
UCLA
UCLA Electronic Theses and Dissertations

Title
Scaling Up Probabilistic Circuits for Inference Demanding Applications

Permalink
https://escholarship.org/uc/item/18c5r9hv

Author
Dang, Meihua

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/18c5r9hv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Scaling Up Probabilistic Circuits for Inference Demanding Applications

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Meihua Dang

2023



© Copyright by

Meihua Dang

2023



ABSTRACT OF THE THESIS

Scaling Up Probabilistic Circuits for Inference Demanding Applications

by

Meihua Dang

Master of Science in Computer Science

University of California, Los Angeles, 2023

Professor Guy Van den Broeck, Chair

There is a trade-off between expressiveness and tractability in generative modeling. On the

one hand, while neural-based deep generative models are extremely expressive, the ways we

can query them are limited; on the other hand, while tractable probabilistic models support

efficient computation of various probabilistic queries, scaling them up is a major challenge.

Probabilistic circuits are a tractable representation of probability distributions allowing for

exact and efficient computation of likelihoods and marginals. We study the task of scaling up

the learning of probabilistic circuits and then applying them to various applications. On the

learning front, we propose a new algorithm for learning the sparse structures of probabilistic

circuits that can significantly improve their capacity. On the application front, we further

demonstrate the expressiveness and tractability of probabilistic circuits in two downstream

applications: genetic sequence modeling and controllable language generation.

ii



The thesis of Meihua Dang is approved.

Aditya Grover

Nanyun Peng

Guy Van den Broeck, Committee Chair

University of California, Los Angeles

2023

iii



To my family

iv



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Probabilistic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 A Unifying Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Tractable Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Circuit Flows and Parameter Estimation . . . . . . . . . . . . . . . . . . . . 7

2.5 Probabilistic Circuit Structures . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Efficient Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Learning Sparse Probabilistic Circuits . . . . . . . . . . . . . . . . . . . . . 12

3.1 Motivation: Probabilistic Circuits are Effectively Sparse . . . . . . . . . . . . 12

3.2 Model Compression via Pruning . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Scalable Structure Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Density Estimation Benchmarks . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Evaluating Pruning and Growing . . . . . . . . . . . . . . . . . . . . 23

4 Modeling Genetic Variation Data . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Dataset: 1000 Genomes Project . . . . . . . . . . . . . . . . . . . . . 29

4.2.2 Baselines and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



4.2.3 Reconstructing Global Population Structure . . . . . . . . . . . . . . 30

4.2.4 Reconstructing Local Population Structure . . . . . . . . . . . . . . . 34

5 Modeling Natural Language for Controllable Generation . . . . . . . . . . 37

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Guiding Autoregressive Generation with Probabilistic Circuits . . . . . . . . 40

5.3 Experiments: Common Sense Generation . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Dataset and Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 Experiemnt Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vi



LIST OF FIGURES

2.1 A smooth and decomposable probabilistic circuit and an equivalent Bayesian

network over 4 variables X and 2 hidden variables Z with h = 2 hidden states. . 6

3.1 Histogram of parameter values for a state-of-the-art PC with 2.18M parameters

on MNIST. 95% of the parameters have close-to-zero values. . . . . . . . . . . 13

3.2 A demonstration of the pruning operation where the red edges are pruned. . . 14

3.3 A case study comparing pruning heuristics (eParam and eFlow) given instance

{X1=0, X2=1, X3=0, X4=1}. The pruned edges are dashed and parameters are

re-normalized. Compared to the likelihood computed in Figure 2.1, the changed

likelihoods are in red, showing that pruning by flows results in a less likelihood

decrease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Empirical evaluation of the pruning operation. . . . . . . . . . . . . . . . . . . . 19

3.5 A demonstration of the growing operation. Each unit is doubled, and each pa-

rameterized edge is copied 3 times: (nnew, cnew) (orange), (nnew, c) (purple), and

(n, cnew) (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Model compression via pruning and finetuning. We report the training set bpd

in terms of the number of parameters for different numbers of latent states. For

each curve, compression starts from the right and ends at the left; compression

rate is annotated next to each curve. . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Structure learning via 75% pruning, growing and finetuning. We report bpd (y-

axis) on both train (red) and test set (green) in terms of the number of latent

states (x-axis). For each curve, training starts from the top (large bpd) and ends

at the bottom (small bpd). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



4.1 Principal components analysis for models trained on the 805 dataset. The first

six axes of a single PCA applied to the test set of the 805 dataset (gray) and AGs

generated via Indep (green), Markov (brown), HMM (orange), GAN (blue),

RBM (red), Strudel (pink), and HCLT (purple). The test set contains 961

haplotypes, and each model generate 5000 haplotypes as AGs. The top three

panels plot the samples while the bottom three panels show the density plot of

these samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Distribution of haplotypic pairwise Euclidean distances within (4.2a) datasets

and between (4.2b) AG datasets and test set from 805 dataset using different

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Comparison of allele frequency between ground truth genomes from the 805 SNP

dataset and the AGs counterparts generated using Indep, Markov, GAN, RBM,

Strudel and HCLT models (a) for the whole range and (b) with a focus on low

frequencies SNPs. The plot legend σ2 refers to squared Pearson correlations

between ground truth genomes and AGs. . . . . . . . . . . . . . . . . . . . . . 34

4.4 Allele frequency comparison of corresponding SNPs between ground truth genomes

from 10K dataset and AGs counterparts generated using Indep, Markov, GAN,

RBM, Strudel and HCLT models (a) for the whole range and (b) zoomed to low

frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Linkage disequilibrium analysis. (4.5a) LD as a function of SNP distance on all

methods. (4.5b) Correlation matrices (r2) of SNPs where the lower triangular

parts are in real genomes from 10K dataset and upper triangular parts in AGs

generated by HCLT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



4.6 Linkage disequilibrium comparison. The first row plots the pairwise LD between

pairs of points from AGs vs. real test set for all models on 10K dataset. The

second row shows the respective QQ-plots, which illustrate the corresponding

quantiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Given some lexical constraint α that we want our pretrained language models

to follow in generation, the conditional distribution Pr(xt+1|x1:t, α) is often in-

tractable. We propose to control and guide the autoregressive generation process

of pre-trained LMs via tractable probabilistic models, which do support efficient

computation of Pr(xt+1|x1:t, α). . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 HMM log-likelihoods on data sampled from GPT2-large (triangles) and the corre-

sponding BLEU scores (circles) w.r.t. # of training epochs. As the HMM model

approximates GPT2-large better, the generation quality also improves. . . . . . 48

5.3 BLEU score on CommonGen (dev) for different values of w. GeLaTo achieves

SoTA performance for 0.1≤w≤0.8. . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



LIST OF TABLES

2.1 The list of major functionalities that Juice supports. Many routines benefit from

SIMD/GPU parallelization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Density estimation performance on MNIST-family datasets in test set bpd. . . 23

3.2 Character-level language modeling results on Penn Tree Bank in test set bpd. . 23

4.1 Density estimation results in 805 and 10K SNPs data. Averaged training and test

log-likelihoods and models sizes (number of parameters in the PCs) for Indep,

Markov (order is 10), HMM, CLT, Strudel, and HCLT. The bold values

highlight the best averaged test set log-likelihoods. . . . . . . . . . . . . . . . . 30

4.2 Evaluating the performance in preserving population structure using principal

component analysis. Wasserstein 2D distances between the PCA representations

of real versus generated individuals. (within, between): Wasserstein distance

between the pairwise Euclidean distances of haploid genomes within a single

dataset or between the real and generated individuals. r2: Squared Pearson

correlations between real and generated LD across all pairs of samples. We denote

Real for the testset. Bolded values indicate the best among all compared models. 32

5.1 Performance comparison of different generation methods for unsupervised and

supervised settings on the CommonGen dataset, measured by generation quality

and constraint satisfaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



ACKNOWLEDGMENTS

I am fortunate to be advised by Professor Guy Van den Broeck, who introduced me to the

field of Artificial Intelligence and has been mentoring and inspiring me ever since. Thank

you for always being considerate, valuing my thoughts no matter how naive they are, and

encouraging me to explore the unknown. I hope that one day I can be a researcher like you.

I would also like to thank every other professor who has mentored me, including my

committee members: Professor Aditya Grover, Professor Nanyun Peng, and Professor Sriram

Sankararaman. You always bring unique insights to my research and the projects would not

be successful without your guidance.

I would also like to thank all the incredible collaborators and friends in LA. Life won’t

be such colorful without you.

Lastly, I am really grateful for all the unconditional love and support from my family.

xi



VITA

2016 – 2020 B.S. (Computer Science), Nanjing University. China.

PUBLICATIONS

Honghua Zhang*, Meihua Dang*, Nanyun Peng, and Guy Van den Broeck. Tractable

Control for Auto-regressive Language Generation. In Proceedings of the 40th International

Conference on Machine Learning (ICML), 2023.

Baiting Zhu, Meihua Dang, and Aditya Grover. Scaling Pareto-Efficient Decision Making

via Offline Multi-Objective RL. In Proceedings of the 11th International Conference on

Learning Representations (ICLR), 2023.

Meihua Dang, Anji Liu, and Guy Van den Broeck. Sparse Probabilistic Circuits via

Pruning and Growing. In Advances in Neural Information Processing Systems 35 (NeurIPS),

2022.

Meihua Dang, Anji Liu, Xinzhu Wei, Sriram Sankararaman*, and Guy Van den Broeck*.

Tractable and Expressive Generative Models of Genetic Variation Data. In Proceedings of

the International Conference on Research in Computational Molecular Biology (RECOMB),

2022.

xii



CHAPTER 1

Introduction

Probabilistic circuits (PCs) are a unifying framework to abstract from a multitude of tractable

probabilistic models [VCP20, CVB20]. The key property that separates probabilistic circuits

from other deep generative models such as flow-based models [PNR21] and VAEs [KW13]

is their tractability. It enables them to answer various probabilistic queries, including

marginal probabilities, exactly and efficiently [VCL21]. Therefore, probabilistic circuits are

increasingly used in inference-demanding applications such as enforcing algorithmic fair-

ness [CFB20, CDB21], making predictions under missing data [CPC20, KCL19, LZV21],

data compression [LMB22], and anomaly detection [DMT22].

Despite the tractability of probabilistic circuits, scaling them up for generative modeling

on large real-world datasets has been a major challenge. Unlike deep neural networks with

pre-defined model architectures, probabilistic circuits rely on structure learning to learn ar-

chitectures before parameter learning. Prior structure learning approaches try to incremen-

tally improve existing structures by iteratively adding nodes and edges [LBB17, DVB20].

Such techniques cannot be easily parallelized and often suffer from poor local optimums.

Recently, another line of research also explores pre-defined probabilistic circuit architec-

tures and focuses on scaling up the model by e.g., increasing the size of latent space [SSE21,

LB21]. Although there has been significant progress in improving the scale and expressive-

ness of probabilistic circuits, however, the performance of probabilistic circuits plateaus as

the model size increases. We discover that most capacity in existing large model structures

is wasted: fully-connected parameter layers are only sparsely used.

1



In this thesis, we propose a pruning and growing algorithm to exploit the sparsity of

probabilistic circuit structures, significantly improving their expressiveness [DLB22]. As

suggested by its name, the pruning and growing algorithm consists of two operations: the

pruning operation removes unimportant sub-networks of probabilistic circuits for model com-

pression; the growing operation increases model capacity by increasing the size of the latent

space. By alternatively applying pruning and growing operations, we increase the capacity

that is meaningfully used, allowing us to significantly scale up probabilistic circuit learning.

For the software support of scaling up probabilistic circuits, we also develop the Juice

library [DKL21]. Juice is an open-source Julia package providing tools for logic and proba-

bilistic reasoning and learning based on circuit representations. It provides a range of efficient

algorithms for probabilistic inference queries, such as computing marginal probabilities and

maximum a posterior state, as well as many other advanced queries. Additionally, it sup-

ports several parameter and structure learning algorithms proposed in the recent literature.

By leveraging parallelism on GPU, Juice provides a fast implementation of circuit-based

algorithms, which makes it suitable for tackling large-scale datasets and models.

Empirically, our learner achieves state-of-the-art likelihoods on MNIST-family image

datasets and on Penn Tree Bank language data compared to the other probabilistic cir-

cuit learners and the less tractable deep generative models such as flow-based models and

variational autoencoders.

Based on the effort for scaling up probabilistic circuits, we further demonstrate their

expressiveness for generative modeling and the power of their tractability in terms of chal-

lenging probabilistic inferences on two challenging downstream applications: genetic sequence

modeling and controllable language generation [DLW22, ZDP23].

For genetic sequence modeling, we leverage probabilistic circuits for modeling genetic

sequence data and simulating artificial genomes (AGs). We present a new simulator for

artificial genomes based on probabilistic circuits, which has comparable or better perfor-

mance than the current state-of-the-art AG simulators in capturing key population genetic

2



statistics such as allele frequencies, linkage disequilibrium, pairwise haplotype distances, and

population structure, while being tractable and expressive. By capturing long-range corre-

lations and offering probabilistic inference, probabilistic circuits are particularly suitable for

modeling genetic data.

Furthermore, we demonstrate the tractability of probabilistic circuits in controllable lan-

guage generation tasks. Despite the success of autoregressive large language models in text

generation, it remains a significant challenge to generate text that satisfies complex con-

straints: sampling from the conditional distribution Pr(text|α) is intractable for even the

simplest lexical constraints α. In this part, we use tractable probabilistic models, viewed as

probabilistic circuits, to impose complex lexical constraints (denoted α) in autoregressive lan-

guage generation from large language models. Specifically, we provide token-level guidance to

autoregressive generation by computing PrTPM(xt+1|x1:t, α). With the hidden Markov model

as a running example, we (1) present an efficient dynamic programming algorithm for con-

ditioning HMMs on complex lexical constraints and (2) demonstrate the effectiveness of our

method on various constrained generation benchmarks; it achieves state-of-the-art genera-

tion quality (i.e. BLEU-4 scores) while guaranteeing 100% constraint satisfaction. This work

opens up new avenues for constrained language generation and motivates the development

of more expressive tractable probabilistic models.

This thesis is organized as follows. In Chapter 2, we introduce the basics for probabilistic

circuits and the Juice library for their efficient implementation. In Chapter 3, we describe

the pruning and growing algorithm to learn scalable and efficient probabilistic circuits. In

Chapter 4, we demonstrate the expressiveness of probabilistic circuits in the genetic sequence

modeling task, and in Chapter 5, we show the tractability of probabilistic circuits in the

controllable language generation task. Finally, we conclude in Chapter 6.

3



CHAPTER 2

Probabilistic Circuits

In this chapter, we review probabilistic circuits, a unifying framework for tractable proba-

bilistic models. Specifically, we first go through its syntax, e.g. representations; and then

semantics, namely, how tractability is guaranteed by its structural properties. Addition-

ally, we also introduce parameter estimation and several structure learning algorithms of

probabilistic circuits and finally their efficient implementations.

2.1 A Unifying Framework

Probabilistic circuits (PCs) [VCP20, CVB20] model probability distributions with a struc-

tured computation graph. It is a unified framework for a large family of tractable prob-

abilistic models (TPMs) including (1) tractable graphical models such as hidden Markov

models [RJ86], bounded tree-width graphical models [MJ00] and (2) probabilistic models

in circuit representations such as arithmetic circuits [Dar02, Dar03], sum-product networks

(SPNs) [PD11], cutset networks [RKG14], and-or search spaces [MD05], probabilistic deci-

sion graphs [JNS06] and probabilistic sentential decision diagrams [KVC14].

2.2 Representations

Notation. We use upper-case letters for random variables, e.g., X, Y , and lower-case ones

for their assignments e.g., x, y. Analogously, sets of random variables are denoted by upper-

case bold letters, e.g., X, Y, and their joint values by the corresponding lower-case ones,

4



e.g., x, y. Specifically, we use random variables Z to denote hidden variables or latent states.

Definition 1 (Probabilistic Circuit). A probabilistic circuit C := (G,θ) represents a joint

probability distribution Pr(X) over random variables X, where G is a directed acyclic graph

(DAG) representing a computational graph, also called the circuit structure; and θ are the

circuit parameters. Similar to neural networks, each node in the DAG defines a compu-

tational unit. Specifically, the DAG G consists of three types of units — input, sum, and

product. Every leaf node in G is an input unit; every inner unit n (i.e., sum or product)

receives inputs from its children in(n), and computes output, which encodes a probability

distribution Prn defined recursively as follows:

Prn(x) :=


fn(x) if n is an input unit,∏

c∈in(n) Prc(x) if n is a product unit,∑
c∈in(n) θc|n · Prc(x) if n is a sum unit,

(2.1)

where fn(x) is a univariate input distribution (e.g, Gaussian, Categorical), and θc|n denotes

the parameter that corresponds to edge (n, c) in the DAG. For every sum unit n, its input pa-

rameters sum up to one, i.e.,
∑

c∈in(n) θc|n = 1. Intuitively, a product unit defines a factorized

distribution over its inputs, and a sum unit represents a mixture over its input distributions

with weights {θc|n : c ∈ in(n)}. Finally, the probability distribution of a probabilistic circuit

(i.e., PrC) is defined as the distribution represented by its root unit r (i.e., Prr(x)), that is,

its output neuron. The size of a probabilistic circuit denoted |C| = |θ|, is the number of

parameters in C. We assume without loss of generality that a probabilistic circuit alternates

between layers of sum and product units before reaching its inputs. Figure 2.1 shows an

example of a probabilistic circuit.

5



Z1 X1

Z2 X3

X4X2

(a) An equivalent

Bayesian network over

4 variables X and 2

hidden variables Z.

.12

.279

.014
0.4

0.6

.388

.066

X1∼B(.1)X3∼B(.2)
.9.8

X1∼B(.7)X3∼B(.3)
.3.7

.48

.02

0.8

0.2

0.1

0.9

X2∼B(.6)

X4∼B(.8)

.6

.8

X2∼B(.1)
.1

X4∼B(.2)
.2

(b) A smooth and decomposable probabilistic circuit. The feedforward

computation order is from left to right;
⊙

are input Bernoulli distri-

butions,
⊗

are product units, and
⊕

are sum units; parameter values

are annotated in the box. The probability of each unit given input as-

signment {X1=0, X2=1, X3=0, X4=1} is labeled red.

Figure 2.1: A smooth and decomposable probabilistic circuit and an equivalent Bayesian

network over 4 variables X and 2 hidden variables Z with h = 2 hidden states.

2.3 Tractable Inferences

Computing the log-likelihood of a probabilistic circuit C given a sample x is equivalent to

evaluating its computation units in G in a feedforward manner following Equation 2.1. The

key property that separates probabilistic circuits from other deep probabilistic models such

as flows [DKB14] and VAEs [KW13] is their tractability, which is the ability to exactly and

efficiently answer various probabilistic queries. This thesis focuses on probabilistic circuits

that support linear time (w.r.t. model size) marginal probability computation, as they are

increasingly used in downstream applications such as data compression [LMB22] and making

predictions under missing data [KCL19], and also achieve on-par expressiveness [LMB22,

LB21, LBB17]. To support efficient marginal inference, probabilistic circuits need to be

smooth and decomposable. We first define scope ϕ(n) of a PC unit n as the set of input

variables that it depends on, and then define smoothness and decomposability as follows.

Definition 2 (Smoothness). A PC (G,θ) is smooth if for any sum node n ∈ G, its children

6



have identical scope: ∀c1, c2 ∈ in(n) : ϕ(c1) = ϕ(c2).

Definition 3 (Decomposability [DM02]). A PC (G,θ) is decomposable if for any produce

node n ∈ G, its children have disjoint scopes: ∀c1, c2 ∈ in(n), c1 ̸= c2 : ϕ(c1) ∩ ϕ(c2) = ∅.

Decomposability ensures that every product unit encodes a well-defined factorized dis-

tribution over disjoint sets of variables; smoothness ensures that the mixture components

of every sum unit are well-defined over the same set of variables. Given a smooth and

decomposable PC, querying an arbitrary marginal probability boils down to a feedforward

evaluation of its DAG as in Equation 2.1 and except that the output of every input unit tak-

ing latent variable z is 1, e.g., fn(z) = 1. Thus the computation time of marginal probability

is linear with respect to the size of the PC.

To compute maximum a posterior (MAP) queries in linear time, a PC should additionally

satisfy a structural constraint termed determinism, which is a property of the PC nodes’

support: for any PC node n, its support supp(n) is the set of complete assignments for

which the output of n is non-zero: supp(n) := {x : Prn(x) > 0}. Intuitively, the support of

a node n is the set of assignments x that activate it.

Definition 4 (Determinism [CD17]). A PC (G,θ) is deterministic if for any sum node n ∈ G,

its children have disjoint support: ∀c1, c2 ∈ in(n)(c1 ̸= c2), supp(c1) ∩ supp(c2) = ∅.

Smoothness and decomposability structure properties will be the key to guaranteeing the

effectiveness of the learning and inference algorithms introduced in the following chapters.

In this thesis, we will not utilize deterministic probabilistic circuits, but the concept of

determinism will be useful to introduce the parameter estimation algorithms in Section 2.4.

2.4 Circuit Flows and Parameter Estimation

In this section, we briefly introduce circuit flows – a computational tool that allows us to

perform parameter estimation efficiently. Later in Chapter 3, we will introduce circuit flows

7



again in the perspective of model sampling, here we first formally define circuit flows via the

definition of context.

Definition 5 (Context). Let C be a probabilistic circuit over random variables X and n

be one of its nodes. The context γn of node n denotes all joint assignments that return a

nonzero value for all nodes in a path between the root of C and n.

γn :=
⋃

p∈out(n)

γp ∩ supp(n)

where out(n) refers to the parent node of n and supp(n) := {x : Prn(x) > 0} is the support

of unit n.

Note that the context of a node is different from its support. Even if the node returns a

non-zero value for some input, its output may be multiplied by 0 at its ancestor nodes; i.e.,

such node does not contribute to the circuit output of that assignment.

We can now express circuit flows in terms of contexts. Intuitively, the context of a circuit

node is the set of all complete inputs that “activate” the node. Hence, an edge is “activated”

by an input if it is in the contexts of both nodes for that edge.

Definition 6 (Circuit Flow). Let C be a probabilistic circuit over random variables X, (n, c)

its edge, and x a joint assignment to X. The circuit flow of (n, c) given x is

Fn,c(x) = [x ∈ γn ∩ γc]. (2.2)

Given a deterministic probabilistic circuit C, for any sum node n and its child c, the asso-

ciated maximization likelihood estimation (MLE) parameter θn,c on a dataset D = {xi}Ni=1

is [KVC14]:

θn,c = Fn,c(D)/Fn(D), where Fn,c(D) :=
∑
x∈D

Fn,c(x) and Fn(D) =
∑

c∈in(n)

Fn,c(D). (2.3)

The quantity Fn,c(D) is called the aggregate circuit flow of edge (n, c) over dataset D. Intu-

itively, circuit flows count the number of samples in D that “activate” an edge.

8



If determinism is not satisfied, the MLE solution will not have a closed-form expres-

sion. Instead, we utilize Expectation-Maximization (EM) algorithm. Specifically, we first

randomly initialize the parameters θ0, and then, at each iteration t, we compute aggregated

circuit flows Fn,c(D) and Fn(D) over dataset D based on θt in the E step, and then esti-

mate new parameters via the closed-form MLE formulation θt+1
c|n = Fn,c(D)/Fn(D) in the M

step [KF09, CDB21].

2.5 Probabilistic Circuit Structures

In this section, we discuss several model architectures of probabilistic circuits.

Chow-Liu Trees. A Chow-Liu tree (CLT) [CL68] is a tree-shaped Bayesian network. The

classic Chow-Liu algorithm learns a CLT from data by running a maximum spanning tree

algorithm over a complete graph induced by the pairwise mutual information matrix over

variables as estimated from data. These MI estimates are used to compute parameters and

can be smoothed by adding a Laplace correction factor. CLTs guarantee to encode the best

tree model in terms of KL divergence with the data distribution.

Strudel. Strudel [DVB20, DVB22] learns a deterministic probabilistic circuit by first

transforming a CLT into a PC and then performing a heuristic search guided by log-

likelihoods to edit model structures.

Hidden Chow-Liu Trees. Hidden Chow-Liu trees (HCLTs) [LB21] are constructed by

adding hidden variables in CLTs. We first learn a CLT over random variable X = {Xi}Ni=1,

and then modify it through the following steps. Specifically, we first introduce a set of N

latent variables Z = {Zi}Ni=1; next we replace all observed variables in the CLT with its

corresponding latent variable (i.e., ∀i, Xi is replaced by Zi); finally, we add an edge from

every latent variable to its corresponding observed variable (i.e., ∀i, add an edge Zi → Xi).

9



Models Logic Circuits Probabilistic Circuits Pairs of Circuits

Algorithms forward & backward traversal likelihoods, marginals, MAP multiply

smooth, condition, split, merge (conditional) sampling KL-divergence

(weighted) model counting MLE/ EM parameter learning expectations

compilation, SAT hill climbing structure learning moments

Table 2.1: The list of major functionalities that Juice supports. Many routines benefit from

SIMD/GPU parallelization.

The HCLT structure is then compiled into a smooth and decomposable PC that encodes the

same probability distribution.

2.6 Efficient Implementations

We also implement the representations, inference, and learning algorithms of probabilistic

circuits as an open-source Julia package, which we name as Juice. Table 2.1 summarizes

the main compilation, reasoning, and learning functionality implemented.

Design Wemodel probabilistic circuits as linked node structures. Inference routines iterate

over the circuit forward or backward, passing results from node to node. Arbitrary inference

algorithms can be implemented by providing different lambda functions, corresponding to

different computations, to a general-purpose, optimized circuit traversal and propagation

infrastructure.

Parallel computing on CPU and GPU A linked node representation is an intuitive

data structure for circuits. However, it has the drawback that it makes computations sparse,

making it harder to leverage parallelism to speed up computation. To optimize performance

during inference and learning, we translate the circuit’s DAG into a layered computational

graph, starting with the input layer, and each layer only depending on the previous layers.

10



Since the computations on the nodes in the same layer can be cached in one large vector,

we can simultaneously parallelize our computation over the nodes in the layer on the one

hand, and training examples or inference task data on the other hand. Additionally, we

leverage Julia’s multiple dispatch to provide customized kernels to accelerate computation

on both CPUs and GPUs (using SIMD and CUDA kernels respectively). Experiments show

that CPU parallelism gives significant speed-ups, which even become an order of magnitude

faster with GPU parallelism, all using the same underlying data structures.

11



CHAPTER 3

Learning Sparse Probabilistic Circuits

This chapter introduces an algorithm to scale up the learning of probabilistic circuits, specif-

ically, we exploit the sparsity properties of tractable probabilistic models, which is also well-

characterized by their probability semantics.

We begin by reviewing the phenomenon that probabilistic models are inherently sparse

and then introduce a model pruning technique that leverages the probabilistic semantics of

parameters to learn the sparse structures. Furthermore, by incorporating a growing oper-

ation, we are able to effectively learn large yet sparse tractable probabilistic models that

achieve state-of-the-art likelihoods on image datasets as well as language modeling datasets.

3.1 Motivation: Probabilistic Circuits are Effectively Sparse

Recent advancements in PC learning and regularization [SSE21, LB21], and efficient imple-

mentations [PLV20, MVS19, DKL21] have been pushing the limits of PC’s expressiveness

and scalability such that they can even match the performance of less tractable deep gen-

erative models, including flow-based models and VAEs. However, the performance of PCs

plateaus as model size increases. This suggests that to further boost the performance of PCs,

simply scaling up the model size does not suffice and we need to better utilize the available

capacity. We discover that this might be caused by the fact that the capacity of large PCs

is wasted. As shown in Figure 3.1, most parameters in a PC with 2.18M parameters have

close-to-zero values, which have little effect on the PC distribution. Since existing PC struc-

12



0.00 0.01 0.02 0.03 0.04 0.05
Parameter Values

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge

< 0.001 (54%)

<  0.01 (76%)

 0.05 (5%)

Figure 3.1: Histogram of parameter values for a state-of-the-art PC with 2.18M parameters

on MNIST. 95% of the parameters have close-to-zero values.

tures usually have fully-connected parameter layers [LB21, RKG14], this indicates that the

parameter values are only sparsely used.

In this chapter, we propose to better exploit the sparsity of large PC models by two

structure learning primitives — pruning and growing. Specifically, the goal of the pruning

operation is to identify and remove unimportant sub-networks of a PC. This is done by quan-

tifying the importance of PC parameters w.r.t. a dataset using circuit flows, a theoretically-

grounded metric that upper bounds the drop of log-likelihood caused by pruning. Compared

to L1 regularization, the proposed pruning operator is more informed by the PC semantics,

and hence quantifies the global effects of pruning much more effectively. Empirically, the

proposed pruning method achieves a compression rate of 80-98% with at most 1% drop in

likelihood on various PCs.

The proposed growing operation increases the model size by copying its existing compo-

nents and injecting noise. In particular, when applied to PCs compressed by the pruning

operation, growing produces larger PCs that can be optimized to achieve better performance.

13



(a) PC with fully connected layers (b) PC after pruning operation

Figure 3.2: A demonstration of the pruning operation where the red edges are pruned.

Applying pruning and growing iteratively can greatly refine the structure and parameters

of a PC. Empirically, the log-likelihoods metric can improve by 2% to 10% after a few iter-

ations. Compared to existing PC learners as well as less tractable deep generative models

such as VAEs and flow-based models, our proposed method achieves state-of-the-art density

estimation results on image datasets including MNIST, EMNIST, FashionMNIST, and the

Penn Tree Bank language modeling task.

3.2 Model Compression via Pruning

Figure 3.1 shows that most parameters in a large PC are very close to zero. Given that these

parameters are weights associated with mixture (sum unit) components, the corresponding

edges and sub-circuits have little impact on the sum unit output. Hence, by pruning away

these unimportant components, it is possible to significantly reduce model size while retaining

model expressiveness. Figure 3.2b illustrates the result of pruning five (red) edges from the

PC in Figure 3.2a. Given a PC and a dataset, our goal is to efficiently identify a set of edges

to prune, such that the log-likelihood gap between the pruned PC and the original PC on

the given dataset is minimized.

14



.114

.279

.0042

0.4

0.6

.388

.02

X1∼B(.1)X3∼B(.2)
.9.8

X1∼B(.7)X3∼B(.3)
.3.7

.48

.02

0.8

0.2

0.1

1.0

X2∼B(.6)

X4∼B(.8)

.6

.8

X2∼B(.1)
.1

X4∼B(.2)
.2

(a) eParam removes the edge with θ=0.1

.147

.346

.014

0.4

0.6

.48

.066

X1∼B(.1)X3∼B(.2)
.9.8

X1∼B(.7)X3∼B(.3)
.3.7

.48

.02

1.0

0.2

0.1

0.9

X2∼B(.6)

X4∼B(.8)

.6

.8

X2∼B(.1)
.1

X4∼B(.2)
.2

(b) eFlow removes the edge with θ=0.2

Figure 3.3: A case study comparing pruning heuristics (eParam and eFlow) given instance

{X1 = 0, X2 = 1, X3 = 0, X4 = 1}. The pruned edges are dashed and parameters are re-

normalized. Compared to the likelihood computed in Figure 2.1, the changed likelihoods are

in red, showing that pruning by flows results in a less likelihood decrease.

Pruning by parameters. The parameter value statistics in Figure 3.1 suggest that a

natural criterion is to prune edges by the magnitude of their corresponding parameter. This

leads to the eParam (edge parameters) heuristic, which selects the set of edges with the

smallest parameters. However, edge parameters themselves are insufficient to quantify the

importance of inputs to a sum unit in the entire PC’s distribution. The parameters of a

sum unit are normalized to be 1 so they only contain local information about the mixture

components. Specifically, θc|n merely defines the relative importance of edge (n, c) in the

conditional distribution represented by its corresponding sum unit n, not the joint distribu-

tion of the entire PC. Figure 3.3a illustrates what happens when the edge with the smallest

parameter is pruned from the PC in Figure 2.1.

However, as shown in Figure 3.3b, pruning another edge delivers better likelihoods as it

accounts more for the “global influence” of edges on the PC’s output. This global influence is

highly related to the probabilistic “circuit flow” semantics of PCs. We will introduce circuit

flows later in this section, along with their corresponding heuristics eFlow. Before that, we

first introduce an intermediate concept based on the notion of the generative significance of

15



Algorithm 1: PC sampling
Input : a PC representing joint probability PrC(X)

Output : an instance x sampled from PrC

1 Function Sample(n)

2 if n is a an input unit then

3 fn(X)← univariate distribution of n; return sample x∼fn(X)

4 else if n is a product unit then

5 xc ← Sample(c) foreach c ∈ in(n); return Concatenate({xc}c∈in(n))

6 else n is a sum unit

7 sample an input c∗ proportional to {θc|n}c∈in(n); return Sample(c∗)

8 return Sample(r) where r is the root of PC C

probabilistic circuits.

Pruning by generative significance. A more informed pruning strategy needs to con-

sider the global impact of edges on the distribution represented by the output of the PC.

To achieve this, instead of viewing the distribution PrC in a feedforward manner following

Equation 2.1, we quantify the significance of a unit or edge by the probability that it will be

“activated” when drawing samples from the PC. Indeed, if the presence of an edge is hardly

ever relevant to the generative sampling process, removing it will not significantly affect the

PC’s distribution.

Algorithm 1 shows how to draw samples from a PC distribution through a recursive

implementation: (1) for an input unit n defined on variable X (line 3), the algorithm ran-

domly samples value x according to its input univariate distribution; (2) for a product unit

(line 5), by decomposability its children have disjoint scope, thus we draw samples from all

input units and then concatenate the samples together; (3) for a sum unit n (line 7), by

smoothness its children have identical scope, thus we first randomly sample one of its input

units according to the categorical distribution defined by sum parameters {θc|n : c ∈ in(n)},

and then sample from this input unit recursively. Besides actually drawing samples from the

16



PC, we can also compute the probability that n will be visited during the sampling process.

This provides a good measure of the importance of unit n to the PC distribution as a whole,

which we define as the top-down probability.

Definition 7 (Top-down Probability). The top-down probability of each unit n in a PC

with parameters θ is defined recursively as follows, assuming alternating sum and product

layers:

q(n;θ) :=


1 if n is the root unit,∑

m∈out(n) q(m;θ) if n is a sum unit,∑
m∈out(n) θn|m · q(m;θ) if n is a product unit,

where out(n) are the units that take n as input in the feedforward computation. Moreover,

the top-down probability of a sum edge (n, c) is defined as q(n, c;θ) = θc|n · q(n;θ).

The top-down probability of the root is always 1; a product unit passes its top-down

probability to all its inputs, and a sum unit distributes its top-down probability to its inputs

proportional to the corresponding edge weights. Therefore, the top-down probability of a

non-root unit is summing over all probabilities it receives from its outputs.

The top-down probability of all PC units and sum edges can be computed in a single

backward pass over the PC’s computation graph. Following the intuition that the top-down

probability defines the probability that units will be visited during the sampling process,

pruning edges with the smallest top-down probability constitutes a reasonable pruning strat-

egy.

Pruning by circuit flows. The top-down probability q(n;θ) represents the probability

of reaching unit n in an unconditional random sampling process. Despite its ability to

capture global information of PC parameters, the top-down probability is not tailored to a

specific dataset. Therefore, to further utilize the dataset information, we can measure the

17



probability of reaching certain units/edges in the sampling process conditioning on some

instance x being sampled. To bridge this gap, we define circuit flow as a sample-dependent

version of the top-down probability.

Definition 8 (Circuit Flow1). For a given PC with parameters θ and example x, the circuit

flow of unit n on example x is the probability that n will be visited during the sampling

procedure conditioned on x being sampled. This can be computed recursively as follows,

assuming alternating sum and product layers:

Fn(x) =


1 if n is the root unit,∑

m∈out(n) Fm(x) if n is a sum unit,∑
m∈out(n)

θn|m·Prn(x)
Prm(x)

· Fm(x) if n is a product unit.

Similarly, the edge flow Fn,c(x) on sample x is defined by Fn,c(x) = θc|n · Prc(x)/Prn(x) ·

Fn(x). We further define Fn,c(D) =
∑

x∈D Fn,c(x) as the aggregate edge flow over dataset

D.

Effectively, we can think of θxn|m := θn|m · Prn(x)/Prm(x) as the posterior probability

of component n in the mixture of sum unit m conditioned on observing sample x. Then,

circuit flow is the top-down probability under this θx reparameterization of the circuit:

Fn(x) = q(n;θx) and Fn,c(x) = q(n, c;θx).

Circuit flow Fn(x) defines the probability of reaching unit n in the top-down sampling

procedure of Algorithm 1, given that the sampled instance is x. Therefore, edge flow Fn,c(x)

is a natural metric of the importance of edge (n, c) given x. Intuitively, the aggregate circuit

flow measures how many expected samples “flow” through certain edges. We write eFlow

to refer to the heuristic that prunes edges with the smallest aggregate circuit flow.

1We also introduce “circuit flow” or “expected circuit flow” in the context of parameter learning [CDB21,
LB21, DVB20] in Chapter 2, without observing the connection to sampling. We contribute its more intuitive
sampling semantics here.

18



0 40 80
Pruning %

120

110

100

Lo
g-

lik
el

ih
oo

ds eRand
eFlow
eParams

(a) Comparison of heuristics eRand, eParam,

and eFlow. Heuristic eFlow can prune up to

80% of the parameters without much loglikelihoods

decrease.

0.0 0.5 1.0
Parameter Values

0.00

0.05

0.10

0.15

Pe
rc

en
ta

ge

Init PC
After Prune

(b) Histogram of parameters before (the same

as in Figure 3.1) and after pruning. The pa-

rameter values take higher significance after

pruning.

Figure 3.4: Empirical evaluation of the pruning operation.

Empirical Analysis. Figure 3.4a compares the effect of pruning heuristics eParam,

eFlow, as well as an uninformed strategy, prune randomly, which we denote as eRand.

It shows that both eParam and eFlow are reasonable pruning strategy, however, as we

increase the percentage of pruned parameters, eFlow has less log-likelihoods drop com-

pared with eParam. Using eFlow heuristics we can pruning up to 80% of the parameters

without much log-likelihoods drop. As shown in Figure 3.4b, the parameter distribution is

more balanced after pruning compared to Figure 3.1, indicating a higher significance of each

edge. Section 3.4 will provide more empirical results.

3.3 Scalable Structure Learning

If we treat PCs as hierarchical mixtures of components, pruning can be regarded as an im-

plicit structure learning step that removes the “unimportant” components for each mixture.

However, since pruning only decreases model capacity, it is impossible to get a more expres-

sive PC than the original one. To mitigate this problem, we propose a growing operation to

increase the capacity of a PC by introducing more components for each mixture. Pruning

19



(a) PC before growing operation

n𝚗𝚎𝚠

c𝚗𝚎𝚠c

n

(b) PC after growing operation.

Figure 3.5: A demonstration of the growing operation. Each unit is doubled, and each

parameterized edge is copied 3 times: (nnew, cnew) (orange), (nnew, c) (purple), and (n, cnew)

(green).

and growing together define a scalable structure learning algorithm for PCs.

Growing. Growing is an operator that increases model size by copying its existing com-

ponents and injecting noise. As shown in Figure 3.5, the growing operation is applied to

units, edges, and parameters respectively: (1) for units, growing operates on every PC unit

n and creates another copy nnew; (2) for edges, the sum edge (n, c) from the original PC

(Figure 3.5a) are copied three times to the grown PC (Figure 3.5b): from new parent to

new child (nnew, cnew), from old parent to new child (n, cnew), and from new parent to old

child (nnew, c); product edges are added to connect the copied version of a product unit and

its copied inputs; (3) a new parameter θnewc|n is a noisy copy of an old parameter θc|n, that is

θnewc|n ← ϵ · θc|n where ϵ ∼ N (1, σ2) and σ2 controls the Gaussian noise variance. Gaussian

noise is added to the copied parameters to ensure that after we apply the growing opera-

tion, parameter learning algorithms can find diverse parameters for different copies. After a

growing operation, the PC size is 4 times the original PC size.

Structure Learning through Pruning and Growing. The proposed pruning and grow-

ing algorithms can be applied iteratively to refine the structure and parameters of an initial

20



PC. Specifically, since the growing operator increases the number of PC parameters by a

factor of 4, applying growing after pruning 75% of the edges from an initial PC keeps the

number of parameters unchanged. We propose a joint structure and parameter learning al-

gorithm for PCs that uses these two operations. Specifically, starting from an initial PC, we

apply 75% pruning, growing, and parameter learning iteratively until convergence. We utilize

HCLTs [LB21] as initial PC structure as it has the state-of-the-art likelihood performance.

Note that this structure learning pipeline can be applied to any PC structure.

Parameter Estimation. We use a stochastic mini-batch version of Expectation-Maximization

optimization [CFB20]. Specifically, at each iteration, we draw a mini-batch of samples DB,

compute aggregated circuit flows Fn,c(DB) and Fn(DB) of these samples (E-step), and then

compute new parameter θnewc|n = Fn,c(DB)/Fn(DB). The parameters are then updated with

learning rate α: θt+1 ← αθnew + (1 − α)θt (M-step). Empirically this approach converges

faster and is better regularized compared to full-batch EM.

3.4 Experiments

We now evaluate our proposed method pruning and growing on two different sets of den-

sity estimation benchmarks: (1) the MNIST-family image generation datasets including

MNIST [LCB10], EMNIST [CAT17], and FashionMNIST [XRV17]; (2) the character-level

Penn Tree Bank language modeling task [MMS93].

Section 3.4.1 first reports the best results we get on image datasets and language modeling

tasks via the structure learning procedure proposed in Section 3.3. Section 3.4.2 then shows

the effect of pruning and growing operations via two detailed experimental settings. It

studies two different constrained optimization problems: finding the smallest PC for a given

likelihood via model compression and finding the best PC of a given size via structure

learning.

21



Settings. For all experiments, we use hidden Chow-Liu Trees (HCLTs) [LB21] with the

number of latent states in {16, 32, 64, 128} as initial PC structures. We train the param-

eters of PCs with stochastic mini-batch EM (cf. Section 3.3). We perform early stopping

and hyperparameter search using a validation set and report results on the test set. We

use mean test set bits-per-dimension (bpd) as the evaluation criteria, where bpd(D, C) =

−LL(D, C)/(log(2) ·m) and m is the number of features in dataset D.

3.4.1 Density Estimation Benchmarks

Image Datasets. The MNIST-family datasets contain gray-scale pixel images of size

28 × 28 where each pixel takes values in [0, 255]. We split out 5% of training data as a

validation set. We compare with two competitive PC learning algorithms: HCLT [LB21]

and RatSPN [PVS20], one flow-based model: IDF [HPV19], and three VAE-based methods:

BitSwap [KAH19], BB-ANS [TBB18], and McBits [RUS21]. For a fair comparison, we im-

plement RatSPN structures ourselves and use the same training pipeline and EM optimizer

as our proposed method. Note that EinsumNet [PLV20] also uses RatSPN structures but

with a PyTorch implementation so its comparison is subsumed by comparison with RatSPN.

All 7 methods are tested on MNIST, 4 splits of EMNIST and FashionMNIST. As shown in

Table 3.1, the best results are bold. We see that our proposed method significantly outper-

forms all other baselines on all datasets, and establishes new state-of-the-art results among

PCs, flows, and VAE models.

Language Modeling Task. We use the Penn Tree Bank dataset with standard processing

from [MSD12], which contains around 5M characters and a character-level vocabulary size

of 50. The data is split into sentences with a maximum sequence length of 288. We compare

with three competitive normalizing-flow-based models: Bipartite flow [TVA19] and latent

flows [ZR19] including AF/SCF and IAF/SCF, since they are the only comparable work

with non-autoregressive language modeling. As shown in Table 3.2, the proposed method

22



Table 3.1: Density estimation performance on MNIST-family datasets in test set bpd.

Dataset Sparse PC (ours) HCLT RatSPN IDF BitSwap BB-ANS McBits

MNIST 1.14 1.20 1.67 1.90 1.27 1.39 1.98

EMNIST(MNIST) 1.52 1.77 2.56 2.07 1.88 2.04 2.19

EMNIST(Letters) 1.58 1.80 2.73 1.95 1.84 2.26 3.12

EMNIST(Balanced) 1.60 1.82 2.78 2.15 1.96 2.23 2.88

EMNIST(ByClass) 1.54 1.85 2.72 1.98 1.87 2.23 3.14

FashionMNIST 3.27 3.34 4.29 3.47 3.28 3.66 3.72

Table 3.2: Character-level language modeling results on Penn Tree Bank in test set bpd.

Dataset Sparse PC (ours) Bipartite flow [TVA19] AF/SCF [ZR19] IAF/SCF [ZR19]

Penn Tree Bank 1.35 1.38 1.46 1.63

outperforms all three baselines.

3.4.2 Evaluating Pruning and Growing

What is the Smallest PC for the Same Likelihood? We evaluate the ability of

pruning based on circuit flows to do effective model compression by iteratively pruning

a k-fraction of the PC parameters and then fine-tuning them until the final training log-

likelihood does not decrease by more than 1%. Specifically, we take pruning percentage k

from {0.05, 0.1, 0.3}. As shown in Figure 3.6, we can achieve a compression rate of 80-98%

with negligible performance loss on PCs. Besides, by fixing the number of latent parameters

(x-axis) and comparing bpp across different numbers of latent states (legend), we discover

that compressing a large PC to a get smaller PC yields better likelihoods compared to

directly training an HCLT with the same number of parameters from scratch. This can be

explained by the sparsity of compressed PC structures, as well as a smarter way of finding

good parameters: learning a better PC with larger size and compressing it down to a smaller

23



one.

104 105 106

# Parameters

1.1

1.2

Tr
ai

n 
bp

d 0.88

0.91

0.95
0.98

mnist

105 106

# Parameters

1.6

1.8 0.81

0.86

0.93
0.95

emnist_mnist

105 106

# Parameters

1.6

1.8
0.81

0.91

0.93
0.97

emnist_letters

105 106

# Parameters

1.6

1.8

0.81

0.91

0.93
0.97

emnist_balanced

104 105 106

# Parameters

1.6

1.8

0.88

0.91

0.93
0.3

emnist_byclass

104 105 106 107

# Parameters

3.2

3.4
0.88

0.91

0.96
0.97

fashionmnist
latents

16
32
64
128

Figure 3.6: Model compression via pruning and finetuning. We report the training set bpd

in terms of the number of parameters for different numbers of latent states. For each curve,

compression starts from the right and ends at the left; compression rate is annotated next

to each curve.

What is the Best PC for the Same Size? We evaluate structure learning that combines

pruning and growing as proposed in Section 3.3. Starting from an initial HCLT, we iteratively

prune 75% of the parameters, grow again, and fine-tune until meeting the stopping criteria.

As shown in Figure 3.7, our method consistently improve the likelihoods of initial PCs for

different numbers of latent states among all datasets.

24



8 16 32 64 128
Latents

1.1

1.2

1.3

Bp
d

mnist

8 16 32 64 128
Latents

1.50

1.75

2.00
emnist_mnist

8 16 32 64 128
Latents

1.6

1.8

2.0
emnist_letters

8 16 32 64 128
Latents

1.75

2.00

emnist_balanced

8 16 32 64
Latents

1.6

1.8

2.0
emnist_byclass

8 16 32 64 128
Latents

3.2

3.4

fashionmnist
train
test

Figure 3.7: Structure learning via 75% pruning, growing and finetuning. We report bpd (y-

axis) on both train (red) and test set (green) in terms of the number of latent states (x-axis).

For each curve, training starts from the top (large bpd) and ends at the bottom (small bpd).

25



CHAPTER 4

Modeling Genetic Variation Data

In Chapter 3, we introduce a learning algorithm that exploits the sparsity properties of PCs

to learn large yet efficient models. In this section, we will leverage the effectiveness and

efficiency of PCs to model genetic variation data and to generate artificial genomes (AGs).

First, we propose to learn PCs that capture the long-range dependencies among Sin-

gle Nucleotide Polymorphisms (SNPs), which obtain the highest log-likelihood across SNPs

chosen across the genome and from a contiguous genomic region. Moreover, we show that

the AGs generated by PCs more accurately resemble the source data set in their patterns

of allele frequencies, linkage disequilibrium, pairwise haplotype distances, and population

structure.

4.1 Background

Generative models of genetic sequence data play a central role in population genomics [Nor19,

Wak20]. By modeling dependencies across individuals and sites, these models have empow-

ered genomic analyses such as genotype imputation [MH10], haplotype phasing [BB11], and

ancestry inference [MBI19]. Such models also form the basis for programs that simulate

artificial genomes (AGs) [Hud02, HS07, EF11, KEM16, BBG21] that, in turn, have played a

critical role in testing evolutionary hypothesis, inferring population genetic models, validat-

ing empirical results, and benchmarking methods. The ability to accurately and efficiently

simulate AGs has been important to foster reproducibility and equity in research: trained

26



models (or data simulated under the models) can be made available without restriction

thereby side-stepping privacy restrictions associated with sharing primary genetic data.

The traditional and widely used population genetic approach to simulate AGs relies on

the coalescent model [Hud83] which simulates genomes given a demographic history and

additional parameter such as mutation and recombination rates and an alternate class of

models that aim to directly approach which produces “new data from old”. The coales-

cent with recombination [GM97] describes the probability of genetic variation in chromo-

somes sampled across individuals to population genetic parameters (population size, rates

of mutation, and recombination) through latent gene genealogies along the genome (with

the genealogies varying along the genome due to recombination) [WH99]. While expressive

in principle (i.e., able to generate genetic variation AGs with realistic properties), infer-

ence under this model is computationally challenging due to the non-Markovian dependence

induced among the latent genealogies. As a result, exact computation of the likelihood func-

tion under the coalescent with recombination is intractable. This difficulty is limiting as

the ability to simulate realistic AGs depends critically on the parameters of the model, such

as the demographic history, which, in turn, need to be learned from data. This limitation

has motivated investigation into tractable approximations to the coalescent. One class of

approaches improve tractability by approximating the coalescent as a Markovian process

along the genome [MC05, MW06]. These approximations are the cornerstones of population

coalescent-based simulators [KEM16, BBG21]. An alternate class of approximations, exem-

plified by the product of approximate conditionals (PAC) model and its extensions [LS03],

aim to directly model the distribution of genetic variation without invoking a well-defined

genealogical process. These models improve tractability by imposing a Markovian assump-

tion which leads naturally to a hidden Markov model (HMM) [RJ86] (while tractable, these

models can still be computationally intensive leading to additional approximations [SS06]).

The move away from an explicit connection to a genealogical process can limit the evolution-

ary inferences from such a model. Nevertheless, the PAC models and their variants are used

27



in settings where the goal is to obtain an accurate probability model for the data distribu-

tion and have been widely used in applications such as haplotype phasing [SS06, DMZ12],

genotype imputation [HFS12, MH10], and ancestry inference [BPS12, PTP09].

Recent advances in deep learning have led to the application of deep generative models to

genetic variation [YDO21, BCK21]. While these models are more expressive than a HMM,

current deep models proposed for this task (based on GANs [GPM14], variational autoen-

coders VAEs [KW13], and RBMs [Smo86, Hin02]) are limited in important ways. First, these

models do not permit exact probabilistic inference. As a result, it is not possible to compute

likelihoods on held-out data for GANs or RBMs while VAEs only allow computation of a

lower bound. Importantly, this difficulty precludes the application of these models to tasks

such as genotype imputation (all of which involve marginalizing over the joint probability

distribution to be able to compute the probability of the observed variables or the conditional

probability of the missing variables given the observed variables). Further, these models are

challenging to learn due to the complicated cost functions that need to be optimized as a

means of learning parameters or hyperparameters. For example, training GANs involve a

minimax objective whose optimization can lead to degenerate distributions (termed mode

collapse [AAC18]). Learning VAEs requires approximately maximizing a lower bound on

the marginal likelihood while learning RBMs involves approximating the gradient of the

log-likelihood which is typically achieved by running a Markov Chain Monte Carlo sampling

algorithm [Hin02].

4.2 Experiments

In this section, we empirically demonstrate the effectiveness of PCs in terms of modeling

genome sequencing data. In order to show the generality of PC structures, we use HCLT

and Strudel as introduced in Chapter 2.

28



4.2.1 Dataset: 1000 Genomes Project

We use 2504 genomes from the 1000 Genomes Project [CFZ16] to evaluate our models and

generate artificial genomes (AGs). When analyzing global structure (Section 4.2.3), we use

a set of 805 highly differentiated SNPs from across the genome that are a subet of the SNP

set identified from Colonna et al [CAC14]. When analyzing local structure (Section 4.2.4),

we use a set of 10K SNPs drawn from a single genomic locus on chromosome 15. For all

the experiments, we apply a 0.8/0.2 train/test split to phased data. Models are trained on

the training set and evaluated on the test set. For every model, we simulate 5000 AGs and

compare them to the test set genomes.

4.2.2 Baselines and Evaluation

Baselines To benchmark our model performance in estimating density and simulating ar-

tificial genomes, we first compare it to three popular probabilistic graphical models (PGMs)

that support tractable likelihood computation: fully-factorized distributions (Indep), higher-

order Markov chain models (Markov) and non-homogeneous hidden Markov models (HMM).

In order to estimate the parameters of these models, Indep and Markov have closed-form

MLE solutions; while for HMM, we perform EM algorithm with random initialization. To

facilitate the implementation benefits of PCs, we transform all these PGMs as equivalent

PCs for efficient parameter estimation. We also compare against existing neural network

methods: (1) generative adversarial networks (GAN) and (2) Restricted Boltzmann ma-

chines (RBM) as implemented in [YDO21]. For both neural network baselines, we use the

samples generated by the corresponding authors for comparison.1

Evaluation criteria We evaluate these models using the following metrics: (1) log-likelihood

on test data to assess the capability of each model as a density estimator; (2) summaries of

1Note that [YDO21] did not do train/test splits so GAN and RBM are actually trained on train+test.

29



Table 4.1: Density estimation results in 805 and 10K SNPs data. Averaged training and test

log-likelihoods and models sizes (number of parameters in the PCs) for Indep, Markov

(order is 10), HMM, CLT, Strudel, and HCLT. The bold values highlight the best aver-

aged test set log-likelihoods.

Dataset Category Indep Markov HMM CLT Strudel HCLT

805

train LL -490.73 -433.57 -402.45 -414.68 -402.02 -387.97

test LL -491.10 -438.64 -402.50 -415.83 -407.26 -389.20

#params 1.61k 51.26k 231.10k 4.55k 77.80k 61.12k

10K

train LL -2389.69 -626.18 -1192.78 -444.06 -444.03 -282.07

test LL -2390.09 -633.14 -1194.72 -456.39 -459.61 -310.93

#params 20.0k 20461.57k 2879.26k 49.0k 2194.32k 5661.95k

AGs sampled from each model that include the top principal components that summarize the

dominant axes of variation in the samples; (3) allele frequencies at individual SNPs, which

calculate marginal probabilities and act as a one-point estimation; (4) linkage disequilibrium

at pairs of SNPs, which calculate pairwise probabilities and act as a two-point estimation.

4.2.3 Reconstructing Global Population Structure

We first compared the ability of different models to represent genetic variation across 805

SNPs sparsely sampled from across the genome. We simulate AGs with Strudel, HCLT

and all five baselines (Indep, Markov, HMM, GAN, and RBM) for comparison. We use

2504 diploid genomes (5008 haploid genomes) from the 1000 Genomes Project [CFZ16] as

our dataset, and all models are learned on 805 SNPs which are sparsely sampled from across

the genome. We tune hyper-parameters on a small split of training data as validation: we

use the order of 5 for higher-order Markov chain, and hidden states of 16 for HCLT and

HMM.

Table 4.1 shows that Strudel and HCLT learn more accurate probabilistic models than

30



5 0 5 10
PC1

5

0

5

PC
2

Truth

5 0 5 10
PC1

5

0

5

PC
2

Indep

5 0 5 10
PC1

5

0

5

PC
2

Markov

5 0 5 10
PC1

5

0

5

PC
2

HMM

5 0 5 10
PC1

5

0

5

PC
2

GAN

5 0 5 10
PC1

5

0

5

PC
2

RBM

5 0 5 10
PC1

5

0

5

PC
2

Strudel

5 0 5 10
PC1

5

0

5

PC
2

HCLT

5 0 5
PC3

2.5

0.0

2.5

5.0

PC
4

Truth

5 0 5
PC3

2.5

0.0

2.5

5.0

PC
4

Indep

5 0 5
PC3

2.5

0.0

2.5

5.0

PC
4

Markov

5 0 5
PC3

2.5

0.0

2.5

5.0

PC
4

HMM

5 0 5
PC3

2.5

0.0

2.5

5.0

PC
4

GAN

5 0 5
PC3

2.5

0.0

2.5

5.0

PC
4

RBM

5 0 5
PC3

2.5

0.0

2.5

5.0

PC
4

Strudel

5 0 5
PC3

2.5

0.0

2.5

5.0

PC
4

HCLT

5 0 5
PC5

2.5

0.0

2.5

5.0

PC
6

Truth

5 0 5
PC5

2.5

0.0

2.5

5.0

PC
6

Indep

5 0 5
PC5

2.5

0.0

2.5

5.0
PC

6
Markov

5 0 5
PC5

2.5

0.0

2.5

5.0

PC
6

HMM

5 0 5
PC5

2.5

0.0

2.5

5.0

PC
6

GAN

5 0 5
PC5

2.5

0.0

2.5

5.0

PC
6

RBM

5 0 5
PC5

2.5

0.0

2.5

5.0

PC
6

Strudel

5 0 5
PC5

2.5

0.0

2.5

5.0

PC
6

HCLT

0 10
PC1

5

0

5

PC
2

label = Truth

0 10
PC1

label = Indep

0 10
PC1

label = Markov

0 10
PC1

label = HMM

0 10
PC1

label = GAN

0 10
PC1

label = RBM

0 10
PC1

label = Strudel

0 10
PC1

label = HCLT

0.00
0.01
0.02
0.03
0.04
0.05

0.00
0.12
0.24
0.36
0.48
0.60

0.00
0.06
0.12
0.18
0.24
0.30

0.000
0.016
0.032
0.048
0.064
0.080

0.000
0.006
0.012
0.018
0.024
0.030

0.00
0.01
0.02
0.03
0.04
0.05

0.000
0.008
0.016
0.024
0.032
0.040
0.048
0.056
0.064
0.072

0.00
0.01
0.02
0.03
0.04
0.05

5 0 5
PC3

0

5

PC
4

label = Truth

5 0 5
PC3

label = Indep

5 0 5
PC3

label = Markov

5 0 5
PC3

label = HMM

5 0 5
PC3

label = GAN

5 0 5
PC3

label = RBM

5 0 5
PC3

label = Strudel

5 0 5
PC3

label = HCLT

0.0
0.1
0.2
0.3
0.4
0.5

0.00
0.16
0.32
0.48
0.64
0.80

0.00
0.08
0.16
0.24
0.32
0.40

0.00
0.06
0.12
0.18
0.24
0.30

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.00
0.12
0.24
0.36
0.48
0.60

0.0
0.1
0.2
0.3
0.4
0.5

5 0 5
PC5

0

5

PC
6

label = Truth

5 0 5
PC5

label = Indep

5 0 5
PC5

label = Markov

5 0 5
PC5

label = HMM

5 0 5
PC5

label = GAN

5 0 5
PC5

label = RBM

5 0 5
PC5

label = Strudel

5 0 5
PC5

label = HCLT

0.0
0.1
0.2
0.3
0.4
0.5

0.00
0.08
0.16
0.24
0.32
0.40
0.48
0.56
0.64
0.72

0.00
0.08
0.16
0.24
0.32
0.40

0.00
0.08
0.16
0.24
0.32
0.40

0.00
0.03
0.06
0.09
0.12
0.15

0.0
0.1
0.2
0.3
0.4
0.5

0.00
0.12
0.24
0.36
0.48
0.60

0.00
0.12
0.24
0.36
0.48
0.60

Figure 4.1: Principal components analysis for models trained on the 805 dataset. The first

six axes of a single PCA applied to the test set of the 805 dataset (gray) and AGs generated

via Indep (green), Markov (brown), HMM (orange), GAN (blue), RBM (red), Strudel

(pink), and HCLT (purple). The test set contains 961 haplotypes, and each model generate

5000 haplotypes as AGs. The top three panels plot the samples while the bottom three

panels show the density plot of these samples.

fully-factorized distributions, Markov chains and HMMs as measured by their log-likelihood

on the test set. Additionally, the PC models are relatively lightweight: they have similar

sizes compared to the adopted Markov chains. Note that we do not compare with GAN and

31



Table 4.2: Evaluating the performance in preserving population structure using principal

component analysis. Wasserstein 2D distances between the PCA representations of real

versus generated individuals. (within, between): Wasserstein distance between the pairwise

Euclidean distances of haploid genomes within a single dataset or between the real and

generated individuals. r2: Squared Pearson correlations between real and generated LD

across all pairs of samples. We denote Real for the testset. Bolded values indicate the best

among all compared models.

Dataset Real Indep Markov HMM GAN RBM Strudel HCLT

805

PCA1-2 0.0010 0.2272 0.1666 0.0758 0.0040 0.0089 0.0065 0.0015

PCA3-4 0.0015 0.0082 0.0280 0.0588 0.0175 0.0045 0.0107 0.0020

PCA5-6 0.0013 0.0019 0.0213 0.0270 0.0043 0.0017 0.0017 0.0013

within 0.98 43.92 42.10 24.99 4.96 6.96 9.25 2.41

between 0.49 37.17 35.96 20.27 2.34 3.28 5.90 1.26

r2 0.99 0.67 0.76 0.73 0.95 0.98 0.96 0.99

10K

PCA1-2 0.0012 0.1905 0.0881 0.0946 0.0065 0.0144 0.0056 0.0029

PCA3-4 0.0014 0.1655 0.0148 0.0572 0.0018 0.0107 0.0037 0.0022

PCA5-6 0.0013 0.0889 0.0091 0.0169 0.0014 0.0063 0.0036 0.0020

within 1.41 177.86 1223.19 148.65 107.84 29.88 36.69 21.28

between 0.81 128.95 678.85 115.65 44.77 47.61 36.74 24.51

r2 0.99 0.38 0.66 0.50 0.95 0.94 0.94 0.96

RBM since they do not support tractable exact likelihood computation.

We then analyze the quality of AGs generated by all models. Figure 4.1 shows that the

AGs generated by Indep and Markov fall within the center of the variation seen in the

test samples. The AGs generated by the HMM cover some spaces of PC1 and PC2, whereas

GAN and RBM can capture most of the global structure. Regardless, AGs generated by

the GAN tend to cover a larger space than the real test data. In contrast, Strudel and

HCLT are able to capture more details: the PC1 and PC2 plots of HCLT is almost identical

32



100 200 300 400 500
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Haplotypic pairwise distance within each dataset

150 200 250 300 350 400 450 500
0.000

0.005

0.010

0.015

0.020

Haplotypic pairwise distance between datasets and ground truth
Truth
Indep
Markov
HMM
GAN
RBM
Strudel
HCLT

(a) within each dataset

100 200 300 400 500
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Haplotypic pairwise distance within each dataset

150 200 250 300 350 400 450 500
0.000

0.005

0.010

0.015

0.020

Haplotypic pairwise distance between datasets and ground truth
Truth
Indep
Markov
HMM
GAN
RBM
Strudel
HCLT

(b) between datasets and ground truth

Figure 4.2: Distribution of haplotypic pairwise Euclidean distances within (4.2a) datasets

and between (4.2b) AG datasets and test set from 805 dataset using different models.

to the ground truth, and the PC3 and PC4 are also well captured.

To quantify the accuracy of the PCs computed from the AGs, we computed Wasser-

stein distances between the 2D PCA representations of test data versus simulated data

(Table 4.2). Wasserstein distances between the 2D PCA representations of test data versus

simulated data are lower (closer to 0) for HCLT than for RBM and GAN along every pair

of dimensions. We additionally compute the pairwise differences of haploid genomes within a

single dataset or between the test dataset and AG datasets. Figure 4.2 shows the distribution

of the pairwise difference while Table 4.2 rows 4-5 show the Wasserstein distances between

these distributions. GAN, RBM, Strudel and HCLT all capture the three modes in the

distribution while the histogram of GAN and RBM are more uniform.

Next, we examined the allele frequencies in the AGs relative to the allele frequencies

in the test data. As shown in Figure 4.3, the allele frequencies of Strudel and HCLT

are more centered around the diagonal, which indicates that they yield better calibrated

probabilities.

33



0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 T
ru

th

2=0.99

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 In
de

p

2=0.99

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 M
ar

ko
v

2=0.99

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 H
M

M

2=0.99

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 G
AN

2=0.94

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 R
BM

2=0.98

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 S
tru

de
l

2=0.99

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 H
CL

T

2=0.99

(a) Comparison for the whole range.

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 T
ru

th

2=0.98

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 In
de

p

2=0.98

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 M
ar

ko
v

2=0.98

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 H
M

M

2=0.98

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

0.25

AF
 in

 G
AN

2=0.83

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 R
BM

2=0.98

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 S
tru

de
l

2=0.98

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 H
CL

T

2=0.98

(b) Comparison with a focus on low frequencies SNPs.

Figure 4.3: Comparison of allele frequency between ground truth genomes from the 805 SNP

dataset and the AGs counterparts generated using Indep, Markov, GAN, RBM, Strudel and

HCLT models (a) for the whole range and (b) with a focus on low frequencies SNPs. The

plot legend σ2 refers to squared Pearson correlations between ground truth genomes and

AGs.

4.2.4 Reconstructing Local Population Structure

To evaluate the ability of PCs to generate genome sequences across a dense set of SNPs

from a single genomic region, we applied the Strudel and HCLT learner to a region with

10K SNPs from chromosome15 in the 1000 Genomes data. The log-likelihoods in Table 4.1

show that Strudel and HCLT can still deliver expressive PC models with moderate sizes.

This suggests that these PC learners can handle high-dimensional genetic datasets and ac-

curately capture long-range correlations. Note that although HMM has similar likelihoods

as Strudel in 805 SNPs dataset, the performance is much worse in the 10K SNPs dataset,

which shows that HMM is hard to capture long-range correlations for it is a linear model.

PCA results and comparison of pairwise distances of AGs (Table 4.2) show that the AGs

generated by HCLT are most similar to the test data on the most important principal

components and in terms of pairwise distances.

34



0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 T
ru

th

2=1.0

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 In
de

p

2=1.0

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 M
ar

ko
v

2=1.0

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 H
M

M

2=1.0

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 G
AN

2=0.98

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 R
BM

2=0.9

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 S
tru

de
l

2=1.0

0.0 0.2 0.4
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 H
CL

T

2=1.0

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 T
ru

th

2=0.99

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 In
de

p

2=0.99

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

0.25

AF
 in

 M
ar

ko
v

2=0.97

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 H
M

M

2=0.99

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

AF
 in

 G
AN

2=0.93

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.0

0.1

0.2

0.3

0.4

0.5

AF
 in

 R
BM

2=0.83

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 S
tru

de
l

2=0.99

0.00 0.05 0.10 0.15 0.20
AF in Truth

0.00

0.05

0.10

0.15

0.20

AF
 in

 H
CL

T

2=0.99

Figure 4.4: Allele frequency comparison of corresponding SNPs between ground truth

genomes from 10K dataset and AGs counterparts generated using Indep, Markov, GAN,

RBM, Strudel and HCLT models (a) for the whole range and (b) zoomed to low frequencies.

100 101 102 103 104 105 106

Distance between SNPs (bp) [Left bound of distance bin]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e 

LD
 in

 b
in

Binned LD +/- 1 sem
Truth
Indep
Markov
HMM
GAN
RBM
Strudel
HCLT

(a)

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 4.5: Linkage disequilibrium analysis. (4.5a) LD as a function of SNP distance on all

methods. (4.5b) Correlation matrices (r2) of SNPs where the lower triangular parts are in

real genomes from 10K dataset and upper triangular parts in AGs generated by HCLT.

Allele frequency analysis in Figure 4.4 shows that RBM and GAN perform poorly es-

pecially for low-frequency alleles while Strudel and HCLT still show well-calibrated cor-

relations. Allele frequency analysis can be seen as a first dimension correlation analysis of

AGs. Since SNPs from a given genomic region tend to be correlated, we examined patterns

of linkage disequilibrium (LD) to assess how the pairwise short and long-range correlations

of SNPs can be captured by AGs. The pairwise LD matrix in Figure 4.5b shows that HCLTs

35



0.0 0.2 0.4 0.6 0.8 1.0
 Truth

0.0

0.2

0.4

0.6

0.8

1.0

 T
ru

th

LD Truth vs Truth
2=1.0

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

In
de

p

LD Indep vs Truth
2=0.38

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

 M
ar

ko
v

LD Markov vs Truth
2=0.66

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

 H
M

M

LD HMM vs Truth
2=0.5

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

 G
AN

LD GAN vs Truth
2=0.95

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

RB
M

LD RBM vs Truth
2=0.94

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

St
ru

de
l

LD Strudel vs Truth
2=0.94

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

HC
LT

LD HCLT vs Truth
2=0.96

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ut

h

Quantiles LD Truth vs Truth
2=1.0

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

 In
de

p

Quantiles LD Indep vs Truth
2=0.32

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

M
ar

ko
v

Quantiles LD Markov vs Truth
2=0.82

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

HM
M

Quantiles LD HMM vs Truth
2=0.59

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

GA
N

Quantiles LD GAN vs Truth
2=1.0

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

RB
M

Quantiles LD RBM vs Truth
2=1.0

0.0 0.2 0.4 0.6 0.8 1.0
Truth

0.0

0.2

0.4

0.6

0.8

1.0

 S
tru

de
l

Quantiles LD Strudel vs Truth
2=0.97

0.0 0.2 0.4 0.6 0.8 1.0
 Truth

0.0

0.2

0.4

0.6

0.8

1.0

HC
LT

Quantiles LD HCLT vs Truth
2=0.99

Figure 4.6: Linkage disequilibrium comparison. The first row plots the pairwise LD between

pairs of points from AGs vs. real test set for all models on 10K dataset. The second row

shows the respective QQ-plots, which illustrate the corresponding quantiles.

accurately capture patterns of LD in this region. Plotting LD as a function of SNP dis-

tance in Figure 4.5a demonstrates that HCLT, Strudel and HMM better capture better

correlation across shorter length scales while all models expect for HMM are accurate at

longer length scales. On the other hand, while the HMM accurately captures LD at shorter

length scales, it performs poorly across longer length scales. Correlations between real and

AGs shown in the last row of Table 4.2 and in Figure 4.6 comes to a similar conclusion that

HCLT more accurately captures the distribution of LD across SNPs within the region.

36



CHAPTER 5

Modeling Natural Language for Controllable

Generation

In Chapter 3, we introduce a scalable and efficient learning algorithm for tractable prob-

abilistic models. In this chapter, we demonstrate one usage of tractability in controllable

language generation.

We first introduce the task of controllable language generation: sampling from the con-

ditional distribution Pr(text|α) with some constraints α. Then we propose to use tractable

probabilistic models to impose lexical constraints in autoregressive text generation models.

To demonstrate the effectiveness of this framework, we use distilled hidden Markov models,

where we can efficiently compute Pr(text|α), to guide autoregressive generation from GPT2.

5.1 Background

Large pre-trained language models (LMs) [RWC19, LLG20] have achieved remarkable per-

formance on a wide range of challenging language generation tasks such as machine trans-

lation [BCB15, LPM15], summarization [LFT15, XD19] and open-domain creative genera-

tion [YPW19, TP22]. Nevertheless, many practical language generation applications require

fine-grained control of LMs to follow complex lexical constraints (e.g., given a source docu-

ment, generate a summary that contains certain keywords). The common paradigm for con-

trolling pre-trained LMs is to either finetune them on task-specific datasets or to condition

them on certain prompts. However, fine-tuning and prompting are by nature approximate

37



cold 0.50

warm 0.01

cold 0.05

warm 0.10

 Lexical Constraint   : sentence contains keyword “winter”

 Constrained Generation:

Pre-trained 
Language Model

Tractable 
Probabilistic Model

PrLM(xt+1 |x1:t) PrTPM(α |xt+1, x1:t)

intractable efficient

Minimize KL-divergence

Pr(xt+1 |α, x1:t = "the weather is")

α

cold 0.025

warm 0.001

p(xt+1 |α, x1:t)

xt+1 xt+1

xt+1

Figure 5.1: Given some lexical constraint α that we want our pretrained language models

to follow in generation, the conditional distribution Pr(xt+1|x1:t, α) is often intractable. We

propose to control and guide the autoregressive generation process of pre-trained LMs via

tractable probabilistic models, which do support efficient computation of Pr(xt+1|x1:t, α).

solutions and do not guarantee that the desired constraints are satisfied [MLP22, ZLM22].

The major difficulty of constrained language generation lies in the autoregressive nature of

LMs: they only model the next token distribution given some prefix PrLM(xt+1|x1:t), while

the conditional distribution PrLM(x1:n|α) given a constraint α as simple as, e.g., a keyword

appearing at the end of a sentence, is often intractable [Rot96].

Aside from language models based on neural architectures, one line of research in machine

learning focuses on the development of tractable probabilistic models (TPMs) [PD11, KT12,

CVB20, ZJB21]. TPMs model joint probability distributions and allow for efficient condition-

ing on various families of logical constraints [KVC14, CBD15, BDC15]. In this chapter, we

propose GeLaTo (Generating Language with Tractable Constraints), where we use TPMs

to impose lexical constraints in autoregressive text generation. Given a pre-trained autore-

gressive LM PrLM, e.g., GPT3 [BMR20], our goal is to generate text effectively following the

38



conditional distribution PrLM(x1:n|α) for arbitrary lexical constraints α. As illustrated in

Figure 5.1, our proposed framework consists of two major components: (1) we train a TPM

PrTPM via maximum likelihood estimation (MLE) on samples drawn from PrLM, which is

equivalent to minimizing the KL-divergence between PrTPM and PrLM; then (2) at gener-

ation time, we compute PrTPM(xt+1|x1:t, α) efficiently and combine it with PrLM(xt+1|x1:t)

to approximate PrLM(xt+1|x1:t, α) for reliable control. Note that we assume nothing about

the lexical constraint α as we train PrTPM, which means that the TPM does not need to be

re-trained for different types of constraints: given a trained TPM that approximates PrLM

well enough, we can use it to impose any lexical constraints α, as long as PrTPM(.|α) can be

efficiently computed.

Throughout this chapter, we use hidden Markov models (HMMs) [RJ86] as an exam-

ple TPM to demonstrate the effectiveness of GeLaTo. Specifically, (1) we show that, when

trained as probabilistic circuits [CVB20, LZB23], HMMs can approximate the GPT2-large

model fine-tuned on downstream tasks well enough and (2) we propose a dynamic program-

ming algorithm that efficiently computes conditional probabilities PrHMM(·|α), for αs that

encode constraints as conjunctive normal forms (CNFs):

(I(w1,1) ∨ · · · ∨ I(w1,d1)) ∧ · · · ∧ (I(wm,1) ∨ · · · ∨ I(wm,dm));

here each wi,j is a string of tokens, and I(wi,j) is an indicator variable denoting whether or not

wij appears in the generated text. Intuitively, constraint α requires that a set of m keywords

must appear somewhere in the generated text, in any of their inflections, where each inflec-

tion is encoded as a string of one or more tokens. We evaluate the performance of GeLaTo

on challenging constrained text generation datasets: CommonGen [LZS20], News [ZWL20],

and Yelp!Review [CZZ19]. GeLaTo not only achieves state-of-the-art generation quality but

also guarantees that the constraints are satisfied 100%; for both unsupervised and super-

vised settings, GeLaTo beats strong baselines belonging to different families of constrained

generation approaches by a large margin.

Our study demonstrates the potential of TPMs in controlling large language models and

39



motivates the development of more expressive TPMs.

5.2 Guiding Autoregressive Generation with Probabilistic Cir-

cuits

In this section, we present the general GeLaTo framework for guiding autoregressive gener-

ation with tractable probabilistic models. Throughout this paper, we use uppercase letters

Xt for random variables and lowercase letters xt for their assignment.

Let PrLM(x1:n) be the distribution of an autoregressive LM (e.g., GPT) over n tokens and

α a lexical constraint defined over X1:n; our goal is to generate from the following conditional

distribution:

PrLM(x1:n|α) =
∏

t
PrLM(xt+1|x1:t, α)

Though PrLM(xt+1|x1:t, α) is intractable, we can assume that PrTPM(xt+1|x1:t, α) can be

efficiently computed.

The first step of GeLaTo is to train our TPM model such that PrTPM approximates PrLM

as well as possible. We train the TPM model via maximum likelihood estimation (MLE) on

data drawn from PrLM, that is, we maximize

Ex1:n∼PrLM
log PrTPM(x1:n),

which effectively minimizes their KL-divergence:

DKL(PrLM ∥ PrTPM)

=Ex1:n∼PrLM
log PrLM(x1:n)−Ex1:n∼PrLM

log PrTPM(x1:n)

With the recent development of scaling up TPMs [CR20, DLB22, LZB23], we show in Sec-

tion 5.3 that it is possible to train TPMs as good enough approximations of LMs.

Now given some TPM as a good enough approximation for the LM that we want to

generate from, we combine both models for constrained generation, where the TPM is re-

40



sponsible for providing guidance on incorporating lexical constraints and LM responsible for

generating fluent texts. To derive our formulation, in addition to lexical constraint α, we

assume that there exists some “quality” constraint β such that PrTPM(|β) is even closer to

PrLM; intuitively we interpret β as some constraint characterizing the high-quality (fluent

& grammatical) sentences that are likely to be sampled from our base LM PrLM. Hence, in

order to generate a high-quality sentence satisfying some lexical constraint α, we generate

from

PrTPM(x1:n|α, β) =
∏

t
PrTPM(xt+1|x1:t, α, β);

in particular, in addition to the assumption that PrTPM(·|β) is a good enough approximation

for PrLM, we also assume the key independence assumption: α and β are conditionally

independent given x1:t+1. By applying Bayes rule, it follows from our assumptions that:

PrTPM(xt+1|x1:t, α, β)

∝ PrTPM(α|x1:t+1, β) · PrTPM(xt+1|x1:t, β)

∝ PrTPM(α|x1:t+1) · PrLM(xt+1|x1:t).

Now we examine whether our key independence assumption holds for the unsupervised

and supervised settings.

Unsupervised setting. In the unsupervised setting, we assume that the base pre-

trained LM is not fine-tuned given task-specific supervision; that is, PrLM is not fine-tuned

to generate texts satisfying α provided as input, but is possibly fine-tuned or prompted for

the purpose of domain adaptation. In this setting, there is no easy way for the “quality”

constraint β to obtain any information about the lexical constraint α and our key indepen-

dence assumption should roughly hold. In other words, satisfying the lexical constraint α

should not help or hinder the fluency of the generated sentence according to the pre-trained

LM, it merely biases what the sentence talks about. Hence for the unsupervised setting, we

generate autoregressively following the next-token distribution defined as:

p(xt+1|x1:t, α) ∝ PrTPM(α|x1:t+1) · PrLM(xt+1|x1:t). (5.1)

41



This formulation is also adopted in FUDGE [YK21] and NADO [MLP22], which train auxil-

iary models to approximate PrLM(α|x1:t+1); the key difference is that such auxiliary models

take α as input during training while our TPM training is unconditional.

Supervised setting. In this setting, we assume that the language model PrLM is fine-

tuned in a sequence-to-sequence (seq2seq) manner; that is, during training, α is explicitly

supplied to the LM together with some gold sentences: e.g., for keyword-type constraints,

the LM is fine-tuned over texts of the form “weather winter cold = the weather is cold in

winter,” where the prompt “weather winter cold = ” encodes the constraint that all words

before “=” should be used. In this case, our key independence assumption no longer holds

because PrLM is already trained to satisfy the lexical constraint α, which is provided as part

of the prefix x1:t+1. Hence for the supervised setting, we adopt an alternative formulation by

viewing PrTPM(xt+1|x1:t, α) and PrLM(xt+1|x1:t) as classifiers trained for the same task yet

with different biases; by [SBF14], if we assume that each model predicts the true logits up

to additive Gaussian noise, then the most likely logits can be found by taking a geometric

mean of the models. Hence, in the supervised setting, we generate autoregressively following

the next-token distribution defined as their weighted geometric mean [Hin02, GE18]:

p(xt+1|x1:t, α) ∝ PrTPM(xt+1|x1:t, α)
w ·PrLM(xt+1|x1:t)

1−w; (5.2)

here w ∈ (0, 1) is a hyper-parameter to be tuned.

To summarize, GeLaTo consists of two major steps: (1) distillation: we train a TPM

on samples drawn from the pre-trained LM via MLE to effectively minimize the KL diver-

gence between PrLM and PrTPM; (2) probabilistic reasoning: for each step of autoregressive

generation, we compute PrTPM(·|α) and generate from the conditional next-token distribu-

tion p(xt+1|x1:t, α) defined above. In addition to better generation quality, which we demon-

strate in Section 5.3, GeLaTo has two major advantages compared to its counterparts for

constrained generation:

• The sentences generated following p(xt+1|x1:t, α) are guaranteed to satisfy the lexi-

42



cal constraint α; in autoregressive generation, as we generate the next token xt+1, it

follows from the definition that for choices of xt+1 such that α cannot be satisfied,

PrTPM(xt+1, x1:t, α) is 0, thus p(xt+1|x1:t, α) is also 0.

• The TPM training is independent of the lexical constraint α, which is only enforced at

inference time; it immediately follows that we do not need to re-train the TPM model

no matter how α changes; on the other hand, constrained decoding approaches that

train auxiliary neural models, e.g., FUDGE and NADO, need to re-train their model

for different types of constraints.

Throughout the rest of this paper, we use hidden Markov models (HMMs) as example

TPMs to demonstrate the practicality and effectiveness of GeLaTo. In the following section,

we propose an efficient algorithm for computing PrTPM(α|x1:t+1) and PrTPM(xt+1|x1:t, α).

5.3 Experiments: Common Sense Generation

In this section, we demonstrate the effectiveness of GeLaTo on a challenging benchmark for

constrained generation: CommonGen [LZS20]. For both unsupervised and supervised set-

tings, GeLaTo achieves state-of-the-art performance in terms of various automatic evaluation

metrics including BLEU score while guaranteeing 100% constraint satisfaction.

5.3.1 Dataset and Baselines

CommonGen [LZS20] is a benchmark for constrained generation with lexical constraints:

the input of each example consists of three to five concepts (keywords) and the goal is to

generate a natural sentence using all concepts; in particular, the given keywords can appear

in any order or in any form of inflections in the generated sentences. For example, given

“car snow drive” as concepts, both “a man drives a car on a snow covered road” and “the

car drove through the snow” are considered acceptable. We also evaluate GeLaTo on the

43



Yelp!Review [CZZ19] and the News [ZWL20] datasets. Compared to CommonGen, both

Yelp!Review and News share similar formats, except that they require all keywords to be

generated in the forms as given (i.e. no inflections allowed) and to follow specific orders.

We compare GeLaTo against constrained generation approaches belonging to different

families:

InsNet [LMP22] is a class of insertion-based language models [SCT20] that generate text

by repeatedly inserting new tokens into the sequence. InsNet guarantees that the keywords

appear in the generated sentence by initializing the token sequence as the keywords, arranged

in some order.

NeuroLogic (A*esque) Decoding [LWZ21, LWW22] are search-based decoding algo-

rithms; they are inference-time algorithms like beam search and do not use any auxiliary

models. Leveraging look-ahead heuristics, NeuroLogic A*esque decoding not only optimizes

the probability of the generated sentence but also steers the generation towards satisfying

the lexical constraints.

NADO [MLP22] trains an auxiliary neural model approximating the conditional distri-

bution Pr(α|x1:t, xt+1) to guide constrained generation of the base model. As mentioned in

Section 5.2, NADO needs to re-train the auxiliary model for different types of α (e.g., ten

keywords) while GeLaTo does not need re-training.

5.3.2 Experiemnt Setup

Following the experiment setup of [LWZ21] and [MLP22], we evaluate GeLaTo under both

unsupervised and supervised settings, as described in Section 5.2.

Fine-tuning GPT2-large All baselines, except for InsNet, perform generation with GPT2-

large [RWC19] as the base model. Following prior works [MLP22], we use fine-tuned GPT2-

large as base models:

44



1. Unsupervised Setting: we perform domain adaptation (DA) by fine-tuning GPT2-

large on all gold (reference) sentences of the training split of CommonGen without

supplementing the keywords. We fine-tune the model for 1 epoch with learning rate =

1e-6.

2. Supervised Setting: following the template proposed in [LZS20], we fine-tune the

GPT2-large model in a sequence-to-sequence (seq2seq) manner; in particular we fine-

tune the model on sequences of the form “car snow drive = a car drove through snow”

for 3 epochs with learning rate = 1e-6.

Training HMMs. We use HMMs as an example TPM to enforce lexical constraint

in autoregressive generation from GPT2-large. Following Section 5.3, we sample sequences

of length 32 from the fine-tuned GPT2-large models and train HMMs with 4096 hidden

states to approximate the base model distributions; we train HMMs with the expectation-

maximization (EM) algorithm for 40 epochs, and we re-sample 0.2 million examples for

each epoch. The HMM models are trained as probabilistic circuits with the Juice.jl frame-

work [DKL21] and the training procedure leverages the latent variable distillation technique

proposed in [LZB23]; we refer readers to the original papers for more details.

Constraint Formulation. For CommonGen, as described in Section 5.3.1, the goal is to

generate a sentence using the given concepts (keywords) and we encode this lexical constraint

as a CNF. For example, given the concepts “catch frisbee snow”, the lexical constraint can

be represented as:

[I(catch) ∨ I(caught) ∨ . . . ]

∧[I(fr⊕ is⊕ bee) ∨ I(fr⊕ is⊕ bees) ∨ . . . ]

∧[I(snow) ∨ I(snow⊕ ing) ∨ I(snow⊕ ed) ∨ . . . ];

here each clause encodes the constraint that a keyword has to appear, in any form of its

inflections; each literal I(w) indicates the occurrence of a string of tokens w (i.e. keystring),

45



which represents the tokenization of a specific inflection of a keyword and ⊕ denotes the

concatenation of individual tokens. For the keywords, we use LemmInflect1 to generate their

inflections. We also enforce the constraint that each keystring, whenever it appears in the

generated text, is followed by either a space, a comma or an ⟨eos⟩ token.

Decoding. p(xt+1|x1:t, α) defined in Section 5.2 (see Eq. 5.1 and 5.2) induces the condi-

tional distribution p(x1:n|α) =
∏

t p(xt+1|x1:t, α). We adopt beam search to greedily search

for x1:n that maximizes p(x1:n|α); we experiment with different beam sizes: 16, 32, 64 and

128. Finally, we re-rank all beams generated by beam search by their log-likelihood given

by the domain-adapted GPT2-large model and select the top beam.

Metrics. We evaluate the quality of generation via human evaluation and some com-

monly used automatic metrics including ROUGE [LH03], BLEU [PRW02], CIDEr [VLP15],

and SPICE [AFJ16]. In addition to generation quality, we also measure the constraint

satisfaction performance via coverage, the average percentage of concepts presented in the

generated sentences and success rate, the percentage of generated sentences that perfectly

satisfy the constraints.

5.3.3 Results and Analysis

Main evaluation results are presented in Table 5.1. GeLaTo outperforms all baselines in

both unsupervised and supervised settings by a large margin, achieving not only significantly

higher BLEU and ROUGE scores but also 100% constraint satisfaction. The unsupervised

setting is more challenging given that the base model is never trained with task-specific

supervision; despite this, GeLaTo achieves 30.3 BLEU score in the unsupervised setting, while

NADO (the best performing baseline) obtains 30.8 BLEU score in the supervised setting.

To provide more insight into GeLaTo, we also conduct the following ablation studies.

Generation Quality vs. Approximation Performance. As discussed in Section 5.2,

1https://github.com/bjascob/LemmInflect

46



Method
Generation Quality Constraint Satisfaction

ROUGE-L BLEU-4 CIDEr Coverage Success Rate

Unsupervised dev test dev test dev test dev test dev test

InsNet [LMP22] - - 18.7 - - - 100.0 - 100.0 -

NeuroLogic [LWZ21] - 41.9 - 24.7 - 14.4 - 96.7 - -

A*esque [LWW22] - 44.3 - 28.6 - 15.6 - 97.1 - -

NADO [MLP22] - - 26.2 - - - 96.1 - - -

GeLaTo 44.3 43.8 30.3 29.0 15.6 15.5 100.0 100.0 100.0 100.0

Supervised dev test dev test dev test dev test dev test

NeuroLogic [LWZ21] - 42.8 - 26.7 - 14.7 - 97.7 - 93.9†

A*esque [LWW22] - 43.6 - 28.2 - 15.2 - 97.8 - 97.9†

NADO [MLP22] 44.4† - 30.8 - 16.1† - 97.1 - 88.8† -

GeLaTo 46.2 45.9 34.0 34.1 17.2 17.5 100.0 100.0 100.0 100.0

Table 5.1: Performance comparison of different generation methods for unsupervised and

supervised settings on the CommonGen dataset, measured by generation quality and con-

straint satisfaction.

GeLaTo assumes that distilled HMMs are good enough approximations for base models;

our hypothesis is that the better the HMM approximates the base model, the better the

generation quality. With GeLaTo, we generate from different HMM checkpoints from the

distillation procedure, and report the average log-likelihoods and BLEU scores (without re-

ranking the beams). As shown in Figure 5.2, as the training proceeds, both log-likelihood

and BLEU score improves, exhibiting a clear positive correlation. This finding motivates the

development of better tractable probabilistic models for language modeling.

Robustness of Hyperparameter w. As described in Section 5.2, for the supervised

setting, the formulation of GeLaTo involves a hyperparameter 0≤w≤ 1 that decides how

much the TPM or the base model contributes to generation. For our experiments, w is set

to 0.3 based on cross-validation results on the training set. Figure 5.3 shows the BLEU

score (after re-ranking) on the validation set of CommonGen given different values of w.

47



20

21.4

22.8

24.2

25.6

27

epochs

0 5 10 15 20 25 30 35
-92

-88

-84

-80

-76

-72

BLEU-4 Log-likelihood

Figure 5.2: HMM log-likelihoods on data sampled from GPT2-large (triangles) and the

corresponding BLEU scores (circles) w.r.t. # of training epochs. As the HMM model

approximates GPT2-large better, the generation quality also improves.

B
LE

U
-4

23

27

31

35

0.0 0.2 0.4 0.6 0.8 1.0

28.2

30.3

31.7

33.734.033.6

24.8

30.8

w

Figure 5.3: BLEU score on CommonGen (dev) for different values of w. GeLaTo achieves

SoTA performance for 0.1≤w≤0.8.

The performance of GeLaTo is very robust with respect to different choices of w, achieving

SoTA BLEU scores for 0.1≤w≤0.8.

48



CHAPTER 6

Conclusion

In recent years, deep generative models have achieved remarkable performance in generating

texts and images. Yet, the black-box issue of neural networks makes it challenging to reliably

control the behavior of deep generative models. One potential solution is to use tractable

probabilistic models, in particular, probabilistic circuits (PCs), for generative modeling.

In this thesis, we study probabilistic circuits as a tractable counterpart of deep generative

models based on neural networks. To overcome the bottleneck of scaling up PCs and adapting

them to model real-world data from different domains, 1) we develop the Juice.jl library for

efficient learning and probabilistic reasoning with PCs, and 2) we propose the “pruning

and growing” algorithm for learning sparse structures of PCs. Then, we demonstrate the

expressiveness and tractability of PCs on important real-world applications. Specifically, we

show that (1) PCs encapsulate very expressive structures for modeling genetic sequences

and (2) the tractability of PCs allows for efficient conditioning on various logical constraints,

which can be used to reliably control the behavior of large language models.

49



REFERENCES

[AAC18] Sudarshan Adiga, Mohamed Adel Attia, Wei-Ting Chang, and Ravi Tandon. “On
the tradeoff between mode collapse and sample quality in generative adversarial
networks.” In 2018 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pp. 1184–1188. IEEE, 2018.

[AFJ16] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. “Spice:
Semantic propositional image caption evaluation.” In European Conference on
Computer Vision (ECCV). Springer, 2016.

[BB11] Sharon R Browning and Brian L Browning. “Haplotype phasing: existing methods
and new developments.” Nature Reviews Genetics, 12(10):703–714, 2011.

[BBG21] Franz Baumdicker, Gertjan Bisschop, Daniel Goldstein, Graham Gower, Aaron P
Ragsdale, Georgia Tsambos, Sha Zhu, Bjarki Eldon, Castedo E Ellerman, Jared G
Galloway, et al. “Efficient ancestry and mutation simulation with msprime 1.0.”
bioRxiv, 2021.

[BCB15] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. “Neural machine
translation by jointly learning to align and translate.” In Proceedings of the 3rd
International Conference on Learning Representations (ICLR), 2015.

[BCK21] CJ Battey, Gabrielle C Coffing, and Andrew D Kern. “Visualizing population
structure with variational autoencoders.” G3, 11(1):1–11, 2021.

[BDC15] Jessa Bekker, Jesse Davis, Arthur Choi, Adnan Darwiche, and Guy Van den
Broeck. “Tractable Learning for Complex Probability Queries.” In Advances in
Neural Information Processing Systems 28 (NIPS), 2015.

[BMR20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. “Language models are few-shot learners.” Advances in Neural
Information Processing Systems 33 (NeurIPS), 2020.

[BPS12] Yael Baran, Bogdan Pasaniuc, Sriram Sankararaman, Dara G Torgerson, Christo-
pher Gignoux, Celeste Eng, William Rodriguez-Cintron, Rocio Chapela, Jean G
Ford, Pedro C Avila, et al. “Fast and accurate inference of local ancestry in Latino
populations.” Bioinformatics, 28(10):1359–1367, 2012.

[CAC14] Vincenza Colonna, Qasim Ayub, Yuan Chen, Luca Pagani, Pierre Luisi, Marc
Pybus, Erik Garrison, Yali Xue, Chris Tyler-Smith, 1000 Genomes Project Con-
sortium, Goncalo R Abecasis, Adam Auton, Lisa D Brooks, Mark A DePristo,
Richard M Durbin, Robert E Handsaker, Hyun Min Kang, Gabor T Marth, and

50



Gil A McVean. “Human genomic regions with exceptionally high levels of popu-
lation differentiation identified from 911 whole-genome sequences.” Genome Bi-
ology, 15(6):R88, 2014.

[CAT17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. “EM-
NIST: Extending MNIST to handwritten letters.” In 2017 International Joint
Conference on Neural Networks (IJCNN), 2017.

[CBD15] Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. “Probability Distribu-
tions over Structured Spaces.” In Proceedings of the AAAI Spring Symposium on
KRR, 2015.

[CD17] Arthur Choi and Adnan Darwiche. “On Relaxing Determinism in Arithmetic Cir-
cuits.” In Proceedings of the Thirty-Fourth International Conference on Machine
Learning (ICML), 2017.

[CDB21] YooJung Choi, Meihua Dang, and Guy Van den Broeck. “Group Fairness by
Probabilistic Modeling with Latent Fair Decisions.” In Proceedings of the 35th
AAAI Conference on Artificial Intelligence, 2021.

[CFB20] YooJung Choi, Golnoosh Farnadi, Behrouz Babaki, and Guy Van den Broeck.
“Learning Fair Naive Bayes Classifiers by Discovering and Eliminating Discrimi-
nation Patterns.” In Proceedings of the 34th AAAI Conference on Artificial In-
telligence, 2020.

[CFZ16] Laura Clarke, Susan Fairley, Xiangqun Zheng-Bradley, Ian Streeter, Emily Perry,
Ernesto Lowy, Anne-Marie Tassé, and Paul Flicek. “The international Genome
sample resource (IGSR): A worldwide collection of genome variation incorporating
the 1000 Genomes Project data.” Nucleic Acids Research, 45(D1):D854–D859,
09 2016.

[CL68] C. K. Chow and C. N. Liu. “Approximating discrete probability distributions
with dependence trees.” IEEE Transactions on Information Theory, 1968.

[CPC20] Alvaro Correia, Robert Peharz, and Cassio P de Campos. “Joints in random
forests.” In Advances in Neural Information Processing Systems 33 (NeurIPS),
2020.

[CR20] Justin Chiu and Alexander M Rush. “Scaling Hidden Markov Language Models.”
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020.

[CVB20] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. “Probabilistic Circuits:
A Unifying Framework for Tractable Probabilistic Models.” Technical report,
2020.

51



[CZZ19] Woon Sang Cho, Pengchuan Zhang, Yizhe Zhang, Xiujun Li, Michel Galley, Chris
Brockett, Mengdi Wang, and Jianfeng Gao. “Towards Coherent and Cohesive
Long-form Text Generation.” In Proceedings of the First Workshop on Narrative
Understanding, pp. 1–11, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics.

[Dar02] Adnan Darwiche. “A Logical Approach to Factoring Belief Networks.” In Pro-
ceedings of the 8th International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR), 2002.

[Dar03] Adnan Darwiche. “A Differential Approach to Inference in Bayesian Networks.”
Journal of the ACM, 2003.

[DKB14] Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear independent
components estimation.” arXiv preprint arXiv:1410.8516, 2014.

[DKL21] Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, and Guy Van den
Broeck. “Juice: A Julia Package for Logic and Probabilistic Circuits.” In Pro-
ceedings of the 35th AAAI Conference on Artificial Intelligence (Demo Track),
2021.

[DLB22] Meihua Dang, Anji Liu, and Guy Van den Broeck. “Sparse Probabilistic Cir-
cuits via Pruning and Growing.” In Advances in Neural Information Processing
Systems 35 (NeurIPS), 2022.

[DLW22] Meihua Dang, Anji Liu, Xinzhu Wei, Sriram Sankararaman, and Guy Van den
Broeck. “Tractable and Expressive Generative Models of Genetic Variation Data.”
In Proceedings of the International Conference on Research in Computational
Molecular Biology (RECOMB), 2022.

[DM02] Adnan Darwiche and Pierre Marquis. “A knowledge compilation map.” Journal
of Artificial Intelligence Research, 2002.

[DMT22] Marc Dietrichstein, David Major, Martin Trapp, Maria Wimmer, Dimitrios Lenis,
Philip Winter, Astrid Berg, Theresa Neubauer, and Katja Bühler. “Anomaly
Detection Using Generative Models and Sum-Product Networks in Mammography
Scans.” In MICCAI Workshop on Deep Generative Models, 2022.

[DMZ12] Olivier Delaneau, Jonathan Marchini, and Jean-François Zagury. “A linear com-
plexity phasing method for thousands of genomes.” Nature methods, 9(2):179–181,
2012.

[DVB20] Meihua Dang, Antonio Vergari, and Guy Van den Broeck. “Strudel: Learning
Structured-Decomposable Probabilistic Circuits.” In Proceedings of the 10th In-
ternational Conference on Probabilistic Graphical Models (PGM), 2020.

52



[DVB22] Meihua Dang, Antonio Vergari, and Guy Van den Broeck. “Strudel: A Fast and
Accurate Learner of Structured-Decomposable Probabilistic Circuits.” Interna-
tional Journal of Approximate Reasoning, 140:92–115, jan 2022.

[EF11] Laurent Excoffier and Matthieu Foll. “Fastsimcoal: a continuous-time coalescent
simulator of genomic diversity under arbitrarily complex evolutionary scenarios.”
Bioinformatics, 27(9):1332–1334, 2011.

[GE18] Aditya Grover and Stefano Ermon. “Boosted generative models.” In Proceedings
of the AAAI Conference on Artificial Intelligence, 2018.

[GM97] Robert C. Griffiths and Paul Marjoram. “An Ancestral Recombination Graph.”
In P. Donnelly and S. Tavare, editors, Progress in Population Genetics and Human
Evolution, IMA Volumes in Mathematics and its Applications, vol. 87, pp. 257–
270. Springer, 1997.

[GPM14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets.”
In Advances in neural information processing systems, pp. 2672–2680, 2014.

[HFS12] Bryan Howie, Christian Fuchsberger, Matthew Stephens, Jonathan Marchini, and
Gonçalo R Abecasis. “Fast and accurate genotype imputation in genome-wide
association studies through pre-phasing.” Nature genetics, 44(8):955–959, 2012.

[Hin02] Geoffrey E Hinton. “Training products of experts by minimizing contrastive di-
vergence.” Neural Computation, 2002.

[HPV19] Emiel Hoogeboom, Jorn Peters, Rianne Van Den Berg, and Max Welling. “Inte-
ger discrete flows and lossless compression.” In Advances in Neural Information
Processing Systems 32 (NeurIPS), 2019.

[HS07] Garrett Hellenthal and Matthew Stephens. “msHOT: modifying Hudson’s ms
simulator to incorporate crossover and gene conversion hotspots.” Bioinformatics,
23(4), 2007.

[Hud83] Richard R Hudson. “Properties of a neutral allele model with intragenic recom-
bination.” Theoretical Population Biology, 23(2):183–201, 1983.

[Hud02] Richard R Hudson. “Generating samples under a Wright–Fisher neutral model of
genetic variation.” Bioinformatics, 18(2):337–338, 2002.

[JNS06] Manfred Jaeger, Jens D. Nielsen, and Tomi Silander. “Learning probabilistic
decision graphs.” International Journal of Approximate Reasoning, 42(1):84–100,
2006. PGM’04.

53



[KAH19] Friso Kingma, Pieter Abbeel, and Jonathan Ho. “Bit-swap: Recursive bits-back
coding for lossless compression with hierarchical latent variables.” In Proceedings
of the 36th International Conference on Machine Learning (ICML), 2019.

[KCL19] Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den
Broeck. “On Tractable Computation of Expected Predictions.” In Advances in
Neural Information Processing Systems 32 (NeurIPS), 2019.

[KEM16] Jerome Kelleher, Alison M. Etheridge, and Gilean McVean. “Efficient Coalescent
Simulation and Genealogical Analysis for Large Sample Sizes.” PLoS Computa-
tional Biology, 12(5):1–22, 2016.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT Press, 2009.

[KT12] Alex Kulesza and Ben Taskar. “Determinantal Point Processes for Machine Learn-
ing.” Foundations and Trends® in Machine Learning, 2012.

[KVC14] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. “Proba-
bilistic Sentential Decision Diagrams.” In Proceedings of the 14th International
Conference on Principles of Knowledge Representation and Reasoning (KR), 2014.

[KW13] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes.” arXiv
preprint arXiv:1312.6114, 2013.

[LB21] Anji Liu and Guy Van den Broeck. “Tractable Regularization of Probabilistic
Circuits.” In Advances in Neural Information Processing Systems 34 (NeurIPS),
2021.

[LBB17] Yitao Liang, Jessa Bekker, and Guy Van den Broeck. “Learning the Structure of
Probabilistic Sentential Decision Diagrams.” In Proceedings of the 33rd Confer-
ence on Uncertainty in Artificial Intelligence (UAI), 2017.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit
database.” ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2,
2010.

[LFT15] Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A Smith.
“Toward Abstractive Summarization Using Semantic Representations.” In Pro-
ceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL), 2015.

[LH03] Chin-Yew Lin and Eduard Hovy. “Automatic evaluation of summaries using n-
gram co-occurrence statistics.” In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL), 2003.

54



[LLG20] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. “BART: Denoising
Sequence-to-Sequence Pre-training for Natural Language Generation, Translation,
and Comprehension.” In Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), 2020.

[LMB22] Anji Liu, Stephan Mandt, and Guy Van den Broeck. “Lossless Compression with
Probabilistic Circuits.” In Proceedings of the 10th International Conference on
Learning Representations (ICLR), 2022.

[LMP22] Sidi Lu, Tao Meng, and Nanyun Peng. “InsNet: An Efficient, Flexible, and
Performant Insertion-based Text Generation Model.” In Advances in Neural In-
formation Processing Systems 35 (NeurIPS), 2022.

[LPM15] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effective Ap-
proaches to Attention-based Neural Machine Translation.” In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2015.

[LS03] Na Li and Matthew Stephens. “Modeling linkage disequilibrium and identifying
recombination hotspots using single-nucleotide polymorphism data.” Genetics,
165(4):2213–2233, 2003.

[LWW22] Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi,
Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, and
Yejin Choi. “NeuroLogic A*esque Decoding: Constrained Text Generation with
Lookahead Heuristics.” In Proceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL), 2022.

[LWZ21] Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula,
and Yejin Choi. “NeuroLogic Decoding:(Un) supervised Neural Text Generation
with Predicate Logic Constraints.” In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL), 2021.

[LZB23] Anji Liu, Honghua Zhang, and Guy Van den Broeck. “Scaling Up Probabilis-
tic Circuits by Latent Variable Distillation.” In Proceedings of the International
Conference on Learning Representations (ICLR), 2023.

[LZS20] Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavat-
ula, Yejin Choi, and Xiang Ren. “CommonGen: A Constrained Text Generation
Challenge for Generative Commonsense Reasoning.” In Findings of the Associa-
tion for Computational Linguistics: EMNLP, 2020.

55



[LZV21] Wenzhe Li, Zhe Zeng, Antonio Vergari, and Guy Van den Broeck. “Tractable
Computation of Expected Kernels.” In Proceedings of the 37th Conference on
Uncertainty in Aritifical Intelligence (UAI), 2021.

[MBI19] Daniel Mas Montserrat, Carlos Bustamante, and Alexander Ioannidis.
“Class-conditional vae-gan for local-ancestry simulation.” arXiv preprint
arXiv:1911.13220, 2019.

[MC05] Gilean A T McVean and Niall J Cardin. “Approximating the coalescent with
recombination.” Philosophical transactions of the Royal Society of London. Series
B, Biological sciences, 360(1459):1387–93, 2005.

[MD05] Radu Marinescu and Rina Dechter. “AND/OR branch-and-bound for graphical
models.” In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI), 2005.

[MH10] Jonathan Marchini and Bryan Howie. “Genotype imputation for genome-wide
association studies.” Nature Reviews Genetics, 11(7):499–511, 2010.

[MJ00] Marina Meila and Michael I Jordan. “Learning with mixtures of trees.” Journal
of Machine Learning Research, 1(Oct), 2000.

[MLP22] Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. “Controllable Text Gen-
eration with Neurally-Decomposed Oracle.” In Advances in Neural Information
Processing Systems 35 (NeurIPS), 2022.

[MMS93] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. “Building
a Large Annotated Corpus of English: The Penn Treebank.” Computational
Linguistics, 1993.

[MSD12] Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, and Stefan
Kombrink. “Subword language modeling with neural networks.” preprint
(http://www.fit.vutbr.cz/imikolov/rnnlm/char.pdf), 2012.

[MVS19] Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Sub-
ramani, Nicola Di Mauro, Pascal Poupart, and Kristian Kersting. “Spflow: An
easy and extensible library for deep probabilistic learning using sum-product net-
works.” arXiv preprint arXiv:1901.03704, 2019.

[MW06] Paul Marjoram and Jeff D. Wall. “Fast ”coalescent” simulation.” BMC Genetics,
7(1):16, 2006.

[Nor19] Magnus Nordborg. “Coalescent theory.” Handbook of Statistical Genomics: Two
Volume Set, pp. 145–30, 2019.

56



[PD11] Hoifung Poon and Pedro Domingos. “Sum-product networks: A new deep archi-
tecture.” In 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), 2011.

[PLV20] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina,
Martin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani.
“Einsum networks: Fast and scalable learning of tractable probabilistic circuits.”
In Proceedings of the 37th International Conference on Machine Learning (ICML),
2020.

[PNR21] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed,
and Balaji Lakshminarayanan. “Normalizing flows for probabilistic modeling and
inference.” Journal of Machine Learning Research, 2021.

[PRW02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. “Bleu: a method
for automatic evaluation of machine translation.” In Proceedings of the 40th an-
nual meeting of the Association for Computational Linguistics (ACL), 2002.

[PTP09] Alkes L Price, Arti Tandon, Nick Patterson, Kathleen C Barnes, Nicholas Rafaels,
Ingo Ruczinski, Terri H Beaty, Rasika Mathias, David Reich, and Simon Myers.
“Sensitive detection of chromosomal segments of distinct ancestry in admixed
populations.” PLoS genetics, 5(6):e1000519, 2009.

[PVS20] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao,
Martin Trapp, Kristian Kersting, and Zoubin Ghahramani. “Random sum-
product networks: A simple and effective approach to probabilistic deep learning.”
In Proceedings of the 36th Conference on Uncertainty in Aritifical Intelligence
(UAI), 2020.

[RJ86] Lawrence Rabiner and Biinghwang Juang. “An introduction to hidden Markov
models.” IEEE ASSP Magazine, 3(1), 1986.

[RKG14] Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. “Cutset networks:
A simple, tractable, and scalable approach for improving the accuracy of Chow-
Liu trees.” In Joint European conference on machine learning and knowledge
discovery in databases, 2014.

[Rot96] Dan Roth. “On the hardness of approximate reasoning.” Artificial Intelligence,
1996.

[RUS21] Yangjun Ruan, Karen Ullrich, Daniel S Severo, James Townsend, Ashish Khisti,
Arnaud Doucet, Alireza Makhzani, and Chris Maddison. “Improving lossless
compression rates via monte carlo bits-back coding.” In Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.

57



[RWC19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. “Language models are unsupervised multitask learners.” OpenAI
blog, 2019.

[SBF14] Ville A Satopää, Jonathan Baron, Dean P Foster, Barbara A Mellers, Philip E
Tetlock, and Lyle H Ungar. “Combining multiple probability predictions using a
simple logit model.” International Journal of Forecasting, 2014.

[SCT20] Raymond Hendy Susanto, Shamil Chollampatt, and Liling Tan. “Lexically Con-
strained Neural Machine Translation with Levenshtein Transformer.” In Proceed-
ings of the 58th Annual Meeting of the Association for Computational Linguistics
(ACL), 2020.

[Smo86] Paul Smolensky. “Information processing in dynamical systems: Foundations of
harmony theory.” Technical report, Colorado Univ at Boulder Dept of Computer
Science, 1986.

[SS06] Paul Scheet and Matthew Stephens. “A fast and flexible statistical model for
large-scale population genotype data: applications to inferring missing genotypes
and haplotypic phase.” The American Journal of Human Genetics, 78(4):629–
644, 2006.

[SSE21] Andy Shih, Dorsa Sadigh, and Stefano Ermon. “HyperSPNs: Compact and Ex-
pressive Probabilistic Circuits.” In Advances in Neural Information Processing
Systems 34 (NeurIPS), 2021.

[TBB18] James Townsend, Thomas Bird, and David Barber. “Practical lossless compres-
sion with latent variables using bits back coding.” In Proceedings of the 6th
International Conference on Learning Representations (ICLR), 2018.

[TP22] Yufei Tian and Nanyun Peng. “Zero-shot Sonnet Generation with Discourse-level
Planning and Aesthetics Features.” In Proceedings of the 2022 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL), 2022.

[TVA19] Dustin Tran, Keyon Vafa, Kumar Agrawal, Laurent Dinh, and Ben Poole. “Dis-
crete flows: Invertible generative models of discrete data.” In Advances in Neural
Information Processing Systems 32 (NeurIPS), 2019.

[VCL21] Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck.
“A Compositional Atlas of Tractable Circuit Operations for Probabilistic Infer-
ence.” In Advances in Neural Information Processing Systems 34 (NeurIPS),
2021.

58



[VCP20] Antonio Vergari, YooJung Choi, Robert Peharz, and Guy Van den Broeck. “Prob-
abilistic circuits: Representations, inference, learning and applications.” AAAI
Tutorial, 2020.

[VLP15] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. “Cider:
Consensus-based image description evaluation.” In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2015.

[Wak20] John Wakeley. “Developments in coalescent theory from single loci to chromo-
somes.” Theoretical population biology, 133:56–64, 2020.

[WH99] Carsten Wiuf and Jotun Hein. “Recombination as a point process along se-
quences.” Theoretical Population Biology, 55(3):248–259, 1999.

[XD19] Jiacheng Xu and Greg Durrett. “Neural Extractive Text Summarization with
Syntactic Compression.” In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), 2019.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel Im-
age Dataset for Benchmarking Machine Learning Algorithms.” arXiv preprint
arXiv:1708.07747, 2017.

[YDO21] Burak Yelmen, Aurélien Decelle, Linda Ongaro, Davide Marnetto, Corentin Tal-
lec, Francesco Montinaro, Cyril Furtlehner, Luca Pagani, and Flora Jay. “Creat-
ing artificial human genomes using generative neural networks.” PLOS Genetics,
17(2):1–22, 02 2021.

[YK21] Kevin Yang and Dan Klein. “FUDGE: Controlled Text Generation With Future
Discriminators.” In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies (NAACL), 2021.

[YPW19] Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan Zhao, and Rui
Yan. “Plan-and-write: Towards better automatic storytelling.” In Proceedings of
the AAAI Conference on Artificial Intelligence, 2019.

[ZDP23] Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck.
“Tractable Control for Autoregressive Language Generation.” In Proceedings of
the 40th International Conference on Machine Learning (ICML), jul 2023.

[ZJB21] Honghua Zhang, Brendan Juba, and Guy Van den Broeck. “Probabilistic Gener-
ating Circuits.” In Proceedings of the 38th International Conference on Machine
Learning (ICML), 2021.

59



[ZLM22] Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den
Broeck. “On the paradox of learning to reason from data.” arXiv preprint
arXiv:2205.11502, 2022.

[ZR19] Zachary Ziegler and Alexander Rush. “Latent normalizing flows for discrete se-
quences.” In Proceedings of the 36th International Conference on Machine Learn-
ing (ICML), 2019.

[ZWL20] Yizhe Zhang, Guoyin Wang, Chunyuan Li, Zhe Gan, Chris Brockett, and Bill
Dolan. “POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training.” In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), pp. 8649–8670, Online,
November 2020. Association for Computational Linguistics.

60




