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Blind system identification (BSI) is a fundamental signal
processing technology aimed at retrieving a system’s unknown
information from its output only. This technology has a wide
range of possible applications such as mobile communications,
speech reverberation cancellation, and blind image restoration.
This paper reviews a number of recently developed concepts and
techniques for BSI, which include the concept of blind system
identifiability in a deterministic framework, the blind techniques
of maximum likelihood and subspace for estimating the system’s
impulse response, and other techniques for direct estimation of
the system input.
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I. INTRODUCTION

Blind system identification (BSI) is a fundamental signal
processing technology aimed at retrieving a system’s un-
known information from its output only. This technology is
particularly suitable for applications where all the available
data are generated from an unknown system driven by an
unknown input. The word “blind” simply means that the
system’s input is not available to (cannot be seen by) the
signal processor. The task of BSI (Fig. 1) is to identify the
input and/or the system function from the output

. Note that if either the system function or the input
signal is known, it becomes a more standard and simpler
problem.

The notion of BSI (or the like, such as blind deconvolu-
tion) has become well known since the early 1980’s. During
the 1990’s, there has been an increasing research interest
devoted to BSI. Unlike most of the work in the 1980’s, the
work in the 1990’s tends to explore to a higher degree
the diversities inherent in multiple-output systems. The
multiple-output systems arise from multisensor systems,
multichannel data acquisition, or fractional sampling sys-
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Fig. 1. A system with unknown input and unknown system
function.

tems. A huge number of research articles recently produced
by the signal processing community contain a significant
amount of new knowledge that can be applied by many
other communities, such as the seismic community, speech
community, and medical community.

In this paper, we will first give an overview of BSI and its
applications and then review some recently developed basic
concepts and techniques of BSI. Other well-established
concepts and techniques will also be discussed.

The rest of this paper is organized as follows. In the
next section, we present briefly some areas of applications
for BSI, which include data communications, speech recog-
nition, image restoration, and seismic signal processing.
Section III reviews the basic concepts and techniques
of BSI. Following the problem formulation, we highlight
the channel identifiability conditions, discuss several im-
portant results concerning system identifiability, and then
present the main and most recently developed techniques
for BSI. Section IV reviews some other concepts and
techniques, particularly the methods based on high-order
statistics (HOS’s), and discusses the case of systems with
multiple inputs.

II. A REAS OF APPLICATION

Fig. 1 depicts the BSI problem, where is the input
signal and is the system function. When the system
is linear and time invariant, the system output can be
described by the following convolution model:

(1)

where denotes the convolution. Because of (1), the
blind identification of or is also known as blind
deconvolution.

The need for BSI arises from a number of applications,
which include the following.
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Fig. 2. Mobile communication.

Fig. 3. Speech recognition.

A. Data Communications

In data communications, an unknown channel frequency
response with finite bandwidth often causes intersymbol in-
terferences (ISI’s). To eliminate the ISI’s without knowing
the input data, the channel response needs to be identified
“blindly.”

BSI is particularly important for mobile communications,
where severe ISI can arise from the time-varying multipath
fading that commonly exists in a mobile communications
environment (Fig. 2). The varying channel characteristics
must be identified and equalized in real time to maintain
the correct flow of information. The channel identification
and equalization technique currently used requires a major
fraction of the channel capacity to send a training sequence
over the channel. It should be noted that while the density
of mobile users in a given city area is likely to increase
dramatically, the number of radio channels in that area
remains constant. Although many techniques, such as code
division multiple access (CDMA), can be used to increase
the channel capacity, the fraction of the channel capacity
currently used for channel identification and equalization is
very considerable. To save this fraction of channel capacity,
blind channel identification is an attractive approach. Using
the blind channel identification techniques, the receiver
can identify the channel characteristics and equalize the
channel based on the received signal. No training sequence
is needed, which saves the channel capacity.

B. Speech Recognition and Reverberation Cancellation

Speech recognition (Fig. 3) is useful in many areas [9].
It can be used for controlling the actions of a machine
and for entering and retrieving data. In speech recognition,
the available signal for the recognizer is the convolution
of the original speech signal, the impulse response of the
transducer, and the impulse response of the surrounding
environment.

Fig. 4. Speech reverberation and noise cancellation.

Training is now commonly used for the recognizer to
obtain knowledge of the transducer. It is obvious, how-
ever, that the transducers as well as their surrounding
environments vary tremendously [9]. Telephone handsets
vary in degrees of distortion, spectral shaping, and response
level. Microphones are built by a variety of manufacturers
and are located at various positions on the handset, with
openings of different sizes, and lie in different points
within the sound field around the mouth. A recognizer
that is well-trained for one particular transducer in one
particular environment might perform very badly when
another transducer is used or when the same transducer is
used in a different environment. Therefore, it is desirable to
build the recognizer without specifying the characteristics
of the transducer. The BSI is useful here in identifying the
impulse response of the transducer and in enabling recovery
of the original speech signal.

Speech reverberation cancellation is necessary when the
original speech signal is corrupted by the acoustics of the
surrounding environment, which is known as reverberation
(Fig. 4). Because the acoustics of the surrounding environ-
ment are dependent on the geometry and materials of the
room and the speaker’s location, the reverberation is ever
changing. Since the original speech signal is unobservable
and the acoustics of the surrounding environment are un-
known, BSI can be used in adaptive cancellation of the
reverberation.

C. Image Restoration

BSI is needed for image restoration in many applications
such as astronomy, remote sensing, and medical imaging
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Fig. 5. Image formation.

Fig. 6. Exploration seismology.

[11], [12]. In this situation, we have a system that represents
blurring effects caused by, for example, camera motion
during exposure or inaccurately focused lenses. The original
image constitutes the system input. The system output is
a blurred version of the original image, i.e., an image
degraded by the convolution with the point spread function
of the blurring system (Fig. 5). Unfortunately, in many
practical situations [5], [11], the point-spread function of
the blurring system is unknown and little information is
available about the original image. Given the blurred image,
the task is to restore it “blindly.”

D. Seismic Signal Processing

In exploration seismology (Fig. 6), a charge of dynamite
is exploded in the earth and a geophone is used to receive
the reflected and/or diffracted signal [4], [6]. This signal
is used to estimate the reflection coefficients, which are
associated with the impulse responses of the various layers
in the earth and unravel its physical characteristics. Here,
the received signal is made up of echoes produced at the
different earth layers in response to the excitation, which is
ordinarily in the form of a short-duration pulse. This again
is a BSI problem due to the fact that the exact waveform of
the excitation responsible for the generation of the received
signal is usually unknown.

III. SOME BASIC CONCEPTS ANDTECHNIQUES

While the applications of BSI are wide ranging, some
basic concepts and techniques are common for all applica-
tions. In this section, we provide an introduction to these
concepts and techniques.

A. Problem Formulation

Consider a mathematical model where the input and the
output are discrete, the system operatoris linear and shift
invariant, the system is driven by a single-input sequence

and yields output sequences ,
and the system has finite impulse responses (FIR’s) ,

, and . Such a system model
can be described as follows (in the absence of noise):

...
(2)

where denotes linear convolution. This multiple-FIR-
channels system obviously is a useful model to describe the
case where a single unknown source and multiple spatially
or/and temporally distributed sensors exist. The requirement
of a single unknown source may seem restrictive but it is
common in many applications, as described in the previous
section. In the case of multiple sources, which are not
separable by simple operations such as bandpass filtering
of the channel outputs, the model of multiple-input and
multiple-output systems must be considered. This topic will
be further discussed in Section IV.

The requirement of FIR is general enough for practical
applications, as an infinite impulse response (IIR) system
can be well approximated by FIR provided the model order

is large enough. If the order is too large, IIR would be a
better model in that fewer system parameters are necessary.
Nevertheless, FIR often leads to simple development of
signal processing algorithms. The estimation ofis still
a challenging research topic, but a simple technique of
estimating will be referred to in Section III-C.

In this paper, our focus is on the one-dimensional case.
The two-dimensional extension of most concepts and tech-
niques shown in this paper remains a research topic [116],
[117].

The analysis of the model (2) can be made convenient
by using its matrix form as follows. We stack all channel
outputs into a single vector, i.e., let

(3)

with

(4)

and the superscripts and denote the transpose and the
conjugate transpose, respectively. Then we have

(5)

where is the input vector

(6)

is known as a generalized Sylvester matrix [15]

... (7)
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where is the Sylvester matrix of the
th channel response

...
...

...
... (8)

Equation (5) may be subject to further conditions depending
on applications. For example, the input sequence may be
generated from convolution between a completely unknown
sequence and a common channel response. For a simple
presentation of some basic concepts and techniques of BSI,
however, no further constraints will be imposed on the
model (5) in the next section.

B. Identifiability

In general, a system is considered to be completely
identifiable if all unknown parameters in the system can be
uniquely determined by the available data. It is clear from
(5), however, that in the absence of noise, a given output
can only at best imply a unique inputand a unique system
matrix up to an unknown scalar. This unknown scalar
has to be determined by further knowledge available about
the model. For example, if a sample of the input sequence
is known, then this scalar is uniquely determined. Given
the model (5), we define identifiability as follows.

The system (5) is said to beidentifiableif a given output
implies a unique input and a unique system matrix

up to an unknown scalar.
A detailed study on the identifiability is shown in [22].

The conditions required for the system to be identifiable
relate to the notions of “zeros” and “modes,” which are
described below.

1) Zeros: The th channel of the system is said to have
a “zero” if the th channel’s transfer function is
zero at , i.e.,

It is clear that a channel of ordermust have zeros and,
on the other hand, that the zeros completely describe the
channel up to a scalar.

2) Modes: A mode is any sequence of the form
where is an integer and is a complex number. The

integer is also referred to as the order of the mode, and
the complex number is the root of the mode. A finite
input sequence of length

is said to have modes if can be written
as a linear combination of modes of length , i.e.,
for

where for each (nonzero) mode, all the coefficients of the
corresponding lower order modes may or may not be zero.
For example, the sequence is

said to have four modes as long asand are nonzeros.
A channel is said to be associated with a mode if
the root of the mode is a zero of the channel. A simple
test of the number of modes is as follows. It can be said
that contains or more modes if and only if the

Hankel matrix

...
...

...

has full row rank where .
Given the notions of zero and mode, the identifiability

conditions can be stated as follows.
3) Necessary Identifiability Conditions [17]:The system

is identifiable only if the following conditions are met:

• all channels do not share a common zero, i.e., there is
no such that for all ;

• the number of modes in the input sequence is larger
than or equal to ;

• (where is the number of samples from
each channel).

4) Sufficient Identifiability Condition [17]:The system is
identifiable if the following conditions are true:

• all channels do not share a common zero;

• the number of modes in the input sequence is larger
than or equal to ;

• .

It is possible that the sufficient identifiability condition
can be relaxed. However, more research in this area is
required (see [22] and [23]). The identifiability conditions
shown above essentially ensure the following intuitive
requirements.

• All channels in the system must be different enough
from each other. They cannot be identical, for example.

• The input sequence must be complex enough. It cannot
be zero, a constant, or a single sinusoid, for example.

• There must be enough output samples available. A set
of available data cannot yield sufficient information on
a larger set of unknown parameters, for example.

The identifiability can also be discussed with respect to
a given identification technique [19] or in the case where
certain statistics of the system outputs are assumed to be
given [16]. Furthermore, the conditions of identifiability can
be traded off for each other. For example, if the number
of available output samples is infinite, the input is non-
Gaussian stationary random process. Hence, the HOS’s of
the output samples can be exactly computed and the system
can be identified exactly, even when the channels share
common zeros. Note that all zeros of a single channel
system are “shared by all channels.” Such a system can
be identified exactly if the HOS’s of the output are known
exactly [20] or if the second-order statistics (SOS’s) of the
output are known exactly and the common zeros are inside
the unit circle (minimum-phase condition [21]).
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C. Estimation of System Function

We now introduce two powerful techniques for identi-
fying the system function of the model formulated
in Section III-A. They are the maximum-likelihood (ML)
method and the subspace method.

1) ML Method: ML is a classic approach applicable to
any parameter estimation problem where the probability
density function (PDF) of the available data is known.
Assuming that the system output vector is corrupted by
additive circular white Gaussian noise vector,1 the system
output vector becomes

(9)

and the PDF of is given by

(10)

where is the variance of each complex element of, and
denotes two-norm. The ML estimates of and are

given by those arguments that maximize the PDF , i.e.,

(11)

where proper constraints on and are imposed. Note
that such ML criterion is equivalent to the least-square (LS)
criterion, for which the knowledge of the PDF of is not
necessary. For any given , the ML estimate of that
minimizes the quadratic function is known
to be

(12)

(Under the necessary identifiability condition, the matrix
is known to have full column rank [22].) Using this

estimate in (11) yields

(13)

where is the orthogonal projection matrix onto the
range of , i.e.,

(14)

Although the minimization in (13) is computationally
much more efficient than that in (11), it is still highly
nonlinear. Therefore, the computation of (13) has to be
iterative in nature. Many iterative optimization approaches
such as [25], [26], and [108] can be applied to compute (13).
Below, however, we introduce a more elegant technique.

1A complex random vectorw is called circular white Gaussian if
<e(w)
=m(w) is white Gaussian.

Theorem 1 [17]: Define

...
...

(15)

where and is the top-left
submatrix of . Then, provided that all channels do not
share a common zero and (for , only

is required), an orthogonal complement matrix of
the generalized Sylvester matrix is , i.e.

(16)

where is the identity matrix, and and denote
the orthogonal projection matrixes onto range and
range , respectively.

Under the condition of this theorem, the minimization of
(13) becomes

(17)

where is the vector of all channels’ impulse responses
[i.e., ] and the
superscript denotes a Moore–Penrose pseudoinverse with
rank [17].

The following is a matrix form of the commutativity
property of linear convolution:

(18)

where is defined by

...
...

(19)

with and

...
... (20)

Combining (17) with (18) yields

(21)
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This expression suggests the following two-step ML
(TSML) method.

Step 1) min

Step 2) min ,
where is constructed from according
to (15).

The first step comes from (21) by setting the weighting
matrix to an identity matrix. It can be shown
that Step 1) of the algorithm yields the exact estimate of

in the absence of noise (or when the noise is white and
the data length is infinite) and that Step 2) of the algorithm
yields the optimum (ML) estimate of at a relatively high
signal-to-noise ratio (SNR).

The computations required by the TSML method largely
depend on how the matrix multiplications, matrix inverse,
and minimum eigenvectors are numerically computed. A
novel implementation reported in [18] can reduce the
computations of the TSML method to the order of or
even . The order implementation exploits a property
that the orthogonal complement matrix becomes a
band-limited block Toeplitz matrix after a certain row and
column permutation.

The first step of the TSML method is known to coincide
with a method based on a “cross-relation” (CR) property of
the single-input–multiple-output system. This cross relation
is as follows:

(22)

This is a linear equation satisfied by every pair of channels.
By collecting all possible pairs of channels, one can
easily establish a set of linear equations. In matrix form,
this set of equations can be expressed as

(23)

where turns out to be the same as defined by (19). In
the presence of noise, the solution to (23) can be naturally
replaced by the LS solution

(24)

The CR method is clearly the first step of the two-step ML
method and can be viewed as one-step ML (although it
does not achieve the ML estimate, even when the SNR is
relatively high).

The CR method is named as the LS method in [19]
because it represents the LS solution to the CR equation
(22). This should not confuse the LS interpretation of the
TSML method, as the TSML method minimizes the LS
errors between the original dataand the data model .

Last, we note that the CR equation (22) also yields
information on . A method for estimating based on
(22) is available in [19].

2) Channel Subspace (CS) Method:The CS method re-
formulates the same system (2) as follows:

(25)

where and is an integer “window
parameter.” This window parameter determines the length
of each output vector as follows:

(26)

with

(27)

The input vector sequence accordingly is defined by

(28)

is a generalized Sylvester matrix with the dimension
, as defined in (7) and (8), except for

the dimensions of matrixes. The previous formulation (5)
treats the system outputs as a large single vector, while
the current formulation (25) treats the system outputs as a
sequence of small vectors. The following theorem provides
the foundation for the CS method.

Theorem 2 [15]: Define another gen-
eralized Sylvester matrix corresponding to another
impulse response vector . If and the
channels do not share a common zero, then the relations

range range

and

range range

hold if and only if is proportional to .
This theorem implies that under the specified conditions,

the range space or, equivalently, the null space of
determines the channel impulse response uniquely up to a
scalar. To compute the range or null space of , the CS
method constructs the following covariance matrix:

(29)

This matrix has the following structure:

(30)

where

(31)

It is clear that as long as is full rank, the range or
null space of can be computed from the eigende-
composition of . Let the eigendecomposition of
be

(32)
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where and are matrixes of eigenvectors and eigenval-
ues, i.e.,

diag

It can be shown that under the sufficient conditions of
identifiability and the choice of window parameter

(or, more generally, if the window parameter satisfies
, the input has or more

modes, and the channels do not share a common zero), the
eigenvalues can be arranged as

and, therefore

range

range range

Using this relationship and the previous theorem, we know
that there is a unique up to a scalar such that

(33)

where

Computing the solution to (33) yields the desired estima-
tion. To cope with noise on the system outputs, the CS
method computes the least-square error (LSE) solution to
(33), i.e.,

Note that the estimate is also a consistent estimator,
i.e., is equal to the exact up to a scalar if the additive
noise on the channel outputs is white and the number
of output samples is infinite. The performance of the CS
method can be nearly as good as the ML method unless the
channels have near common zeros [81]. The computation
of the CS method is also on the order of if is very
large (i.e., dominating , , and ). Further results and
developments on the CS method can be found in [78]–[83].

D. Direct Estimation of the Input

For the aforementioned methods, the focus has been
on the estimation of the system response instead of the
input. Given the system response, the system input can be
found by using (12). An alternative blind estimation scheme
estimates the input directly from the multichannel system
outputs [28]. The choice between direct system function
estimation and direct input sequence estimation depends
on the application. For applications such as seismology,
where the system function carries the desired information,
the direct system function estimation is preferred. For
applications such as communication, where the input carries

the desired information, the direct input estimation may
have more advantages.

We now introduce three techniques for directly estimating
the input sequence . They are the
input subspace (IS) method, mutually referenced equalizers
(MRE) method, and linear prediction (LP) method.

1) IS Method: Consider the noise-free data matrix given
by

where

...
...

...

is a Hankel matrix with the dimension
. The subspace defined by the rows of

is now called theinput subspace.
It is easy to verify that if has full column rank,2

the data matrix has the same row span as . Let
be the orthogonal matrix to the row space of , i.e.,

. Then, using a property of Hankel matrixes
[28]–[30], it is shown that given the null space of ,
the null space of can be constructed as

where is a vector of zeros.
Note that in the above matrix, the upper and lower
overlap in rows. More generally, the null spaces of,

, denoted by
have the following form:

...
...

... (34)

This yields, in particular, the following overdetermined
linear equations:

(35)

where

which uniquely determines the input sequence under
some mild assumption, as shown in Theorem 3.

2This requiresMW � L +W , so thatHM is vertical or square. In
the special case whereW � L, this condition is shown to be equivalent
to the absence of common zeros between the scalar polynomialsHi(z);
see [15].
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Theorem 3 [28]–[30]: Assume that there exists such
that is full column rank and that the input sequence

contains more than modes,3

then up to a scalar ambiguity is the unique nontrivial
solution of the overdetermined linear equations (35).

In the presence of additive noise, the LSE to (35) is
computed. The IS algorithm can be summarized as follows.

• Calculate the null space of from the data matrix.

• Construct as in (34).

• Estimate by minimizing the quadratic criterion, i.e.,
min .

An efficient implementation of the IS algorithm is avail-
able in [31].

2) MRE Method: This method, proposed in [32]–[34],
estimates directly the channel inverse or rather a set of
zero-forcing channel inverses called MRE. The existence
of zero-forcing equalizers relies on the left-inversibility of
the system matrix , which is ensured when is full
column rank.

The simple idea of the MRE evolves as follows. Assume
two multichannel equalizers and , which
satisfy

(36)

where refers to the noise-free output vector defined
in (26). Then, an obvious assertion is

(37)

where the outputs of the-delay and -delay equalizers
are said to be referenced to each other, up to a sample
duration delay.

It is shown in [32] that the relations given
in (37) are sufficient for to be ideal
zero-forcing equalizers in the noiseless case. We have the
following theorem.

Theorem 4 [32]: Let be a positive integer such that
and are full column rank and full row rank,

respectively. Let be complex-valued vec-
tors of size . Assume that the independent rela-
tionships for all and are
satisfied. Rewrite the vectors in matrix form as

. Then we have

for some complex number (38)

In practice, the matrix is estimated by minimizing the
quadratic criterion

where

3It is equivalent to assume thatSW+L+1 is full row rank; see [19] for
more details.

under a suitable constraint, e.g., Trace . and
are the identity matrix and

the null vector, respectively. Note that the
role of the constraint is to avoid not only the trivial solution

but also other nonzero blocking matrixes, i.e.,
matrixes such that , which correspond to

in (38). In [32] and [34], linear or quadratic constraints
are considered to keep the minimization procedure as
simple as possible. Different choices for the constraint lead
to different equalization performances and also different
implementation issues [32], [34].

3) LP Method: For this method, we have to assume that
the inputs are zero-mean temporally decorrelated (white)
random variables. This requirement seems to hold well in
data communications where pseudo-random noise is used
to code symbols. Also, as for all the previous methods, we
assume that -transform polynomials do not share
common zeros.

For simplicity, consider first the noise-free observation

H H

where corresponds to the vector defined in
(26) for and denotes the output of
the filter H excited by . The basic idea behind
the LP approach is to recognize that the moving-average
(MA) process H is also afinite order
autoregressive (AR) process. This property is related to the
generalized Bezout identity (see, for example, [21]). It is
known [21] that since are coprime, there exists a

polynomial vector such that

G H (39)

By applying G to , it follows that

G (40)

H can beexactly inverted by a FIR causal filter. This
relation is the key behind all subsequent derivations.

In order to proceed, some additional notations and def-
initions are in order. Denote by the span of the
past of up to time , i.e.

span (41)

Here, span stands for the Hilbert subspace
generated by . Accordingly, denote by
the span of the finite past of, i.e.,

span (42)

The innovation process [35] of is the -variate
white noise sequence defined by

(43)

where stands for the orthogonal projection onto. The
term is, in fact, the LP of . The process

will be said to be AR of order if coincides
with the finite order innovation sequence

. We have the following theorem.
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Theorem 5 [36], [84]: is an order AR process. Its

innovation process is given by ,
.

The innovation is computed by projecting onto
the space generated by the random variables

where . Let
be LP coefficient matrixes such that

. Then it is easy to show that
satisfy the following:

(Yule–-Walker equation) (44)

where is the matrix defined by

...
...

...

with . Since is not full rank
[36], [84], the LP coefficients satisfying (44) are not unique.
An LS solution to (44) is given by

(45)

Due to Theorem 5, the covariance of the innovation
is given by , where

is the source signal power. The nonzero eigenvalue ofis
equal to and the associated eigenvector

is . Let . We now have the
following theorem.

Theorem 6 [36], [84]: G
is a polynomial vector such thatG .

The LP method can now be summarized as follows.

• Estimate the covariance matrixes

• Solve the Yule–Walker equation (44).

• Estimate the covariance of the innovation by
and estimate vector from

its eigendecomposition.

• Use the prediction filter G
to estimate the input by

G .

In the presence of additive white noise, it suffices asymp-
totically to replace the covariance matrix by the
noiseless autocovariance matrix , where is
the noise power.

IV. OTHER EXISTING CONCEPTS ANDTECHNIQUES

BSI or blind deconvolution has been a well-established
research topic for more than 20 years. The concepts and
techniques presented in the previous section are only a
sample of more recent developments in this area. All blind

deconvolution techniques, however, can be grouped into
two categories: one consisting of the SOS-based methods
and the other consisting of the HOS-based methods. The
SOS-based methods require a system model for which there
are more than one output signals (unless certain constraint
on the input is applied). It is on this model that the previous
section was focused. In fact, all techniques shown in Section
III are based on SOS.

For some applications, there is only a single output
signal available. For the stationary single output system
model, SOS’s are well known to be insufficient to reveal all
information (the phase function in particular) of the system
unless source “training” samples are applied at the input
or an additional property of the input is known. Therefore,
higher order statistics are often necessary for the single
output systems.

A. HOS-Based Methods

There are three subgroups in the category of HOS-based
methods: hidden Markov model (HMM)-based methods,
polyspectra methods, and Bussgang methods.

1) HMM Methods: The HMM methods are useful for
situations where each input sample takes values from a
finite alphabet. Assuming that the system transfer function
is causal and of finite duration, it can be shown [38] that
an ML solution for joint-channel-parameters estimation and
input-symbol detection can be derived.

The Markovian properties of the channel state sequence
enable us to maximize the required likelihood using the
expectation-maximization (EM) algorithm [24], [39]. The
main drawback of this method is the large memory require-
ment and large computational complexity inherent to the
state Markov processes. Reference [40] proposes an on-line
algorithm that significantly reduces the memory require-
ment but still is computationally expensive. Suboptimal
methods that reduce the computational cost are proposed
in [41] and [42]. Another weakness of the HMM methods
is the possible convergence to local minima [43].

2) Polyspectra Methods:The polyspectra methods [20],
[44]–[50] explicitly exploit the high-order spectra to first
estimate the channel transfer function and then es-
timate . Assuming that has nonzero skewness,
i.e., , then the bispectrum (third-order spectral
cumulant) of contains the phase information of

. It is given by

where

with

For communication signals, the skewness generally is equal
to zero due to the symmetry of quadratic amplitude modu-
lation constellations. In this case, we replace the bispectrum
by the trispectrum (fourth-order spectral cumulant), and
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similar phase relations can be exploited to extract the phase
of the channel [45], [51].

Earlier HOS approaches have been suggested by
Brillinger and Rosenblatt [52], Wiggins [53], Donoho [54],
Lii and Rosenblatt [55], etc. Following these pioneering
works, various identification methods have been proposed
to identify the transfer function of linear autoregressive
moving average (ARMA) systems exploiting the cumulants
of input and output signals [52]. Detailed studies of
polyspectra methods are available in the tutorial papers
[44], [46], [56], and [57].

3) Bussgang Methods:These methods do not explicitly
use HOS but try to equalize the channel by minimizing
a cost function that contains implicitly the information of
higher order moments of the output. The inverse channel
or the channel equalizer is a linear filter applied to
the channel output to yield an estimate of the input. The
desired must satisfy

(46)

where the constant time delay is an inherent inde-
termination in blind equalization due to the fact that a
nonminimum phase channel in general will have an inverse
that is noncausal [58].

A simple example of Bussgang algorithms is the
decision-directed (DD) equalization [65], where the cost
function is

dec

where

and the corresponding nonlinearity is dec , which
denotes the closest constellation symbol to .

More generally, the equalizer parameters are adjusted via
the minimization of some mean cost function

where is a properly chosen nonlinearity that reflects the
level of ISI’s in the equalizer output.

Bussgang algorithms generally are adaptive algorithms
that update the equalizer parameters using a stochastic
gradient descent scheme [59]. The error function is given
by the derivative of the cost function .

Various Bussgang algorithms have been proposed in
the literature, differing mainly by their selections of the
cost function . Chronologically, the first well-known
Bussgang algorithms were successively presented by Sato
[60], Benvenistet al. [61], who extended Sato’s work,
Godard [62], Treichleret al. [63], [64], who developed
the well-known constant-modulus algorithm, and Picchi
et al. [65], who developed the stop-and-go algorithm.
Further studies on the convergence properties, performance
analysis, and fast implementations have been proposed in
[66]–[74].

4) General Remark:For all HMM-based methods, the
main drawback is the high computational cost (even for
the suboptimal methods proposed in [40] and [42]), which
cannot be accommodated in most on-line applications.
Polyspectra and Bussgang methods also suffer from many
weaknesses, such as the possible convergence to local
minima [71], [75] and the sensitivity to timing jitter [76].
The main limitation of all HOS-based methods, however,
consists of their slow convergence rate due to the large
estimation variance of HOS and thus the need of a large
sample size for accurate time-average approximations of
HOS. Consequently, HOS-based methods cannot be applied
in applications where fast channel variations and rapid
adaptivity are essential.

B. SOS-Based Methods

Identification methods using only output SOS appear to
be a recent breakthrough in the attempts to achieve fast
blind channel identification and equalization. Since the re-
cent works by Tonget al. [13] and Gardner [14], a plethora
of SOS-based methods have been proposed in the litera-
ture. These methods include the matrix pair method [16],
[77], cross-relations method [19], [27], subspace method
[15], [78]–[80], [83], LP method [36], [84], [85], MRE
method [32], [34], outer-product method [86], ML method
[17], [25], frequency-domain methods [87]–[90], and input-
subspace methods [28], [29], [31].

All of these methods use a multichannel observation
model that arises from the exploitation of time or spatial
diversity of the received signal. A detailed review of some
of the SOS-based methods was given in Section III.

C. Multiple-Input Case

Last, another important system model where there are
multiple inputs deserves mention. The multiple inputs may
represent communication signals from multiple users or
speech signals from multiple speakers. For such a system,
one often needs to identify each input signal from the
system’s output.

The concepts and techniques developed for the multi-
input system have clustered into two major groups: the
instantaneous mixture case and the convolutive mixture
case.

1) Instantaneous Mixture Case:In this case, the trans-
fer function is simply a constant mixing matrix.
Blind deconvolution of instantaneous mixtures is known
under different names, such as blind separation of sources,
blind array processing, signal copy, independent compo-
nent analysis, and waveform preserving estimation. The
techniques for this problem depend on thea priori informa-
tion on the source signals. These techniques include HOS
methods [91]–[100] for non-Gaussian source signals, SOS
methods [101]–[105] for temporally correlated sources,
cyclostationary-based methods [106] for cyclostationary
emitters, the mutual information method for independent
sources [109], and ML or subspace fitting methods [107],
[108] for finite alphabet sources. A detailed review of the
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instantaneous mixture estimation techniques can be found
in [110].

2) Convolutive Mixture Case:In this case, the transfer
function is a function of . This case is more
general than the previous one and arises from more ap-
plications. HOS-based techniques for this case are reported
in [112]–[114]. A detailed review is given in [111].

A particular situation arises when the number of inputs is
strictly less than the number of system outputs, i.e., is
a matrix with . As in the single-input case, SOS
equalization4 is possible under the fundamental assumption
that the transfer function is irreducible, i.e., is full
column rank for each . Therefore, identification methods
of such systems generally proceed in two steps: 1) second-
order identification up to a constant matrix (or channel
equalization by removing a convolutional contribution)
and 2) higher order identification of a mixing matrix (or
extracting source signals by separation of instantaneous
mixtures). These methods include the LP method [84],
outer-product method [86], signal subspace method [29],
and subspace method [78], [115].

V. CONCLUSION

BSI is a fundamental signal processing technology useful
for a wide range of applications. The purpose of this paper
has been to introduce readers to the technology of BSI and
to promote the theory and applications of this technology.
In this paper, we have presented some basic concepts and
techniques of BSI and highlighted some of the recently
developed SOS methods. Other major contributions in this
field have been briefly discussed. The field of BSI is still
developing rapidly, especially in the context of wireless
communications.
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