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2 Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, United States,
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The study of the intestinal or gut microbiome is a newer field that is rapidly gaining
attention. Bidirectional communication between gut microbes and the host can impact
numerous biological systems regulating immunity and metabolism to either promote or
negatively impact the host’s health. Habitual routines, dietary choices, socioeconomic
status, education, host genetics, medical care and environmental factors can all
contribute to the composition of an individual’s microbiome. A key environmental factor
that may cause negative outcomes is the consumption of nicotine products. The effects of
nicotine on the host can be exacerbated by poor dietary choices and together can impact
the composition of the gut microbiota to promote the development of metabolic disease
including non-alcoholic fatty liver disease. This review explores the contribution of nicotine,
poor dietary choices and other unhealthy lifestyle factors to gut dysbiosis.

Keywords: gut microbiome, gut microbiota, gut dysbiosis, nicotine, obesity, high-fat diet, nonalcoholic fatty liver
disease, e-cigarette
INTRODUCTION

There is considerable variation in microbiome composition and function across individuals. This
interindividual variability and plasticity of the intestinal microbiota has hindered efforts to identify a
“healthy”microbiota. Diversity and microbial stability are often used as key indicators of gut health
because of their inverse association with chronic disease and metabolic dysfunction (1). Reduced
microbial diversity has been shown to be associated with various disease states (1). Instability of the
gut microbiome can be caused by many factors, including infection, diet, exercise, sleep pattern,
exposure to antibiotics, and various co-morbidities. Gut dysbiosis is a broad term (2) that can be
defined as the imbalance of gut microbiota associated with an unhealthy outcome. Dysbiosis
n.org June 2021 | Volume 12 | Article 6670661
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involves the loss of beneficial microbial input or signal and an
expansion of pathogenic microbes (pathobionts). Dysbiosis is
thought to trigger pro-inflammatory effects and immune
dysregulation associated with various disease states, including
non-alcoholic steatohepatitis (NASH) (3).

In 2014, the International Scientific Association for Probiotics
and Preb io t i c s ( I SAPP) prov ided ev idence -ba sed
recommendations of strain-specific probiotics for defined
conditions (4). The microbiome has become a rising topic for the
lay public andmay hold the key to information capable of reducing
co-morbidities and preventing disease (1). Of note, some
companies market to the public the ability to analyze the
microbiome of an individual to “provide precision nutrition for
metabolic disease” (5). More research is needed, especially on the
cross-communicationbetween themicrobiomeandhost inorder to
understand the impact of the microbiome on human disease (3).

Often, the terms “microbiome” and “microbiota” are used
interchangeably. In an effort to define the terms more precisely
(6) microbiota will be used to define the assemblage of
microorganisms present in a defined environment, whereas (7),
mostly the colon, but also the upper gastrointestinal tract (8), saliva
(9), middle meatus (10), bronchial wash (11), sputum (12),
subgingival (13), and throat (14). Microbiome will refer to the
entire habitat of a host region with its surrounding environmental
conditions, including all microorganisms, bacteria, archaea, lower
and higher eukaryotes, viruses, and their genomes (6).

As will be discussed in the body of this review, fiber-depleted
diets create a condition ripe for dysbiosis. Moreover, nicotine, the
exposure to which may be increasing with the rise of electronic
cigarettes (e-cigarettes), has been shown to accentuate the effect of
diet and potentially disrupt the microbiome and promote disease.
IMPACT OF MICROBIOTA ON HEALTH

The gut is known to harbor a unique and dynamicmicrobiome as it
is exposed to constant external stimuli, including diet, infectious
agents, antibiotics and xenobiotics (15–17). Digestible and non-
digestible carbohydrates, proteins, fats, polyphenols, prebiotics and
probiotics can induce shifts in the microbiota and elicit effects on
host immunologic andmetabolicmarkers (18). There appears to be
a close relationship between the gut microbiome, health, and diet,
suggesting that improvements in health can be modulated via diet
through the microbiota.
Microbiome, Immune Dysfunction,
and Inflammation
The microbiome serves many important functions. In healthy
individuals, it confers protection from pathogenic organisms that
cause infection. For example, the microbiota produce short-
chain fatty acids (SCFAs) via fermentation of complex plant
carbohydrates, providing an energy source for colonocytes to
maintain full differentiation and regeneration (19). Furthermore,
the microbiota synthesizes essential vitamins and amino acids,
regulate fat metabolism (20, 21), and produce various small
Frontiers in Endocrinology | www.frontiersin.org 2
molecules that interact with the host environment. The
microbiome, in turn, regulates the development of the immune
system (22). For example, a healthy microbiome has an anti-
inflammatory function by inhibiting histone deacetylases in
regulatory T cells (Tregs) through G-protein coupled receptors
(GPCRs) (19).

The use of germ-free (GF) animals has provided evidence that
specific microbiota influences the immune system differently. In
1885, Pasteur first proposed the generation of animals deprived
of microorganisms to explore the relationship between microbes
and their host (22). GF animals display significant defects in the
development of primary (thymus and bone marrow) and
secondary (lymph nodes and spleen) lymphoid organs and are
associated with a decreased frequency of CD4+ and CD8+

intestinal T cell subsets. GF mice also have reduced numbers
of intraepithelial lymphocytes that express the abT cell receptor
(TCR) (22, 23). Specific bacterial populations have been linked to
specific T-cell effector subset development. For example, T helper
17 [Th17] cells, potent sources of interleukin-17 (IL-17), play a
critical role in the clearance of pathogens and the maintenance of
the mucosal barrier integrity (22). GF animals have an absence of
Th17 (22) and thus, Th17 development is believed to be dependent
on the intestinal microbiota (22). Additionally, recent studies have
shown that the adhesion of certain microbes [e.g., segmented
filamentous bacteria (SFB), Citrobacter rodentium, and
Escherichia coli O157] is necessary to trigger a Th17 cell response
in intestinal epithelial cells (24). This was shown by colonizing SFB
in adult GF mice versus standard mouse microbiota (22, 24, 25).
Colonization with SFB conferred enhanced protection compared
with GF animals after infection with the bacterial pathogen
citrobacter rodentium, a direct outcome of Th17-cell enrichment
in these animal’s intestinal microbiomes (25). Interestingly, an
exaggerated Th17 response is believed to promote autoimmune
arthritis (25, 26), such that microbial signaling and host immune
response requires a fine balance.

A unique bidirectional interaction between the mucosal immune
system and the gut microbiota allows for the avoidance of an
inappropriate immune response towards nonpathogenic microbes
while suppressing pathogenic microbes (pathobionts) (27). For
example, Bifidobacterium and lactic acid bacteria have been shown
to secrete factors that hinder inflammation, presumably via the
downregulation of interleukin-8 secretion, NF-kB dependent gene
expression, and macrophage-attracting chemokine production (28).
Furthermore, Bifidobacterium and lactic acid bacteria are associated
with the upregulation of anti-inflammatory Treg cell gene expression
(29). Some studies suggest that microbial-derived SCFAs may be
contributing to themodulationofhost immuneresponsesdirectlyvia
G-protein-coupled receptors and epigenetic mechanisms, such as
methylation activity within the promoter regions of certain genes
(30, 31).

Dysbiosis, as defined above, is believed to contribute to the
development of various immune-mediated conditions, including
inflammatory bowel disease (IBD) (21), rheumatoid arthritis
(32), type 1 diabetes mellitus (33), multiple sclerosis (34), and
systemic lupus erythematosus (SLE) (35), among many others.
IBD, which comprises of Crohn’s disease and ulcerative colitis, is
June 2021 | Volume 12 | Article 667066
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a chronic inflammatory disease that is increasing in prevalence
worldwide (36) and has been proposed to arise from an
inappropriate mucosal inflammatory response to dysbiosis; this
response is believed to be a result of genetic susceptibility and
environmental exposure (37). IBD patients have decreased
microbial diversity compared with healthy controls, alongside
alterations in both composition and function of the intestinal
microbiome (38–43). Jacobs and colleagues investigated if
unaffected siblings and parents of individuals with IBD carry a
pre-disease microbial risk state due to shared genetic and
environmental factors. By studying the microbiome and
metabolome of pediatric IBD patients and their unaffected
first-degree relatives (43), they were able to identify a high
correlation between fecal microbial and metabolomics profiles
and disease status. Their research proposed that in families at
risk for IBD, healthy individuals possess an intestinal microbial/
metabolomic state with increased susceptibility to IBD (43). This
finding highlights the ability of microbes to increase
susceptibility to inflammatory disease via the production of
bioactive metabolites, which affect immune activity and
epithelial function (43).

Microbiome and Obesity
Obesity, which confers an increased risk for numerous diseases,
including hypercholesterolemia, hypertension, type 2 diabetes,
cancer, non-alcoholic fatty l iver disease (NAFLD),
atherosclerosis, cardiovascular disease, and stroke (44, 45), is
associated with gut dysbiosis (46). Intestinal microbiota
influence the digestion, absorption, metabolism, and storage of
ingested nutrients with profound effects on host physiology (46).
Environmental and dietary factors can yield a microbiome that
modulates host metabolism to promote obesity (46, 47).
Advancements in studying the role of a high-fat diet (HFD)
and Western diet (WD) on the microbiome has provided
insights into the mechanisms of how gut dysbiosis leads to
detrimental metabolic changes and why many individuals who
consume a HFD or WD develop gut dysbiosis.

Studies of lean and genetically obese (ob/ob) mice (48, 49) and
(fa/fa) rats (50) have revealed differences in their metabotypes
[i.e., metabolic phenotypes (51)]. Lean and obese gut
microbiomes are characterized by different representation of
members of the Bacteroidetes, Firmicutes and Actinobacteria
phyla of bacteria. One intriguing discovery that follows from
these studies is the link between gut microbiomes and host
energy harvest and homeostasis (52). Some individuals may
harbor microbiota that are more efficient at energy harvest
than others; for example, some types of bacteria may be better
at processing carbohydrates than others. Other types of bacteria
may be adept at manipulating host genes and metabolism in
order to store energy, turn off satiety signals, or upregulate
inflammatory pathways (52).

A higher baseline ratio of Firmicutes to Bacteroidetes ratio is
seen in individuals with obesity, and for these subjects, a
reduction in caloric intake resulted in a lower Firmicutes to
Bacteroidetes ratio (53, 54). However, Magne et al. (55) reported
that it was difficult to associate the Firmicutes/Bacteroidetes ratio
with a determined health status or as a hallmark of obesity. Yet,
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low levels of Bifidobacterium, a key bacterial group, is notably
linked to obesity, particularly in children (56). Furthermore, a
gut microbiome that is largely dominated by Firmicutes showed
altered methylation in gene promoters linked to obesity and
cardiovascular disease (57). Some bacterial species, such as
Lactobacillus spp., can be obesogenic or anti-obesogenic,
depending on the specific strain; others have the potential to
alleviate obesity-associated metabolic complications (58, 59).
Part of the mechanism of action is via the interaction between
the gut microbiota, host immunity, and gut barrier function
(60, 61).

An abundance of Akkermansia muciniphila, has been linked
to a healthy metabolic profile, with greater improvement in
obesity-associated metabolic parameters (plasma triglycerides,
body fat distribution, and insulin tolerance) for individuals with
obesity following dietary intervention (62). These findings
highlight the critical role of the gut microbiota in maintaining
the metabolic integrity of the host, from energy harvest to
metabolic activity. But energy intake is also balanced with
energy expenditure, which segues to the topic of exercise and
its impact on the microbiome.

Exercise and the Intestinal Microbiome
Exercise has received much praise for its ability to regulate
weight, insulin sensitivity, metabolic activity and contribute to
overall improvement in health. There is growing evidence to
support the role of exercise in regulating human intestinal
microbiota (63–73). Emerging research shows that exercise
training independently altered the composition and function of
the gut microbiota (74–78). Matsumoto et al. originally found
that 5 weeks of exercise training in animals resulted in an
increased production of the short chain fatty acid butyrate, a
product of the bacterial fermentation of dietary fiber by bacteria
such as Bifidobacteria (79). Matsumoto et al. also found that
exercise training in mice increased the relative abundance of
butyrate-producing taxa (75, 80). Butyrate is the primary fuel for
colonocytes and has been shown to increase colonic epithelial
cell proliferation, regulate host immune system and gene
expression, and promote the integrity of the gut barrier (74,
81, 82). Conflicting evidence still exists for exercise and the
intestinal microbiome; for example, some rodent studies found
that exercise reduced the ratio of Firmicutes to Bacteroidetes (77,
80, 83, 84), while others found that exercise increased the ratio
(75, 76, 85). These discrepancies may be influenced by the kind
and degree of exercise (e.g., in mice, voluntary wheel running or
forced treadmill running), the contingencies of the diet, age of
the animal, species/strain, and method of research.

In professional rugby players, Clarke et al. found that the
intestinal microbiota showed an increase in alpha diversity
(variance within the sample), with a higher relative abundance
of 40 different bacterial taxa compared to lean sedentary controls
(63); these athletes had a lower abundance of lactobacillus and
bacteroides species than the lean sedentary group (63). Bressa et
al. found that women who performed at least 3 hours of exercise
per week had a greater abundance of Faecalibacterium
prausnizii, Roseburia hominis , and A. muciniphilia compared
to sedentary controls (64). A. muciniphila has been associated
June 2021 | Volume 12 | Article 667066
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with lower body mass index (BMI) (62) and improved metabolic
health in other studies, whereas F. prausnitzii and R. hominis are
known to be butyrate producers (86). Overall, there is strong
indication that exercise can benefit the intestinal microbiome by
imp r o v i n g m i c r o b i a l d i v e r s i t y a n d i n c r e a s i n g
butyrate production.

Brain-Gut-Microbiome Interactions
Communication between the gut microbiota and the brain is an
important area of research. A vital bidirectional signaling system
between the gastrointestinal tract and the brain helps maintain
metabolic homeostasis and is regulated via neural (central and
enteric nervous systems, CNS and ENS, respectively),
immunological, and hormonal systems (87). The perturbation
of these systems through external factors, such as diet or
antimicrobial use, leads to alterations within stress-response
mechanisms, behavior, and neurologic health (88, 89).

A well-documented, clinical association of an aberrant gut-
brain axis is the manifestation of stress-related symptoms, such
as anxiety or depression, which can lead to constipation or
diarrhea and is sometimes diagnosed as irritable bowel
syndrome (IBS) (90). In animal models, Neufield and
colleagues illustrated that colonization of GF mice with specific
pathogen-free microbiota decreased anxiety-like behavior in a
well-validated maze model of anxiolytic action (91). The study
also showed changes in the murine neurochemistry, with
upregulated expression of brain-derived neurotrophic factor
(BDNF) mRNA in the hippocampal dentate gyrus (91). BDNF
expression is believed to be critical for supporting synaptic
plasticity and neuronal differentiation and survival. Stressful
exposures can reduce the expression of BDNF, thereby
theoretically affecting cognitive and emotional health (92).
Bistoletti and colleagues demonstrated the effect of broad-
spectrum antibiotics in transiently decreasing BDNF levels and
increasing anxiety behaviors in juvenile mice (93). Together,
these studies provide important evidence that the brain and
behavior, specifically anxiety, can be influenced by the
microbiota through the gut-brain axis.

IBS pathophysiology is not fully understood, but for many
patients, an element of visceral hyperalgesia is implicated and
alterations in the bidirectional communication of the gut-brain
axis may cause an exaggerated pain response to an otherwise
normal digestive process (94). Labus and colleagues identified a
correlation between brain architecture and the gut microbiota in
a distinct subgroup of IBS patients, suggesting that gut
microbiota and their metabolites may influence specific brain
structures. The authors concluded that a microbe-gut-brain axis
plays an important role in the pathophysiology of disrupted
sensory processing in IBS (95).

Emerging evidence also suggests that gut microbiota play an
important role in several neurological conditions, such as
Parkinson’s disease (PD), Alzheimer’s disease, and multiple
sclerosis (96). Several studies have observed that PD patients
may have gastrointestinal disorders before displaying motor
symptoms, and suggested that gut dysbiosis may be implicated,
but the specific link is not clearly understood (96). Studies in rats
have demonstrated that alpha-synuclein (a-syn), a protein found
Frontiers in Endocrinology | www.frontiersin.org 4
in neural tissue and implicated in PD, misfolds and forms clumps
in neural tissue in response to gut dysbiosis (97–99). One
plausible hypothesis is that the innervation of the GI tract is
easily damaged (96, 97) and that ENS injury is caused by an
unknown PD pathogen that may present as a-syn pathology.
Several clinical studies revealed that PD patients displayed a-syn
aggregates in the enteroendocrine system (96, 97) and that these
aggregates are related to damage of enteric neurons and
associated with GI tract dysfunction. This type of protein
aggregate accumulation affects both the myenteric and
submucosal plexuses of the gut in PD patients and is gradually
distributed from the most distal point of the esophagus to the
rectum (96). Moreover, gut dysbiosis is believed to result in
upregulated inflammatory pathways that may trigger the
initiation of synucleinopathy (100–102). If a dysfunctional gut
contributes to PD, then there lies a strong possibility that the gut
affects the brain in a host of ways, including neurological and
psychiatric disease.
MODULATION OF THE MICROBIOTA
BY DIET

The Composition of the Intestinal
Microbiome Revolves Heavily Around Diet
Dietary factors are often potent modulators of microbiota
composition and function. Transient, diet-induced alterations
occur independently of body weight and adiposity and are
detectable in humans within 24 to 48 hours after dietary intake
(103). A micronutrient-dense, high-fiber diet with sufficient
water intake and high-quality protein, along with avoidance of
common Western dietary components, such as saturated and
trans-fat, simple sugar, refined flour, high-fructose corn syrup,
and other processed foods, is believed to have a protective effect
regarding intestinal dysbiosis (104).

Particularly important for the health of the microbiome are
carbohydrates (CHO) that are indigestible yet metabolically
available to microbes within the intestines. Termed
“microbiota-accessible carbohydrates” (MACs) (105), these
include fermentable fibers and non-digestible polysaccharides
found in resistant starch foods, such as those originating from
plants (106). Intestinal microbes contain several hundred-fold
more CHO-degrading enzymes than what is produced by human
enterocytes; this enables the microbes to digest MACs for their
primary source of energy (46).

The importance of MACs on microbiota composition and
function is documented in multiple studies. In one illustrative
mouse experiment, a diet low in MACs resulted in a decrease in
numerous taxa and a loss of diversity across several generations
of offspring that were not recovered after reintroduction of
MACs (105, 107). In humans, a low-MAC diet results in poor
production of intestinal microbiota-generated SCFA, which are
known to reduce inflammation through a variety of mechanisms
(104). Decreased SCFA production and increased mucus
foraging by the microbiota demonstrate consequences to low
MAC intake (46). However, the intake of excessive calories to
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obtain an increase in MAC cannot be recommended due to the
consequence of a caloric surplus (108). Instead, balancing caloric
intake based on basal metabolic rate and total daily energy
expenditure, alongside consumption of micro-nutrient dense,
high-fiber, well-balanced foods, may be a better approach for
optimizing gut microbial and human health (109).

A high-protein diet (HPD) is another approach for
potentially negating the harmful effects of a Western diet
(WD). In a study done by Wang and colleagues, rats fed a WD
for 12 weeks showed an increase in body weight and fat mass.
When the rats were switched to a HPD for 6 weeks, the rats had
reduced fat mass without significant weight loss, a retention of
muscle mass, normalized blood glucose levels, and decreased
feeding after intraperitoneal injection of cholecystokinin (CCK)
compared to rats with diet-induced obesity treated with CCK
(110). The authors concluded that a HPD may be useful in
promoting fat loss, restoring glucose homeostasis, and improving
CCK sensitivity, as well as maintaining muscle mass during
periods of caloric restriction. Furthermore, since the HPD-fed rats
showed an enrichment of 114 operational taxonomic units (OTUs)
and depletion of 188 OTUs, it was concluded that the microbiome
was involved with the measuredmetabolic alterations. An example
of the significant microbial difference is the positive association
betweenA. muciniphila and Phascolarctobacteriumwith decreased
fat mass in the HPD-fed rats compared to WD-fed rats (110). A.
muciniphila was identified to correlate with fat loss and may
represent a secondary mechanism for the beneficial effects of
HPD (110). Furthermore, the study showed that WD-fed rats had
increased cytokine expression in the hypothalamus and dorsal
medulla, which was unchanged after switching to HPD (110).

Kaptan and colleagues found consumption of a low-calorie diet
by adolescent rats led to an increase in microbial diversity, adult
neurogenesis, BDNF levels, and improved cognition (111).
Conversely, mice fed a HFD exhibited gut dysbiosis, decreased
synaptic plasticity, and increased anxiety-like behaviors (112–114).

Overall, diet has an important effect on the microbiome and
its ability to communicate amongst different systems in the body.
The studies noted above on MACs, WD, HPD, low-calorie diets,
and HFD, and their effects on the microbiome, highlight the
importance of maintaining a healthy gut microbiome through
various dietary interventions.

Metabolic Health Impact of Various Diets
on the Microbiome
Many diets emphasize the utility of a specific macronutrient (e.g.,
high-protein or low-fat) or the avoidance of a specific ingredient
(e.g., dairy- or gluten-free). Several well-known diets have been
studied for their ability tomodulate intestinalmicrobiota, including
WD (high animal fat/protein) (115–117), Mediterranean (MD)
(high-fiber,high-monounsaturated fat, antioxidant-rich, and low in
redmeat) (118–120), vegetarian, vegan, and gluten-free (121–125).

The WD, which is high in animal protein and saturated fat
and low in fiber, is usually low in MACs and has been shown to
lead to a reduction in microbial diversity and altered
functionality of the intestinal microbiota compared to control
diets. Many studies document that a WD caused decreased
Frontiers in Endocrinology | www.frontiersin.org 5
diversity of Bifidobacterium and Eubacterium species, as well as
increased Enterobacteria and Bacteroides (115–117). One
mechanism by which gut microbes mediate the negative
metabolic consequences of a HFD is through translocation of
lipopolysaccharide (LPS), also known as endotoxin, a cell-wall
component of Gram-negative bacteria. Increases in circulating
LPS can occur after a high-fat meal, with exacerbated effects in
individuals with obesity (126). Once in circulation, LPS elicits a
potent inflammatory response via Toll-like receptor-4 (TLR-4)
signaling, which has been implicated in the development of
cardiovascular and metabolic disease (45, 127). Other
functional differences include the association between the WD
and an increase in the production of cancer-promoting
nitrosamines (128, 129); this is likely related to the high
quantity and poor quality of animal protein in the WD,
especially processed meat.

The MD, largely acknowledged as a healthier diet than the
WD, is characterized by intake of a beneficial fatty acid profile
rich in mono- and polyunsaturated fatty acids, nondigestible
fibrous plant sources and other low glycemic carbohydrates, and
high levels of polyphenols, along with other antioxidants and
micronutrients (119). Several studies have identified that a
typical MD carries a lower risk of obesity, results in a better
lipid profile, and lowers inflammation. From a microbial
perspective, these characteristics were associated with increases
in Prevotella, Lactobacillus, and Bifidobacterium, and decreases
in Clostridium (130–135).

Diets enriched in fiber and fermentable, plant-based foods
include vegan and vegetarian diets. These two diets were shown
to promote significantly lower counts of Bacteroides and
Bifidobacterium species (p < 0.001), compared to an unrestricted
control diet (136). One study determined that differences in the
intestinal microbiomes of subjects consuming an omnivorous diet
versus subjects consuming a vegan or vegetarian diet showed
significantly lower stool pH than controls (137). This is likely due
to the formationofSCFA, likebutyric acid, aswell as lactic acid from
Lactobacillus bacteria. A lower stool pH is believed to confer an
element of colonization resistance against pathogens.

A fairly new diet that was initially recommended for those with
celiac disease (CD) but has now gained popularity by the general
population is the gluten-free diet (GFD). In patients with CD, GFD
is intended to reduce the effects of an autoimmune response against
deamidated gliadin (a component of gluten). However, in one
study, Sanz et al. enrolled 10 healthy subjects to consume a GFD
for 30 days and noted an associated decrease in beneficial
populations of bacteria (Bifidobacterium and Lactobacillus), while
potentially increasing unhealthy populations of bacteria; this was
hypothesized to be caused by a reduced polysaccharide intake
associated by GFD (121). In addition, the total number of
Enterobacteriaceae and E. coli increased, theoretically increasing
the risk for opportunistic pathogens (121). A different study on the
effects of short-term GFD showed increases in Clostridiaceae and
Victivallaceae, and reductions in Ruminococcus bromii,
Veillonellaceae and Roseburia faecis (122). Veillonellaceae is
considered to be a pro-inflammatory family of bacteria. The
clinical consequence of GFD in non-celiac individuals is largely
June 2021 | Volume 12 | Article 667066
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unknown and therefore GFD cannot be recommended for the
general population based on the available data.

Intermittent fasting, another recently popular diet, led to
changes in the microbiome as well as improvement in
metabolic parameters (138). Eight weeks of intermittent fasting
revealed that the community structure of the intestinal
microbiota was not significantly changed overall, but there
were changes in the abundance of Ruminococcaceae at the
family level and Roseburia at the genus level. This was
accompanied by an increased production of SCFA, decreased
circulating levels of lipopolysaccharide (LPS) and inflammatory
cytokines, ameliorated markers of oxidative stress, improved
vasodilatory parameters, and reduced subject body fat mass
(138). There is great need for further research on the health
benefits of fasting and the role it plays in autophagy and cellular
regeneration, especially in the liver.
EFFECT OF NICOTINE ON MICROBIOME
AND INTERACTIONS WITH DIET

Smoking cigarettes has an impact on gut health, including
changes in the microbiome that can affect overall health.
Nicotine, the psychoactive component of tobacco, binds to
nicotinic acetylcholine receptors (nAChR), such as the a4/b2
receptor, and low-affinity receptors, such as a7 in the CNS and
peripheral tissues (139, 140). Nicotine, when given with a HFD,
leads to hepatic and muscle steatosis that is thought to be due, at
least in part, to increased abdominal fat lipolysis (141–143). In an
animal study, we found that the a7nAChR agonist PNU-282987
protects against nicotine and HFD–induced hepatic steatosis in
genetically obese mice (144). In this mouse model, smoke-
exposed mice showed an alteration in colonic bacterial activity
and community structure, with an increase of Lachnospiraceae
sp (145).

In human microbiome studies, tobacco smokers displayed a
higher relative abundance ofPrevotella, lower relative abundance of
Bacteroides, and a lower Shannon diversity (a measurement of
diversity) compared to controls (146). Biedermann and colleagues
described a decrease of Bacteroides as well as alterations in the
abundance of Alphaproteobacteria and Betaproteobacteria
following the cessation of smoking (147). Indeed, smoking
cessation induced profound changes in the gut microbiome, with
an increase of Firmicutes and Actinobacteria and a decrease of
Bacteroidetes and Proteobacteria at the phylum level; smoking
cessation also induced an increase in microbial diversity (148).
Importantly, the intestinal microbial composition of smokers and
non-smokers were different when fed identical meals to avoid the
influences of dietary factors (149). Other human studies have
confirmed that smoking is associated with variances not only in
the intestinal microbiome, but also the upper gastrointestinal tract
(8), saliva (9), middle meatus (10), bronchial wash (11), sputum
(12), subgingival (13), and throat (14).

Several studies investigated the intestinal microbiomes of
smokers vs. non-smokers, but these involved mostly Crohn’s
disease patients or had a small sample size (148, 150, 151).
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Nolan-Kenney and colleagues compared the composition of
intestinal microbiomes in smokers vs. non-smokers by
collecting stool samples in a cross-sectional study of 249
participants selected from the Health Effects of Arsenic
Longitudinal Study (HEALS) in Bangladesh (147). They
examined the associations between the status and the intensity
of smoking with the relative abundance and presence of
individual bacterial taxon, from phylum to genus (147). In
current/active smokers, they found that the relative abundance
of bacterial taxa among the Eryispelotrichi-to-Catenibacterium
lineage was significantly higher compared to non-smokers (147).
They calculated a 1.91 odds ratio (OR) (95% confidence interval
[CI] = 1.36 to 2.69) for the genus Catenibacterium when
comparing the mean relative abundance in current smokers
with that in subjects who never smoked, and a 1.89 OR (95%
CI = 1.39 to 2.56) for the family Erysipelotrichaceae, order
Erysipelotrichale, and class Erysipelotrichi (false discovery rate-
adjusted p-values=0.0008 to 0.01) (147). Moreover, for each of
these bacterial taxa, a nicotine/smoking dose-response
association was observed, with increasing mean relative
abundance of specific taxa as packs per day of cigarettes
increased. In addition, the presence of Alphaproteobacteria was
significantly greater (OR = 4.85, false discovery rate-adjusted p-
values = 0.04) in current smokers vs. non-smokers (147). The
data are consistent with other studies that associate smoking and
its intensity with a change in the intestinal microbial
composition (Table 1), suggesting that cigarette smoking plays
a significant role in gut dysbiosis, especially as the level of
tobacco exposure increases.

Electronic Cigarettes (E-Cigarettes)
and Public Health
E-cigarette use is a public health crisis that is sweeping the
United States; this epidemic involves not only adults, but also
teens. E-cigarettes came to the markets in the mid-2000s and
were advertised as ‘safer’ alternatives to conventional cigarettes
and an effective way to stop smoking (152). However, e-cigarettes
are much less regulated than traditional cigarettes, leading to
extremely variable nicotine levels, with some reaching levels
above combustible cigarettes (153). Many studies have shown
detrimental effects of e-cigarette use including on the liver, heart
and lung (144, 145, 154–161). In a mouse model, we have found
that e-cigarette use is linked to cardiovascular and hepatic
diseases (144, 155, 159). Our laboratory is studying the effects
of e-cigarettes on mouse microbiota and we will be reporting our
results in the near future.

The studyby Stewart and colleagues (146) also found that tobacco
smoking had a significant effect on the bacterial profiles when
compared to e-cigarette users. The most significant associations
were an increased relative abundance of Prevotella (P=0.006) and
decreased Bacteroides (P =0.036) in the stool of tobacco smokers
versus e-cigarette users. In contrast, no significant difference was
found in the alpha diversity, beta-diversity (variability in community
composition) or taxonomic relative abundances between e-cigarette
users and controls. Therefore, the authors concluded that the use of
e-cigarette users may represent a safer alternative compared to
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TABLE 1 | Human research studies conducted on the effect of smoking or nicotine on the microbiome.

Study Study Purpose Sample Size Findings

(146) To evaluate the effect of electronic cigarettes
(EC) or tobacco smoking in oral and gut
microbiota.

n = 30
(10 EC users, 10 tobacco
users, 10 controls)

Tobacco smokers had higher relative abundance of Prevotella, lowered
Bacteroides, and lowered Shannon diversity.
No significant differences were found in alpha diversity, beta-diversity, or
taxonomic relative abundances between EC users and controls.

(147) To compare the gut microbiome of smokers
versus nonsmokers.

n = 249 Bacterial taxa along the Erysipelotrichi-Catenibacterium lineage and
Alphaproteobacteria increased in current smokers. Each taxa exhibited dose-
response associations.

(148) To assess the changes in the intestinal
microbiome associated with smoking
cessation.

n = 20
(10 subjects in the
experimental group; 5
continuing smoker control
subjects; 5 non-smoker
control subjects)

Increased abundance of Firmicutes and Actinobacteria in smokers. Decreased
abundance of Bacteroidetes and Proteobacteria on phylum level in smokers.
Microbial diversity increased following smoking cessation.

(149) To identify the association between human
intestinal microbiota (HIM) and smoking habits
via data mining analysis.

n = 92 Decision tree was successfully able to identify smokers and non-smokers using
operational taxonomic units (OTUs) for analysis.
Related OTUs were all found to be uncultured bacteria.

(8) To assess the relationship between tobacco
use and changes in the upper gastrointestinal
microbiome.

n = 278
(46.8% current smokers,
12.6% former smokers,
40.6% never smokers)

Subjects were divided into current smokers and never smokers and were
characterized by alpha and beta diversity of the gut microbiome. Current smokers
had increased alpha (mean 42.3 species) versus never smokers (mean 38.9
species) and exhibited increased beta diversity, Dialister invisus, and
Megasphaera micronuciformis.

(9) To investigate the association of cigarette
smoking with the oral microbiome.

n = 1204
(26.3% never smokers,
63.3% former smokers,
10.4% current smokers)

Current smokers had decreased Proteobacteria (4.6%) compared with never
smokers (11.7%) at class, genus and OTU levels
No difference in Proteobacteria was found between former and never smokers.
Reduced genera Capnocytophaga, Peptostreptococcus and Leptotrichia in
current smokers compared with never smokers. Functional analysis revealed
these genera were related to carbohydrate, energy, and xenobiotic metabolism
Increased Atopobium and Streptococcus in current smokers compared with
never smokers.

(10) To evaluate the relation between smoking
history and sinonasal microbiome alterations in
chronic rhinosinusitis (CRS) and non-CRS
subjects.

n = 101
(70 CRS patients and 31
control subjects)

Univariate analysis demonstrated that genus-level compositions of the middle
meatus microbiota are significantly associated with smoking (p= 0.04),
preoperative antibiotics (p= 0.03), and purulence (p= 0.0002).
Multivariable model demonstrated that CRS (p= 0.02), polyposis (p= 0.03),
purulence (p= 0.0004), and use of saline rinses (p = 0.5) have significant
interactions with smoking.
Diverse bacterial taxa varied significantly in composition between never-smokers
and current smokers, former smokers and CRS subtypes.

(11) To examine microbiota found in the lower
airway in patients with COPD, smokers without
COPD and non-smokers.

n = 37
(18 adults with COPD, 8
smokers with no airways
disease, and 11 healthy
individuals)

In extended-culture analysis, the total load of aerobic and anaerobic bacteria
between the three cohorts were similar.
Culture-independent analysis showed increased Pseudomonas, greatest in the
lower airways of patients with COPD.
There was decreased alpha and beta diversity in the COPD group.
Bacteroidetes (Prevotella spp) was increased in the non-COPD comparison
groups.
Co-occurrence bacterial taxa and putative core were observed within the lower
airways.

(12) To investigate the relation between host
genetics and lifestyles with sputum microbiota
compositions. Lifestyle factors considered
include smoking, alcohol consumption, and
physical activity.

n= 257 Providencia and Bacteroides were influenced by host genetic factors.
Smoking had the strongest effect on the overall microbial community structure
compared to other tested lifestyle factors.
Veillonella and Megasphaera were increased in current-smokers, and increased
further with the pack-year value and the Fagerstrom Test of Nicotine Dependence
(FTND) score.
Haemophilus decreased with the pack-year of smoking and the FTND score.
Co-occurrence taxa influenced by host genetics were found together.

(13) To examine the effect of smoking on the
composition of the subgingival microbiome
and associated risk for disease.

n = 200 Subgingival microbial profiles were different at all taxonomic levels in smokers
compared to nonsmokers.
Principle coordinate analysis: microbial community clustering performed based on
smoking status.
Smokers were characterized by a highly diverse, pathogen-rich, commensal-poor,
anaerobic microbiome that closely resembles disease-associated communities.

(14) To investigate the changes in the upper airway
microbiome that result from smoking.

n > 4,000 adults. Approximately 25,000 sequence reads were generated.
Samples clustered in the first principal coordinate by whether they were smokers.
(19% of variance). Similarly, samples clustered in the second principal coordinate

(Continued)
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tobacco smokingbut caution that their studywasonlydone in a small
cohort of smokers and e-cigarette users. Stewart and colleagues
proposed a larger, multi-location cohort study with e-cigarettes and
conventional cigarette users to provide insight into their effects on
the microbiome.

Nicotine Interaction with Diet in NAFLD
and Obesity
NAFLD poses a significant health risk, affecting 20 to 40% of
adults in the general American population and over 70% of
individuals with obesity (44). Alongside obesity, nicotine is
acknowledged as a risk factor for NAFLD (162, 163). There are
at least three mechanisms by which smoking and/or nicotine
appear to have adverse effects on the liver: toxic, immunologic,
and oncogenic (164). The toxic effects include oxidative stress,
which results in the activation of stellate cells, leading to fibrosis;
an increase in proinflammatory cytokines (e.g., IL-1, IL-6, IL-8,
TNF alpha) is a direct contributor to liver cell injury. The
immunologic effects of smoking are both cell-mediated (e.g.,
apoptosis of lymphocytes, impaired natural killer cell activity)
and humoral (i.e., suppression of antibody formation). The
oncogenic effects of smoking include carcinogens found in
cigarettes, such as hydrocarbons, nitrosamines, tar, and vinyl
chloride that can lead to NAFLD. Tobacco consumption has also
been implicated in the reduction of p53, a tumor-suppressing
gene, which may be a common pathway of oncogenesis for many
neoplasms (164).

In addition to the three mechanisms noted above, nicotine also
appears to exacerbate obesity-induced hepatic steatosis (44) via gut
dysbiosis and its influence on the pathogenesis of NAFLD (44, 165–
167). When nicotine is combined with a HFD in mice, there is a
significant increase in the levels of serum and hepatic triglyceride, as
well as circulating free fatty acids (141, 143, 161). In mice, nicotine
exacerbates hepatic steatosis through increased hepatocellular
apoptosis and oxidative stress, as well as decreased phosphorylation
(i.e., inactivation) of adenosine-5-monophosphate-activated protein
kinase. This, in turn, results in the up-regulation of sterol response
element-binding protein 1-c, fatty acid synthase, and activation of
Frontiers in Endocrinology | www.frontiersin.org 8
acetyl-coenzyme A-carboxylase, which yields further hepatic
lipogenesis (44). Nicotine also increases endoplasmic reticulum
(ER) stress (44) that modulates many factors, including nuclear
factor 2 erythroid-related factor 2 (Nrf2), c-Jun N-terminal
kinase (JNK), nuclear factor kB (NF-kB), and c/EBP homologous
protein. These all contribute to the inflammatory process associated
with smoking and are part of the cellular defense against oxidative
stress, often resulting in cell death (44). For instance, Nrf2 serves as a
master regulator of a cellular defense system against oxidative stress
(168, 169) and JNK is activated in several animal models of obesity
and also in patients with NASH. The activation of JNK has been
demonstrated in HFD-induced hepatic steatosis in apoplipoprotein-
E knockout mice (170) and nicotine plus HFD-induced hepatic
steatosis in obese mice (141); the genetic deletion of JNK in animal
models resulted in attenuation of fatty liver (171). NF-kB is an
important transcription factor and primary regulator of
inflammatory pathways. Consistent activation of NF-kB signaling
has been documented in animal models of NAFLD as well as in
patients with NASH (172). Thus, the data suggest that the use of
nicotine-based products results in increased oxidative stress,
upregulated inflammation, perturbed hepatic lipid homeostasis,
apoptosis, and autophagy, which contribute to hepatic steatosis and
progression to NASH (173).

Lastly, nicotine may contribute to increased gut permeability
and has been implicated in poor outcomes in IBD patients (174).
Miele and colleagues showed that patients with biopsy-proven
NAFLD also experienced significantly greater gut permeability
due to the disruption of intercellular tight junctions in the
intestine compared to healthy volunteers (175). Both increased
gut permeability and the prevalence of small intestinal bacterial
overgrowth (SIBO), which is correlated with the severity of
steatosis in NAFLD patients (175). Since smoking appears to
induce profound changes in the intestinal microbiota (148, 176),
we hypothesize that nicotine with HFD could compound and
lead to increased intestinal permeability, LPS activation of TLRs
and the inflammasome (167), induce changes in SCFAs
metabolism (167), decreased choline availability, and increased
trimethylamine production (167), all of which could contribute
TABLE 1 | Continued

Study Study Purpose Sample Size Findings

by whether they were never smokers (17% of variance). Former smokers were
distributed within and between both these clusters.
Specific OTUs increased or decreased with respect to each of the two main
clusters.

(150) To assess the relation between smoking and
intestinal microbiota in patients with active
Crohn’s disease (CD).

n = 169
(103 subjects with active
CD; 66 healthy controls;
29 smokers with CD; 8
smokers in the control
group)

Multivariate analysis revealed increased Bacteroides-Prevotella in smokers (38.4%)
compared with nonsmokers (28.1%). Healthy controls also exhibited increased
Bacteroides-Prevotella (34.8%) compared to nonsmokers (24.1%).
Pooled multivariate analysis showed patients with CD had higher bifidobacteria,
higher Bacteroides-Prevotella, and lower F. prausnitzii (in comparison to healthy
controls.

(151) To evaluate changes in gut microbiota
composition associated in smokers versus
nonsmokers with active Crohn’s disease using
a metagenomic approach.

n = 42
21 smoking and 21
nonsmoking patients with
CD included

Decreased gut microbial gene richness (P=0.01), genus diversity (P<0.01), and
species diversity (P=0.01) in smoking patients with CD compared to nonsmoking
patients with CD.
Decreased relative abundance of the genera Collinsena (P=0.02), Enterohabdus
(P=0.02), and Gordonibacter (P=0.02) in smoking patients with CD compared to
nonsmoking patients with CD.
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to a nicotine-derived pathway and result in the pathogenesis
of NAFLD.
CONCLUSION AND PERSPECTIVE

A healthy intestinal microbiome is dependent on a delicate
balance of various microorganisms that is susceptible to
external lifestyle factors, including unhealthy diet, lack of
exercise, smoking and nicotine-exposure. Lifestyle modification
can alter the variable portion of the microbiome. Exercise may
hold numerous potential benefits for the health of the intestinal
microbiome, not only through improved insulin sensitivity,
weight loss, and improved cardiovascular health, but also
through its impacts on the intestinal microbiota composition.
Use of nicotine-based products (e-cigarettes and traditional
cigarettes) leads to known health consequences, but also may
be a major contributor to gut dysbiosis and increased gut
permeability. More research is needed to confirm the
importance of avoiding nicotine-based products to optimize
gut health and lessen the risk of gut dysbiosis. Additionally,
the effects of nicotine use on the gut immune system should be
more closely evaluated. Moving forward, the ability of the
microbiome to recover from external factors, such as nicotine
and unhealthy diets, should also be evaluated. With the number
of young adults and teens consuming nicotine via e-cigarettes on
the rise, the long-term effect of nicotine has become more
Frontiers in Endocrinology | www.frontiersin.org 9
relevant. Effects of nicotine, either alone or in combination
with the WD, on the intestinal microbiome remain to
be elucidated.
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