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Jonathan Vitale, Benjamin Johnston, & Mary-Anne Williams
{jonathan.vitale, benjamin.johnston, mary-anne.williams}@uts.edu.au

University of Technology Sydney – Centre For Artificial Intelligence
Innovation and Enterprise Research Lab (The Magic Lab) - 15 Broadway, Ultimo NSW 2007 - Australia

Abstract

The face is a central communication channel providing infor-
mation about the identities of our interaction partners and their
potential mental states expressed by motor configurations. Al-
though it is well known that infants ability to recognise people
follows a developmental process, it is still an open question
how face identity recognition skills can develop and, in par-
ticular, how facial expression and identity processing poten-
tially interact during this developmental process. We propose
that by acquiring information of the facial motor configuration
observed from face stimuli encountered throughout develop-
ment would be sufficient to develop a face-space representa-
tion. This representation encodes the observed face stimuli as
points of a multidimensional psychological space able to as-
sist facial identity and expression recognition. We validate our
hypothesis through computational simulations and we suggest
potential implications of this understanding with respect to the
available findings in face processing.

Keywords: face perception; face processing; face-space; face
identity processing; face expression processing; mirroring

Introduction
Face processing capabilities are of paramount importance for
the development of social skills (Grossmann, 2015).

Developmental studies suggest that newborns can match
observed facial motor configurations via overt imitative be-
haviour (Meltzoff & Moore, 1983, 1992) or covert inner sim-
ulation mechanisms (Simpson, Murray, Paukner, & Ferrari,
2014; Gallese & Caruana, 2016), even well before the devel-
opment of early cognitive capabilities (but see Oostenbroek
et al., 2016 and Simpson et al., 2016 for a recent discussion
on the topic). Hence, it has been suggested that facial ex-
pression recognition may be mediated by early neural mech-
anisms mapping sensory information of the observed facial
configuration into a proprioceptive motor format (Gallese &
Caruana, 2016; Iacoboni, 2009) and therefore assisting imi-
tatory mechanisms (Simpson et al., 2014).

On the contrary, face identity processing capabilities fol-
low a developmental process (Grossmann & Vaish, 2009).
Currently, facial identity processing development is not yet
well understood. For example, we do not know yet where in
the face processing hierarchy representations of invariant (i.e.
identity features of the face) and dynamic (i.e. motor features
of the face) features interact (Simion & Di Giorgio, 2015).

According to the ‘face-space’ framework (Valentine, 1991;
Valentine, Lewis, & Hills, 2015), facial representations are
encoded in a multidimensional psychological space. The di-
mensions of this space are assumed to encode properties of
the facial signals that better discriminate one face from an-
other. The distance between two representations underlies
their dissimilarity from a psychological perspective. This

framework was initially designed to only account for cod-
ing identity-related features, such as sex, distinctiveness, age
and attractiveness (Valentine, 1991). Nevertheless, dynamic
aspects of faces, such as facial expressions, were neglected.
Recently, we developed a computational tool building on top
of the face-space framework (Vitale, Williams, & Jonhston,
2016) and able to exhibit interesting features in agreement
with modern understanding in face processing studies. In par-
ticular, we demonstrated that this novel face-space can repre-
sent both invariant and dynamic features of face stimuli under
a shared representation facilitating the recognition of both fa-
cial expression and identity exhibited by novel face stimuli
(Vitale et al., 2016).

In this paper we offer a new understanding of this face-
space, suggesting that facial identity processing capabilities
can plausibly develop by interpreting the motor configuration
of observed face stimuli.

In particular, from a functional level of analysis, we aim
to demonstrate that assuming the existence of an early or
innate system M otor(xi) ⇒ E (xi) able to map perceptual
information of the observed face stimulus xi onto a mo-
tor interpretation of the exhibited facial expression E (xi),
it is possible to develop another system Cognitive(Xnew)⇒
{E (Xnew),I (Xnew)} assisting the discrimination of facial ex-
pressions E (Xnew) and identities I (Xnew) exhibited by newly
encountered face stimuli Xnew. Therefore, this paper aims to
provide computational evidence supporting the following hy-
pothesis:

Hypothesis: It is possible to generalise the face-space
framework to realise a twofold multidimensional space
structure able to facilitate facial expression and identity
processing capabilities by only interpreting the motor config-
uration exhibited by the face stimuli encountered during the
developmental process.

This work is a significant contribution able to provide
a plausible explanation unifying traditional and modern
findings in face processing studies, as we will discuss in the
remainder of this paper.

Previous Findings
Recently, we provided a novel understanding of the face-
space framework (Vitale et al., 2016). The face-space frame-
work is a widely used tool in face perception and process-
ing research able to explain many of the phenomena underly-
ing facial identity discrimination in both human experimen-
tal settings (Lee, Byatt, & Rhodes, 2000; Rhodes, Jaquet, et
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Figure 1: The dual face-space presents a twofold structure: on
one side it allows observations with similar motor configura-
tions to lie within close spatial locations (l), whereas at the
same time “repulsing” observations of similar identities away
(a `); on the other side, it happens exactly the viceversa. This
facilitates respectively facial expression and identity recogni-
tion, under common multidimensional codings.

al., 2011) and computational simulations (A. J. Calder, Bur-
ton, Miller, Young, & Akamatsu, 2001). This framework is
so important in face studies that it is “virtually impossible
to explain the interactions between the computational and
cognitive approaches to understanding face recognition with-
out reference to this model. It serves as the glue that binds
the theoretical and computational aspects of the problem to-
gether” (A. Calder, 2011, page 17).

According to Valentine’s face-space, faces are points of
a multidimensional space based on their perceived proper-
ties. This structure can plausibly account for coding identity-
related features. Unfortunately, dynamic aspects of the face,
such as its motor configuration, were neglected in the tradi-
tional face-space account. This is a significant limitation, pre-
venting the analysis of the interactions happening between
facial expression and facial identity processing.

Therefore, to fill this gap, we introduced a novel hypothe-
sis: the duality hypothesis. This hypothesis suggests that the
face-space can plausibly exhibit a twofold structure integrat-
ing both dynamic and invariant features of the face into shared
codings, although preserving some separation among them to
facilitate both facial expression and identity recognition (see
Figure 1 for a visual example). We named this understanding
with dual face-space and we validated the hypothesis, from a
computational perspective, through a mathematical presenta-
tion and quantitative results.

The Dual Face-Space
Given a set of face stimuli shaped as column vectors of a
matrix X , these stimuli have dimension D equal to the total
number of pixels representing each face stimulus. By submit-
ting the matrix X to a Principal Component Analysis (PCA)
(Turk & Pentland, 1991) it is possible to obtain a mapping
matrix Vpca able to map the D-dimensional face stimuli X
into compressed d-dimensional representations X̄ . This pro-
cess preserves most of the information carried by the face
stimuli, but it compresses them in representations having di-

Figure 2: An example of face-space development resulting by
applying the mapping function in Equation 2. Face samples
belonging to the same identity are on average perceptually
closer to each other, thus being a bias for the classification of
facial expressions.

mension d � D and it ensures desirable properties in sub-
sequent stages of the model (e.g. positive definiteness, see
Vitale et al., 2016):

X̄ =V>pcaX (1)

It is important to note that in this paper we do not aim
to test the classification performance of the proposed model
against other computational models of face recognition, but
rather the plausibility of the proposed hypothesis in providing
a new understanding of the mechanisms potentially underly-
ing human face processing skills. Therefore, in our studies
we used the pixels intensities of static images as input to our
models to provide a simplified linear understanding of our
theory and related argument. Importantly, the input X̄ can be
any vector of features extracted by the given face stimuli and
able to encode perceptual information of the observed stim-
uli. Therefore, a viable non-linear alternative of our model
can be obtained by pre-processing the input face stimuli X
by using an unsupervised deep neural network model trained
to preserve invariant and dynamic features of the face in a
more compressed and smart representation (Le et al., 2013),
instead of the proposed linear PCA. Finally, temporal dynam-
ics can be included by pre-processing a set of consecutive
stimuli instead of static images, or by using other techniques
improving temporal coherence in the resulting pre-processed
representation (Mobahi, Collobert, & Weston, 2009). These
computational pre-processing stages resemble early process-
ing of human visual cortex and are therefore suitable exam-
ples for potential future extensions of our theory and related
model.

In our previous work (Vitale et al., 2016), we showed that
it is possible to implement the dual face-space by solving the
following objective function:

V ? = arg min
V∈Rd×d

Tr(V>X̄(IN−W E )X̄>V )

Tr(V>X̄(IN−W I )X̄>V )
(2)

where W E and W I are two weight matrices setting desired
topological constraints on the face-space via the resulting ob-
jective mapping matrix V ?. It is possible to obtain the weight
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matrix W E by knowing the facial expressions exhibited by the
training samples and, when this matrix is used in Equation 2,
it encourages pairs of samples associated with the same fa-
cial expression to be in nearby locations in the resulting face-
space:

W E
i j =

{
1

nEi
, if E (xi) = E (x j)

0, otherwise.
(3)

In Equation 3, nEi is the number of samples in X belonging
to the facial expression class E (xi) of the face stimulus xi in
the column i of matrix X .

It is possible to realise the weight matrix W I by knowing
the identities exhibited by the training samples and, when this
matrix is used in Equation 2, it promotes repulsive forces be-
tween pairs of samples belonging to the same identity, thus re-
ducing misclassification of facial expressions due to the iden-
tity bias (Sariyanidi, Gunes, & Cavallaro, 2015):

W I
i j =

{
1

nIi
, if I (xi) = I (x j)

0, otherwise.
(4)

In Equation 4, nIi is the number of samples in X belong-
ing to the identity class I (xi) of the face stimulus xi in the
column i of matrix X . Figure 1 and Figure 2 show examples
of the rationale behind the constraints set by the suggested
weight matrices in Equation 2.

Finally, given a generic matrix M and the following permu-
tation function:

M̃ = σ(M) =

(
m1 m2 m3 . . . md

md md−1 md−2 . . . m1

)
(5)

permutating each column vector mi with i ∈ [1, . . . ,d] of the
matrix M in the inverse order1 we demonstrated that Equa-
tion 2 is sufficient to provide multidimensional representa-
tions able to facilitate both facial identity and expression
recognition (Vitale et al., 2016).

In fact, given V ? as the optimal solution of the objective
function in Equation 2, we demonstrated that the mapping
matrix Ṽ ? = σ(V ?) is the optimal solution of another ob-
jective function promoting facial identity discrimination ob-
tained by inverting Equation 2. The mapping matrix Ṽ ? is
dual to the mapping matrix V ?, since it shares the same com-
ponents (i.e. column vectors) of V ? but sorted in the opposite
order. Therefore, the objective function in Equation 2 realises
common codings able to facilitate on one hand facial expres-
sion classification (V ?), and on the other hand facial identity
discrimination (Ṽ ?).

The ∆ Face-Space
To validate our hypothesis, we suggest to approximate the
weight matrix W I with another weight matrix W ∆ imple-
mented without necessarily knowing the identity classes of

1In this paper we will use the notation M̃ to denote a matrix hav-
ing the same column vectors of another matrix M, but sorted in an
inverse order.

the training face stimuli. In this way the weight matrix W I

in Equation 2 can be replaced by the matrix W ∆, thus realising
the following objective function:

V ∆? = arg min
V∈Rd×d

Tr(V>X̄(IN−W E )X̄>V )

Tr(V>X̄(IN−W ∆)X̄>V )
(6)

The optimal solution of the objective function in Equation 6
is the mapping matrix V ∆?. Thus, given a mapping matrix
Vpca gathered by submitting the training data X to a PCA, as
previously described, it is possible to obtain the final mapping
matrix V ∆

overall realising the ∆ face-space as following:

V ∆
overall =VpcaV ∆? (7)

The mapping matrix V ∆
overall is able to realise face-

space representations facilitating facial expression recogni-
tion, whereas the mapping matrix Ṽ ∆

overall = σ(V ∆
overall), hav-

ing the same component of V ∆
overall but permutated in the in-

verse order, realises representations able to facilitate facial
identity discrimination, although without the need of know-
ing the identities exhibited by the training samples, as sug-
gested by our hypothesis.

Defining the New Weight Matrix
The purpose of the weight matrix W I in Equation 2 is to
avoid that two face stimuli sharing the same identity, but ex-
hibiting different facial expressions, would get projected to
nearby locations of the face-space promoting their misclas-
sification in the same facial expression class (see Figure 2).
This misclassification can easily happen since face stimuli
of the same identity share most of their perceptual features,
and, on average, they are close-by in the perceptual space
(Sariyanidi et al., 2015; Turk & Pentland, 1991). This prop-
erty exhibited by face stimuli can be used to our advantage to
realise the desired weight matrix W ∆.

For each of the N training face stimuli xi, shaped as column
vectors i ∈ [1, . . . ,N] of the matrix X , we denote with ∆xi the
set containing the perceptual distances δ(xi,x j) between the
face stimuli xi and the face stimulus x j ∈ X with i 6= j and
exhibiting a different facial expression from the one exhibited
by xi:

∆xi = {δ(xi,x j) | x j ∈ X ∧ xi 6= x j ∧E (x j) 6= E (xi)} (8)

Since face stimuli of the same identity are perceptually
close, their respective distances would be, at least on average,
well below their distances from face stimuli with different
identities. Then, given the mean µ∆xi

and standard deviation
σ∆xi

of the distances included in the set ∆xi it is possible to
compute the set I ≈i described as follow:

I ≈i = {x j | δ(xi,x j)< µ∆xi
−βσ∆xi

} (9)

where β is a parameter suggesting how many standard devi-
ations below the mean distance would be set the maximum
threshold. In this work, β was set equal to 2.5 after empir-
ical tests with face stimuli gathered from different datasets
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available in face recognition literature. The resulting set I ≈i
includes most of the training samples sharing the same iden-
tity of the sample xi.

Therefore, the weight matrix W ∆ can be realised as follow:

W ∆
i j =

{
1

n∪i j
, if x j ∈I ≈i ∨ xi ∈I ≈j

0, otherwise.
(10)

where n∪i j is the number of unique samples in the set I ≈i ∪
I ≈j . The realised weight matrix W ∆ is clearly symmetric and
the associated Laplacian behaves as a block centring matrix,
thus promoting a norm-based space (for in-depth details and
mathematical proof refer to Vitale et al. (2016)). The objec-
tive function in Equation 6 can be solved through the iterative
algorithm proposed by Ngo, Bellalij, and Saad (2012), simi-
larly to our previous contribution (Vitale et al., 2016).

Experiments
In this paper, we will evaluate the proposed model using
the Karolinska Directed Emotional Faces (KDEF) dataset
(Lundqvist, Flykt, & Öhman, 1998), similarly to our previ-
ous contribution. The dataset contains static images of 70
subjects—35 female and 35 male—exhibiting seven differ-
ent prototypical facial expressions of basic emotions (anger,
disgust, fear, happiness, neutral, sadness and surprise). The
pictures are taken in various face orientations and in two dif-
ferent sessions (A and B).

We used the frontal pictures taken in session A. We ex-
tracted the facial region from the images and reduced their
resolution to 80× 80 pixels. Eyes and mouth were at ap-
proximately the same position. Illumination variations were
reduced by applying a simple equalisation process to the im-
ages (using the histeq function available in Matlab software).

We first pre-processed the data by submitting the pixels of
the images in input to a PCA as explained previously. We
retained the components able to explain 95% of the variance
of the original data resulting in 200 components.

Procedure
The present experiment tests the ability of the new ∆ face-
space, implemented without knowing the identity labels of
the training stimuli, to support subsequent processes of iden-
tity and facial expression recognition.

In both the two conditions (i.e. facial expression and iden-
tity recognition) we used repeated random iterations of the
dataset’s samples (in this work 35 iterations for both the
tasks). In each iteration 25 subjects were randomly selected
as the test set among the 70 possible subjects to simulate un-
familiar identities. For each of the 25 selected subjects were
randomly chosen 2 facial expressions as probes for the iden-
tity recognition task, and the remaining 5 facial expressions
as test samples, leading to a total of 125 test samples for each
iteration. The images of the other 45 subjects, together with
the 50 selected probes, were used as the training set of the
current iteration, leading to 365 training samples for each it-
eration.

With each training data we estimated the mapping ma-
trix V ∆

overall of the ∆ face-space proposed in this chapter as
per Equations 6 and 7. Then, each test sample was mapped
onto the ∆ face-space, thus obtaining the encodings Y ∆E =
V ∆>

overallX and Y ∆I = Ỹ ∆E = Ṽ ∆>
overallX , respectively used dur-

ing the expression and identity recognition tasks for the ∆

face-space condition.
For each iteration, we compared the performance of the

∆ face-space against a baseline approach. The baseline ap-
proach used all the pixels of the face stimuli to match sim-
ilar facial expressions or identities. This is a fair method-
ology considering we pre-processed raw pixels data with a
simple PCA. In our previous contribution (Vitale et al., 2016)
we showed that the baseline and PCA performance are not
differing. Thus, we used this approach as our baseline to
demonstrate that matching the expressions and identities of
the considered dataset samples in the perceptual space was
not a trivial task and that our psychological face-space can
indeed facilitate facial expression and identity recognition.

The classification was performed using the nearest neigh-
bour algorithm. For each sample, xi, used by the baseline ap-
proach, and y∆

i , used by the face-space model, we computed
the Euclidean distances from the centroids of each class in
the corresponding space, and we selected the class associated
with the centroid closer to the sample.

For each test sample during each iteration, the baseline ap-
proach provided a single prediction. Instead, our face-space
model can use the first k = [1, . . . ,d] components of the map-
ping matrix V ∆

overall to map the face stimuli in face-space rep-
resentations and perform recognition tasks. Thus, our model
provided d predictions for each test sample during each it-
eration. To gather a single prediction, we selected the most
frequent class (mode) predicted by the face-space model for
each test sample during each iteration, as per a majority vot-
ing approach. For each iteration, we then computed the over-
all recognition rate for the baseline approach and the ∆ face-
space in both facial expression and identity recognition con-
ditions. This process led to 35 samples for each considered
approach and task.

Results
The distribution of the sampled recognition rates was first
assessed for normality using a D’Agostino’s K-squared test
(D’Agostino & Pearson, 1973) finding that the samples from
both facial expression and identity tasks followed a normal
distribution (p-values respectively 0.8571 and 0.1382). Thus,
the effect between the baseline approach and our face-space
model were evaluated by a Student’s t-test (Keppel, 1991) at
a significant level of α = 0.01. The effect size was assessed
by computing Cohen’s d (Cohen, 1977).

The results for facial expression and identity recognition
are shown in Figure 3a and Figure 3b respectively. From the
plots, it is possible to see that the novel ∆ face-space can fa-
cilitate both facial expression and identity recognition.

In addition, the t-tests rejected the null hypothesis in both
facial expression (p-value=6.5e−19) and facial identity (p-
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(a) (b)

Figure 3: Comparative analysis of the performance. (a,b) The recognition rates of the baseline approach and our face-space
model respectively during facial expression and facial identity recognition tasks.

value=1.6e−6) recognition tasks. The computed effect size
suggested a large effect for both the two tasks (d = 3.03
for facial expression recognition and d = 0.98 facial iden-
tity recognition). The statistics reached high powers (both
> 0.98).

Potential Implications of the Hypothesis
Although we validated our hypothesis through computational
simulations and it is not our aim to suggest that human brain
implements the proposed face-space in this way, in this sec-
tion we will discuss how these results can be of major impor-
tance for cognitive science community, at least by focusing at
a functional level of analysis.

Modern literature in face perception studies widely sug-
gest interactions between invariant and dynamic features of
face stimuli. For instance, it has been shown that women
and younger individuals appear to increase cues associated
with happiness, whereas men and older people those of anger
(Becker, Kenrick, Neuberg, Blackwell, & Smith, 2007) and
studies in face processing broadly suggest that face stimuli
can be plausibly represented in multidimensional norm-based
spaces (Rhodes & Jeffery, 2006; Rhodes, Leopold, Calder,
& Rhodes, 2011) and that invariant and dynamic codings of
these spaces interact (A. J. Calder et al., 2001).

Interestingly, the proposed hypothesis well integrates with
traditional understandings in face studies suggesting distinct
routes processing invariant and dynamic features of the face,
while still supporting more recent findings suggesting that
representations of invariant and dynamic facial features par-
tially overlap (Pell & Richards, 2013). In fact, Haxby, Hoff-
man, and Gobbini (2000) suggest that changeable aspects of
the face (i.e. eye gaze, expression and lip movement) are
processed in the Superior Temporal Sulcus (STS), whereas
invariant aspects of the face necessary to classify the exhib-
ited identity are processed in a distinct brain area, the Lateral
Fusiform Gyrus (LFG). The STS presents neural connections
with the amygdala and other brain areas usually associated

with emotional processing capabilities (Adolphs, 2002) and
interactions were observed between the STS and the LFG
(Haxby et al., 2000). Recent neuroscience studies suggest
that the STS is also related to mirroring mechanisms and im-
itative capabilities (Buxbaum, Shapiro, & Coslett, 2014) and
Molenberghs, Brander, Mattingley, and Cunnington (2010)
provided evidence suggesting that the role of the STS in im-
itation is not only to passively register observed biological
motion, but rather to actively represent sensory-motor corre-
spondences between one’s actions and the actions of others.
Therefore, the STS, assisted by putative emotional brain areas
like the amygdala, can plausibly provide information neces-
sary to interpret the observed facial expression, as suggested
in this paper with the assumed system M otor. This informa-
tion, in turn, can be then used by the LFG to develop facial
identity recognition capabilities, as proposed by the psycho-
logical face-space discussed in this paper.

Conclusions
We provided a new understanding of the face-space frame-
work proposed by Valentine (1991) and able to realise a
twofold structure encoding invariant and dynamic features
of the face under shared codings and consequently facili-
tating facial expression and identity recognition capabilities.
This face-space can develop by only interpreting motor be-
haviour exhibited by face stimuli encountered during devel-
opment. We demonstrated the validity of our claim by pro-
viding compelling computational evidence and we discussed
the potential implications of this new theoretical understand-
ing in face perception and processing studies. Future works
aim in extending the model with non-linear techniques and
possibly include temporal features, while at the same time
testing the theory by collecting human data from perceptual
experiments.
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