and PHB2 levels
were higher in these cancer patients than in controls. The
overexpression of PHBs also protected these cancer cells from
apoptosis induced by ROS. This finding suggests that cancer
cells, with their higher use of glycolysis and therefore higher
generation of ROS, can survive through the overexpression of
PHBs. This finding that PHBs protect cancer cells from
apoptosis was supported by another study in which
silencing the expression of PHB1 made ovarian cancer cells
more susceptible to apoptosis (Gregory-Bass et al., 2008).

Depletion of PHBs has been observed to make cells more
receptive to apoptosis, while overexpression of PHBs makes cells
less susceptible (Peng et al., 2015). For example, depletion of
PHB1 in mice results in lethality during development and high
levels of apoptosis (Park et al., 2005; He et al., 2008; Merkwirth
et al., 2012; Peng et al., 2015). For the cell line Kit225, PHB1 and
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PHB2 knockdown with siRNA results in increased cell death
through the ROS H2O2 (Ross et al., 2017).

Although there are studies showing that PHBs protect cells
from apoptosis, there are a few studies that have found the
opposite. The finding of Gregory-Bass et al. (2008) that
silencing of PHB1 increased tumor cell susceptibility to
apoptosis was contradicted by another study demonstrating
that PHB1 knockdown results in inhibition of apoptosis in
NB4-R1 leukemia cells (Liu et al., 2012). Rather than
protecting cells from apoptosis, PHB1 overexpression was
found to encourage apoptosis of cells in leukemia with arsenic
sulfide treatment (He et al., 2015).

There are also conflicting findings regarding PHB1 levels in
gastric cancer. In one study, researchers found that in gastric
cancer, the microRNAmiR-27a is upregulated, targets PHB1, and
acts as an oncogene (Liu T. et al., 2009). Downregulating miR-27a
in these gastric cancer cells increased levels of PHB1 protein and
transcripts. Although the study by Liu T. et al. (2009) revealed
that the levels of PHB1 in gastric cancer cells were lower than in
healthy cells, another study found that they were higher (He et al.,
2004).

There are also conflicting conclusions regarding the potential
of PHBs as a treatment for cancer. Synthetic PHB1 mRNA can
prevent DNA synthesis in HeLa cells and healthy fibroblasts
(Nuell et al., 1991), providing evidence that PHB1 transcripts
could be a potential treatment for cancer by preventing the
replication of DNA in cancer cells. This finding that PHB1
transcripts can prevent DNA synthesis was supported by
another study demonstrating that the PHB1 3′ untranslated
region (3′UTR) encodes RNA that suppresses breast cancer by
preventing entry into S phase of the cell cycle (Jupe et al., 2001).
Further studies examining breast cancer revealed that PHB1
increases p53-regulated transcription while decreasing
transcription regulated by E2F1 (Fusaro et al., 2003). As a
result, these studies suggest that PHB1 could be used as a
treatment for cancer by suppressing cancer cell proliferation
and increasing transcription regulated by tumor suppressor
proteins such as p53. Although Nuell et al. (1991) found that
synthetic PHB1 mRNA microinjection suppresses proliferation
of cancer cells, another study found that silencing PHB1 helps
make drug-resistant cancer cells drug-sensitive (Patel et al., 2010).
This study found that drug-resistant cancer cells tend to have
higher levels of PHB1 on their surface compared to drug-
sensitive cells.

These conflicting findings between studies may be due to the
relationship between PHBs, cellular senescence, and apoptosis.
PHBs can inhibit the proliferation of cancer cells by preventing
their entry into S phase and inducing senescence (Nuell et al.,
1991). This senescence could protect cancer cells from apoptosis.
The location of PHBs may also affect whether they act as tumor
supporters or suppressors. PHB1 on the plasma membrane is
associated with drug-resistant cancer cells, while PHB1 in the
nucleus is associated with tumor suppression (Patel et al., 2010;
Theiss and Sitaraman, 2011). The location of PHBs may affect
whether the cell will undergo apoptosis. Cells were protected from
programmed cell death when PHB1 transport to the cytoplasm
was inhibited (Rastogi et al., 2006b).

PROHIBITIN AS A THERAPEUTIC TARGET

PHBs have been found to interact with a wide variety of
molecules. Targeting the interactions between PHBs and these
molecules may have therapeutic potential against age-related
diseases. An outline of small molecules that interact with
PHBs and their relevance to age-related diseases is provided in
Table 1.

Prohibitins and Aurilide
The interactions of PHBs with small molecules can give insight
into how PHBs modulate cellular processes such as apoptosis.
Aurilide is a natural marine product from Dolabella auricularia
and is cytotoxic (Suenaga et al., 2004). When PHB1 interacts with
aurilide, it initiates apoptosis mediated by optic atrophy 1 (OPA-
1) (Sato et al., 2011). The study by Sato et al. (2011) suggests
aurilide can influence apoptosis through its interaction with
PHB1. In contrast, PHB2 does not have affinity for aurilide
(Sato et al., 2011; Semenzato et al., 2011).

Upregulating PHB1 makes cells less susceptible to aurilide
(Sato et al., 2011). In contrast, partial downregulation of PHB1
through siRNA makes cells more susceptible. This finding
suggests that aurilide interferes with the PHB complex. Sato
et al. (2011) also discovered that aurilide induces
mitochondrial fragmentation, which is similar to the
mitochondrial morphology observed under PHB1 knockdown
with siRNA.

Other studies revealed how aurilide’s interactions with PHB1
trigger apoptosis by affecting the morphology of mitochondria.
PHB1 and spastic paraplegia 7 (SPG7) normally interact, but
treatment with aurilide interferes with the interaction (Sato et al.,
2011; Semenzato et al., 2011). SPG7 is part of the m-AAA
protease which is involved in the processing of OPA-1
(Duvezin-Caubet et al., 2007). OPA-1 controls cristae
dynamics, which involves a change in mitochondrial
morphology (Griparic et al., 2004; Song et al., 2009).

OPA-1 is important for fusion of mitochondria (Cipolat et al.,
2004; Song et al., 2009). Aurilide increased the formation of short
(S) isoforms of OPA-1, which stop fusion and result in
mitochondrial fragmentation (Duvezin-Caubet et al., 2006;
Ishihara et al., 2006; Sato et al., 2011). This change in
mitochondrial morphology enables cytochrome c to be
released, which promotes apoptosis to activate proteases called
caspases (Jiang and Wang, 2004; Wasilewski and Scorrano, 2009;
Semenzato et al., 2011; Julien and Wells, 2017). These findings
explain how aurilide triggers apoptosis through its interaction
with PHB1 and suggest that aurilide results in fragmented
mitochondria by inhibiting PHB1, eventually triggering
apoptosis which kills cells. This apoptosis may have potential
as a treatment against cancer.

Prohibitins and Melanogenin
Melanogenin is a ligand for PHBs (Djehal et al., 2018).
Knockdown of PHB1 and PHB2 with siRNA
demonstrated that PHBs are necessary for induction of
pigmentation by melanogenin (Snyder et al., 2005). Two
melanogenin analogs, Mel41 and Mel9, activate LC3, which
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TABLE 1 | Small molecules that interact with PHBs and their relevance to age-related diseases.

Molecule Relevant subunits Result of interaction Relevant diseases References

Aurilide PHB1 Initiates apoptosis mediated by optic atrophy 1 (OPA-1) Cancer Sato et al., 2011;
Induces mitochondrial fragmentation Semenzato et al.,

2011Interferes with the interaction between PHB1 and
spastic paraplegia 7 (SPG7)

Melanogenin PHB1 Induction of pigmentation Pigmentary disorders Snyder et al., 2005;
Can trigger apoptosis in tumor cells, such as
melanoma cells

Cancers such as melanoma Djehal et al., 2018

Mel9 Activates LC3,
which interacts
with PHB2

Promotes the melanocytic production of melanin Pigmentary disorders Djehal et al., 2018
Mel9 (10 μM) induced apoptosis after a 48 h
treatment in HBL, MM043, and MM162 cells

Cancers such as melanoma

Mel41 Activates LC3,
which interacts
with PHB2

Promotes the melanocytic production of melanin Pigmentary disorders Djehal et al., 2018
Mel41 (10 μM) induced apoptosis after a 48 h
treatment in HBL, MM043, and MM162 cells

Cancers such as melanoma

Mel55 PHB1 Mel55 (10 μM) induced apoptosis after a 48 h
treatment in HBL and MM043 cells

Pigmentary disorders Djehal et al., 2018
Cancers such as melanoma

Rocaglamide PHB1 and PHB2 Prevents the interaction between PHBs and CRaf,
leading to inhibition of the CRaf-MEK-ERK pathway

Cancer
HCV

Polier et al., 2012;
Luan et al., 2014;

Prevents the entry of hepatitis C virus (HCV) Liu et al., 2015;
Changes PHB1’s localization to the plasma membrane Wang et al., 2020
Suppresses malignant cell proliferation, metastasis, cell growth
and division, and protein synthesis
Inhibits mitophagy by blocking the interaction between PHBs
and PARL

FL3 PHB1 and PHB2 Inhibits mitophagy by PHB2 Cancer Bernard et al., 2011;
Reduces mortality by 50% in mice treated with
doxorubicin

Protection against cardiotoxicity
in cancer treatments

Qureshi et al., 2015;
Wintachai et al., 2015;

Protects cells from infection by chikungunya virus (CHIKV) CHIKV Yan et al., 2020
Cardioprotection and STAT3 phosphorylation

Fluorizoline PHB1 and PHB2 Triggers apoptosis of chronic lymphocytic leukemia
cells and acute myeloid leukemia (AML) cells

Cancer
Pigmentary disorders

Pérez-Perarnau et al.,
2014;

Induces apoptosis by increasing levels of NOXA protein Pomares et al., 2016;
Triggers AML cells to differentiate and represses clonogenicity Cosialls et al., 2017;
Stops epidermal growth factor/RAS-induced CRaf activation Yurugi et al., 2017;
Modulates pigmentation in melanoma cells Djehal et al., 2018

Spiro-oxindoles PHB1 and PHB2 2′-phenylpyrrolidinyl-spirooxindole and its analogs
protect against cytotoxicity from doxorubicin

Protection against cardiotoxicity in
cancer treatments

Elderwish et al., 2020

Support the survival of cardiomyocytes by leading
to STAT3 phosphorylation

Nitric Oxide (NO) PHB1 PHB1 and NO are necessary for ischemic
preconditioning, which increases the brain’s tolerance to
ischemia, or reduced blood flow to the brain

Neurodegenerative diseases Liu X. Q. et al. 2009;
Qu et al., 2020

NO directly regulates PHB1 through post-translational
modification by protein S-nitrosylation

PDD005 PHB1 and PHB2 Increases PHB1 and PHB2 levels in the brains
of aged mice and decreases levels of the cytokine IL-1β

Alzheimer’s disease
Parkinson’s disease

Guyot et al., 2020

Sulfonyl amidines PHB1 PHB1 prevents the formation of osteoclasts Osteoporosis Lee M. Y. et al., 2010;
Sulfonyl amidines limit resorption of bone and
inhibit differentiation into osteoclasts

Chang et al., 2011;
Lee et al., 2015;

However, it is not known exactly how PHB1
affects sulfonyl amidines

Wang et al., 2020

Xanthohumol
(XN)

PHB2 Prevents the growth of ERα positive breast
cancer cells by disrupting the interaction
between PHB2 and brefeldin A-inhibited guanine nucleotide-
exchange protein 3 (BIG3)

Breast cancer Yoshimaru et al., 2014

JI051 PHB2 Results in stabilization of the Hes family basic helix-loop-helix
transcription factor 1 (Hes1) and PHB2 interaction, leading to
cessation of the cell cycle in the G2/M phase

Cancer Perron et al., 2018

JI051 inhibits the proliferation of HEK293 cells
(Continued on following page)
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interacts with PHB2 (Djehal et al., 2018). These melanogenin
analogs have increased microphthalmia-associated
transcription factor expression. Mel41 and Mel9 promote
the melanocytic production of melanin. Another
melanogenin analog, Mel55, interacts with PHB1 (Djehal
et al., 2018).

The involvement of PHBs in melanin production suggests
that targeting PHBs may be a promising therapeutic approach
for pigmentary disorders, which can be common in the elderly
population (Armenta et al., 2019). Melanogenin and
melanogenin analogs also have potential as treatments
against cancer since they can trigger apoptosis in tumor
cells, such as melanoma cells (Djehal et al., 2018). Djehal
et al. (2018) also found that in addition to interacting with
melanogenin, PHBs appear to modulate pigmentation in
melanoma cells by interacting with fluorizoline.

Prohibitins and Rocaglates
Rocaglates (also known as flavaglines) are from the genus
Aglaia, which contains species that are used in traditional
medicine (Ebada et al., 2011). Rocaglates interact with PHBs
and have potential as a cancer treatment (Basmadjian et al.,
2013). Rocaglamide is a rocaglate (Ebada et al., 2011).
Rocaglamides interact directly with PHB1 and PHB2 and
prevent their interaction with CRaf, leading to inhibition of
the CRaf-MEK-ERK pathway (Polier et al., 2012). This
inhibition suppresses malignant cell proliferation, cell
growth and division, and protein synthesis. Polier et al.
(2012) observed that the effect of rocaglamides on the
CRaf-MEK-ERK cascade was similar to the effect of PHB1
knockdown.

Rocaglates also prevent energy production and mitophagy in
cancer cells. The rocaglates FL3 and rocaglamide inhibit
mitophagy by blocking the interaction between PHBs and
PARL (Wang et al., 2020). These findings suggest rocaglamide
could be an effective treatment against cancer through its
interactions with PHBs.

Prohibitins and Fluorizoline
Using molecules to target PHBs and induce apoptosis could be a
potential treatment for cancer. Fluorizoline is a synthetic ligand
for both PHB1 and PHB2 and triggers apoptosis of chronic
lymphocytic leukemia cells (Pérez-Perarnau et al., 2014;
Cosialls et al., 2017). Through its interaction with PHBs,
fluorizoline induces apoptosis by increasing levels of NOXA
protein, which is a pro-apoptotic B-cell lymphoma 2 family
member (Oda et al., 2000; Cosialls et al., 2017). PHBs are also
necessary for fluorizoline to trigger this apoptosis (Moncunill-
Massaguer et al., 2015). In addition, cells with PHB1 depletion are
resistant against cell death from fluorizoline. Fluorizoline
interacts with PHBs to trigger apoptosis in acute myeloid
leukemia (AML) cells (Pomares et al., 2016). Fluorizoline also
triggered these AML cells to differentiate and repressed the
clonogenicity of these cells.

Rocaglamide and Fluorizoline in Cancer
Ligands for PHBsmay also be potential treatments for lung cancer.
PHB1 is upregulated in human non-small cell lung cancers (Jiang
et al., 2013). Yurugi et al. (2017) observed that the higher the level of
PHB1, the less likely the patient is to survive. This result is in line
with a previous study which found that overexpressing PHB1
increased metastasis, increased mortality, and led to large
cervical tumors in mice (Chiu et al., 2013).

Fluorizoline and rocaglamide stop epidermal growth factor/
RAS-induced CRaf activation (Yurugi et al., 2017). This effect is a
potential treatment against cancer since CRaf is necessary for
tumorigenesis mediated by KRAS (Blasco et al., 2011).
Rocaglamide prevents the migration and growth of lung tumor
cells with mutated KRAS (Yurugi et al., 2017). Mutated KRAS
often results in increased activity of ERK1/2 (Luan et al., 2014).
PHB1 interacts directly with CRaf to activate ERK1/2
(Rajalingam et al., 2005). In melanoma cancer, this activation
of ERK1/2 mediates resistance to the BRAF inhibitor drug
vemurafenib and in melanoma cells, rocaglamide A was found
to undo this resistance (Doudican and Orlow, 2017).

TABLE 1 | (Continued) Small molecules that interact with PHBs and their relevance to age-related diseases.

Molecule Relevant subunits Result of interaction Relevant diseases References

JI130 PHB2 Results in stabilization of the Hes family basic
helix-loop-helix transcription factor 1 (Hes1) and
PHB2 interaction, leading to cessation of the
cell cycle in the G2/M phase

Cancer Perron et al., 2018

JI130 decreases the volume of tumors

Capsaicin PHB2 Results in the translocation of PHB2 from the inner
mitochondrial membrane to the nucleus

Cancer Kuramori et al., 2009

In the nucleus, PHB2 increases the transcriptional
activity of p53, which induces apoptosis

Adipotide PHB1 Combats obesity and causes weight loss in
Old World monkeys by resulting in apoptosis of the blood
vessels of adipose tissue

Obesity
Insulin resistance

Kolonin et al., 2004;
Barnhart et al., 2011

Adipotide also resulted in decreased insulin
resistance
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Rocaglamide and fluorizoline inhibit CRaf/ERK pathways by
interfering with the interaction between CRaf and PHB1 (Luan
et al., 2014; Yang et al., 2018). Rocaglamide was found to interfere
with the interaction between PHB1 and CRaf by changing PHB1’s
localization to the plasma membrane, leading to decreased RAS-
ERK signaling. This decreased signaling suppresses metastasis
and tumor growth (Polier et al., 2012; Luan et al., 2014). Luan
et al. (2014) also found that in mice with tumors, treatment with
rocaglamide lengthens lifespan.

Prohibitins and Spiro-Oxindoles
Spiro-oxindoles and their interaction with PHBs have relevance
in cardiology and cancer treatments. Doxorubicin is an
anthracycline that is used as an anticancer drug (Carvalho
et al., 2009). However, doxorubicin can result in cardiotoxicity
(Olson and Mushlin, 1990; Singal and Iliskovic., 1998). It was
found that 2′-phenylpyrrolidinyl-spirooxindole and its analogs
protect against cytotoxicity from doxorubicin (Elderwish et al.,
2020).

Spiro-oxindoles bind both PHB1 and PHB2 (Elderwish et al.,
2020). This binding supports the survival of cardiomyocytes by
leading to STAT3 phosphorylation (Elderwish et al., 2020).
Rocaglates (flavaglines) have a similar cardioprotective effect.
In mice treated with doxorubicin, the flavagline FL3 was found to
reduce mortality by 50% (Bernard et al., 2011). Knockdown of
PHB1 and PHB2 with siRNA prevented FL3’s cardioprotection
and STAT3 phosphorylation (Qureshi et al., 2015). These
findings suggest that targeting interactions with PHBs can help
protect against cardiotoxicity in cancer treatments.

Prohibitins and Nitric Oxide
The interactions between PHBs and small molecules could reveal
the role of PHBs in neurodegenerative diseases. Upregulation of
PHB1 increases neuroprotection in mice against brain damage
from ischemia (Kahl et al., 2018). This finding is consistent with
another study demonstrating that PHB1 is upregulated in
ischemic preconditioning and decreases the number of
neurons that die from injury (Zhou et al., 2012).

Brain ischemic preconditioning is an example of
neuroprotection and increases the brain’s tolerance to
ischemia, or reduced blood flow to the brain (Liu, X. Q. et al.,
2009). Nitric oxide (NO), a neurotransmitter, regulates PHB1 and
contributes to its neuroprotective effects (Qu et al., 2020). PHB1
and NO are necessary for ischemic preconditioning (Qu et al.,
2020). NO directly regulates PHB1 through post-translational
modification by protein S-nitrosylation (Qu et al., 2020).
However, it is not known how protein S-nitrosylation of
PHB1 by NO leads to neuroprotection.

Prohibitins, Sulfonyl Amidines, and
Phosphoryl Amidines
Targeting PHBs also has potential as a treatment for osteoporosis.
Osteoclastogenesis can contribute to osteoporosis through
differentiation of hematopoietic stem cells into osteoclasts
(Boyle et al., 2003). These osteoclasts can lead to decreased
bone density by resorbing bone, which can contribute to

osteoporosis if there is less formation of bone than resorption
of bone (Boyle et al., 2003; Harada and Rodan, 2003).

Sulfonyl amidines and phosphoryl amidines have relevance in
osteoporosis because they limit resorption of bone and inhibit
differentiation into osteoclasts (Lee M. Y. et al., 2010). PHB1
binds to sulfonyl amidine compounds (Chang et al., 2011). PHB1
also prevents the formation of osteoclasts (Lee et al., 2015).
However, it is not known exactly how PHB1 affects sulfonyl
amidines (Wang et al., 2020).

Prohibitins and ERAP
Targeting PHB2 interactions with other molecules may be a
potential treatment for breast cancer. ERα activity-regulator
synthetic peptide (ERAP) disrupts the interaction between PHB2
and brefeldin A-inhibited guanine nucleotide-exchange protein 3
(BIG3) (Kim et al., 2009; Yoshimaru et al., 2013). Another molecule
that directly interacts with PHB2 is xanthohumol (XN). Similar to
ERAP, XN prevents the growth of breast cancer cells that are positive
for ERα by disrupting the interaction between PHB2 and BIG3
(Yoshimaru et al., 2014). Inmost cases of breast cancer, there is BIG3
overexpression (Kim et al., 2009).

BIG3 affects the localization of PHB2. PHB2 interacts with ERα
and suppresses transcription of ERα (Kim et al., 2009). This
interaction occurs in the nucleus. In contrast, in breast cancer
cells, PHB2 interacts with BIG3 in the cytoplasm. PHB2 is
trapped in the cytoplasm due to its interaction with BIG3 (Kim
et al., 2009; Yoshimaru et al., 2013). This interaction prevents PHB2
from suppressing transcription of ERα in the nucleus.

ERα has relevance in the severity of breast cancer. ERα
interacts with E2 to increase metastasis and proliferation of
breast cancer cells (Yager and Davidson, 2006). Using ERAP
to disrupt the interaction between PHB2 and BIG3 can stop
breast cancer cells that are positive for ERα from growing and
make these cells more responsive to tamoxifen (Yoshimaru et al.,
2013).

In addition to wild type (WT) ERα, PHB2 can bind to ERα
mutants, such as D538G and Y537S, which are often present in
breast cancers that are resistant to hormonal therapy (Chigira
et al., 2015). As a result, treatment with ERAP could be used in
breast cancer cells that are positive for ERα to undo resistance to
hormonal therapies such as tamoxifen (Yoshimaru et al., 2013).
This finding has importance since the majority of breast cancers
that are positive for ERα become resistant to tamoxifen (Riggins
et al., 2007).

A later study found that when ERAP disrupts the
interaction between PHB2 and BIG3, PHB2 is able to
interfere with the interaction of ER2α with a wide variety of
other molecules, such as EGFR, human epidermal growth
factor 2 (HER2), insulin-like growth factor 1 receptor beta
(IGF-1Rβ), and PI3K (Yoshimaru et al., 2015). PHB2 repressed
the proliferation of breast cancer cells that were positive for
ERα by decreasing phosphorylated Akt, MAPK, and ERα, and
by HER2, EGFR, and IGF-1Rβ inhibition.

Prohibitins, CRaf, Ras, and Akt
PHB1 interacts with CRaf (Raf-1), which can activate pathways
involving Ras that support cancer and its invasiveness, such as the

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7142288

Belser and Walker Prohibitins in Aging

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


CRaf/ERK, PI3K/Akt, and RalGEF/Ral pathways (Karnoub and
Weinberg, 2008). PHB1 is necessary for Ras to activate CRaf,
which is important for controlling migration and cell adhesion
for epithelial cells (Rajalingam et al., 2005). Without PHB1, Raf-1
kinase and activated Ras are unable to interact. Another study
expanded on this finding by revealing that phosphorylated PHB1
at T258 is important for activating CRaf, for the direct interaction
between CRaf and PHB1, and for cancer cell invasiveness (Chiu
et al., 2013).

PHB1 is phosphorylated at T258 by Akt and
phosphorylated PHB1 interacts with Akt, Ras, and Raf-1
(Han et al., 2008; Chiu et al., 2013). In contrast,
dephosphorylating PHB1 at T258 reduced tumor cell
invasiveness and metastasis and decreased epithelial-
mesenchymal transition (Chiu et al., 2013). Together, these
findings suggest that PHB1 phosphorylated at T258 by Akt can
increase the invasiveness of cancer by direct interaction with Raf-1.
This interaction allows Ras to interact with and activate Raf-1 to
control signaling cascades (Rajalingam et al., 2005; Han et al., 2008;
Karnoub and Weinberg, 2008; Chiu et al., 2013).

Prohibitins, Rocaglates, and Hepatitis C
Virus
Older patients have a greater likelihood of developing chronic
hepatitis C virus (HCV) infection (Reid et al., 2017). Interactions
between small molecules and PHBs may be useful to protect
against viruses. Both PHB1 and PHB2 are involved in HCV entry
into human hepatocytes (Liu et al., 2015). PHB1 and PHB2
facilitate entry of HCV by associating with E2, a viral
glycoprotein (Vieyres et al., 2010; Liu et al., 2015). E2, along
with another glycoprotein called E1, are known to induce cells to
take up the viral particle through endocytosis (Meertens et al.,
2006). The use of rocaglates could be a useful protection against
HCV entry (Liu et al., 2015).

Use of rocaglamide prevents the entry of HCV by preventing
the interaction between PHB1, PHB2, and CRaf (Liu et al., 2015).
Knockdown of PHBs does not alter HCV’s ability to bind to cells
(Liu et al., 2015). However, PHB1 and PHB2 were found on the
plasma membrane and were important for HCV entry after HCV
binding to the cell (Liu et al., 2015). This study also found another
rocaglate, aglaroxin C, which had a greater effect on preventing
HCV entry than rocaglamide.

The study by Liu et al. (2015) suggests rocaglates targeting
PHBs could be used to provide protection against viruses such as
HCV. Similar to HCV, DENV 3, a serotype of the dengue virus
(DENV), formed interactions with PHB1 and PHB2 to enter into
cells (Clyde et al., 2006; Sharma et al., 2020). Other viruses, such
as chikungunya virus and enterovirus 71, utilize PHB1 for entry
into cells (Wintachai et al., 2012; Too et al., 2018).

Prohibitins, Rocaglates, and Chikungunya
Virus
Rocaglates (flavaglines) could also be used to protect against the
chikungunya virus (CHIKV). Like HCV, CHIKV utilizes PHBs to
enter cells. The E2 protein of CHIKV interacts with PHB1 to

allow the virus to infect microglial cells (Wintachai et al., 2012).
The flavaglines FL3 and FL23 protect cells from infection by
CHIKV (Wintachai et al., 2015). Increased viral replication of
CHIKV has been observed in aged Rhesus macaques, which have
a weaker immune response than adult Rhesus macaques
(Messaoudi et al., 2013). Rocaglates may be able to be used to
counteract this age-related effect. The rocaglate derivative
silvestrol (Pan et al., 2014) inhibits replication of CHIKV and
inhibits eIF4A, which is an RNA helicase (Henss et al., 2018).

Prohibitins and Coronaviruses
Older patients have a greater chance of developing life-threatening
diseases from COVID-19 (Liu et al., 2020). PHBs interact with
proteins of SARS-CoV-2, which is the virus responsible for
COVID-19 (Andersen et al., 2020). SARS-CoV-2 has proteins
called nonstructural proteins (nsps) numbered 1–16 (Chen
et al., 2020). It was found that nsp2 interacts with both PHB1
and PHB2 (Cornillez-Ty et al., 2009). However, it is still not known
exactly how nsp2’s interaction with PHB1 and PHB2 affects cells
(Nebigil et al., 2020).

LC3 also interacts with PHBs. Coronaviruses lead to
formation of double membrane vesicles with LC3-I, which
enables the virus to take over intracellular membranes and to
replicate (Reggiori et al., 2010). LC3 knockdown prevents
cells from being infected by coronaviruses (Reggiori et al.,
2010). LC3-I, PHBs, and nsp2 may interact as joint complex
(Nebigil et al., 2020). This suggests that targeting PHBs could
affect this joint complex and disrupt the entry of
coronaviruses into cells.

Prohibitins, JI051, and JI130
Other compounds that interact with PHBs are JI051 and
JI130. JI051 and JI130 are synthesized compounds that
inhibit the proliferation and growth of cancer cells (Perron
et al., 2018). During adulthood, there is an association
between cancer development and abnormal signaling of
Hes family basic helix-loop-helix transcription factor 1
(Hes1). JI051 interacts with PHB2 (Perron et al., 2018).
This interaction results in stabilization of the Hes1 and
PHB2 interaction, leading to cessation of the cell cycle in
the G2/M phase. In addition, JI051 inhibits the proliferation
of HEK293 cells and JI130 decreases the volume of tumors.
These findings suggest JI051 and JI130 could be potential
treatments for cancer.

Prohibitins and Capsaicin
Another compound that interacts with PHBs is capsaicin,
which is found in hot chili peppers (Reyes-Escogido et al.,
2011; Wang et al., 2020). Capsaicin can bind directly with
PHB2 and result in the translocation of PHB2 from the inner
mitochondrial membrane to the nucleus (Kuramori et al.,
2009). In the nucleus, PHB2 increases the transcriptional
activity of p53, which induces apoptosis. Capsaicin
suppresses growth and triggers apoptosis in leukemic cells
(Ito et al., 2004). This effect was greater for cells that were
positive for p53 than for cells that were null for p53.
Capsaicin also leads to mitochondrial membrane potential
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disruption and triggered cytochrome c release from the
mitochondria, which is another sign of apoptosis
(Kuramori et al., 2009).

Prohibitins and Adipotide
The risk of abdominal obesity increases with age and obesity
can result in insulin resistance (Jura and Kozak, 2016).
Targeting PHBs has been shown to undo obesity in animal
models. The peptidomimetic adipotide interacts with PHB1 in
the adipose vasculature in mice (Kolonin et al., 2004). This
interaction was found to combat obesity and cause weight loss
in Old World monkeys, by resulting in apoptosis of the blood
vessels of adipose tissue (Barnhart et al., 2011). Adipotide also
resulted in decreased insulin resistance (Barnhart et al., 2011).
There has not been any additional research on adipotide since
2012 (Wang et al., 2020).

FUTURE DIRECTIONS

Much of the full function of PHBs in aging remains unknown.
One of the most important questions that needs to be
addressed is the number of conflicting studies about

whether PHBs suppress or promote cancer and whether
PHBs increase or decrease apoptosis. It would be
beneficial to learn more about what factors make PHBs
tumor supporters and what factors make them tumor
suppressors.

More studies might be able to determine if PHBs could be used
as a diagnostic tool for age-related diseases. There is potential for
PHBs to be used as biomarkers for age-related problems such as
oxidative stress and for diseases that increase with age such as
diabetes (Lee H. et al., 2010; Supale et al., 2013; Dong et al., 2016).
To further understand the role of PHBs in aging, it may be
beneficial to perform observational studies on people with long
health spans and lifespans to see how their expression of PHBs
may differ from the general population. It would also be valuable
to find out more information about the role of PHBs in
Parkinson’s disease since there are only a few studies on this
topic (Ferrer et al., 2007; Pickrell and Youle, 2015; Dutta et al.,
2018).

An additional area to investigate is the effects of
upregulation of PHBs on lifespan since many studies
regarding the effect of PHBs on lifespan are only examining
knockdown of PHBs (Artal-Sanz and Tavernarakis, 2010). It
would also be beneficial to further examine the differences in
strain genetic backgrounds that may contribute to the
opposing effects on replicative lifespan in yeast (Kirchman
et al., 1999). Another question deserving more attention is the
relationship between PHB1 and PHB2. It should be
determined why deletion of both subunits results in a
greater decrease in lifespan than the deletion of only one or
the other if a lack of PHB1 corresponds to a lack of PHB2 and
vice versa (Berger and Yaffe, 1998). Little is known about the
structure of the PHB complex, which is another area that could
be studied in the future (Artal-Sanz and Tavernarakis, 2009a).

Another area of study is the relationship between apoptosis
and senescence for PHBs and how it relates to cancer. It seems
that induction of senescence by PHBs would be beneficial to treat
cancer by preventing entry into S phase (Jupe et al., 2001).
However, cells that are senescent are more resistant to
apoptosis, suggesting that PHBs may also protect cancer cells
from apoptosis (Marcotte et al., 2004).

There is an extensive amount of studies examining the
targeting of PHBs as a potential treatment for cancer
(Koushyar et al., 2015). However, there are not as many
studies examining the therapeutic potential of PHBs in other
diseases related to aging. For example, there are not many studies
regarding the targeting of PHBs to treat neurodegenerative
diseases. Nitric oxide has been found to be involved in
neuroprotection, but its role in neurodegenerative diseases, as
well as how its regulation of PHB1 results in neuroprotection, is
not clear (Qu et al., 2020). There are also few studies that examine
the therapeutic potential of PHBs in osteoporosis and how PHB1
affects sulfonyl amidines which limit bone resorption (Lee M. Y.
et al., 2010; Chang et al., 2011). The therapeutic potential of PHBs
in other age-related diseases such as Alzheimer’s disease,
Parkinson’s disease, osteoarthritis, hypertension, diabetes, and
cardiovascular diseases are all areas of research that could be
expanded in the future.

FIGURE 1 | PHBs as potential therapeutic targets to ameliorate aging
and age-related diseases.
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CONCLUSION

PHBs are involved in aging through cellular senescence, apoptosis,
and oxidative stress, and have functions in age-related diseases such
as Alzheimer’s disease, Parkinson’s disease, diabetes, and cancer
(Ferrer et al., 2007; Artal-Sanz and Tavernarakis, 2009a; Supale et al.,
2013; Lachén-Montes et al., 2017).

One particularly compelling hypothesis is that PHBs can
modulate aging through mitophagy to maintain mitochondrial
quality control (Youle and van der Bliek, 2012). There is also
evidence that PHBs can impact cellular senescence and shift
oxidative phosphorylation to anaerobic respiration (Rastogi et al.,
2006a; Vessal et al., 2006).

There are conflicting studies about whether PHBs induce
apoptosis or suppress it (Liu et al., 2012; Peng et al., 2015).
PHBs may have a potential role as a treatment for cancer.
However, more research needs to be conducted to understand
what factors may make PHBs tumor promoters and what factors
may make PHBs tumor suppressors.

PHBs have therapeutic potential in a variety of age-related
diseases. Targeting PHBs with compounds such as rocaglates,
aurilide, fluorizoline, melanogenin, ERAP, capsaicin, JI051, and
JI130 may be potential treatments against cancer (Ito et al., 2004;
Sato et al., 2011; Yoshimaru et al., 2013; Cosialls et al., 2017; Yurugi
et al., 2017; Djehal et al., 2018; Perron et al., 2018). Rocaglates may
also protect against viral diseases that can be more severe in the
elderly (Wintachai et al., 2015; Nebigil et al., 2020). Spiro-oxindoles
can protect against cardiotoxicity in cancer patients (Elderwish
et al., 2020). Nitric oxide is involved in neuroprotection, whichmay

be relevant to neurodegenerative diseases (Qu et al., 2020). Sulfonyl
amidines have relevance to osteoporosis and limit bone resorption
(Lee M. Y. et al., 2010; Lee et al., 2015). Targeting PHBs with these
compounds may be potential treatments against a wide variety of
diseases related to aging (Figure 1).
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