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Abstract

A data base is said to allow range restrictions if we may

request that only records with some specified field in a specified

range be considered when answering a given query. We present a

transformation which enables range restrictions to be added to an

arbitrary dynamic data structure on n elements, provided that the

problem satisfies a certain decomposability condition, and that we

are willing to allow increases of a factor of log n in the

worst-case time for an operation and in the space used. This is

a generalization of a known transformation which works

for static structures. We then use this transformation to produce

a data structure for range queries in k dimensions with worst-case

Ic •
times of O(log n) for each insertion, deletion, or query operation.

(Similar results were achieved independently by Dan Willard.

See the remarks at the end of section 1.)
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We begin by reviewing some results of Bentley and

Saxe [B78]. A searching problem may be viewed as a set F of

records on which we allow queries to be performed. Suppose there

exists a function f and a commutative associative operator CH

with identity, such that the response to a query q may be written

as • f{q,x), where | | denotes repeated application of C.
xeF xeF

Then this searching problem is said to be decomposable. We will

always assume that f and • are computable in 0(1) time. See

[B78] for numerous examples of such problems. Henceforth, we

only consider decomposable searching problems.

An interesting special case of a decomposable searching problem

is the following [B78]. Suppose each element x of F has a k-tuple

called KEY(x) and some field VALUE(x). Suppose that each query q

is a k-tuple of intervals, say

^ (^'^1'''•'^2'^2^ ' —

Finally, suppose

f(q,x) =

VALUE(x) if KEY(x) is

in [-f ^ ["^2' ^2 ^^ ^"^k' ^

the identity
for Q otherwise
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Then this problem is called a k-dimensional orthogonal range

query, or simply a range query. An example of such a problem

is the determination of the number of points lying in some

k-dimensional box. See [K73 pp.554-555, BS77, B78, BF78].

Decomposable searching problems have some very nice

properties which have been investigated by Bentley and Saxe,

among others; some of their results are reported in [B78]. In

particular, several transformation schemes have been discovered

which enable one to modify the characteristics of a data structure

for a decomposable problem [B78]. Let U(n) and Q(n) denote the

worst case time for a single update (i.e., insertion or deletion)

or query operation, respectively, when n elements are present.

Sometimes an individual update may take a long time to perform

but we can guarantee the average time over all updates; let U(n)

denote this average, where n is the maximum number of elements

present at any time. So far we have considered dynamic data

structures; some data structures are static in the sense that they

require all records to be presented initially and preprocessed

before any queries take place. In this case we let P(n) denote

the total preprocessing time, where n is the number of records

presented. In either the static or dynamic case, let S(n) be the

amount of storage used; assume S has at least a linear growth rate.

Now we consider some examples of transformations from [B78].

One example is the addition of a range specification. For example,

suppose we have a data structure containing information about recent

research, which enables us to determine quickly the total niamber
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of papers written on a given topic. We might wish to convert

this to a data structure which allows us to specify a range of

dates; then we could ask, for example, how many papers on data

bases were written between 1965 and 1970.

Theorem [B78]. Suppose we are given a static data structure,

with complexity measures.?, Q, and S as above. Then we may i

produce a corresponding static data structure with range specification,

whose complexities are described by the primed functions below.

?• (n) = 0(P(n) log n)
Q*(n) = 0(Q(n) log n)
S' (n) = 0(S(n) log n)

In [BS79] an Alphard form which implements this transformation

is presented and formally proved correct.

Another example is the construction of a dynamic structure from

a static one.

Theorem [B78] . If a static data structure has complexities

described by P, Q, and S as above, we may produce a corresponding

dynamic data structure (with insertions and queries but without

deletions) with complexities

U' (n) = 0(P(n) log n/n)
Q'(n) =0(Q(n) log n)
S' (n) = 0(S(n) )

Deletions can also be processed in the dynamic structure, with

the same time bound, provided that the operator D admits inverses

iBp]. We merely maintain two data structures, one contain-
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ing all inserted records, and one containing all deleted records

To respond to a query, we use the "difference" under D of the

responses of each data structure.

Note that production of a data structure for range

queries in k dimensions is now easy. By the first theorem we

immediately can construct a static structure with [B78]

P(n) = 0(n log n)

Q(n) = O(log^ n)
S(n) = 0(n log'̂ "^ n)

By a trick called presorting, [B78] shows how the preprocessing

time may be reduced to

P(n) = 0(n log^ ^ n) .

(This result was obtained in the special case of counting keys in the

desired range in [BS77].) If dynamic structure is desired, the second

theorem now enables us to immediately produce one with

U(n) = O(log n)

Q(n) = Odog^"^^ n)
S(n) = 0(n log^ ^ n)

In [L78] an ^ hoc construction is produced which gives time

bounds of



U(n) = O(log n)

Q(n) = O(log^ n)
S(n) = 0 (n log'̂ ^ n)
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In addition to having a slightly faster Q, this data structure

enables deletions to be handled quickly even when inverses for

in do not exist.

If the operations to be performed are known to be predominantly

updates or predominantly queries, other data structures may be

preferable. For example, in [BM78], for any £>0, static data

structures with

P(n) =

Q(n) = O(log n)

S(n) =

or with

t

P (n) = 0 (n log n)

Q(n) = O(n^)

S(n) = 0{n)

are described, where e is any positive constant. See [BF78] for a

survey of a wide variety of approaches.

Lee and Wong [LW78] have also described a structure which

enables range queries to be performed in O(log n) time; as in

[L78], they employ weight-balanced concepts. In addition, they

describe efficient algorithms for exact match queries, partial

match queries, and partial region queries based on their structure,

Their data structure is primarily a static one, however; they

do not show how the balance condition may be maintained as

insertions and deletions are performed.
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In this paper we describe a transformation which adds range

restriction capabilities and can be applied directly to dynamic

structures. It adds a factor of log n to the processing time for

updates and queries, and to the space. It thus immediately leads

to a data structure for range queries with time bounds of

U(n) = O(log n)

Q(n) = O(log^ n)

S(n) = 0(n log'̂ "^ n) .

This gives the same average complexities as in IL78], but

additionally guarantees worst-case times per operation. Unlike

[L78], the approach in this paper is based on transformations like

those used in [B78], and hence immediately generalizes to data

structures for any decomposable problem.

Dan Willard [W78], working independently, achieved results very

similar to those in this paper and in rL78]. We both first publicly

claimed these results in 1978; he did so several months before I

did. While we both based our approach on bounded balance trees,

the final algorithms we produced are somewhat different; the

algorithm to be described here appears to be significantly easier.

More recently, Willard has obtained some further results; for

example, he has shown how to improve the worst-case query time iWp].

In section 2 we discuss a simplified version of the trans

formation which gives good total update times but does not guarantee

worst-case times for each individual update. In section 3 we modify

this transformation so as to guarantee worst-case times for each

operation. Section 4 mentions some applications.
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2. A

As in [L78], we will use a bounded balance tree scheme

[NR73]. The argument to be used to prove the more powerful

results presented here will be substantially more delicate,

however. We begin by reviewing some fundamental facts about

bounded balance trees.

Let the rank of a node x, written rank(x), be one more

than the number of nodes which descend from x. (We will always

consider a node to be a descendant of itself.) The balance

of a node x, written p(x), is the ratio of the rank of the left

child of X to rank(x). A node x is g-balanced if p(x) e [a,l-a].

In [NR73] it is shown that if a tree on n nodes is a-balanced

for some positive a, then the height of the tree is O(log n).

It is also shown how (assuming a < 1-/2 */2) balance in a tree may

be maintained through the use of some simple rebalancing operations,

so that insertions and deletions can be done in O(log n) worst-case

time per operation. The rebalancing operations are illustrated

in Figure 1. Note that in a single rotation, the node x remains

the root of the subtree. However, in order to make sure that

keys are correctly ordered, the data records corresponding to

X and y must be interchanged. Similar remarks apply to double

rotation. To rebalance a node x, use the following procedure.

For now we will leave the parameter y unspecified; its choice will

be explained later.
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?rocedur_e BALANCE (x);
begin c;oinmen,t assuming p (x) i Ia,l-a],

modify the tree so that p (x) e Ia,l-a];
without loss of generality assume p(x)<a;
let y be the right child of x;
ijE p(y)<Y

then perform the single rotation of Figure 1
^s^^ perform the double rotation of Figure 1
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We will say that nodes x, y, and z of Figure 1 actively participate

in the rebalancing. From now on, whenever we use the term "binary

search tree" or "bounded balance tree," we will assume that

records are stored at leaves only; moreover, each internal node

has precisely two children. It is easy to modify the algorithms

for binary search trees or bounded balance trees to reflect these

changes; we need to maintain a field at each internal node x, telling

the largest leaf which descends from x, to guide searches in the

tree.

Now assume we have a data structure V for some decomposable

problem, and we wish to add the capability of range restriction;

we will call that component of the record which is used in the

range restriction the range component.

Let U, Q, and S be the complexity functions for V. We will

assvime that S grows at least linearly. Let F be the current set

of records. We will use a special bounded balance tree T to

represent F. The tree T will be arranged according to the range

component of the keys in F; however, each node x will in addition

have a field AUX(x) which points to an instance of the original

data structure , containing all records which correspond to leaves

descending from x. This structure is, so far, much like that used

in [B78],.except that we use bounded balance trees instead of the
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much more restrictive class of trees in IB78].

Lemma 1. The space complexity of this structure is 0(S(n) log n).

Proof. Note that at any given depth in the tree, the set of

records in the auxiliary data structures is disjoint. Thus the

total space for all of them is 0(S(n)), by fact that S is at

least linear. Since there are O(log n) levels, we obtain the

bound of the lemma. I

The procedure QUERY below will perform a range-restricted

query on such a data structure.

pfoqedure QUERY(£,u,x,T)
t^qin cpnmient return the value of the query q for the

subfile^^consisting of all records whose range component
is in [£,u];

R a set of roots of disjoint subtrees whose union
is all nodes whose range component is in [-£.,u] ;

QUERY • (the response of AUX(r) to query q);
r € R

Lemma 2. The time for an execution of QUERY is 0(Q(n) log n)

Proof. Note that |R| = O(log n) and that the time to

construct R is O(log n) by standard tree searching techniques.

The bound of the lemma follows immediately. I

Again, Lemmas 1 and 2 are similar to results in [B78]. The

problem of performing an insertion in such a tree is, however,

a more difficult one, and will require us to take a more careful

look at bounded balance trees. In particular, we wish to make

sure that rotations are not done too frequently. A trick similar

to that used in [GMPR77] is useful here; we will define several
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degrees of balance, and guarantee that when a node is rebalanced

it becomes sufficiently well balanced that it does not need to be

considered for a while. (In [GMPR77] B-trees were used; for us

trees of bounded balance will be more useful.) The following

lemma will make this possible.

Lemma 3. There exist a, and y, with a' < a, which

make the following true. Let T be a subtree, rooted at a node x,

in which all nodes are a'-balanced. Suppose that x is not

a-balanced. Then after the call to BALANCE(x), all nodes

in T which actively participated in the rebalancing will be

a-balanced.

Proof sketch. Some values of a, and Y which work are

shown in Table 1. These can be verified by a tedious analysis

of inequalities for the balances of nodes x, y, and z; see the

appendix for details. |

0.05000

0.10000

0.15000

0.20000

0.25000

0.05249
0.10989
0.17191
0.23809
0.28077

0.72500

0.70000

0.67500

0.65000

0.60961

Table 1. Acceptable values for a, a', and y

Henceforth we assume we have chosen specific values for

useful to define
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6(x) = 2(a-a') ~^max(0 , p(x)- (l-ot) ,a-p (x))

Thus a node is a'-balanced iff 3(x) < 2, and a-balanced iff B(x)=0

Lemma 4. There is a constant C such that if a deletion or

insertion is made in a tree, and no rebalancing is done, then for

each node in the tree the change in B(x) rank(x) is bounded above

The proof is easy and is omitted.

We can now describe an insertion procedure for our data

structure.

procedure INSERT (w,T) ;
begin comment insert node w in T;

insert node w into T according to
its range component, thinking of T as a binary search
tree;

for each ancestor x of w
insert the record represented by w into AUX(x);

if any node x on the path from w to the root
'^^has 3(x) > 2 then

PANIC: be^in.
let X be the highest node with 3{x) > 2;
rebuild the tree rooted at x into a BB(l/3) tree;
rebuild all the auxiliary structures in the

tree rooted at x;
end;

for 'each node x on the path from w to the root do_
if. 3(x) >1 then

ROTATE: begin
BALANCE(x) ;
for each node y whose set of descendants
"TTas been changed by this call to

BALANCE

AUX(y) := a structure of type V for all
records corresponding to descendants of y;

end;
end;
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This algorithm tries to maintain 3(x) < 2, for all x in T,

by means of rotation operations. If 3(x) ever becomes greater

than 2, an emergency rebalancing takes place in block PANIC.

(Note that it is too late for rotation, since the conditions of

Lemma 3 are violated.)

Lemma 5. Suppose the average time required per insertion

in V is U(n), where n is the maximum number of records ever

present. Then the average time required by procedure INSERT

is 0(U(n) log n).

Proof. Outside of the blocks labeled PANIC and ROTATE,

the time bound is clearly satisfied. For block PANIC, note that

a single insertion must have changed 3(x) from 1 or less to more

than 2. Thus, the rank of x must, by Lemma 4, be bounded by 0(1),

so the entire block is doable in time 0(1).

For the time spent in block ROTATE, we use an accounting

argument much like that of [L78]. Let I(T) be the sum, over

all nodes x in T, of

U(n) 3(x) rank(x)

Initially I(T) is 0, since the tree is empty. Note that a

single insertion increases I(T) by at most 0(U(n)log n) since

3(x) rank(x) changes for only O(log n) nodes, and by Lemma 4

each change is 0(1). On the other hand, a ROTATE operation

at X decreases 3(x) from more than 1 to 0, by Lemma 3 and the de-
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finition of 3; hence I(T) decreases by at least U(n) rank(x); this

is (up to constant factors) a bound on the amount of time required

for the ROTATE block. Thus on the average each INSERT must cost

at most 0(U(n) log n). ®

If the original data structure V supported deletions, a

similar procedure and lemma may be produced for deletions in T.

Thus we hevei

Theorem 1. Let p be a dynanic data structure with complexity

measures U, Q, and S. Then we may produce a new structure V" with

range restriction capability whose complexity is described by

the primed functions below.

U'(n) = 0(U(n) log n)
Q'(n) = 0(Q(n) log n)
S'(n) = 0(S(n) log n)

If V supported deletions, also will.
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3. A Transformation with Guaranteed Time Bounds per Operation

Note that for nodes y and z in Figure 1, the set of descen

dants changes. Thus the auxilary structures need to be rebuilt.

Since we now wish to guarantee worst case times for individual oper

ations, we will not necessarily be able to do this all at once; we

will sometimes have to do it a little bit at a time. Until this is

complete, we must have some means for responding to queries.

This problem is somewhat reminiscent of that tackled in

[FR68]. Let A be an alphabet of 2k symbols, corresponding to

positive and negative unit vectors in each of k dimensions. Let

L be the language consisting of all strings over A which contain

equal nvimbers of positive and negative symbols in each dimension.

(L can be viewed as the set of walks in k-space, starting at the

origin, which end at the origin.) In IFR68] it is shown that

this language can be recognized in real time by one-tape Turing

machine. The construction involves maintenance of counters which

may not always be fully updated, but which are guaranteed to become

correct as the origin is approached.

In our solution, we also allow the data structure to be

only partially complete at certain points, but we guarantee that

it is maintained well enough to support queries at any time. To

do so, we provide each node x with some additional fields, as

follows.
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FLAG - This is a boolean field which is ordinarily false.
When a node plays the role of y or z in Figure 1, we set
FLAG to true to indicate that a valid AUX field is not

available. In this case, a response to a query is to be
made by adding the responses for the AUX fields of the left
and right child of x. Once AUX becomes complete, we set
FLAG to false.

L - This contains a list of all nodes which are represented
in AUX.

Bounds on space and query time like those in Lemmas 1 and 2

will still hold. However, the alert reader will notice a potential

problem with this scheme. Suppose that FLAG(x) is true. What

if when we look to the children of x, we discover that these

also have FLAG set to true and thus have AUX fields which are not

yet rebuilt from some previous rotation? Much of the remainder

of this section is devoted to this problem. Some definitions

will be useful. Say a node is unified if its FLAG field is false;

otherwise it is disunified. Define the near descendants of a node

to be the node itself and its children, grandchildren, and

great-grandchildren. Say a node is eligible for rotation, or

more briefly, eligible, if all of its near descendants are unified.

We will eliminate the problem discussed at the beginning of this

paragraph by only performing rotations at eligible nodes.

Below we present the modified algorithm INSERT. This algorithm

contains a parameter c to be chosen later. A deletion procedure may

be similarly defined; we will not present the details. By a fixup

operation at a node y we mean the following procedure; the

procedure assumes y is disunified.
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procedure FlXUP(y);
rin cpnmrient work on unifying y;u-cLn^"y ^'and y" be the children of y;

z an element of L(y') u L(y") - L(y);
add z to the data structure AUX(y);
add z to L (y) ;
if L(y') U L(y") - L(y) = ^ then FLAG(v) ;= false;

Lemma 6. The procedure FIXUP can be made to run in time

bounded by 0(1) plus the time for a single insertion in V.

Proof. The only potential problem is the calculation of

L(y') u L(y") - L(y). To do this efficiently, we associate

two new fields DIFL and DIFR with each node y; these

are pointers into the lists L(y') and L(y"),

manipulated in such a way that the union of the sublists to which

they point is L(y') u L(y") - L(y). When L(y) is set to <j), DIFL

and DIFR are set to the beginning of L(y') and L(y"). Addition

of a node to L(y) can be reflected by advancing DIFL or DIFR in L(y')

or L(y"). The details are a straightforward link manipulation

problem, and are omitted. •

Note that nodes x with 3(x) > 1 are rebalanced when

eligible. If the node has not yet become eligible by the time

3 (x) exceeds 2, we execute block PANIC and completely rebuild the

corresponding subtree by brute force. Of course, this can be

time consuming. As in the previous section, we can show that

this will happen only for nodes with rank 0(1); the proof is

somewhat more difficult, however, and is contained in the following

two lemmas. By an operation involving x we will mean an insertion

or deletion of a descendant of x.
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procedure INSERT(w,T);
begin comment insert node w in T;

insert node w in T according to its range component,
thinking of T as a binary search tree;

for each ancestor x of w do
begin

insert the record represented by w into AUX(x);
insert w into L(x);

^nd;
if any node x on the path from w to the root has B(x) > 2 then
'^PANIC; begin

let x'oe"^the highest node with 3 (x) > 2;
rebuild the tree rooted at x into a BB(l/3) tree;
rebuild all of the auxiliary structures in the tree

rooted at x;

fj^r each node x on the path from the root to w ^
if X is eligible and 3(x) > 1 thep
"^ROTATE: begin

BALANCETx) ;
each node y whose set of descendants has been changed

by this call to BALANCE do
begin

FLAG(y) true;
AUX(y) the null structure for V;
L(y) (f);

ssii
end;

each node x on the path from the root to w
^eqin

do fixup operations on the disunified near descendants
of X until either x is eligible or c fixups have
been done;

end;
end;
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Lemma 7. For every 6 > 0 we may choose c in algorithm

UPDATE so that the following holds. Let x be any node in the

tree, with r=rank(x). If we then do at least 6r operations

involving node x, and x does not actively participate in a

rebalance during this time, at the end of one of those operations

X must be eligible.

Proof. First we give some informal motivation for the

proof. The idea is to make the constant c large enough so that

enough fixups take place during the 6r operations to guarantee

that all relevant nodes are unified. A problem that arises is

that rebalancing operations on near descendants of x can work

against unification in two ways:

a) The rebalancing causes certain nodes to become
disunified.

b) The rebalancing moves some nodes toward the root,
so that the node x in the lemma may acquire new near
descendants, which may not be unified and may soon
need to be rebalanced themselves.

In order to take these problems into account, we will use an

accounting argviment.

Let S be the set of near descendants of x in T. For any

node y in T, let DlS(y) be a measure of the disunity of y,

defined by

DlS(y) = L(y') u L(y") - L(y)

where y' and y" are the children of y. Now define the cost of

X in T, denoted C(x,T), as
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C(x,T) = Z( DlS(y) + 3(y))
yeS ' ' '

where dist(x,y) is the distance from x to y and Wn=0, W2^=1R,

W2=6, and ^^=2. (For later convenience, also define W^=0.)

Note that this takes into account the amount of

reunification required for all near descendants of x, and also

takes into account the imbalance of these nodes with various

weighting factors.

We now begin the actual proof by noticing that there is a

constant such that before the sequence of 6r operations,

C(x,T) < 6, r.

This is true since | S | is at most 15, and DlS(y) and rank(y)

are bounded in size by the rank of x for all y in S.

Next we observe that any rebalancing operation on a descendant

of X cannot increase C(x,T). First, it is clear that a rebalance

operation of the sort done during PANIC cannot increase C(x,T).

Now let d=dist(x,y) and consider the ways in which a rebalancing

operation on y during statement ROTATE causes C(x,T) to change.

a) One or two children of y become disunified. This
causes their DIS value to increase, which increases
C(x,T) by at most rank(y).

b) Certain nodes move closer to y. Thus some nodes which
were not near descendants of x will be, and some which
were already near became associated with higher weighting
factors. Let denote the maximum number of nodes

which can move closer to y during a rotation, and
afterwards appear at a distance of I from y. Inspection
of the single and double rotations shows that
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^1 = 1 ^2 = 2 ^3 ==

This effect increases C(x,T) in two ways.

bl) Imbalanced nodes become associated with
higher weighting factors. The resultant
increase in C(x,T) is bounded by

2 rank(y) Z Wo.i)
£=d+l ^

b2) For each new member z of S, we must add
DIS (z); this total contribution can easily
seen to be bounded by rank(y).

c) Finally, 3(y) decreases by at least one, which decreases
C(x,T) by at least

rank(y)

Adding all of these effects, we see that the increase in C(x,T)

is bounded above by

rank(y) 1+2 Z ^£.3+ 1 "
t=d+l

It can readily be verified that the quantity in square brackets

is equal to zero for d=l, 2, or 3. Thus rebalancing does not

increase C{x,T).

Next recall that a single insertion or deletion can increase

3{y) rank(y) by at most 0(1) for any node in the tree, before any

rebalancing is performed. Thus each insertion or deletion increases

C(x,T) by at most some constant 62.
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Finally, assume for a contradiction that x was ineligible

at the end of each of the <5r operations involving x. Then during

each of these operations we must have done c fixups on near des

cendants of X. Each fixup clearly reduces C(x,T) by 1. Putting

the results obtained thus far together, we conclude that after t

operations beyond the initial tree, we have

C(x,T) < 6^r + 62^ - ct.

+ «2 «

Then the right hand side of (1) becomes 0 when t=6r; this means

that X must be eligible of the end of the fir operations, contrad

icting our assumption. •

Lemma 8. If we choose c large enough, there is a constant

M such that block PANIC is never performed for any node y with

rank(y) greater than M.

Proof. Let ? be as in Lemma 4. Choose c large enough so

that Lemma 7 holds with

2^ + 2

Suppose that at some point during the algorithm, node x has to

be balanced in block PANIC. Let r^ be rank(x) at this point.

Now recall back to the last point at which node x had 3(x) < 1

at the end of an operation; for convenience call this tQ, and

call the present point t^.
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(Note that x has not actively participated in a rotation

since t^.) Let rQ be the rank of x at tQ, and let s be the

number of insertions and deletions involving x since t^; denote these

s operations by op^^, opj. •••/ op^. Since insertions and

deletions change the rank by at most 1, during the entire interval

from tp to t^ we have

rank(x) e j^rg - s, rg + s J . (3)

Then since insertions and deletions change 3(x) by at most

r end since 3(x) has changed from at most 1 to more than

2, we conclude that

1 < ? (r^ - s) ~ s

unless s ^ Thus in any case.

(5 + l)s > r^.

Now since x did not actively participate in a rotation during op2,

0P3,..., opg_^, it must have been ineligible at the end of op^, opj,

oPg„2* by Lemma 7 and our choice of c.

s - 2 < (STq.

Now, combining (4) and (5) we obtain

6(5 + 1) s > s-2

Using (2) we thus have

j s > s-2
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so, since s is integral.

s < 3.

Finally, by (3), (4), and (6), we deduce that at the time of

PANIC,

rank(x) < tg + s

< (? +1) s + s

^ 3(? + 2).

Thus the lemma is established. |

Corollary. Each insertion and deletion can be done using

O(log n) basic operations and O(log n) insertion and deletion

operations on the original data structure.

We may finally summarize all of the results as follows.

Theorem 2. Let V be a dynamic data structure with complexity
measures U, Q, and S. Then we may produce a new structure

^1^^ restriction capability whose complexity is described

by the primed functions below.

U' (n) = 0(U(n) log n)
(n) = 0(Q{n) log n)
(n) = 0(S(n) log n)

If V supported deletions, P'also will. (Note that this theorem

is identical to Theorem 1, except that we have removed the bars from

the U' s.)
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By repeated application of this theorem we obtain the

following.

Corollary. There is a data structure for orthogonal range

queries in k dimensions with

U(n) = O(log n)

Q(n) = O(log^ n)
S(n) = 0(n log^"^ n)



Page 26

4. Some applications

The empirical cumulative distribution function problem

is a special case of range searching in which we ask for the

niimber of vectors which are less than a query vector in all

components. See [BS77], where a static structure for this

problem is presented with complexities

P (n) = S(n) = 0(n log " n)

Q(n) = O(log^ n)

The results of the previous section enable us to solve this prob-

lem dynamically in worst-case O((log n) ) time per operation.

A more interesting problem is the following. Given two vectors

V and w, say w dominates v if w?^v and w>v, where inequalities

are interpreted componentwise. Given a vector v and a set F

of vectors, say v is maximal with respect to F if there is no

W€F which dominates v. Let k be the dimension of the vectors,

k-2
and let n be the number of vectors in F. In [KLP75] an 0(n log n)

time algorithm is presented for k^3, which would tell which vectors

in F are maximal with respect to F. (For k=l the problem is

trivially 0(n), and for k=2 they give an 0(n log n) algorithm.)

In [B78] a static algorithm is presented, with complexities

P(n) = S(n) = (n log^"^ n)

Q(n) =0 (log^~^ n) ,

which tells whether an arbitrary v is maximal with respect to F.

We wish to find a dynamic structure for this task. (One could

use the static-to-dynamic transformation quoted in section 1

adding a factor of O(log n) to the total time and space IB78];
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here we will produce an algorithm with faster query times and

guaranteed times for individual updates.)) The techniques discussed
already easily yield a solution with O(log n) time per operation.

We can save a factor of O(log n) by using insights from [KLP75,B78]

Theorem 3. For k^2, there is a dynamic structure for the

maximal vector problem with complexities

U(n) = Q(n) = O(log^~^n)

S(n) = 0(n log^ ^n) .

Proof. We use induction on k. Let HEAD(v) denote the first

component of v, and let TAIL(v) denote the k-1 dimensional vector

formed by removing the first component.

Basis. For k=2, note that TAIL(v) has but a single component.

Then V is maximal if and only if

TAIL(v) > max {TAIL (w) I weF and HEAD(w) >; HEAD(v)}, and

TAIL(v) > max {TAIL(w)I weF and HEAD(w) > HEAD(v)}.

(Surprisingly, neither condition by itself is sufficient.) These

tests are simply one-dimensional range queries, so the desired

complexity bounds hold.

Inductive step. For k>2, we show the theorem holds for k

assuming it held for k-1. Note that v is maximal if and only if

both conditions below hold:

a) TAIL(v) is maximal with respect to

{TAIL(w) I weF and HEAD(w) > HEAD(v)}

b) HEAD(v) is greater than or equal to

max{HEAD(w)I WeF and TAIL(w) S TAIL(v)}



Page 28

Now (a) can be performed in the desired time bound by the

inductive hypothesis and Theorem 2; (b) is merely a (k—1)-dimensional

range query and is thus doable in the desired time bound by the

corollary to Theorem 2. B
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^ In this paper we have used trees of bounded balance to
produce a data structure for orthogonal range queries which

allows insertion, deletion, and query operations to be performed

with a guaranteed worst-case time of O(log'̂ n) for each operation.^
More significantly, we have demonstrated that range restriction

capabilities may be added to any dynamic structure with only a

factor of log n increase in time and space usage.

The constants hidden in the 0-notation are probably fairly

large. For practical applications which do not demand the

guaranteed times for individual operations. Other structures

discussed in [BF78, L78 , W78] may well be preferable.

In the course of our analysis we have come to a much deeper

understanding of the capabilities of trees of bounded balance.

This may also prove helpful in designing other algorithms.
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Appendix; Proof of Lenuna 3.

Suppose we are about to perform a rotation as in Figure 1.

= P(x)

p2 = p(y)

P3 = P(z)

(where p^ is relevant only if a double rotation is to be per

formed) . By the assumptions of lemma, we have

€ [a', a]

p2 e [a', y]

P2 e [a, 1-a']

p^ € [a', 1-a']

(single rotation)

(double rotation)

After the rotation, the new balances (call them p£, p^, and p^ )

are as shown in Table 2 INR73]. It is not hard to verify that each

quantity is monotonic in p^, P2, and p^ over the domain of interest.

The nature of the monotonicity is also shown in the table; "+"

denotes monotonic increasing,"-" denotes monotonic decreasing, and

"O" denotes independence from the p^^ in question. On the basis of

these monotonicities and the inequalities in (Al), we obtain the

last two columns of the table which tell lower and upper bounds

P2' P3-

It is now a matter of simple calculation to verify that,

for each of the choices for a, a', and y in Table 1, each quantity

in the last two columns of Table 2 lies in [a, 1-a]. (The values in



Rotation

Type

Single

Double

Variable

Monotonicit\

Value Pi. P2 P3

+ (l-pj^)p2

Pi + Cl-pj^)P2

Pi + (l-PijPjPs + + +

p"] ^ P2P3

P2^^-P3^
1 - P2P3

Bounds

Lower Upper

(2-a')a'

a' + (1-a') Y 01 + (l-a)a'

a' + d-a")^

ya

1 - (l-a')Y

a + (l-a)YO'

(l-a')2

Table 2. Description of balances after a rotation.
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Table 1 were calculated by a computer program which tried to

determine the maximum allowable value of a for a given value of

a'.) •
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