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Professor Angela Yu, Chair
Professor Ken Kreutz-Delgado, Co-Chair

Intelligent agents often need to make actions with uncertain consequences

under changing environment, and to modify those actions adaptively according to

ongoing sensory processing and changing task demands. The ability to cancel or

modify planned actions according to changing task conditions is known as inhibitory

control, and thought to be an important aspect of human cognitive function. Inhibitory

control has been studied extensively using the stop-signal experiment. Although a few

models and experiments attempted to explain the subject’s behavioral result,much
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work was still needed to understand the underlying mechanism.

Using Bayesian inference, hidden Markov model and stochastic control theory,

this dissertation proposes new model and experimental investigations to attain a

more comprehensive understanding of the underlying mechanism of human decision

making process in inhibitory control. We demonstrate how human’s reaction time,

previously thought of as a random quantity, is highly correlated with model simulated

predictive belief state. More specifically, the model and data enable us to provide strong

evidence that Go process and Stop process are highly dependent, in contrast to being

independent, as previously proposed. Our new proposed model can not only cover the

behavior data but also the neural data. Finally, by applying our model to the clinical

data, we discover the behavior and neural difference between methamphetamine-

dependent individuals and comparison group, indicating that the model simulated

quantity could be served as a biomarker to predict substance dependent user.
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Chapter 1

Introduction

Inhibitory control, the ability to stop or modify preplanned actions under

changing task conditions, is an important component of cognitive functions. Intelligent

agents often need to make optimal actions with uncertain consequences under changing

environment, and to modify those actions adaptively according to ongoing sensory

processing and changing task demands. For example, when you are driving a car and

approaching a traffic intersection, you need to decide whether you want to pass through

the traffic intersection or hit the brake, based on the perceived traffic information.

Different actions are associated with different costs. If you decide to keep going

when the yellow light is on, you might get a ticket or run into a crash. However,

if you decide to stop your car, you have to wait a few more minutes. You want to

choose the action which you think will minimize the overall cost. In Psychology,

inhibitory control has been studied extensively using the stop-signal experiment. A

few models and experiments have been proposed to explain the subject’s behavioral

and neural result. However, a comprehensive model and experiments are still lacking

to fully understand the underlying mechanism. Using the Bayesian inference, hidden

1



2

Markov and stochastic control theory, this dissertation proposes new novel model and

experimental study to give a more comprehensive understanding of the underlying

mechanism of human decision making process in stop signal task, and show how these

findings can be applied in clinical drug dependent user study.

In Chapter 2, we combine computational modeling and psychophysics to

examine the hypothesis that fluctuations in the noisy measure of go reaction time (Go

RT) reflect dynamic computations in human statistical learning and corresponding

cognitive adjustments. We model across-trial learning of stop signal frequency, P(stop),

and stop-signal onset time, SSD (stop-signal delay), with a Bayesian hidden Markov

model, and within-trial decision-making with an optimal stochastic control model.

We show that human reaction time is related to the estimated P(stop) and SSD. The

results demonstrate that humans indeed readily internalize environmental statistics

and adjust their cognitive/behavioral strategy accordingly, and that the reaction time,

which was thought as a random variable, can serve as a valuable tool for validating

models of statistical learning and decision-making.

In Chapter 3, we then present novel behavioral data and simulation result to

valid a key assumption-that is, the Go process and Stop process are dependent with

each other. The results thus favor a fundamentally inseparable account of go and

stop processing, in a manner consistent with the optimal model, and contradicting the

independence assumption of the race model. More broadly, our findings contribute

to the growing evidence that the computations underlying inhibitory control are

systematically modulated by cognitive influences in a Bayes-optimal manner, thus

opening new avenues for interpreting neural responses underlying inhibitory control.

The old rational decision-making model for stopping suggested the observer
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makes a repeated Go versus Wait choice at each instant, so that a Stop response is

realized by repeatedly choosing to Wait. In Chapter 4, we propose an alternative

stochastic control model that incorporates a third choice, Stop. Critically, unlike

the Wait action, choosing the Stop action not only blocks a Go response at the

current moment but also for the remainder of the trial - the disadvantage of losing

this flexibility is balanced by the bene- fit of not having to pay attention anymore. We

show that this new model both reproduces known behavioral effects and has internal

dynamics resembling presumed Go neural activations in the brain.

In Chapter 5, we use a Bayesian computational approach to examine potential

neural deficiencies in the dynamic predictive processing underlying inhibitory function

among recently abstinent methamphetamine-dependent individuals (MDIs), a popu-

lation at high risk of relapse. We show that, relative to comparison subjects, MDIs

were more likely to make stop errors on difficult trials and had attenuated slowing

following stop errors. MDIs further exhibited reduced sensitivity as measured by the

neural tracking of a Bayesian measure of surprise (unsigned prediction error), which

was evident across all trials in the left posterior caudate and orbitofrontal cortex

(Brodmann area 11), and selectively on stop error trials in the right thalamus and

inferior parietal lobule.



Chapter 2

Statistical Learning and Adaptive

Decision-Making underlie Human

Response Time Variability in

Inhibitory Control

Response time (RT) is an oft-reported behavioral measure in psychological and

neurocognitive experiments, but the high level of observed trial-to-trial variability in

this measure has often limited its usefulness. Here, we combine computational modeling

and psychophysics to examine the hypothesis that fluctuations in this noisy measure

reflect dynamic computations in human statistical learning and corresponding cognitive

adjustments. We present data from the stop-signal task, in which subjects respond

to a go stimulus on each trial, unless instructed not to by a subsequent, infrequently

presented stop signal. We model across-trial learning of stop signal frequency, P(stop),

and stop-signal onset time, SSD (stop-signal delay), with a Bayesian hidden Markov

4
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model, and within-trial decision-making with an optimal stochastic control model.

The combined model predicts that RT should increase with both expected P(stop) and

SSD. The human behavioral data (n=20) bear out this prediction, showing P(stop)

and SSD both to be significant, independent predictors of RT, with P(stop) being a

more prominent predictor in 75% of the subjects, and SSD being more prominent in

the remaining 25%. The results demonstrate that humans indeed readily internalize

environmental statistics and adjust their cognitive/behavioral strategy accordingly,

and that subtle patterns in RT variability can serve as a valuable tool for validating

models of statistical learning and decision-making. More broadly, the modeling tools

presented in this work can be generalized to a large body of behavioral paradigms, in

order to extract insights about cognitive and neural processing from apparently quite

noisy behavioral measures. We also discuss how this behaviorally validated model can

then be used to conduct model-based analysis of neural data, in order to help identify

specific brain areas for representing and encoding key computational quantities in

learning and decision-making.

2.1 Introduction

Response time (RT) is an oft-reported behavioral measure in psychology and

neuroscience studies. As RT can vary greatly across trials of apparently identical

experimental conditions, average or median RT across many identical trials is typically

used to examine how task performance or an internal speed-accuracy tradeoff might

be affected by different experimental conditions. Separately, a specialized subfield

of quantitative psychology has used not only the first-order statistics (e.g. mean

and median) but also second-order (e.g. variance) and higher-order (e.g. skewness,
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kurtosis) statistics to make inferences about the cognitive or neural processes underlying

behavior [Lam68, Luc86, Smi95, RR98, GS02, BBM+06]. In general, RT is considered

a very noisy experimental measure, with single-trial responses yielding little useful

information about the underlying mental processes.

In this work, we approach RT modeling from a different angle, attempting

to capture trial-to-trial variability in RT as a consequence of statistically normative

learning about environmental statistics and corresponding adaptations within an

internal decision-making strategy. We focus on behavior in the stop-signal task (SST)

[LC84], a classical inhibitory control task, in which subjects respond to a go stimulus

on each trial unless instructed to withhold their response by an infrequent stop signal

that appears some time after the go stimulus (stop-signal delay; SSD). We model

trial-by-trial behavior in SST, using a Bayesian hidden Markov model to capture across-

trial learning of stop signal frequency (P(stop)) and onset asynchrony (SSD), and a

rational decision-making control policy for within-trial processing, which combines

prior beliefs and sensory data to produce behavioral outputs under task-specific

constraints/objectives.

This work builds on several previous lines of modeling research. The new

model combines a within-trial rational decision-making model for stopping behavior

[SY11] and an across-trial statistical learning model (Dynamic Belief Model; DBM)

that sequentially updates beliefs about P(stop) [YC09, SRY10]; it also incorporates

a novel across-trial learning component, a simple version of a Kalman filter, that

updates beliefs about the temporal statistics of the stop-signal onset (SSD). Using

this new model, we can then predict how RT on each trial ought to vary as a function

of the sequence of stop/go trials and SSD’s previously experienced by the subject, and
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compare it to the subject’s actual RT.

Several key elements of the combined model have previously received empirical

support. For example, we showed that the rational decision-making model for stopping

behavior [SY11], which separately penalizes stop error, go (discrimination and omission)

error, and response delay, can account for both classical effects in the SST [LC84],

such as increasingly frequency of stop errors as a function of SSD and faster stop-

error responses than correct go responses, as well as some recently discovered, subtle

influences of contextual factors on stopping behavior, such as motivation/reward

[LW09] and the baseline frequency of stop trials [EBB+07]. We also showed that the

across-trial learning model, DBM, can account for sequential adjustment effects not

only in SST [SRY10, ISYL13], but also more broadly in simple 2AFC (2-alternative

forced choice) perceptual decision-making tasks [YC09] and a visual search task

[YH14].

The primary contribution of the current work is to extend a Bayesian model

of trial-by-trial learning of P(stop) [SRY10] to also account for learning about the

temporal distribution SSD, and to quantify how much of RT variability can be

accounted for by each of these learning components. Moreover, we expect that this

extended model will be quite useful in identifying brain regions in encoding key

computational variables in learning and decision-making.

In the following, we first describe the experimental design, then the modeling

details, followed by the results; we conclude with a discussion of broader implications

and future directions for research.
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2.2 Materials and Methods

2.2.1 Experiment

The stop signal task consists of a two alternative forced-choice (2AFC) per-

ceptual discrimination task, augmented with an occasional stop signal. Figure 3.1

schematically illustrates our version of the stop-signal task: subject responds to a

default go stimulus on each trial within 1100 ms, unless instructed to withhold the

response by an infrequent auditory stop signal. The go task is either a random-dot

coherent motion task (8%, 15%, or 85% coherence), or a more classical square versus

circle discrimination task. On a small fraction of trials, an additional stop signal

occurs at some time (known as the stop-signal delay, or SSD) after the go stimulus

onset, and the subject is instructed to withhold the go response. The trials without

stop signals are called go trials. The SSD is randomly and uniformly sampled on each

trial from 100 ms, 200 ms, 300 ms, 400 ms, 500 ms, and 600 ms.

Twenty subjects (13 females) participated in the stop signal task where, on

approximately 25% of trials, an auditory ”stop” signal was presented some time after

the go (discrimination) stimulus, indicating that the subject should withhold their

response to the go stimulus. Each subject participated in 12 blocks, 3 block for

each stimulus type, and each block containing 75 trials. Two days before the main

experiment session, subjects participated in a training session, which contained only

2AFC discrimination and no stop trials. In the training session, there were 10 blocks, 3

blocks for each random dot stimulus coherence and one block for shape discrimination.

Subjects were given the same maximal amount of time to respond on the training

session trials (1 sec) as in the main experiment. The purpose of the training session is
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to allow subjects to familiarize themselves with the task and to allow their perceptual

discrimination performance to stabilize. Only data from the main experimental session

are analyzed and presented here.

We say that the subject makes a discrimination error when he/she incorrectly

responds to the stimulus in go trials, i.e. choosing the opposite motion direction or

incorrect shape. The subject makes an omission error if he/she fails to make a go

response prior to the response deadline on a go trial. The trials having stop signal are

called stop trials; trials without stop signal are go trials . When the subject withhold

the response until the response deadline on a stop trial, the trial is considered a stop

success (SS) trial; otherwise, it is considered a stop error (SE) trial. Each trial is

terminated when the subject makes a response, or at the response deadline itself if no

response has been recorded. To incentivize the subjects to be engaged in the task,

and to standardize the relative costs of the different kind of errors across individuals,

subjects are compensated proportional to points they earn in the task, whereby they

lose 50 points for a go discrimination or omission error, 50 points for a stop error,

and 3 points for each 100ms of response delay (so maximally 33 points for a trial that

terminates with no response, and less if the subject makes a response prior to the

response deadline).

This study protocol was approved by the University of California San Diego

Human Subjects Review Board, and all subjects gave written informed consent.

2.2.2 Model

In this section, we give a brief description of the computational model we use

to capture both within-trial sensory processing and decision-making, and across-trial
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learning of P(stop) and SSD. The model for within-trial processing is essentially

identical to that in our previous work [SRY10, SY11], while the model for across-trial

processing is an augmentation of a previous model [ISYL13] by taking into account

not only P(stop) but also SSD.

Within-Trial Processing

Within-trial processing is modeled as a combination of Bayesian sensory pro-

cessing, which consists of iterative statistical inference about the identity of the go

stimulus and the presence of the stop signal, and optimal stochastic control, which

chooses whether to Wait or Go (and if so, which Go response) at each instant, based

on the accumulating sensory information (Bayesian belief state) and general behavioral

objectives (an objective function consisting of parameterized costs for response delay,

go discrimination error, go omission error, and stop error). We briefly summarize the

model here; a more detailed description can be found elsewhere [SY11].

Sensory processing as Bayesian statistical inference. Figure 2.2A graphically

illustrates the Bayesian generative model for how iid noisy sensory data are assumed

to be generated by the (true) hidden stimulus states. The two hidden variables d and

s correspond respectively to the identity of the go stimulus, d ∈ {0, 1} (0 for left, 1 for

right), and whether or not this trial is a stop trial, s ∈ {0, 1}. Conditioned on the go

stimulus identity d, a sequence of iid sensory inputs, representing the cue of go stimulus,

are generated on each trial, x1, ... ,xt, ... ,where t indexes time steps within a trial. The

likelihood functions of d generating the sensory inputs are f0(x
t) = p(xt|d = 0) and

f1(x
t) = p(xt|d = 1), which are assumed to be Bernoulli distribution with respective

rate parameters qd and 1− qd. The dynamic variable zt denotes the presence/absence
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of the stop signal. z1 = ... = zθ−1 = 0 and zθ = zθ+1 = ... = 1 if a stop signal

appears at time θ, where θ represents stop signal delay SSD. For simplicity, we assume

that θ, also known as the stop-signal delay (SSD), follows a geometric distribution:

P (θ = t|s = 1) = q(1 − q)t. The expected value of θ is 1/q, which is the expected

SSD, E [SSD], within a trial. Conditioned on zt, each observation yt is independently

generated and indicates the cue of stop signal. For simplicity, we assume the likelihood

functions, p(yt|zt = 0) = g0(y
t) and p(yt|zt = 1) = g1(y

t), are Bernoulli distributions

with respective rate parameters qs and 1− qs.

In the statistically optimal recognition model, Bayes’ Rule is applied in the

usual iterative manner to compute the iterative posterior probability associated

with go stimulus identity, ptd := P (d = 1|xt), and the presence of the stop signal,

pts := P (s = 1|yt), where xt = {x1, x2, ..., xt} and yt = {y1, y2, ..., yt} denotes all the

data observed so far. The belief state at time t is defined to be the vector bt = (ptd, p
t
s),

which can be iteratively computed from time step to time step via Bayes’ Rule, by

inverting the generative model (Figure 2.2).

Decision making as optimal stochastic control. Figure 2.2B graphically illus-

trates the sequential decision-making process used to model how an observer chooses

whether to Go, when to do so, and which Go response to select on each trial. The

decision policy is optimized with respect to the Bayesian belief state and a behaviorally

defined cost function that captures the cost and penalty structure of SST, based on

which the observer decides at each moment in time whether to Go (and if so, which

Go response) or Wait at least one more time step.

On each trial, if the Go action is taken by the response deadline D, it is

recorded as a Go response (correct on Go trials, error on Stop trials); otherwise the
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trial is terminated by the response deadline and a Stop response is recorded (omission

error on Go trials, correct on Stop trials). Let r denote the trial termination time,

so that r = D if no response is made before the deadline D, and r < D if a Go

action is chosen. δ ∈ {0, 1} represents the possible binary Go choices produced by

making a Go response. We assume there is a cost c incurred per unit time in response

delay (corresponding to time-dependent costs, such as time, effort, opportunity, or

attention), a stop error penalty of cs for responding on a Stop trial, and a unit cost

for making a discrimination error or commission error on a Go trial – since the cost

function is invariant with respect to scaling, we normalize all cost parameters relative

to the Go error cost without loss of generality. Thus, the cost function is:

l(r, δ; d, s, θ,D) = cr + cs1{r<D,s=1} + 1{r<D,δ 6=d,s=0} + 1{r=D,s=0} .

The optimal decision policy minimizes the expected (average) loss, Lπ =

E [l(r, δ; d, s, θ,D)],

Lπ = cE [τ ] + csrP (τ <D|s=1) + (1−r)P (τ <D, δ 6=d|s=0) + (1−r)P (τ=D|s=0)

which is an expectation taken over hidden variables, observations, and actions, and

generally computationally intractable to minimize directly. Fortunately, having formu-

lated the problem in terms of a belief state Markov decision process, we can effectively

use standard dynamic programming [Bel52], or backward induction, to compute the

optimal policy and action, via a recursive relationship between the value function

and the Q-factors. The value function V t(bt) denotes the expected cost of taking the

optimal policy henceforth when starting out in the belief state bt. The Q-factors,
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Qt
g(b

t) and Qw
g (bt), denote the minimal costs associated with taking the action Go

or Wait, respectively, when starting out with the belief state bt, and subsequently

adopting the optimal policy. The Bellman dynamic programming principle, applied to

our problem, states:

Qt
g(b

t) = ct+ csp
t
s + (1− pts)min(ptd, 1− ptd)

Qt
w(bt) = 1{D>t+1}E

[
V t+1(bt+1)|bt

]
bt+1 + 1{D=t+1}(c(t+ 1) + 1− pts)

V t(bt) = min(Qt
g, Q

t
w)

whereby the optimal policy in state bt is to choose between Go and Wait depending

on which one has the smaller expected cost. Note that a Go response terminates

the current trial, while a Wait response lengthens the current trial by at least one

more time step (unless terminated by the externally imposed response deadline).

Since the observer can no longer update the belief state nor take any action at the

deadline, the value function at t = D can be computed explicitly, without recursion,

as V t(bD) = 1− PD
s . Bellman’s equation then allows us compute the value functions

and Q factors exactly, up to discretization of the belief state space, backwards in time

from t = D − 1 to t = 1. In practice, we discretize the belief state space, (ptd, p
t
s), into

200× 200 bins.

The optimal policy partitions the belief state into three discrete action regions:

two symmetric Go regions for extreme values of pd and relatively small values of

ps (i.e. where the subject believes the probability of a stop trial is small and the

confidence about whether the go stimulus requires a left/right response is high), where

the optimal action is to Go, and a large central Wait region, where the value of pd is
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close to 0.5 (subject is unsure of go stimulus identity) and/or the value of ps is large

(subject is fairly sure of this being a stop trial), and the optimal action is to Wait.

Across-Trial Processing

Across-trial processing is modeled as Bayesian iterative inference about trial

type, P(stop), and the temporal onset of the stop signal, SSD.

Dynamic Belief Model for P(stop). We originally proposed the Dynamic Belief

Model (DBM) to explain sequential effects in RT and accuracy in 2AFC tasks, as

a function of experienced trial history [YC09], in particular predicting the relative

probability of observing a repetition (identical stimulus as last trial) or alternation

(different stimulus than last trial) on each trial. Here, as we did earlier [ISYL13], we

adapt DBM to model the prior probability of observing a Stop trial (as opposed to

Go trial) based on trial history (see Figure 2.3A for a graphical illustration of the

generative model, and Figure 2.3B for simulated dynamics of DBM given a sequence

of sample observations). We briefly describe the model here; more details can be found

elsewhere [YC09, ISYL13].

We assume that γk is the probability that trial k is a stop trial, and it has a

Markovian dependence on γk−1, so that with probability α, γk = γk−1, and probability

1− α, γk is redrawn from a generic prior distribution p0(γk). The observation sk is

assumed to be drawn from a Bernoulli distribution with a rate parameter γk. The

iterative posterior and prior of γk can be updated via Bayes’ Rule by:

p(γk|sk) ∝ p(γk|sk−1)p(sk|γk)

p(γk|sk−1) = αp(γk−1 = γ|sk−1) + (1− α)p0(γk = γ) .
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Note that the predicted value of γk, what we call P(stop), is the mean of the predictive

prior distribution: P (sk = 1|sk−1) = E [γk|sk−1] =
∫
γp(γ|sk−1)dγ. Under this model,

P (sk = 1|sk−1) specifies the prior probability of seeing a stop signal for within-trial

sensory processing in Section 2.2.2.

Kalman Filter Model for Learning Expected SSD. We use a simple linear-

Gaussian dynamical systems model, also known as a Kalman filter [Kal60], to model

the trial-by-trial estimation of the mean and variance of the posterior and predictive

prior distribution of SSD in the stop-signal task. When the prior distribution of

the hidden dynamic variable is Gaussian, the dynamics is linear and corrupted by

Gaussian noise, and the observations are a linear function of the hidden variable

corrupted by Gaussian noise, the posterior distribution of the hidden variable after

each observation, as well as the predictive prior before the next observation, are both

Gaussian as well. The Kalman filter describes the statistically optimal (Bayesian)

equations for updating the posterior and prior distributions.

As shown in Figure 2.3C, we assume that the observed SSD on (stop) trial k, zk,

is generated from a Gaussian distribution with ”true” (hidden) mean hk and variance

R, whereby hk evolves from (one stop) trial to (another stop) trial under Gaussian

noise, with mean 0 and variance Q. We also assume that the prior distribution

over h1 is Gaussian, p(h1) = N (h0, P0). Then the predictive prior distribution

p(hk|z1, . . . , zk−1) = N (ĥ−k , P
−
k ), can be updated using iterative applications of Bayes’

Rule (and consistent with Kalman filter equations) as follows:

ĥ−k = ĥk−1

P−k = Pk−1 +Q
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and the the posterior distribution, p(hk|z1, . . . , zk) = N (ĥk, Pk) can be updated as:

Kk =
P−k

P−k +R

ĥk = ĥ−k +Kk(zk − ĥ−k )

Pk = (1−Kk)P
−
k

where Kk is known as the Kalman gain, which depends on the relative magnitude of

state uncertainty P−k and the observation noise R. Note that the new posterior is a

linear compromise between the predictive prior and observed data, parameterized by

Kk (see Figure 2.3D for simulated dynamics of the Kalman filter given a sequence of

sample observations). This constitutes a particularly simple case of the Kalman filter,

as both the hidden and observed variables are scalar-valued, both the hidden dynamics

(how hk depends on hk−1) and the emission transformation (how zk depends on hk) are

trivial, and the observer does not actively control the system. The only caveat is that

on trials without a stop signal (Go trials), there is no observation for zk; we assume

on these trials the predictive prior updates as usual and the posterior distribution is

identical to the prior (i.e. the inference model is allowed to diffuse as normal, but

there is no observation-based correction step). An alternative implementation is to

assume that the Kalman filter is not updated on Go trials (no SSD observations). We

choose to allow the Kalman filter to diffuse on Go trials, because preliminary analysis

indicates that the influence of recently experienced SSD diminishes with increasing

number of recent Go trials. Using this model, the prior mean ĥ−k specifies the mean of

the prior distribution for SSD for within-trial processing (1/q) in Section 2.2.2.
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2.3 Results

Systematic patterns of sequential effects have long been observed in human

2AFC tasks, in which subjects’ responses speed up (and accuracy increases) when a

new stimulus confirms to a recent run of repetitions or alternations, and slow down

(and accuracy decreases) when these local patterns are violated [SBH85, CNB+02], as

though humans maintain an expectancy of stimulus type based on experienced trial

sequences and their RT is modulated by this expectancy. Similar sequential effects

have also been observed in other classical behavioral experiments used in psychology,

including the stop-signal task (SST), in which subjects’ Go RT increases with the

preponderance of stop trials in recent history [EBB+07, LHY+08]. We first verify,

using a relatively crude model-free method, that this effect is also present in our data.

Figure 2.4A shows that Go RT indeed increases with the frequency of stop trials in

recent history, and also with the recency of those experienced stop trials. In addition,

we hypothesize that, unlike in a basic 2AFC task, subjects may maintain evolving

statistical information about stimulus onset time (stop-signal delay, SSD) across trials

as well. Figure 2.4C shows that subjects’ Go RT indeed increases with the mean SSD

of the two most recently experienced stop trials. The strong correlation between Go

RT and SSD is also consistent with recent work on decomposing decision components

in the Stop-signal Task [WCM+14].

Our main modeling goal here is to develop a principled explanation for how Go

RT ought to vary from trial-to-trial in the stop-signal task, as a function of observed

data, perceived statistical structure of the environment, and behaviorally defined

objectives. We can then compare model predictions with human data to see whether

our assumptions about the underlying computational processes and objectives hold.



18

There are two key components to the model (details in Section 3.2.2): (1) how subjects’

beliefs about task statistics vary across trials as a function of previously experienced

outcomes, and (2) how subjects’ behavioral strategy within each trial depends on prior

beliefs (learned from prior experience). These two components are generally referred to

as the observation and response models [DOP+10]. In the context of modeling behavior,

where that behavior is itself modeled under ideal Bayesian assumptions, the observer

model constitutes the subject’s generative model of how observations are caused, while

the response model maps from the implicit beliefs to observed responses. Because we

assume subjects’ belief updating (Bayesian inference) and response selection are both

ideal, given environmental statistics (specified by the Bayesian generative model) and

behavioral objectives (specified by the objective/cost function in the stochastic control

model), there are no free parameters in either the observation and response models.

Furthermore, as we demonstrate through simulations, the ideal mapping between the

belief state (obtained using the observation model) and the response time is essentially

linear, resulting in a particularly simple parameterization of the response model.

For the first component, we separately model the evolution of subjects’ beliefs

about the frequency of stop trials, P(stop), using a Bayesian hidden Markov model

known as the Dynamic Belief Model (DBM), and their beliefs about the temporal onset

of the stop signal, SSD, using a Kalman filter model (Section 2.2.2). We previously

proposed DBM to explain sequential effects in 2AFC tasks [YC09], and later adapted

it to explain sequential effects in the SST [SRY10, ISYL13] – see Figure 2.3A for a

graphical illustration of the generative model, and Figure 2.3B for simulated dynamics

of DBM given a sequence of sample observations. To model sequential effects in SSD,

we use a simple variant of the Kalman filter [Kal60]. which primarily differs from
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DBM in that the hidden variable s is assumed to undergo (noisy) continuous dynamics,

such that the mean of the new variable is centered at the old sk−1 (a Martingale

process), whereas DBM assumes that the new hidden variable sk is either identical to

sk−1, or redrawn from a generic prior distribution p0(s), which is identical on each

trial. This means that hidden variables dynamics in DBM are not Martingale, and

the variable s can undergo large, discrete jumps, which are unlikely in the Kalman

filter. In a preliminary analysis (results not shown), we used both the Kalman filter

and a modified version of DBM (which takes continuously valued inputs instead of

binary ones) to model subjects’ beliefs about E [SSD], and found that the Kalman

filter does a significantly better job of accounting for trial-by-trial variability in RT

than does DBM.

For the second component, we use a Bayesian inference and optimal decision-

making model [SRY10, SY11] to predict when and whether the subject produces a

Go response on each trial, as a function of prior beliefs about P(stop) and SSD. The

model chooses, in each moment in time, between Go and Wait, depending on ongoing

sensory data and the expected costs associated with making a go (discrimination or

omission) error, a stop error (not stopping on a stop trial), and response delay (details

in Section 2.2.2). Our earlier work showed that this model can explain a range of

behavioral and neural data in the SST [SRY10, SY11, ISYL13, HSS+14],

We first simulate the within-trial sensory processing/decision-making model

to demonstrate how the model predicts Go RT ought to vary as a function of prior

beliefs about P(stop) and SSD. Intuitively, we would expect that Go RT ought to

increase with the prior belief P(stop), since a higher probability of encountering a

stop signal should make the subject more willing to wait for the stop signal despite
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the cost associated with response delay. We also expect that Go RT ought to increase

with E [SSD] for the prior distribution, since expectation of an earlier SSD should

give confidence to the observer that no stop signal is likely to come after a shorter

amount of observations and thus induce the observer to respond earlier. Simulations

(Figure 2.5) show that Go RT indeed increases monotonically with both P(stop) and

E [SSD], and does so linearly. Note that P(stop) and E [SSD] are explicitly and

naturally specified in the statistical model here (details in the Models section), so we

only need to change these parameters and observe their normative consequences by

simulating the model, without tuning any free parameters. We also tried uniform

distribution for stop signal delay and found that geometric distribution outperformed

uniform distribution. The possible reason is that the optimal model, though gives

best prediction results, may not be identical to the true underlying learning and

inference process of human being. We think it is fine to not make the optimal model

be identical to every assumption made in real data analysis, where stop signal delay is

uniformly and randomly sampled. As in many instances of (meta) Bayesian modeling

of subject behavior, we therefore find that it is sufficient to explain responses in

terms of subject-specific prior beliefs. In other words, there is no single Bayes-optimal

response valid across all trials, because individuals are equipped with their own priors,

continually learned and dynamically evolving according to their individual experiences,

and which in turn determine how each observed outcome is assimilated into posterior

beliefs and how those beliefs drive observable responses.

Given the strong linear relationship the model predicts to exist between Go

RT and both P(stop) and E [SSD], we expect that the same would be true for human

data if the across-trial learning model (Section ??) appropriately models subjects’
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prior beliefs about P(stop) and SSD based on experienced trial history, and subjects

modify their internal sensory processing and decision-making accordingly as prescribed

by the rational within-trial decision-making model (Section ??).

As a strong correlation between the two model predictors, P(stop) and E [SSD],

would complicate any analysis and interpretation, we first verify that they are suffi-

ciently decorrelated from each other (as we expect them to be, since SSD on each stop

trial is chosen independently in the experimental design). We find that the average

correlation between the two, across all subjects, is only 0.019 (std = 0.073), and so

treat them as independent variables for the remainder of the paper.

We apply the across-trial learning model to a subject’s experienced sequence of

go/stop trials and SSD to estimate their prior beliefs on each trial, and then plot how

Go RT varies with the model-based estimates of P(stop) and SSD. Figure 2.6 shows

that the subjects’ Go RT increases approximately linearly with prior P(stop) and SSD,

as predicted by the model (Figure 2.5). For individual subjects, a linear regression of

Go RT versus binned values of P(stop) and E [SSD], using the same binning procedure

as for the group data analysis in Figure 2.6C, is significant in 90% (18/20) of the

subjects (p < 0.05), with p = 0.09 and p = 0.14 for the two remaining subjects. On

average (across all subjects), we see that variability in P(stop) can explain 34.5%

of the variability in the binned RT data (std = 25.0%), while the combined P(stop)

and E [SSD] model can account for 47.2% of the variability in the binned RT data

(std=18.9%). RT variability explained by P(stop), on average, accounts for 68.3%

of the variability explained by the combined model (std = 34.8%). In other words,

P(stop) is a slightly more prominent predictor of RT variability, although we do see

that in 25% of the subjects (5/20), E [SSD] was a stronger predictor of RT variability
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than P(stop), i.e. P(stop) accounted for less than 50% of the variance explained by

the combined model.

These results imply that humans both continuously monitor and update in-

ternal representations about statistics related to stimulus frequency and temporal

onset, and adjust their behavioral strategy rationally according to those evolving

representations. Moreover, we can get some insight into implicit human assumptions

about environmental statistics based on estimated model parameters. For DBM, we

found that α = 0.75 yields the best linear fit between Go RT and P(stop) (highest

R2 value), implying that subjects assume that the frequency of stop trials changes on

average once every four trials, (the expected duration between changes is 1/(1− α)).

This is consistent with the α value previously found in a DBM account of sequential

effects in a 2AFC perceptual discrimination task [YC09]. We also found through

simulations (results not shown) that the model fit was not very sensitive to the precise

value of a and b, the parameters of the Beta prior distribution p0(γ), in that different

values of (a, b) yield highly correlated predictions of P(stop). Thus, a and b were not

optimized with respect to the data but instead fixed at a/(a+ b) = 0.25, equivalent

to the empirical baseline frequency of stop trials, and a + b = 10. For the Kalman

filter, we found that Q = 0.03 and R = 0.15 yield the best linear fit between Go

RT and E [SSD], which implies that subjects expect on average that hk will ”diffuse”

from trial to trial according to a Gaussian distribution with a standard deviation

of
√

0.03 = 0.17 sec, and that the perceived SSD is corrupted by unbiased sensory

noise with a standard deviation of
√

0.15 = 0.39 sec. The correlation between Go RT

and E [SSD] is not very sensitive to the other Kalman filter parameters (results not

shown), h0, and P0, and thus those were specified with fixed values (see caption of
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Figure 2.3).

2.4 Discussion

In this paper, we presented a rational inference, learning, and decision-making

model of inhibitory control, which can account for significant variability of human

RT in the stop-signal task. Unlike most previous models of human response time,

which assumes RT variability to be due to irreducible noise, we show that some of

this variability reveals how fluctuations in experienced empirical statistics are used by

human observers to continuously update their internal representation of environmental

statistics and rationally adjust their behavioral strategy in response. To be sure, our

model is only a partial explanation of the overall RT variability. While our model is

able to account for about half of the RT variability averaged across subjects, there

is additional RT variability not accounted for by the model, which is obscured by

the averaging process. Much room remains for future work to determine additional

contextual and individual-specific factors that drive variabilities in RT.

In this work, we assumed fixed model parameters, such as the critical α

parameter for tracking P (stop) and the ratio R/Q for tracking E [SSD], both of which

parameterize the stability of environmental statistics and thus determine the size of

the ”memory window” for using previous trials to predict the next trial. One may

well ask whether human subjects in fact undergo meta-learning about these and other

parameters over the time course of the experiment. The short answer is ”no”, as we

see no statistically discernible differences in human behavior in the first and second

halves of the experiment (data not shown). This is not surprising, given that in a

much simpler 2AFC task (where the cognitive demands within each trial are much
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lower), the first in which we successfully accounted for sequential effects as arising from

tracking local statistics of the sensory environment [YC09], we found that not only did

subjects not behave differently in the first and second halves of the experiment, but

that from an ideal observer point of view, meta-learning of α is much too slow to give

rise to noticeably different behavior over the time course of one experimental session.

Separately, this work makes an important contribution to advancing the under-

standing of inhibitory control. Inhibitory control, the ability to dynamically modify

or cancel planned actions according to ongoing sensory processing and changing

task demands, is considered a fundamental component of flexible cognitive control

[Bar97, Nig00]. Stopping behavior is also known to be impaired in a number of

psychiatric populations with presumed inhibitory deficits, such as attention-deficit hy-

peractivity disorder [ARK07], substance abuse [NWM+06], and obsessive-compulsive

disorder [MAC+07]. The work present here can help elucidate the psychological and

neural underpinnings of inhibitory control, by providing a quantitatively precise model

for the critical computational components, and thus informing both experimental

design and data analysis in future work for the identification of neural functions.

Along these lines, the current work has concrete applications in the analysis of neu-

rophysiology data. Previously, we successfully applied the P(stop)-learning model

[SRY10] in a model-based analysis of fMRI data [ISYL13], and discovered that the

dorsal anterior cingulate cortex (dACC) encodes a key prediction error signal related

to P(stop); moreover, we found the dACC prediction-error signal is altered in young

adults at risk for developing stimulant addiction [HSS+14], a condition known to be

associated with impaired inhibitory control and specifically stopping behavior. We

expect that this new, extended model should be even more powerful in capturing
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human behavior and identifying neural correlates of the computations involved in

proactive control, which is concerned with the preparation for inhibition in advance of

sensory input. As we have behaviorally validated, trial-by-trial measures of underlying

belief states, our model can be used to look for neural responses specifically correlated

with these beliefs, allowing us to establish the functional neural anatomy of different

sorts of probabilities and uncertainties.

Beyond specific implications for inhibitory control and response modeling,

this work exemplifies an approach for leveraging apparently ”noisy” experimental

measures such as RT, to glean deep insights about cognitive representation and

behavioral strategy in humans (and other animals). Even though our experiment did

not explicitly manipulate the frequency of stop trials or the onset of the stop signal

across the experimental session, subjects still used chance fluctuations in the local

statistics of empirical observation to continuously modify their internal beliefs, and

modulate their behavioral strategy accordingly. This raises the very real possibility

that humans are constantly updating their internal model of the environment in any

behavioral task, and the apparent ”noise” in their behavioral output may often arise

from an underlying monitoring and adaptation process, which can be brought to

light by incorporating sophisticated normative modeling tools, such as the Bayesian

statistical modeling and stochastic control methods used here. With the broadening

use of these modeling tools, there should be exciting new possibilities for advancing

the neural, psychological, and psychiatric study of learning, decision-making, and

cognitive control.
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Figure 2.1: Schematic illustration of our stop signal task (A) Go trials: On
go trials, subject is supposed to make a response to a default go response by
pressing the left or right button, based on the coherent motion direction of
random dots. The go reaction time (Go RT) is defined as the time the subject
takes to make a go response since the onset of go stimulus. The subject makes
a discrimination error if he/she chooses the wrong direction (hit the wrong
button). (B) Stop trials: On small fraction of trails, a stop signal will appear
and instruct the subject to withhold the go response. The time delay between
the occurrence of stop signal task and the onset of go stimulus is called the
stop-signal delay (SSD). If the subject makes a go response in a stop trial,
this trial is considered a stop error (SE) trial, otherwise it is considered a
stop success trial (SS).
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(B)(A)

Figure 2.2: Within-trial sensory processing and decision-making. (A)
Bayesian generative model of iid sampled sensory observations (x1, . . . , xt, . . .)
conditioned on Go stimulus identity (d = 0 of left, d = 1 for right), and an in-
dependent stream of observations (y1, . . . , yt, . . .) conditioned on the presence
(zt = 1) or absence (zt = 0) of the Stop signal, which has a geometrically
distributed onset time when it is a stop trial s = 1 and never appears on a go
trial (s = 0). (B) The decision of whether to Go, when to do so, and which
Go response to select are modeled as a sequential decision-making process,
where the subject chooses at each moment in time whether to select a Go
response (δ = 0 for square, δ = 1 for circle), or to wait at least one more time
point.
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Figure 2.3: Bayesian sequential inference model for learning P (stop) and
E [SSD]. (A) Graphical model for DBM. γ ∈ [0,1], sk ∈ {0, 1}. p(γk|γk−1) =
αδ(γk − γk−1) + (1 − α)p0(γk), where p0 = Beta(a, b). Numbers inside cir-
cles indicate example random variable values. (B) Evolution of predictive
probability mass for DBM p(γt|sk−1) (grayscale) and its mean, the predictive
probability P (sk = 1|sk−1) (cyan), for a randomly generated sample sequence
of observations (red dots valued 1 or 0). P (sk = 1|sk−1) fluctuates with
transient runs of stop (e.g. starting at trial 11) and go trials (e.g. starting at
trial 6). Simulation parameters: α = 0.75, p0 = Beta(2.5, 7.5). (C) Graphical
model for the Kalman filter. p(hk|hk−1) = N (hk−1, Q), p(zk|hk) = N (hk, R),
p(h1) = N (h0, P0). Numbers inside circles indicate example random vari-
able values. (D) Evolution of posterior mean (cyan) and probability mass
(grayscale) of SSD over time, for a randomly generated sequence of observa-
tions (red circles) with values in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. E [SSD] tends
to increase when a number of large SSD have been observed (e.g. start-
ing at trial 6) and decrease when a number of small SSD (e.g. starting at
trial 11) have been observed. Simulation parameters: Q = 0.03, R = 0.15,
h0 = 0.35, P0 = 1. Unless otherwise stated, these parameters are used in all
the subsequent simulation.
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Figure 2.4: Sequential effects in human data. (A) Go RT increases with
the frequency and recency of stop trials in recent trial history. Along the
abscissa are all possible three-trial sub-sequences of Go and Stop trials: most
recent trial is on the bottom. The Go RT of the correct go trial immediately
following the sub-sequence is recorded. Go RT data are then averaged over all
trials of a particular pattern for all subjects. Error bars indicate s.e.m. of Go
RT in each pattern. (B) Model-predicted P(stop) increases with the frequency
and recency of stop trials in recent trial history. Analogous to (A), the prior
P(stop) of the trial immediately following each sub-sequence is computed
using DBM. Estimates of P(stop) from all trials and all subjects are then
averaged in each pattern. DBM parameters: α = 0.75, a/(a+ b) = 0.25. (C)
Go RT increases with experienced SSD. Go RT is plotted against mean SSD
of the two most recent stop trials. A Go trial is only included if it directly
follows a Stop trial (and the response was correct), and the two previous Stop
trials are separated by no more than three Go trials. These restrictions are
adopted because preliminary analysis indicates that the influence of recently
experienced SSD diminishes with increasing number of recent Go trials. Each
bin of SSD (spaced such that there are equal number of data points in each
bin) contains Go RT from all trials and subjects where E [SSD] fell with
this bin. Both Go RT and SSD are averaged within each bin. Straight line
denotes best linear fit. Error bars denote s.e.m. across subjects. R2 = 0.56, p
= 0.0002.
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Figure 2.5: Model prediction of Go RT versus P(stop) and E [SSD]. (A)
Go RT vs. P(stop): simulated Go RT for a ranged of P(stop) values (.1,
.15, ..., .75). Data averaged over 10000 simulated Go trials for each value
of P(stop). Straight line denotes best linear fit. Error bars denote s.e.m.
1/q = E [SSD] = 10. (B) Go RT vs. E [SSD]: simulated Go RT for a range
of SSD values (8, 9, ..., 18). Data averaged over 10000 simulated Go trials for
each value of E [SSD]. Straight line denotes best linear fit. Error bars denote
s.e.m. P(stop) = 0.45. (C) Go RT vs. P(stop) and E [SSD]: simulated Go
RT for a range of P(stop) and E [SSD]) values, where P(stop) varies between
.1 and .75, and E [SSD] varies between 8 and 18. Data averaged over 10000
simulated Go trials for each (P(stop), E [SSD]). Simulation parameters for
A-C: qd = 0.55, qs = 0.72, D = 50, cs = 0.4, c = 0.002. Initial string of Go
trials in each block (on average 3 trials, 1/4 time none at all) are excluded
from all analyses, as subjects’ initial beliefs about task statistics may vary
widely and unpredictably before any stop trials are observed.
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Figure 2.6: Human Go RT versus model-estimated P(stop) and SSD. (A)
Go RT vs. P(stop): P(stop) on each trial estimated by DBM based on
actual sequence of stop/go trials the subject experienced prior to the current
trial. Binning of E [SSD] spaced to ensure equal number of data points in
each bin. Straight line denotes best linear fit of average Go RT for each
bin versus average P(stop) for each bin. Linear regression of group data:
R2 = 0.97, p < 0.0001. Error bars denote s.e.m. DBM parameters: α =
0.75, p0 = Beta(2.5, 7.5). (B) Go RT vs. E [SSD]: E [SSD] on each trial
estimated by a Kalman filter based on actual sequence of SSD the subject
experienced prior to the current trial. Binning of E [SSD] spaced to ensure
equal number of data points in each bin. Straight line denotes best linear
fit between average Go RT versus average E [SSD] for each bin. Linear
regression of group data: R2 = 0.52, p = 0.0003. Error bars denote s.e.m.
Kalman filter (KF) parameters: Q = 0.03, R = 0.15, h0 = .35, P0 = 1. (C)
Go RT vs. P(stop) and E [SSD]: P(stop) and E [SSD] are equally discretized
into 5 bins between minimum and maximum ”observed” values (by applying
the model to subjects’ experienced sequence of trials). Each point in the grid
contains RT data from all trials and all subjects where P(stop) and E [SSD]
fell within corresponding bins. (D) Fitted surface plot of the scatter plot
in (C), by applying Matlab function griddata(...,′ v4′), a biharmonic spline
interpolation method, to the data in (C).



Chapter 3

Inseparability of Go and Stop in

Inhibitory Control: Go Stimulus

Discriminability Affects Stopping

Behavior

Inhibitory control, the ability to stop or modify preplanned actions under

changing task conditions, is an important component of cognitive functions. Two lines

of models of inhibitory control have previously been proposed for human response in

the classical stop-signal task, in which subjects must inhibit a default go response

upon presentation of an infrequent stop signal: (1) the race model, which posits two

independent go and stop processes that race to determine the behavioral outcome, go

or stop; and (2) an optimal decision-making model, which posits that observers decides

whether and when to go based on continually (Bayesian) updated information about

both the go and stop stimuli. In this work, we probe the relationship between go

33
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and stop processing by explicitly manipulating the discrimination difficulty of the go

stimulus. While the race model assumes the go and stop processes are independent, and

therefore go stimulus discriminability should not affect the stop stimulus processing,

we simulate the optimal model to show that it predicts harder go discrimination

results in a longer go reaction time (RT), a lower stop error rate, as well as a faster

stop-signal RT. We then present novel behavioral data that validate these model

predictions. The results thus favor a fundamentally inseparable account of go and

stop processing, in a manner consistent with the optimal model, and contradicting the

independence assumption of the race model. More broadly, our findings contribute

to the growing evidence that the computations underlying inhibitory control are

systematically modulated by cognitive influences in a Bayes-optimal manner, thus

opening new avenues for interpreting neural responses underlying inhibitory control.

3.1 Introduction

The ability to cancel or modify planned actions according to changing task

conditions is known as inhibitory control, and thought to be an important aspect

of human cognitive function. Inhibitory control has been studied extensively using

the stop-signal [LC84], in which subjects typically discriminate a go stimulus on

each trial, but occasionally encounter a stop signal following the go stimulus, which

instructs the subject to withhold the go response (see Figure 3.1). Two major class

of models have been proposed to account for the underlying computational and

neural processes in the stop-signal task. The first is the classical race model and

its variants [LC84, BPLS07], which posit a race between two independent go and

stop processes. The model assumes essentially immutable, though noisy, termination
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times for the go and stop processes, whereby the average stop process delay, known

as the stop-signal reaction time (SSRT), is generally thought to be a measure of an

individual’s inhibitory capacity. Correspondingly, SSRT has been measured as longer

in populations with presumed inhibitory deficits [ARK07, NWM+06, MAC+07], and

neural activities in certain primate brain regions (e.g. frontal eye field and superior

colliculus) have been interpreted to reflect components of the race model[HSP98, PH03].

However, problematic for the simple race model, various cognitive contextual factors

have been shown to systematically modulate stopping behavior, such as the reward

structure of the task [LW09] and the statistical frequency of stop signals [EBB+07].

In response to these and other observed cognitive influences, we previously proposed

an alternative model of inhibitory control, a Bayes-optimal decision-making model

positing that subjects choose when and whether to initiate a go response according to

continually (Bayesian) updated sensory beliefs about both the go and stop stimuli,

and relative to a behavioral objective function that penalize go and stop errors as

well as response delay. As we previously showed, this optimal model can capture

cognitives influences on stopping behavior as a function of sensory statistics at multiple

timescales [ISYL13, MY15b, MY15a] and the reward structure of the task [SY11].

In this work, we explore a particular type of interaction between go and stop

processing in the stop-signal task. Specifically, we consider the computational and

behavioral consequences of manipulating the go stimulus discrimination difficulty. We

will use simulations of the optimal model to demonstrate that, as the go stimulus

becomes noisier (harder to discriminate), the go reaction time (RT) should get longer

and consequently the rate of stop errors to drop, as subjects have a greater opportunity

to detect the late-appearing stop signals before initiating the go response; perhaps
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less obviously, SSRT also becomes shorter, which also contributes to decreasing stop

errors. We will then present novel experimental data from human subjects (n = 20)

performing a stop-signal task, in which the go task is to discriminate a random-dot

coherent motion stimulus [BSNM92], and the stimulus difficulty (coherence) is varied

across blocks. The key question is whether SSRT co-varies with stimulus coherence,

as predicted by the optimal model, or whether stopping behavior is independent of

go discriminability, as assumed by the race model. More broadly, we will examine if

the spectrum of behavioral measures – SSRT, go RT, and stop error rate – changes

systematically with respect to go stimulus coherence as predicted by the optimal

model, as that would yield further evidence that human inhibitory control is under

sophisticated, context-sensitive, and statistically optimal cognitive control.

In the following, we first describe the experimental procedure (Section 2.2.1),

then model details (Section 3.2.2), followed by model simulation results and behavioral

data. We conclude with some discussions and thoughts on related work and future

directions (Section 5.4).

3.2 Materials and Methods

3.2.1 Experiment

The stop signal task consists of a two alternative forced-choice (2AFC) per-

ceptual discrimination task, interspersed with an occasional stop signal. Figure 3.1

schematically illustrates our version of the stop-signal task: subject responds to a

default go stimulus on each trial (go trial), unless instructed to withhold the response

by an infrequent auditory stop signal (stop trial). The go task is either a random-dot
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coherent motion task (8%, 15%, or 85% coherence), or a more classical square versus

circle discrimination task. On a small fraction (25%) of trials, an additional auditory

stop signal (a beep) occurs at some time after the go stimulus onset (known as the

stop-signal delay, or SSD), which instructs the subject to withhold the go response.

The SSD is randomly and uniformly sampled on each trial from 100 ms, 200 ms, 300

ms, 400 ms, 500 ms, and 600 ms.

We say that the subject makes a discrimination error when he/she incorrectly

responds to the stimulus on go trials, i.e. choosing the opposite motion direction

or incorrect shape. The subject makes an omission error if he/she fails to make a

go response prior to the response deadline on a go trial, set to be 1100 ms in the

experiment. The trials having stop signal are called stop trials; trials without stop

signal are go trials . When the subject withhold the response until the response

deadline on a stop trial, the trial is considered a stop success (SS) trial; otherwise, it

is considered a stop error (SE) trial. Each trial is terminated when the subject makes

a response, or at the response deadline itself if no response has been recorded. To

incentivize the subjects to be engaged in the task, and to help standardize the relative

costs of the different kind of errors across individuals, subjects are compensated

proportional to points they earn in the task, whereby they lose 50 points for a go

discrimination or omission error, 50 points for a stop error, and 3 points for each

100ms of response delay (so maximally 33 points for a trial that terminates with no

response, and less if the subject makes a response prior to the response deadline).

Twenty subjects (13 females) participated in the experiment. Each subject

performed 12 blocks, 3 block for each stimulus type, with each block containing 75

trials. Two days before the main experiment session, subjects participated in a training
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Figure 3.1: Schematic illustration of our stop signal task (A) Go trials: On
go trials, subject is supposed to make a response to a default go response
by pressing the left or right button, based on the coherent motion direction
of random dots. The go reaction time (Go RT) is defined as the time the
subject takes to respond from the onset of go stimulus. The subject makes a
discrimination error if he/she chooses the wrong direction (wrong key), and
an omission error if no response is recorded within the respond deadline (1100
ms). (B) Stop trials: on a small fraction of trials, a stop signal appears after
the go stimulus and instructs the subject to withhold the go response. The
time delay between the go stimulus onset and the stop signal onset is called
the stop-signal delay (SSD). If the subject makes a go response in a stop trial,
this trial is considered a stop error (SE) trial, otherwise it is considered a
stop success (SS) trial.

session, which contained only the 2AFC discrimination and no stop trials. In the

training session, there were 10 blocks, 3 blocks for each random dot stimulus coherence

and one block for shape discrimination. Subjects were given the same maximal amount

of time to respond on the training session trials (1100 ms) as in the main experiment.

The purpose of the training session is to allow subjects to familiarize themselves with

the task and to achieve stable perceptual discrimination performance. Only data from

the main experimental session are analyzed and presented here.

This experimental protocol was approved by the University of California San

Diego Human Subjects Review Board, and all subjects gave written informed consent.
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3.2.2 Model

The Race Model

The classical race model for studying inhibitory control is shown in Figure 3.2A.

The subject makes a stop error when the go response is finished processing before the

stop process. The race model also defines a subject-specific stop-signal reaction time

(SSRT), which is a measure of the average amount of time the subject requires to

process the stop signal and cancel the go response (in practice, it is often calculated

as the difference between the median go RT and the SSD specific to each subject for

achieving 50% accuracy on stop trials). SSRT characterizes the stopping ability of the

subject and is highly related to the inhibitory deficits observed in various psychiatric

conditions (e.g. substance abuse [NWM+06], attention-deficit hyperactivity disorder

[ARK07], schizophrenia [BMJC02], obsessive-compulsive disorder [MAC+07]).

Optimal Inhibitory Control Model

Recently, we proposed a normative Bayesian Markov decision process (MDP)

model for the stop-signal task [SRY10, SY11], which assumes that the subjects

maintain continually evolving Bayes-optimal beliefs about the sensory environment

(see Figure 3.2B), and that they make an moment-by-moment decisions between go

and wait by mapping the current belief state into the action space relative to an

objective function Figure 3.2C. The behavioral objective function is assumed to take

into account the costs associated with go errors, stop errors, and response delay.

Figure 3.2B illustrates the Bayesian generative model for how iid noisy sensory

data are generated by the (true) hidden stimulus states. The two hidden variables

d and s correspond respectively to the identity of the go stimulus, d ∈ {0, 1} (0 for



40

A B CRace Model
GO

STOP
{stop trial, go trial} = 

{left, right} =

{absent, present}

Figure 3.2: (A) The classical race mode for behavioral in the stop-signal
task. The behavioral outcome (go or stop) is determined by a race between
a go and a stop process. The go reaction time has a broad distribution due
to noise. The stop process has an average delay known as the stop signal
reaction time (SSRT). The stop error rate is the cumulative density of Go
RT at SSD + SSRT. The SSRT is thus estimated from data as the difference
between the median go RT and the SSD at which 50% stop error is achieved,
as SSD+SSRT=median(go RT) implies 50% of stop trials will end in error
(the rest in success). (B) Bayesian generative model of iid sampled sensory
observations (x1, . . . , xt, . . .) conditioned on Go stimulus identity (d = 0 of left,
d = 1 for right), and an independent stream of observations (y1, . . . , yt, . . .)
conditioned on the presence (zt = 1) or absence (zt = 0) of the Stop signal,
which has a geometrically distributed onset time when it is a stop trial s = 1
and never appears on a go trial (s = 0). (C) The decision of whether/when
to Go, and which Go response to select, are modeled as sequential decision-
making, where the subject chooses at each moment whether to select a Go
response, or to wait at least one more time point.

left, 1 for right), and whether or not this trial is a stop trial, s ∈ {0, 1}. P (s = 1)

and P (d = 1) are the prior probability of a stop trial and one of two go alternatives,

respectively. Conditioned on the go stimulus identity d, a sequence of iid sensory

inputs, representing the cue of go stimulus, are generated on each trial, x1, ... ,xt, ...

,where t indexes time steps within a trial. The likelihood functions of d generating the

sensory inputs are f0(x
t) = p(xt|d = 0) and f1(x

t) = p(xt|d = 1), which are assumed to

be Bernoulli distribution with respective rate parameters qd and 1−qd. The parameter

qd specifies stimulus signal-to-noise ratio, thus reflecting the go stimulus difficulty.

The discrimination task becomes harder (lower coherence) when qd is closer to 0.5 and

easier (high coherence) when qd is closer to 1 or 0. The dynamic variable zt denotes the
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presence/absence of the stop signal. z1 = ... = zθ−1 = 0 and zθ = zθ+1 = ... = 1 if a

stop signal appears at time θ, where θ represents stop signal delay SSD. For simplicity,

we assume that θ, also known as the stop-signal delay (SSD), follows a geometric

distribution: P (θ = t|s = 1) = q(1− q)t−1. The expected value of θ is 1/q, which is

the expected SSD, E [SSD], within a trial. Conditioned on zt, each observation yt

is independently generated and indicates the cue of stop signal. For simplicity, we

assume the likelihood, p(yt|zt = 0) = g0(y
t) and p(yt|zt = 1) = g1(y

t), are Bernoulli

distributions with rate parameters qs and 1− qs, respectively.

In the statistically optimal recognition model, Bayes’ Rule is applied in the

usual iterative manner to compute the iterative posterior probability associated with

go stimulus identity, ptd := P (d = 1|xt), the presence of the stop signal, ptz :=

P (θ ≤ t|yt), and whether the current trial is a stop trial, pts := P (s = 1|yt), where

xt = {x1, x2, ..., xt} and yt = {y1, y2, ..., yt} denotes all the data observed so far. The

belief state at time t is defined to be the vector bt = (ptd, p
t
s), which can be iteratively

computed from time step to time step via Bayes’ Rule, by inverting the generative

model (Figure 3.2 B) as the following.

ptd =
pt−1d f1(x

t)

pt−1d f1(xt) + (1− pt−1d )f0(xt)
=

p0dΠ
t
i=1f1(x

i)

p0dΠ
t
i=1f1(x

i) + (1− p0d)Πt
i=1f0(x

i)
.

To infer the stop signal, we first update ptz iteratively by

ptz =
g1(y

t)(pt−1z + (1− pt−1z )h(t))

g1(yt)(pt−1z + (1− pt−1z )h(t)) + g0(yt)(1− pt−1z )(1− h(t))

where h(t) is the posterior probability that the stop-signal will appear in the next
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time step given that it has not appeared yet,

h(t) =
rP (θ = t|s = 1)

rP (θ>t− 1|s = 1) + (1− r)
=

rq(1− q)t−1

r(1− q)t−1 + (1− r)

where r = P (s = 1) is the prior probability of a stop trial. The posterior probability

that the current trial is a stop trial can be computed as

pts = P (s = 1|yt) = ptz + (1− ptz)P (s = 1|θ>t,yt)

where P (s = 1|θ>t,yt) is independent on the past observations

P (s = 1|θ>t,yt) =
P (θ>t|s = 1)P (s = 1)

P (θ>t|s = 1)P (s = 1) + P (θ>t|s = 0)P (s = 0)

=
(1− q)tr

r(1− q)t + (1− r)

Figure 3.2C illustrates the sequential decision-making process that determines

how an observer chooses whether/when to Go, and which Go response to select. The

Markov decision process is optimized with respect to the Bayesian belief state and

a behaviorally defined cost function that captures the cost and penalty structure of

SST, based on which the observer decides at each moment in time whether to Go

(and if so, which Go response) or Wait at least one more time step.

On each trial, if the Go action is taken by the response deadline D, it is

recorded as a Go response (correct on Go trials, error on Stop trials); otherwise the

trial is terminated by the response deadline and a Stop response is recorded (omission

error on Go trials, correct on Stop trials). Let τ denote the trial termination time,

so that τ = D if no response is made before the deadline D, and τ < D if a Go
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action is chosen. δ ∈ {0, 1} represents the possible binary Go choices produced by

making a Go response. We assume there is a cost c incurred per unit time in response

delay (corresponding to time-dependent costs, such as time, effort, opportunity, or

attention), a stop error penalty of cs for responding on a Stop trial, and a unit cost

for making a discrimination error or ommission error on a Go trial – since the cost

function is invariant with respect to scaling, we normalize all cost parameters relative

to the Go error cost without loss of generality. Thus, the cost function is:

l(τ, δ; d, s, θ,D) = cτ + cs1{τ<D,s=1} + 1{τ<D,δ 6=d,s=0} + 1{τ=D,s=0}

where r denotes the prior probability of encountering a stop trial, and 1 denotes the

indicator function, which evaluates to 1 when the condition specified in the curly

brackets are met, and to 0 otherwise.

The optimal decision policy minimizes the expected (average) loss, Lπ =

E [l(τ, δ; d, s, θ,D)],

Lπ = cE [τ ] + csrP (τ <D|s=1) + (1−r)P (τ <D, δ 6=d|s=0) + (1−r)P (τ=D|s=0)

which is an expectation taken over hidden variables, observations, and actions, and

generally computationally intractable to minimize directly. Fortunately, after formu-

lating the problem in terms of a belief state Markov decision process, we can effectively

use standard dynamic programming [Bel52] to compute the optimal policy and action

via a recursive relationship between the value function and the Q-factors. The value

function V t(bt) denotes the expected cost of taking the optimal policy henceforth

when starting out in the belief state bt. The Q-factors, Qt
g(b

t) and Qw
g (bt), denote
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the minimal costs associated with taking the action Go or Wait, respectively, when

starting out with the belief state bt, and subsequently adopting the optimal policy.

The Bellman dynamic programming principle, applied to our problem, implies:

Qt
g(b

t) = ct+ csp
t
s + (1− pts)min(ptd, 1− ptd)

Qt
w(bt) = 1{D>t+1}E

[
V t+1(bt+1)|bt

]
bt+1 + 1{D=t+1}(c(t+ 1) + 1− pts)

V t(bt) = min(Qt
g, Q

t
w)

whereby the optimal policy in state bt is to choose between Go and Wait depending

on which one has the smaller expected cost. Note that a Go response terminates the

current trial, while a Wait response lengthens the current trial by at least one more

time step, and repeated choice of Wait until the response deadline constitutes a Stop

response. Since the observer can no longer update the belief state nor take any action

at the deadline, the value function at t = D can be computed explicitly, without

recursion, as V t(bD) = cD + (1− PD
s ). Bellman’s equation then allows us compute

the value functions and Q factors exactly, backward in time from t = D − 1 to t = 1.

We note that the decision problem can also be formalized as a mathematically

equivalent partially observable Markov decision process (POMDP), whereby the hidden

state is the stimulus state (d, s), the observations are iid noisy samples conditioned

on that hidden state, and actions are chosen (Go or Wait) based on all previous

observations as well as any prior beliefs about the hidden state. However, it is a rather

trivial sort of POMDP, as not only do the actions not affect the hidden state, but the

hidden state does not have any dynamics at all. Instead, we chose to formulate the

problem as a (belief) Markov Decision Process, whereby the hidden state at time t is
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the posterior distribution over the stimuli at time t (the initial state is just the the

prior distribution), and its (non-trivial) evolution over time is governed exactly by

Bayes’ Rule applied to the previous posterior state and the new observation and is

completely observed. The only caveat is that the belief state is a continuous variable,

and thus in order to apply Bellman’s dynamic programming equation, we have to

discretize the belief state. In the simulations, we discretize the belief state space,

(ptd, p
t
s), into 200× 200 bins.

Bayes rule implies the belief state bt+1 is a deterministic function of bt and

the observations. Thus, given V t+1, we can compute E [V t+1] by averaging over all

possible next observations xt+1,yt+1.

E
[
V t+1(bt+1)|bt

]
=

∑
xt+1,yt+1

p(xt+1, yt+1|bt)V t+1(bt+1(bt, xt+1, yt+1))

p(xt+1, yt+1|bt) = p(xt+1|ptd)p(yt+1|pts)

p(xt+1|ptd) = ptdf1(x
t+1) + (1− ptd)f0(xt+1)

p(yt+1|pts) = (ptz + (1− ptz)h(t+ 1))g1(y
t+1) + (1− ptz)(1− h(t+ 1))g0(y

t+1)

The optimal decision policy partitions the belief state into Go and Stop regions,

such the optimal decision is to go (and terminate the trial) if the belief state at time

t, (pd, pz), falls into a Go region (where Qg < Qw), and the optimal decision is to

wait (at least one more time point, but with the possibility of going later before the

deadline) if the belief state falls into a Wait region (where Qw < Qg). Figure 3.3

shows that there are typically two symmetric Go regions, where ps is relatively small,

and pd is close to 0 or 1 (i.e. the probability of a stop trial is small and the confidence

about go stimulus identity, left or right, is high), and a large central Wait region,
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where the value of pd is close to 0.5 (go stimulus identity highly uncertain) or the

value of ps is large (probability of stop trial high); this topology makes intuitive sense.

Figure 3.3 also shows that the optimal decision policy is time-dependent, such that

the Go regions grow over time. This is primarily due to the time pressure of the

impending response deadline [FY08].

t = 30

pz
0 1

p d

1

0

t = 46

pz
0 1

p
d

1

0

t = 48

pz
0 1

p
d

1

0

Figure 3.3: Dynamic evolution of the optimal policy map. The white and
black areas denote the Go and Wait regions, respectively. Note that pz denotes
the probability that the stop signal has already occurred at time t, and is
monotonically related to ps, the probability that the current trial is a stop
trial. The Bayesian update algorithm produces a belief state (pd, pz) at every
time point t based on prior belief and all sensory data xt, yt observed until
time t. If the belief state falls into a Go region, a Go response is produced and
the trial is terminated; otherwise, at least one more observation is obtained,
and the location of the new Bayesian-updated belief state is compared to
next time point’s optimal decision map. When/whether the belief state falls
into a Go region determines when/whether the subject produces a response
on that trial. The simulation shows that the Go regions expand over time, as
the response deadline looms closer.

3.3 Results

3.3.1 Model Predictions

Classical behavioral results in the stop signal task, such as increases in stop

error rate as a function of SSD and the generally faster SE RT compared to go RT,
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have been shown to be natural consequences of such a rational decision-making process

[SRY10, SY11], although these effects are also captured by the race model [LC84].

However, being a computational model in Marr’s framework of levels of analysis

[Mar82], the optimal model is not only a model of the brain processes but also of

the computational task the brain must solve – as such, it can also make normative

predictions about how experimental manipulations of different task parameters should

affect stopping behavior, since the experimental parameters are naturally represented

as parameters of the Bayesian general model or of the objective function. In contrast,

the race model cannot make such predictions, since it has no means of representing

properties of the task itself.

Here, we specifically focus on the behavioral consequences of changing go stim-

ulus discrimination difficulty. The race model does not represent stimulus difficulty

explicitly and thus would not make any obvious predictions about behavioral conse-

quences; moreover, since the go and stop processes are assumed to be independent,

the race model would certainly not predict properties of the stop process, such as

the SSRT, to change with go stimulus difficulty. On the other hand, in the optimal

model, changes in the go stimulus difficulty would change the evolution of the sensory

belief state (both via the empirical statistics and the Bayesian update rule, since we

assume subjects to have the correct generative model), as well as the decision policy

(the time-dependent mapping between the belief state and the action set), whose

computation of Qt
w involves an expectation over future belief state, which depends on

the assumed likelihood function. Intuitively, we would expect a noisier go stimulus

to slow down the general drift of the go stimulus posterior belief ptd toward 0 or 1

(depending on which true stimulus was shown), and hit the “Go region” later on a
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go trial, or avoid hitting it altogether on a stop trial (Figure 3.3). Figure 3.4 show

the simulated model predictions for the various behavioral measures as a consequence

of changing go stimulus discrimination difficulty, parameterized by qd in the model.

We model qd as monotonically decreasing (toward 0.5, which is a stimulus containing

pure noise) for decreasing stimulus coherence. The exact values chosen for qd in

the simulations are as specified in Figure 3.4 caption. We find that the qualitative,

monotonic relationships between the various predicted behavioral measures and the

go stimulus coherence hold for a large range of qd values chosen, as long as lower

coherence corresponds to smaller qd. As shown in Figure 3.4A;B;C, we expect Go RT

to decrease, and Go discrimination and omission errors to decrease, as a function of

increasing stimulus coherence. Correspondingly, the model predicts the stop error rate

to increase as the stimulus coherence increases (Figure 3.4D), with the effect present

at almost the whole range of SSD tested in the experiment (Figure 3.4E). Additionally,

and perhaps more surprisingly, the model predicts the SSRT to decrease as a function

of increasing go stimulus coherence. Although SSRT is not an intrinsic parameter or

entity in the optimal model, one can nevertheless estimate SSRT as one does from

empirical data, by identifying the SSD at which approximately 50% stop accuracy

is achieved. This last prediction is particularly intriguing for differentiating the race

model and the optimal model, as the race model would not predict that go stimulus

difficulty should influence the speed at which the stop signal is processed.

3.3.2 Human Behavioral Data

In this section, we show that the model predictions in Section 3.4 are confirmed

by the human behavioral data, where 8%, 15%, and 85% denote different coherences
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Figure 3.4: Simulated behavioral predictions by the optimal decision-making
model. (A) Simulated mean Go RT decreases with higher go stimulus coher-
ence (easier discrimination). Low, median, and high stimulus coherence are
parameterized by different values of qd: 0.55, 0.62, and 0.70, respectively. (B)
Discrimination error rate decreases as coherence increases. (C) Omission error
rate decreases with qd. (D) Stop error rate increases with the qd. (E) Average
stop error rate as a function of SSD (known as the inhibition function) for
different stimulus conditions. (F) SSRT decreased with qd. Each data point is
averaged over 100 simulated subjects, each performing 1000 go or stop trials.
Error bars indicate standard error of the mean (sem); sem is extremely small
and almost invisible for all but the omission error simulation data. Other
parameters used in the model are adapted from [SRY10]: r = 0.25, qs = 0.72,
D = 50, cs = 0.4, c = 0.002.

of random dot motion stimulus, while ‘X’ represents square versus circle go stimulus.

Figure 3.5 shows the behavioral results from the experiment. Figure 3.5 A-C and F

show that subjects’ mean Go RT, discrimination error rate, omission error rate, and

SSRT decreased with coherence, as predicted in Figure 3.4. Figure 3.5 D shows that

subjects’ stop error rate increases with coherence. We used one-sided paired t-test to

test the significance of differences in behavioral measures across different go stimulus

difficulties, e.g. H0 : mean (Go RT for 8%) = mean (Go RT for 15%), H1 : mean(Go

RT for 8%) < mean (Go RT for 15%). We also conducted the more conservative
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Wilcoxon rank test, which does not make the normality assumption that t-test makes,

for completeness. As we detail in Supplementary Material, similar results are found

using the two tests, except for the omission error, the trial type for which we have

the least amount of data, since omission errors were rare. Here, we only discussed the

results of the paired t-tests.

We found that mean Go RT significantly decreased as the coherence increased

from 15% to 85% (p = 0.008, t = 2.63) and 8% to 85% (p = 0.012, t = 2.44), but

not significant from 8% to 15% (p = 0.263, t = 0.64). In consideration of the long

tail of the RT distribution (though this was ameliorated in the current study due to

the response deadline), we computed the median Go RT of each subjects and then

conducted paired t-test, which showed that median Go RT significantly decreased as

coherence increased from 15% to 85% (p = 0.004, t = 2.87) and 8% to 85% (p = 0.002,

t = 3.20), and showed a trend toward significance from 8% to 15% (p = 0.09, t = 1.35).

Paired t-tests for discrimination error rates were significant for all three cases,

8% to 15% (p < 10−6, t = 6.35), 15% to 85% (p = 0.002, t = 3.22), and 8% to 85%

(p < 10−6, t = 6.65). The omission error rate only significantly decreased when the

coherence increased from 8% to 85% (p = 0.01, t = 2.5), but not from 8% to 15%

(p = 0.16, t = 1.00), not from 15% to 85% (p = 0.22, 0.77). Over all, the results suggest

that Go RT, Discrimination Error and Omission Error decrease with coherence. In

addition, the stop error rate also increased significantly when coherence increased from

8% to 85% (p = 0.03, t = −1.89), but not from 15% to 85% (p = 0.14, t = −1.10), and

showed a trend toward significance from 8% to 15% (p = 0.06, t = −1.61). Altogether,

the results suggest that stop error rate increases with coherence.

We used ’smoothspline’ function in Matlab to fit the inhibition function of each
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subject in each stimulus type and estimated the corresponding SSRT (Figure 3.5F) as

the difference between median Go RT and the SSD at which 50% stop error rate is

committed (Figure 3.5E). According to the paired t-test, SSRT significantly decreased

as the coherence increased from 8% to 85% (p = 0.02, t = 2.41), but not from 8% to

15% (p = 0.23, t = 0.79), and showed a trend toward significance from 15% to 85%

(p = 0.09, t = 1.40). Over all, the results suggest that SSRT decreases with coherence.

We also included a more classical circle versus square go discrimination task,

because stop-signal tasks typically use highly discriminable go stimuli such as circle

versus square. As we are among the first to use the random-dot coherent motion

stimuli for the go task, as well as the first to systematically degrade the go stimulus in

the stop-signal task, we wanted to make sure that the easiest condition (85% coherence)

produces comparable data to the more commonly used shape discrimination task.

Figure 3.5 shows that this is indeed the case across the behavioral measures we

examined.

3.4 Discussion

In this work, we investigated the computational and behavioral consequences

of manipulating stimulus discriminability in the stop-signal task. We simulated

our previously proposed optimal decision-making model [SY11] to derive behavioral

predictions, and presented novel experimental data that broadly validated these

predictions. Interestingly, the SSRT, which is thought to reflect the stopping ability

of the subject, is found to significantly decrease with increasing difficulty of the go

stimulus discrimination task. This directly contradicts the independence assumption

of the race model [LC84], as well as its more complex variants that assume a simple
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Figure 3.5: Behavioral data under varying go stimulus discrimination diffi-
culty. 8, 15, 85 denote different coherences of random dot motion stimulus. X
denote square versus circle discrimination task. (A) Mean Go RT decreased
as the discrimination task became easier. Bar height indicates the mean of
median Go RT (for each subject) for each condition. (B) Go discrimination
error rate decreased as coherence increased. (C) Go omission error rate
decreased with coherence. (D) Stop error rate increased with coherence. (E)
Average inhibition function for different stimulus types. (F) SSRT significantly
decreased with coherence.

inhibitory interaction between the go and stop processes that is independent of the

go stimulus discriminability [BPLS07]. Together, our results imply that there exist

intrinsic and complex interactions between go and stop processing, much as that

postulated by our optimal decision-making model for stopping behavior[SY11]. More

generally, the broad concurrence between model predictions and behavioral data

demonstrate the normative predictive power of the optimal model, as well as the

specific model assumptions that humans readily internalize environmental statistics

and adopt decision policies that are normative and context-sensitive.

The difference between the race model and the optimal decision-making model

is not only that of complexity or the nature of interactions between the stop and go
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processes, but also that of levels of analysis, in the parlance of David Marr [Mar82].

The race model is primarily an algorithmic model, while the optimal model is primarily

a computational model. That means for a more meaningful comparison, it would be

worthwhile to consider an algorithmic description of the optimal model that is more

directly comparable to the race model (or, alternatively, a computational description

of the race model, which is harder to obtain). Such an analysis was done in a previous

paper [SY11], which showed that while the model would not be able to predict changes

in stopping behavior as a consequence of changes in the reward structure of the task,

the parameters of a diffusion-model implementation of the race model (see [SY11] for

more details) can be fit to different experimental conditions in a post hoc manner in

order to capture qualitative changes in behavior. Likewise, one could fit parameters

of a diffusion model equivalent of the race model to ”capture” behavioral changes as a

function of go stimulus signal-to-noise ratio, but again, it would be a post hoc result,

not a normative predictive process as the optimal decision-making model excels in.

In the current paper, the parameter qd, which specifies the noisiness of the

sensory data related to the go stimulus, is left as a free parameter. While we kept qd

monotonically increasing as a function of increasing stimulus coherence (a rational

choice), its values for different coherence conditions were somewhat arbitrarily chosen.

Although the qualitative nature of the model predictions (changes in go RT, stop error

rate, and SSRT as a function of go stimulus coherence) is relatively robust with respect

to the precise choice of qd (very close qd would not result in significantly different

behaviors), an even better approach would be to fit qd for each subject in a pure

2AFC task, identical to the stop-signal task except for the total absence of the stop

signal, as 2AFC behavior is fairly well captured and understood as a variant of the
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sequential probability ratio test [GS02, BBM+06, FY08, SY12, DY12], which can be

parameterized by essentially the same qd variable. In that case, qd would then not

be a free parameter in the stop-signal task but one derived from a separate 2AFC

session for each subject, and we would then be able to see whether stopping behavior

really follow quantitatively from the optimal inference and decision-making process,

as predicted by the model.

Another important direction of future research is a better theoretical under-

standing of the algorithmic aspects of the optimal model, in particular what determines

SSRT in this model. While SSRT is not intrinsic to the optimal model, as it is in the

race model, it is nevertheless possible to ”measure” SSRT for the optimal model based

on simulated trial outcomes, just as is done empirically for human data. Related

to this, it is unclear why SSRT should decrease in the optimal model for increasing

coherence, which we showed to be both predicted by the optimal model and exhibited

by human data in this paper. Specifically, as the go task gets easier, subjects make

more stop errors due to faster Go RT, even though SSRT decreases – it just does not

decrease sufficiently to counter the faster Go RT. Future work is needed to better

understand the nature SSRT in the context of the optimal model, as well as, in general,

a better algorithmic understanding of the relationship between the optimal model and

the race model.

Although this work was mostly focused on computational modeling and be-

havioral data analysis, it has implications for the neuroscientific study of inhibitory

control as well. The race model has helped to advance the neuroscience of inhibitory

control, by relating neural activities in various brain regions, such as the frontal

eye field [HSP98] and superior colliculus [PH03], to the go and stop processes. But
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as the race model does not address how different cognitive processes contribute to

stopping behavior, it is also limited in its ability to anticipate or explain cognitive

modulations of neural activities involved in inhibitory control. Given the ability of

the computationally more sophisticated optimal model to explain a wider range of

behavioral data, we can expect that it will also lead to novel and interesting interpre-

tations of neural activation patterns related to inhibitory control, and perhaps guide

future neuroscientific experimentation. Indeed, we have already used the optimal

model to identify a brain region (anterior cingulate cortex) as having fMRI BOLD

response consistent with encoding an unsigned prediction error (”Bayesian surprise”)

related to the prior belief of whether the upcoming trial will be a stop or go trial

[ISYL13], and shown that this prediction signal is altered in young adults at risk

for developing stimulant addiction [HSS+14], a condition known to be associated

with impaired inhibitory control and specifically stopping behavior. Prior to this

model-based fMRI study, it was thought that the anterior cingulate cortex was one of

many areas generally involved in preparing or executing the ”go” response. In the

context of the optimal model, we now know that this area, unlike the other cortical

areas, is specifically involved in reporting the surprise signal, which just happens to

be greater on stop trial than go trial on average, because stop trials are generally rare.

This provides just one example of how a statistically sophisticated model facilitates a

richer and more theory-driven exposition of the neural basis of inhibitory control.
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Chapter 4

Stop Paying Attention: The Need

for Explicit Stopping in Inhibitory

Control

Inhibitory control, the ability to stop inappropriate actions, is an important

cognitive function often investigated via the stop-signal task, in which an infrequent

stop signal instructs the subject to stop a default go response. Previously, we proposed

a rational decision-making model for stopping, suggesting the observer makes a

repeated Go versus Wait choice at each instant, so that a Stop response is realized by

repeatedly choosing to Wait. We propose an alternative model here that incorporates

a third choice, Stop. Critically, unlike the Wait action, choosing the Stop action not

only blocks a Go response at the current moment but also for the remainder of the

trial – the disadvantage of losing this flexibility is balanced by the benefit of not

having to pay attention anymore. We show that this new model both reproduces

known behavioral effects and has internal dynamics resembling presumed Go neural

57
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activations in the brain.

4.1 Introduction

Humans and animals are often faced with the need to choose, under time

pressure, an action among options with uncertain consequence. The ability to dy-

namically withhold or modify planned actions according changing task conditions

is known as inhibitory control. In psychology and neuroscience, inhibitory control

has been studied extensively using the stop-signal task [LC84]. In this task, subject

performs a default go task on each trial, usually consisting of two-alternative forced

choice (2AFC) discrimination between two stimuli (e.g. press ”L” for square, press

”R” for circle). On a small fraction of trials, an additional stop signal occurs at some

time (known as SSD, or stop-signal delay) after the go stimulus onset, and the subject

is instructed to withhold or stop the go response. When the subject succeeds to stop,

the trial is considered a stop success (SS) trial; otherwise, it is considered a stop error

(SE) trial. Typically the SSD is chosen such that subjects on average only achieve

50% accuracy on the stop trials.

The classical model for the stop signal task is the race model [LC84, BPLS07],

which is a mechanistic account that posits a race to threshold between independent

go and stop processes (See Figure. 4.1). A stop trial results in SE if the go response is

processed before the stop process. The race model also defines a subject-specific stop

signal reaction time (SSRT), which is a measure of the average amount of time the

observer requires to process the stop signal and cancel the go response (in practice,

it is often calculated as the difference between mean go RT and the SSD specific to

each subject for achieving 50% accuracy on stop trials). Although the race model
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provides a simple and elegant description of the basic behavioral phenomena, it is not

a normative account of how the brain ought to treat the stop signal task according

to task demands or behavioral goals. As such, it does not have a principled basis

for predicting how behavior might change according to changes in task conditions or

motivational factors. It also does not possess the representational richness to identify

the computational functions of all the different brain areas implicated in the stop-signal

task, or to explain the distinct causes of the myriad inhibitory deficits observed in

various psychiatric conditions (e.g. ADHD, depression, OCD, drug addiction).

A B CRace Model

GO
STOP

{stop trial, go trial} = 

{left, right} =

{absent, present}

Figure 4.1: Models for inhibitory control in the stop-signal task. (A)
The classical race mode posits that the behavioral outcome (go or stop) is
determined by a race between two independent go and stop processes. (B)
Bayesian graphical model for noisy sensory data generation in the rational
decision-making model. (C) The decision of whether/when to Go, which Go
response to select, and whether/when to Stop, are modeled as sequential
decision-making, where the subject chooses at each moment whether to select
a Go or Stop response, or to wait at least one more time point.

In part to overcome some of these challenges, we previously proposed a nor-

mative Bayesian Markov decision process (MDP) model for stopping [SY11], which

assumed that subjects maintains a continually evolving, Bayes-optimal belief state

about stimulus properties, and that they make an moment-by-moment optimal de-

cision between go and wait by mapping the current belief state to optimal action.

We showed that this model accounts for a range of classical and more subtle be-

havioral effects in the stop-signal task, includes the possibility of predicting how
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experimental manipulations of different cognitive factors should affect stopping behav-

ior [SY11, ISYL13, MY15a, MY16]. The model was also used to successfully identify

brain regions involved in representing and predicting the probability of encountering

a stop signal in healthy human subjects [ISYL13], as well as how that neural repre-

sentation becomes altered in users of stimulants such as cocaine and metaphetamine

[IHZ+15, HSS+14, HSZ+15].

One critical assumption made by the previous model [SY11] is that only two

possible actions are entertained at each moment within the trial, Go or Wait. A

Stop response is only realized in the model by choosing the Wait action repeatedly

until the response deadline. Essentially, this model implies that SSRT is an emergent

property, that there is no underlying stop process that terminates in a stop action.

However, empirical evidence, including neuroimaging data in humans [ADE+07] and

neurophysiology data in monkeys [HSP98], suggests that the brain may instead execute

an explicit stop action on successful stop trials. However, adding a Stop action to the

action set is non-trivial, because if both Wait and Stop block the Go action in the

current moment in time, but Stop in addition blocks the possibility of choosing Go

in the future while Wait allows that possibility, then it is always more rewarding to

choose Wait over Stop in order to keep that possibility open. There must be some

additional benefit to the Stop action that would make it worthwhile to execute. We

hypothesize here that the extra benefit is a certain savings in attentional cost, such

that choosing Stop alleviates the observer from the cost associated with attending to

the sensory input and engaging with the task for the remainder of the trial.

Specifically, we formulate a novel Bayesian MDP model for inhibitory control,

in which there are three explicit actions available to the decision-maker: Go, Wait, and
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Stop. In addition to the four kinds of behavioral costs included in the original model –

the cost of making the wrong go response, the cost of not responding on a go trial,

the cost of not stopping on a stop trial, and the cost of time incurred proportional to

the total length of the trial – we incorporate an additional term, the cost of attending

to the sensory input, which is terminated by either a Go action, a Stop action, or the

expiration of the response period. Analogous to the stop-signal reaction time (SSRT)

assumed by the Race Model, we define the Stop RT to be the temporal delay between

the onset of stop signal and the time when the Stop action is chosen.

In the following, we first describe the model (Section 4.2), then show how the

model captures a variety of behavioral phenomena observed in the stop signal task

(Section 4.3.2), as well as neural data (Section 4.3.3) implicating neurons in the frontal

eye field in participating in the initiation or execution of the Stop action. We conclude

with some discussion of related work and thoughts on future directions (Section 4.4).

4.2 The Model

As in the earlier MDP model [SY11], this MDP model consists of two key

components, a monitoring component that formalizes sensory processing as iterative

Bayesian posterior inference based on conditionally iid data, and a decision process

that applies an optimal stochastic control policy. We describe the two components

below, and show how the model behaves on different trial types.

4.2.1 Monitoring Process as Bayesian Statistical Inference

We use the same Bayesian inference model proposed in [SY11] to implement

the sensory processing component, and thus provide only a short overview here.
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Figure 4.1B shows the graphical model, whereby the two hidden variables correspond

respectively to the identity of the go stimulus, d ∈ {0, 1}, and whether this trial is

stop trial, s ∈ {0, 1}. The priors of d and s, in our model, are P (d = 1) = 0.5 and

r = P (s = 1) = 0.25, consistent with general experimental settings. Conditioned

on the go response identity d, a sequence of iid sensory inputs are generated on

each trial, x1, ... ,xt, ... ,where t indexes time step within a trial. The likelihoods

of the sensory inputs given d are f0(x
t) = p(xt|d = 0) and f1(x

t) = p(xt|d = 1),

which are assumed to be Bernoulli distribution with distinct rate parameters qd and

1 − qd, respectively. The dynamic variable zt denotes the presence/absence of the

stop signal. z1 = ... = zθ−1 = 0 and zθ = zθ+1 = ... = 1 if a stop signal appears

at time θ. For simplicity, we assume that the onset of the stop signal θ follows a

geometric distribution: P (θ = t|s = 1) = q(1− q)t−1. Conditioned on zt, a stream of

iid observations are generated on each trial. The likelihoods of the the sensory inputs,

associated with the stop signal, are p(yt|zt = 0) = g0(y
t) and p(yt|zt = 1) = g1(y

t).

We still assume that the likelihood functions, g0 and g1, are Bernoulli distributions

with distinct parameters qs and 1− qs.

In the recognition model, Bayes’ is applied in the usual iterative manner way to

compute the the sequential posterior probability associated with go stimulus identity,

ptd = P (d = 1|xt), where xt = {x1, x2, ..., xt} denotes all the data observed so far.

Similarly, computing the posterior probability that the stop signal is already been

present, ptz = P (θ < t|yt), involves inverting the generative model, which is a simple

version of a hidden Markov model. ptz then can be used to compute the posterior

probability that the current trial is a stop trial, pts = P (s = 1|yt) = ptz + (1− ptz)P (s =

1|θ > t,yt), where P (s = 1|θ > t,yt) represents the probability that the stop signal will



63

occur in the future. The belief state at time t is defined to be the vector bt = (ptd, p
t
s).

4.2.2 Decision Process as Optimal Stochastic Control

In each trial, the subject is required to make response to a go stimulus by

a response deadline D, or else the trial terminates and the response is recorded as

“stop”. We define a loss function that accounts for the cost and penalty structure of

the stop-signal task, and assume that the observer minimizes the expected value of

this loss function in choosing whether to go, wait, or stop at each moment in time,

based on the current belief state.

Like the earlier MDP model [SY11], we assume that there is a basic cost cr

per unit time on each trial if the current trial is not terminated. In addition, the

subject has to pay an extra attentional cost ca per unit time if it decides to continually

collect and process the new coming sensory input. The subject can explicitly choose

the stop action to stop processing the sensory information and take the benefit of

only paying the basic cost cr in the rest of trial. Once the stop action is instantiated,

the subject will no longer choose the go action again, thus will incur a unit penalty

cost for missing a go option on a go trial. Making response to the go stimulus will

terminate the current trial and save the subject the basic and attentional costs in the

rest trial, but in the price of paying a unit penalty cost for making a discrimination

error on a go trial or a penalty cost cs for responding on a stop trial. The subject can

also take the wait action to process new sensory information and update the belief

state in the next time step.

Let τr denote the trial termination time and τa the time the subject is involved

in the task, so that τa = τr < D if a go response is made before the deadline D,
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{τr = D, τa < D} if an explicit stop action is chosen, and τa = D if the subject waits

until the deadline. δ ∈ {0, 1} represents the possible binary discriminations produced

by making a go response. We assume the loss function:

l(τr, τa, δ; d, s, θ,D) = (cr + ca)τa1{τr=τa<D} + cs1{τr<D,s=1}

+1{τr<D,δ 6=d,s=0} + (caτa + crD)1{τr=D} + 1{τr=D,s=0}

where the first three terms correspond to the cost for taking the go action and the last

two denote the cost for taking stop action or waiting until the deadline. The optimal

decision policy will minimize the expected loss, Lπ = E [l(τr, τa, δ; d, s, θ,D)],

Lπ = (cr + ca)E [τa]P (τa = τr < D) + csrP (τr < D|s = 1)

+ (1− r)P (τr < D, σ 6= d|s = 0)

+ (caE [τa] + crD)P (τr = D) + (1− r)P (τr = D|s = 0)

It is computationally intractable to directly minimize Lπ over the policy space. Fortu-

nately, Bellman’s dynamic programming principle provides an iterative relationship

between the optimal state-value function and optimal action-value function. The

Bellman optimality equation for optimal state-value function, V t(bt), is

V t(bt) = ca + cr + min
a

[

∫
P (bt+1|bt; a)V t+1(bt+1)dbt+1]

where a ranges over all possible actions. In our alternative model, the action space

is {go,stop,wait} associated with three optimal action-value functions (also called Q-

factors), Qt
g(b

t), Qt
s(b

t), and Qt
w(bt), respectively. Using the Bellman optimality equa-
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tion for optimal action-value function-Q(b, a) = E [ca + cr + V (bt+1)|bt = b, at = a],

we can obtained the three Q-factors

Qt
g(b

t) = (1− pts)min(ptd, 1− ptd) + csp
t
s

Qt
a(b

t) = cr(D − t) + (1− pts)

Qt
w(bt) = ca + cr + 1{D>t+1}E

[
V t+1(bt+1)|bt

]
bt+1

+ 1{D=t+1}(1− pts)

V t(bt) = min(Qt
g, Q

t
s, Q

t
w)

Note that, in our model, the optimal state-value function and action-value functions

only account for the future cost after the current time step, regardless of how much

cost has been paid before, since only the expected futures costs matter in adjudicating

among the action options. The optimal state-value function is the smallest of three

optimal action-value functions. The optimal policy chooses the action corresponding

to the smallest Q-factor at each time step. The value of discrimination response,δ, is

1 if ptd > 0.5 and 0 otherwise. Since the subject can no longer update the belief state

nor take any action at the deadline, the optimal state-value function can be initially

computed at D as V t(bD) = 1− pDs . The recursive relationship between the optimal

action-value and state-value functions in Bellman optimality equation allows us to

the compute the optimal state-value functions and Q factors backwards in time from

t = D − 1 to t = 1.

In the last section, we showed that the belief state bt+1 is a deterministic func-

tion of bt and the observations. Thus, given V t+1, we can compute E [V t+1(bt+1)|bt]
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by averaging over all possible next observations xt+1,yt+1.

E
[
V t+1(bt+1)|bt

]
=

∑
xt+1,yt+1

p(xt+1, yt+1|bt)V t+1(bt+1(bt, xt+1, yt+1))

p(xt+1, yt+1|bt) = p(xt+1|ptd)p(yt+1|pts)

p(xt+1|ptd) = ptdf1(x
t+1) + (1− ptd)f0(xt+1)

p(yt+1|pts) = (ptz + (1− ptz)h(t+ 1))g1(y
t+1)

+ (1− ptz)(1− h(t+ 1))g0(y
t+1)

In the simulations, we discretize the space of ptd and ptz each into 200 bins.

4.3 Results

4.3.1 Model Simulations

Figure 4.2A shows the simulated evolution of belief state in the model for

different trial types: (1) go trial (GO), where no stop signal appears, (2) stop success

trial (SSS), where a stop signal is successfully processed by taking an explicit stop

action, (3) stop error trial (SE), where a go response is made on a stop trial. Similar

to [SY11], in SSS trials, the go stimulus happens to be processed slowly while the stop

signal is being processed quickly, thus leading to successful stopping; conversely, on

SE trials, the go stimulus happens to be processed quickly while the stop signal is

being processed slowly. Note that the difference in these belief state trajectories across

SSS and SE trials is solely due to sensory noise in the observation generation process.

Figure 4.2B shows the simulated evolution of different Q-factors, or the expected

cost of taking the three actions (Go, Wait, Stop), over time on different trial types. In
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SSS trial, the go cost decreases slowly and never drops below the wait cost, while the

stop cost drops rapidly after the onset of the stop signal and eventually below both

the wait and go costs. The go cost in the SE trial shows the converse, dipping below

the wait cost before the stop cost has decreased sufficiently (Qg does not look like it

dips below Qw in the average trajectory, but it does do so on every individual trial,

but at different moments, such that the average looks like it does not do so). In GO

trials, the stop cost is large and continuously increasing, while the go cost is small

and continuously decreases until it dips below Qw.

4.3.2 Model Comparison to Behavioral Data

Here, we show that the model reproduces behavioral phenomena observed in

relation to the stop signal task, including all those demonstrated by the earlier MDP

model [SY11].

A classical behavioral phenomenon is that SE frequency increases in an approx-

imately logistic fashion as a function of SSD (inhibition function), which is captured

by both the race model and the earlier MDP model [SY11]; Figure 4.3A shows that

our model also captures this effect. Our model also capture the effect that the stop

error decreases with the stop error penalty cs, with the effect present at almost the

whole range of SSD.

Additionally, it is known that subjects have slower GO reaction time (RT), lower

SE rate, and faster SSRT when the relative of a stop error is increased via experimental

design [LW09], a phenomenon shown to naturally arise when cs is increased in the

earlier MDP model [SY11]; Figure 4.3B-D shows the new model also captures this. As

cs, the parameter specifying the stop error cost in the model, varies from low to high,
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our model simulation shows that (Figure 4.3B) subjects can be expected to respond

faster, (Figure 4.3C) make fewer errors , and (Figure 4.3D) have longer stopping

latency (Stop RT). Note that Stop RT is analogous to SSRT int he race model, but

instead of being estimated jointly from the Go RT distribution and the stop error rate

as a function of SSD, Stop RT is computed directly by taking the difference between

the Stop action time and the Go stimulus onset. The effects associated with GO RT

and Stop error rate are generally robust for different setting of ca and cr.

4.3.3 Neural Representation of Action Value

In this section, we show how internal computational components of the MDP

model compares to neural responses observed in the frontal eye field (FEF) region

of the monkey cortex during an oculomotor version of the stop-signal task [HSP98].

FEF is known to be important for the planning and execution of eye movements and

is under strong top-down cognitive control. It has two known sub-populations of

neurons, ”movement” neurons and ”fixation” neurons, which are respectively more

active on go and stop trials, and which have been postulated to be instantiating the

go and stop processes in the race model [HSP98].

Figure 4.4 A and B show the spike density function of fixation and movement

neurons, respectively. The go (no-stop-signal) trials (thin solid lines) are latency-

matched to canceled trials (thick solid lines) with saccade latencies that are long

enough, e.g greater than the SSD + SSRT, such that they would have been canceled

if a stop signal had been presented. During canceled stop (SS) trials Figure 4.4A, the

activity of fixation neuron is significantly enhanced after the onset of the stop signal

and peaks around the SSRT, diverging from its weak response in go (no-stop-signal)
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trials. Figure 4.4 B shows that the activity of movement neuron also diverge on go

(no-stop-signal) trial as compared to SS (canceled) trial around SSRT. These neuron

data imply that these neurons may encode computations leading to the cancellation

and execution of the go response.

We hypothesize that fixation neurons may encode the explicit Stop action in our

model, while movement neural activities may reflect the formation of the decision to

Go. Figure 4.4C shows the simulated distribution of Stop RT on successfully stopped

trials in which the models takes an explicit stop action. Stop RT shows a peak right

near the SSRT, which closely resembles the fixation neuron activity in canceled trial,

implying that the fixation neurons may activate when an explicit stop action is chosen

in SS trials. Figure 4.4D shows the trajectories of 1−Qg: the negative expected cost,

or the expected reward, associated with the Go action in our model. The qualitative

similarity between the expected Go reward and the activity of movement neurons

suggests that the movement neuron may encode moment-by-moment estimate of Go

action values.

4.4 Discussion

In this work, we presented a novel Bayesian Markov Decision Process model of

inhibitory control in the stop-signal task. The key difference between this model and

our earlier Bayesian MDP model [SY11] is that the earlier model only allowed two

actions, go and wait, with the stop response only implicitly realized when the observer

repeatedly chooses the Wait action until the response period expires. Here, we formally

introduce an additional Stop action, the existence of which has long been postulated

based on neuroimaging data in humans and neurophysiology data in monkeys. We also
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posited an extra attention cost associated with being engaged in the task, and which

is spared when the stop action is taken. We showed that the new model can reproduce

all the behavioral effects captured by the previous model. In addition, our model

simulations indicate that previously observed activities of “movement” neurons in the

monkey frontal eye field are consistent with their encoding the moment-by-moment

valuation of the Go action, while the “fixation” neural activities may encode an explicit

Stop action.

We can relate the present model to the classical race model, as the go action is

typically chosen in our model when the expected go cost dips below the cost of waiting,

and the stop action is typically chosen when the stop cost dips below the cost of

waiting. Notably, the cost of waiting is fairly constant over the time course of the trial

and stable across trial types (go, SS, SE), so that it can be thought of as the common

threshold that the go cost and stop costs race to reach first in order to determine the

response outcome. However, this is not an independent race between go and stop

processes, as originally envisioned in the race model [LC84]. Rather, it is closer to an

interactive version of the race model that posits a late mutually inhibitory interaction

between the stop and go processes [BPLS07], except here, there is no direct antagonism

between the two processes, but rather a common input (increasing sensory evidence

that a stop signal is present) that drives the two processes in two opposite directions

(suppressing the go process and accelerating the stop process). This leads to another

notable difference between this model and the race model: the race model assumes

the go process to be identical between go and stop trials, and uses that assumption

to estimate the SSRT. In the present model, the go process is suppressed by the

(late) onset of a stop signal, and thus the process splits into a bimodal distribution
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of termination times, such that there is an early mode that escapes the stop signal’s

suppressive influence and which ends in slightly faster average SE RT than go RT, and

a late mode that gets suppressed by the stop signal. Because of this, the true stopping

latency can afford to be, and is indeed found to be, much later than the estimated

SSRT. This may explain why the FEF neural response diverges between correct go

and stop trials apparently too late to participate in executing the stop action [HSP98].

This is because the race model’s assumption of an unchanging go process (between go

and stop trials) may be leading it to systematically under-estimate the true stopping

latency. The current model would interpret FEF ”fixation” neurons are signaling or

relaying the decision to stop, while the FEF ”movement” neurons are encoding the

expected value of executing the go response.

One implication of the current work is that contextual changes in the attentional

state of the observer, or the costs associated with paying attention to the task, should

have systematic consequences on the observer’s readiness and timing in executing

a stop action. In particular, the model predicts that if the attention cost is raised,

for example due to the presence of a dual task siphoning away cognitive resources,

then the stop action should be chosen more readily and earlier, which would both

have a behavioral consequence and be reflected in the neural dynamics. A productive

line of future experimental work would be to test these predictions empirically by

manipulating attentional costs. While the proposed model of inhibitory control, and

the earlier MDP model that preceded it [SY11], may not be fully correct in describing

the cognitive and neural processes underlying inhibitory control, they exemplify a

powerful new modeling framework for hypothesizing neural computations in the

context of behaviorally defined goals and computations, which can then be tested
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experimentally by changing experimental conditions or behavioral objectives.
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Figure 4.2: Mean Belief state and Q-factors. (A) Evolution of the average
belief states pd (solid line) and pz (dashed line) for different trials-GO(green):go
trials, SSS(blue): stop trials successfully stopped by choosing explicit stop
action, SE (red): stop error trials. In SE trials, the go stimulus is processed
faster than the stop signal, but the converse in SSS trials. We also assume
that d = 1 for all trials in the figure for the purpose of simplicity. The
onset of stop signal is θs = 17 time steps(solid vertical line). The dashed
vertical line represents the SSRT with current parameters. (B) Go(solid line),
Stop(dashed line) and Wait(dotted line) cost for the same classification of
trials. In SSS trials, the go costs significantly overpass the wait cost until the
stop cost drops below the wait cost. In contrast to SSS, SE trials shows a
rapidly decreasing go cost which dips below the wait cost before the stop cost
decreases sufficiently, leading to stop errors. Although the average go cost
never falls below the average wait cost, each individual trajectory will cross
over at different time due to the stochasticity of observations. We adopt most
of the paramters used in [SY11]: qd = 0.68, qs = 0.72, q = 0.2, r = 0.25, D
= 50 steps, cs = 0.2, cr = 0.002, ca = 0.002. Unless otherwise stated, there
parameters are used in all the subsequent simulations.
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Figure 4.3: Influence of reward/motivation on stopping behavior. Results
are averaged over 50 simulated subjects, each performing 10000 go and stop
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produces an inhibition function (frequency of SE as a function of SSD) similar
as that observed in behavioral data. Stop error (SE) decreases as the stop
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Figure 4.4: Neural representation of action values. (A) Average firing rate
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measured SSRT (Hanes et al, 1998), suggesting fixation neurons encode a
Stop action signal. (B) Movement neurons in the FEF diverge, between
stop-success trials (Canceled) and go trials (No Stop Signal), at a time close
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(C) In our model, the distribution of Stop RT in SS trials peaks near the
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cost) of t aking the Go action diverge around SSRT on SS/Go trials, much as
movement neurons do.



Chapter 5

Reduced Neural Recruitment for

Bayesian Adjustment of Inhibitory

Control in Methamphetamine

Dependence

Delineating the processes that contribute to the progression and maintenance

of substance dependence is critical to understanding and preventing addiction. Several

previous studies have shown inhibitory control deficits in individuals with stimulant

use disorder. We used a Bayesian computational approach to examine potential neural

deficiencies in the dynamic predictive processing underlying inhibitory function among

recently abstinent methamphetamine-dependent individuals (MDIs), a population at

high risk of relapse. Sixty-two MDIs were recruited from a 28-day inpatient treatment

program at the San Diego Veterans Affairs Medical Center and compared with 34

healthy comparison subjects. They completed a stop-signal task during functional
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magnetic resonance imaging. A Bayesian ideal observer model was used to predict

individuals’ trial-to-trial probabilistic expectations of inhibitory response, P(stop),

to identify group differences specific to Bayesian expectation and prediction error

computation. Relative to comparison subjects, MDIs were more likely to make stop

errors on difficult trials and had attenuated slowing following stop errors. MDIs

further exhibited reduced sensitivity as measured by the neural tracking of a Bayesian

measure of surprise (unsigned prediction error), which was evident across all trials in

the left posterior caudate and orbitofrontal cortex (Brodmann area 11), and selectively

on stop error trials in the right thalamus and inferior parietal lobule. MDIs are less

sensitive to surprising task events, both across trials and upon making commission

errors, which may help explain why these individuals may not engage in switching

strategy when the environment changes, leading to adverse consequences.

5.1 Introduction

Amphetamine-type stimulants, which include methamphetamine, are the fastest

rising drug of abuse worldwide and have become the second most widely used class of

illicit drugs worldwide [LBM+10, WRT+13]. Moreover, methamphetamine depend-

ence (MD) is associated with high likelihood of relapse [MD14]. Whereas addiction

research has heavily focused on reward processing, executive deficits have been consis-

tently observed in stimulant abusers and implicated in the progression of abuse to

dependence [JKJ+14, VGR+12, MSM05]. Identifying precise neurocognitive processes

of such deficits may therefore not only improve our understanding of how neuro-

chemical changes in MD affect decision making, but also help identify robust neural

predictors of relapse and treatment response.
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Pharmacological, lesion, and neuroimaging studies suggest that neural al-

terations within the frontostriatal pathways, which appear to persist even during

abstinence periods, may under- lie the cognitive deficits observed in methamphetamine-

dependent individuals (MDIs) [KE07, MT03, JJ99] . MDIs exhibit reduced integrity of

dopaminergic and serotonergic neurons in dopamine-rich regions, including the anterior

cingulate cortex [TRY+05, RTY+07], striatum [LDTN07], and limbic areas [PKS+04],

and lower glucose metabolism in the striatum [YYM+02, NLG+01, LDJE11] and

frontocingulate areas, including anterior cingulate, orbitofrontal, and dorsolateral

prefrontal cortices [YYY+03, YSD+09, ESS+04]. Such neural patterns have been

linked to inhibitory and impulse-control deficits on standard interference/Stroop tasks

[SAX+10, GJK+11] and in delay discounting [WMR+06, KN04, MDJM07]. MDIs

further show difficulties in detecting trends and integrating new information to predict

future outcomes during decision making [RBA+99, MNB+02], which may be particu-

larly hindering within changing environments, in which one has to constantly monitor

information to know what to expect. Such learning impairment could contribute

to MDIs’ deficits in inhibitory control and other types of dynamic decision making

[JM07]. However, the cognitive processes underlying the relation- ship between neural

damage and substance use in MDIs remain poorly understood.

In recent work, we showed that healthy individuals [JPAC13] and nondependent

occasional stimulant users [KPJ+14] continuously alter their response strategy in a

standard inhibitory paradigm (stop-signal task), such that dynamic fluctuations in

their reaction time (RT) and error rate are consistent with a particular Bayesian

belief updating [AJ08] and decision strategy [PJ11]. Here, we use the same Bayesian

approach combined with event-related functional magnetic resonance imaging (fMRI)
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to model individuals’ real-time expectations of response inhibition need in the stop-

signal task. This strategy allows us to identify any difference between MDIs and healthy

comparison subjects (CSs) in their neural representation of trialwise expectations

of inhibitory response and Bayesian prediction errors needed for updating those

expectations.

Based on the reduced functional metabolism in prefrontal, anterior cingulate,

and striatal areas observed in MDIs, and given the consistent involvement of these

brain regions in encoding action-related expectations, value, and prediction errors

[KPJ+14, STJ11, LTW06, MJI+07], we hypothesized that inhibitory dysfunction in

MDIs would be characterized by attenuated neural representation of the expectation of

an inhibitory signal, as well as altered prediction error signals, coding the discrepancy

between predicted and actual outcomes, which is critical for adjusting expectations

and adaptive behavior to potentially adverse consequences.

5.2 Methods and Materials

5.2.1 Participants

The University of California, San Diego Human Research Protections Program

approved the study protocol and all participants gave written informed consent. A

total of 62 (21% female) recently abstinent (i.e., within the last month) MDIs were

recruited from a 28-day inpatient Alcohol and Drug Treatment Program at the Veterans

Affairs San Diego Healthcare System and Scripps Green Hospital.1 In addition, 34

healthy CSs (30% female) were recruited via flyers, internet ads (e.g., Craigslist), and

local university newspapers. CSs were selected to be matched in age and IQ with
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MDIs. All subjects completed a clinical interview and a fMRI session during which

they completed the stop-signal task (between the third and fourth week of treatment

for MDIs). Lifetime DSM-IV Axes I and II diagnoses, including substance abuse

and dependence [APA13], were assessed by the Semi-structured Assessment for the

Genetics of Alcoholism II [KRC+94]. Diagnoses were based on consensus meetings

with a clinician specializing in substance use disorders (MPP).

5.2.2 Stop-Signal Task

Participants completed six blocks of a stop-signal task (75% go trials in each

block of 48 trials) while undergoing fMRI. Trial order was pseudo-randomized through-

out the task and counterbalanced. On go trials (n = 216, or 36/block), they had to

press as quickly as possible the left button when an“X” appeared and the right button

when an “O” appeared. On stop trials (i.e., whenever they heard a tone during a

trial, at some time subsequent to the presentation of the go stimulus; n = 72), they

were instructed not to press either button (see Figure 5.1 A). Each trial lasted ≈ 1300

ms or until the participant responded, with a 200-ms interstimulus interval. Prior to

scanning, participants’ mean go reaction time (i.e., average response latency [ARL])

from stimulus onset was determined to compute six levels of stop-signal delay (SSD),

providing an individually customized range of difficulty. Such individual measures

were used to determine the stop signal delay for the six different stop trial types,

providing a subject-dependent jittered reference function. Specifically, stop signals

were delivered at 0 (ARL-0), 100 (ARL-100), 200 (ARL-200), 300 (ARL-300), 400

(ARL-400), or 500 (ARL-500) ms less than the mean reaction time after the beginning

of the trial, thus providing a range of difficulty level; ARL ranged from 504 to 925 ms
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(mean = 664 ms, SD = 112 ms) [for more details see [KPJ+14, SAEM05]].

5.2.3 Bayesian Model of Probabilistic Prediction

In recent work [JPAC13, PJ11, PRA11], sequential effects in the stop-signal

paradigms, where recently experienced stop trials tend to increase RTs on a subsequent

go trial and decrease error rate on a subsequent stop trial, have been shown to be well

captured by a Bayes-optimal decision-making model. This Bayesian hidden Markov

model adapted from the dynamic belief model [AJ08] (see Figure 5.1 B) assumes that

an individual updates the previous probability of encountering stop trials, P(stop), on

a trial-by-trial basis based on trial history and adjusts decision policy as a function of

P(stop), with systematic consequences for go RT and stop accuracy in the upcoming

trial. A higher predicted P(stop) is associated with a slower go RT and a higher

likelihood of correctly stopping on a stop trial in healthy subjects [JPAC13, KPJ+14].

Briefly, the model assumes that the stop-signal frequency rk on trial k has probability

α of being the same as rk−1 and probability 1− α of being resampled from a previous

beta distribution p0(r). The probability of trial k being a stop trial, Pk(stop) =

P (sk = 1|Sk−1),where Sk = (s1, ..., sk) is1on stop trials and 0 on go trials, can be

computed as follows:

p(sk = 1|sk−1) =

∫
P (sk = 1|rk)p(rk|Sk−1)drk

=

∫
rkp(rk|Sk−1)drk =< rk|Sk−1 >
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The predictive probability of seeing a stop trial, Pk(stop), is the mean of the predictive

distribution p(rk|Sk−1), which is a mixture of the previous posterior distribution and

a fixed previous distribution, with α and 1 − α acting as the mixing coefficients,

respectively:

p(rk|sk−1) = αp(rk−1|sk−1) + (1− α)p0(rk)

with the posterior distribution being updated according to Bayes’s rule:

p(rk|sk) ∝ p(sk|rk)p(rk|sk−1)

Thus, to capture the persistent sequential effects, the model assumes that

subjects continually update P(stop) with effectively the same learning rate, because

they believe that the true rate of stop trials is undergoing changes in the environment:

formally, with probability α, it stays the same as last trial, and with probability

1− α, it is redrawn randomly from the generic previous distribution p0. A larger ?

corresponds to a belief in a less volatile environment, and therefore a longer time

window during which previous trials can affect future P(stop) calculations, which

results in smaller sequential effects due to the most recently experienced go/stop trial

(relative to a longer relevant time history) [AJ08, PRA11].

In the present study, parameters for the beta distribution p0(r) and α were kept

constant across all subjects and were based on simulations that sought to optimize

behavioral fit at the group level?that is, maximizing R2 for the regression of P(stop)

on RT. Such optimal parameters were p0 = beta (a = 2.5,b = 7.5;s = a+ b = 10;mean

= 0.25) and α = 0.5. The fixed values were optimal for both groups. Given these
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parameters and sequence of observed stop/go trials experienced by participants, we

computed the corresponding sequence of subjective P(stop). In subsequent fMRI

analyses, the trial-by-trial estimation of Pk(stop) = P (sk = 1|Sk−1) =< rk > (i.e.,

most up-to-date estimate of stop trial likelihood based on all previous trials) was used

as a parametric regressor.

In previous work [AJ08], we showed that the Bayesian belief updating model for

P(stop) can be approximated by a linear-exponential filter of past observations, such

that whether the previous trial was a stop trial (sk = 1) or a go trial (sk = 0) linearly

contributes to the estimated P(stop) for the current trial, and the coefficient for each

trial decays exponentially into the past. This model is also equivalent to a version of

a delta rule, where P(stop) on each trial is an appropriately tuned linear combination

of P(stop) on the last trial, how the most recent observation (sk = 1 or 0) differs from

the last P(stop), in other words, a signed prediction error (SPEk = sk − Pk(stop)),

and a constant bias term, which may be realistically implemented at the neural level

[AJ08].

5.2.4 Behavioral Statistical Analyses

We applied hierarchical generalized mixed-effect linear models to participants?

trial accuracy (stop-success [SS] vs. stop-error [SE]) and RTs (dependent variables),

treating subject as a random effect (with varying intercepts and slopes, unstructured

variance/covariance assumed) and other independent variables as fixed effects [RDD08].

The first set of models for go RTs used a linear mixture of Bayesian model-based

estimate of P(stop), group, previous trial type, and previous trial SSD. Go trials

with a reaction time >1300 ms were automatically counted as go errors and were not
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included in those analyses. The second set of models for error data used a logit link

function [TF08] in terms of linear mixtures of SSD, group, and P(stop). We report

change in log-likelihood ratio (following a chi-squared distribution) and regression

coefficients (when applicable) with associated t test and p values.

5.2.5 fMRI Analyses

Using a fast event-related fMRI design, six T2∗-weighted echo planar imag-

ing functional runs were collected for each participant, along with one T1-weighted

anatomical image (see the Supplement for image acquisition and preprocessing de-

tails). Preprocessing and subsequent fMRI analyses were conducted using Analysis of

Functional NeuroImages (AFNI) software [RW96].

First-Level Analyses. Three types of trials were distinguished (go, SS, and

SE; go error trials were scarce and not included in these analyses), included as predictors

in a general linear model (GLM), and convolved with a canonical hemodynamic

response function. They were entered as both categorical linear regressors (multiplied

by the mean of the computed P(stop) probabilities across all trials) and parametric

regressors (modulated by P(stop)) [KPJ+14, CAGK98] in order to isolate neural

activations associated with P(stop) independently of catego- rical trial type neural

coding (i.e., categorical regressors). This model therefore included six task regressors

(three categorical: go, SS, SE; and three model-based parametric: Go x Pk(stop), SS

Pk(stop), SE x Pk(stop)). To assess group differences in the updating processes related

to P(stop), we created a second GLM with trialwise Bayesian signed prediction error

[i.e., SPE: (outcome - P(stop))] and unsigned prediction error [i.e., UPE: |outcome

- P(stop)|] as parametric regressors of interest. This second model also included a
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parametric regressor modeling trial error (0 = correct or 1 = error) to control for

performance error-related activity [JPAC13]. Given the fixed parameter setting and

pseudorandomized sequence of trials, the P(stop) and Bayesian UPE/SPE values were

the same for all participants in these GLMs. Both GLMs included a baseline regressor

(consisting of intertrial intervals), instruction phases, linear drift, and three motion

regressors [pitch, yaw, roll [SAEM05]], go RTs, and SSD as parametric regressors of

no interest. Images were spatially filtered (Gaussian full width half maximum 4 mm)

to account for individual anatomical differences. Anatomical and functional images

were manually transformed into Talairach space.

Second-Level Analyses. At the between-subject level, the coefficients of our

first-level GLM were modeled with voxel- wise mixed-effects linear models analyses,

performed with R statistical software (R Foundation for Statistical Computing, Vienna,

Austria) [JDSD11], in terms of a linear mixture of subject- level effects and group

(CS, MDI). Specifically, we tested for second-level effects of group and its interaction

with P(stop) under each trial type (Go x Pk(stop), SS x Pk(stop), SE x Pk(stop)),

with subject treated as a random effect.3 In the first analysis, we isolated P(stop)-

modulated activations for go versus stop trials (SS and SE were averaged). Whole

brain statistical maps were obtained for the group main effect (reflecting areas tracking

previous P(stop) values irrespective of trial type or accuracy) and the group x P(stop)

modulated trial type interaction. We then conducted an additional contrast on stop

trials only, comparing P(stop) modulated activation for SS versus SE trials and

obtained statistical maps for the group x P(stop) trial type (SE vs. SS) interaction.

To correct for multiple comparisons, we used a cluster threshold adjustment based

on Monte Carlo simulations (generated with AFNI’s 3dClustSim program ); AFNI,
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National Institutes of Mental Health, Bethesda, MD), based on whole-brain voxel

size and 4-mm smoothness. A minimum cluster volume of 768 muL was used, with

a minimum voxelwise significance of p < .005, corrected for multiple comparisons at

familywise error rate = p < .01.

Group Difference in Bayesian Prediction Errors. Based on previous

work [JPAC13, KPJ+14], we further selected from areas identified in the interaction

contrast of the above-mentioned analyses [interaction of group and P(stop)-modulated

trial type, i.e., Go x P(stop), Stop x P(stop)] those that were consistent with a group

difference in either type of Bayesian prediction errors (UPE and SPE). Specifically, we

identified those regions with nonzero P(stop) activations in CSs of opposite signs and

same signs across go and stop trials, reflecting UPE and SPE activations respectively.

5.3 Results

5.3.1 Subject Characteristics

MDIs did not differ from CSs in ethnicity, sex, age, and verbal IQ (p > .05).

On average, CSs had a higher level of education (p < .001). MDIs endorsed greater

cocaine and cannabis intake (p < .001), and they used alcohol and nicotine more

frequently and in larger quantities than did CSs (p < .054) (see Table 5.1).
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Table 5.1: Participants’ Characteristics as a Function of Group Status (n =
96). IQ, intelligence quotient; N/A, not applicable; WTAR, Wechsler Test of
Adult Reading. at test computed using natural log transformed + 0.5 values
(due to nonnormal distributions) replicated results for raw data.

Methamphetamine-
Dependent In-
dividuals (n =
62)

Comparison Sub-
jects (n = 34)

Mean SD Mean SD t Test, p
Value

Demographics
Age, years 38.0 10.4 36.1 11.1 .39
Education, years 13.0 1.7 14.8 1.6 < .001
Verbal IQ, WTAR 109.1 8.7 111.6 9.7 < .26
Alcohol, typical
drinks/week

22.1 38.6 3.9 4.5 < .05

Alcohol, typical
days/week

3.1 3.0 1.9 2.2 < .05

Nicotine, typical
cigarettes/day

14.0 8.6 1.5 4.0 < .05

Nicotine, typical
days/week

6.2 2.2 1.2 2.5 < .05

Lifetime Drug Use
Methamphetamine 14,267.8 29,028.0 0.0 0.0 N/A
Cocaine 2560.5 6064.4 1.3 4.6 <.001a

Prescription stimulant 56.7 417.5 0.0 0.2 .25a

Cannabis 8853.2 25,738.0 40.0 168.9 < .001a

5.3.2 Behavioral Performance and Model-Based Behavioral

Adjustment

Reaction Times. Consistent with our model?s assumptions [JPAC13, PJ11,

PRA11], a positive linear relationship between go RT and P(stop) was observed across

both groups (B = 274 ms, t94 = 4.6, p < .001, model omnibus test: χ2
1 = 19.4,

p < .001; mean Pearson correlation coefficient: r = .15, adjusted R2 = .05). The

group main effect on go RT was not statistically significant (χ2
1 = 0.48, p = .49;
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meanRT:CS = 624ms; MDI = 590ms) (see Figure 5.2 A for go RT distributions). The

P(stop) x group interaction was marginally significant (χ2
1 = 3.8, p = .05), showing a

trend for smaller positive slope for RT as a function of P(stop) in CSs. Whereas the

regression slope was steeper in MDIs, we surmise that this pattern relates to the wider

RT range (more short RTs) and the larger sample size in MDIs, rather than reflecting

a meaningful group difference in model fit and related neural processes. A positive

linear relationship between go RT and P(stop) was observed within each group(CS:B

= 105,p < .01; χ2
1 = 7.7, p < .01;MDI: B = 365, p < .001; χ2

1 = 144, p < .001). For

illustration of the linear trends, Figure 5.2 B shows data collapsed across all subjects

for MDIs and CSs separately, where go trials were binned by P(stop) and average RT

calculated for each bin separately. MDIs and CSs did not differ in stop signal reaction

time (mean CS = 239 ms; mean MDI = 231 ms, t94 = .49, p = .61).

Post-stop Slowing. An overall slowing in go RT was observed following stop

relative to go trials (χ2
1 = 124, p < .001), which was true for both SS (B = +17,

p < .001) and SE (B = +35, p < .001) trials. Moreover, there was a group by previous

trial type interaction (χ2
1 = 41, p < .001). Specifically, CSs had similar RTs following

SS and go trials (B = 6, t33 = −1.3, p = .18) but exhibited significant slowing

following SE trials (B = 16, t32 = 2.9, p < .01). In contrast, MDIs were overall slower

following SS relative to go trials (B = 31, t62 = 5.4, p < .001) but did not exhibit

additional slowing after SE relative to SS trials (B = 10, t62 = −1.5, p = .19) (see

Figure 5.2 C).

Performance Accuracy. As expected, participants had a higher likelihood

of error on trials with longer SSD (odds ratio = 2.6, Wald z = 39, p < .001; omnibus

test: χ2
1 = 250, p < .001). The group difference in stop error rates did not reach
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statistical significance (group main effect: χ2
1 = 2.3, p = .13; mean error rates: CS =

0.44; MDI = 0.49); however, the group by SSD interaction was significant (χ2
1 = 4.8,

p < .05) with higher error likelihood in MDI for longer SSD (i.e., more difficult SSD)

(see Figure 5.2 D). Moreover, as predicted by our model [JPAC13, PJ11, PRA11],

we found a negative relationship between error likelihood and P(stop), with higher

P(stop) overall prompting a smaller likelihood of error (odds ratio = 0.10, Wald z =

-3.38, p < .001; omnibus test: χ2
1 = 11.4, p < .001). Other interactions (i.e., P(stop) x

Group, P(stop) x SSD, P(stop) x SSD x Group) did not reach statistical significance

(p > .05).

5.3.3 fMRI Analyses

Bayesian Prediction of Inhibitory Response (P(Stop)). Testing for

any group differences in brain activation associated with P(stop), after regressing out

any variance correlated with actual stimulus outcome (stop vs. go), we found no areas

consistent with such neural pattern.

Modulation of Bayesian Prediction of Inhibitory Response (P(Stop))

by Trial Type (Stop vs. Go). Seven regions were associated with a significant

interaction between groups (CS vs. MDI) and P(stop)-modulated trial type [Stop x

P(stop) vs. Go x P(stop)]. These regions and their coordinates are listed in Table 5.2.

In five of those regions (right hemisphere regions and left caudate), MDIs showed a

positive activation associated with P(stop) on stop trials (p < .05), but no significant

P(stop) activation on go trials (p > .05). CSs showed no significant P(stop) activations

to go or stop trials in these regions (p > .05).
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Table 5.2: BOLD Activation Foci for Group by P(Stop)-Modulated Trial
Type (Go vs. Stop) Interaction. Whole brain random effect analysis; corrected
for clusterwise significance: p < .01; minimum voxel significance is p < .005
and minimum cluster size is 12 voxels/768 µL. BOLD, blood oxygen-level
dependent; BA, Brodmann area.

Region Peak Voxel
Talairach
Coordinates
(x,y,z)

Peak Voxel Z
Statistics (p
Value)

Cluster
Size
(Voxels)

Right Anterior Cingulate
Cortex (BA 32)

20 36 12 4.71 (.00001) 215

Left Frontal Caudate -16 22 11 3.81 (.00014) 53
Right Dorsolateral Pre-
frontal Cortex (BA 9)

44 17 39 4.21 (.00003) 34

Right Inferior Frontal
Gyrus (BA 44)

53 16 18 3.31 (.00093) 17

Left Posterior Caudate -15 -14 26 3.57 (.00036) 16
Left Orbitofrontal Gyrus
(BA 11)

-38 47 -11 3.42 (.00063) 14

Right Middle Temporal
Gyrus (BA 22)

51 -33 0 2.90 (.00373) 13

In the other two regions (left posterior caudate and orbito- frontal cortex

[OFC]/Brodmann area 11 [BA 11]) (see Figures 5.3 A and 5.4 A), CSs showed a

negative correlation with P(stop) on stop trials and positive correlation with P(stop)

on go trials, consistent with a positive UPE (UPE = |outcome - P(stop)|). However,

unlike CSs, MDIs failed to show a differential P(stop) activation to go versus stop trials

in those regions (see Figures 5.3 B and 5.4B). Importantly, based on supplemental

analyses, CSs showed activation positively correlated with a UPE in these areas,

whereas MDIs had significantly attenuated UPE activations, which was not statistically

different from zero (Cohen’s d = 0.45 and 0.42 for left posterior caudate and OFC/BA

11, respectively) (see Figure 5.3 C and 5.3 C).

Modulation of Bayesian Prediction of Inhibitory Response (P(Stop))
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by Stop Accuracy (SS vs. SE). Activation in several neural regions were associ-

ated with a significant interaction between group and P(stop) modulated stop accuracy

(SS vs. SE trials) (see Table 5.3 for coordinates). In all regions, CSs exhibited a

significant negative correlation to P(stop) on SE trials and a positive correlation to

P(stop) on SS trials (p < .05), whereas MDI showed no significant P(stop) activation

on either SS or SE trials (p > .05).

Table 5.3: BOLD Activation Foci for Group by P(Stop)-Modulated Stop
Trial Type (SS vs. SE) Interaction. Whole brain random effect analysis;
corrected for clusterwise significance: p < .01; minimum voxel significance is
p < .005 and minimum cluster size is 12 voxels/768 µL BA, Brodmann area;
BOLD, blood oxygen level?dependent; SE, stop error; SS, stop success.

Region Peak Voxel
Talairach
Coordinates
(x,y,z)

Peak Voxel Z
Statistics (p
Value)

Cluster
Size
(Voxels)

Left Precentral Gyrus -26 4 33 3.71 (.00021) 19
Right Caudate (BA 25) 3 19 5 3.18 (.00147) 15
Right Thalamus 11 -18 19 2.99 (.00279) 14
Left Postcentral Gyrus
(BA 2)

-54 -18 32 3.25 (.00115) 13

Left Inferior Semilunar
Lobule

-18 -77 -36 3.74 (.00018) 12

Right Inferior Parietal
Lobule (BA 40)

54 -51 41 3.39 (.00070) 12

To further assess whether these activation patterns may be linked to group dif-

ference in the coding of Bayesian predication errors, we extracted activation associated

with both UPE and SPE in those five regions. Only two of these areas (right thalamus

and right inferior parietal lobule [IPL]/BA 40) (see Figures 5.5 A and 5.6 A) were

associated with activation patterns consistent with a selective encoding of a positive

UPE on SE trials among CSs. In contrast, MDIs showed no significant activations
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to UPE on SE or any other trials (Cohen’s d = 0.41 and 0.62 in right thalamus and

IPL, respectively) (see Figures 5.5 B-C and 5.6 B-C). Correlational analyses further

showed that such UPE activation on SE trials among CSs (not significantly different

from zero in MDIs) was associated with lower error rates for difficult trials (r = −.47,

p < .05; we note that a significant correlation was maintained with removal of outlier

with high UPE value, i.e., r = −0.36, p < .05; scatter for MDIs not shown because

UPE activation was not significantly different from 0; SSD, stop signal delay.) (see

Figure 5.6 D).

5.4 Discussion

The goal of this investigation was to better delineate which processes are

dysfunctional in a group of recently abstinent MDIs. We applied a Bayesian model to

evaluate the probability of a stop signal and used this probability to quantify the degree

of neural processing of “the need to stop,” and of the discrepancy between observations

and actual outcomes-that is, sensitivity to surprising outcomes based on associated

prediction errors. MDIs exhibited a pattern of reduced neural activation associated with

trial-level Bayesian prediction error signals (i.e., more surprise) in orbitofrontal frontal,

parietal, and subcortical areas (caudate and thalamus). Consistent with evidence of

impaired inhibitory function in this population [SAX+10, GJK+11, JAX+05], MDIs

compared with CSs were less accurate during more difficult trials (i.e., longer SSD).

In addition, MDIs did not show evidence of strategic adjustment after a stop error; in

other words, they did not show response time slowing after an error. Nevertheless, both

CSs and MDIs maintain and use an internal representation of stop trial probability

to make anticipatory adjustments for inhibitory control (e.g., in their reaction times)
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based on trial history, which supports our modeling approach and is consistent with

previous work [JPAC13, KPJ+14].

Relative to CSs, MDIs had attenuated neural activation associated with a

Bayesian model-based UPE in the left OFC and posterior caudate. Whereas both the

OFC and caudate have been implicated in stimulus-reward learning and value-based

decision making (45,46), these areas are also critical for prediction and processing of

performance feedback during decision making [MNB+02, RCR97, RGR99], including

signaling expectation violation [AJCM99] and prediction errors [MJI+07, NRBR04,

MJDE08, MM06, AMC11]. Importantly, failure to recruit the OFC has been linked

to impulsivity and poor inhibitory function (54), as well as to impaired learning of

stimulus-outcome contin- gencies in MDIs [MNB+02]. A group difference in unsigned

Bayesian prediction error, as opposed to an action- dependent SPE or nonmodel-based

error activity, may further suggest specific deficits among MDIs in tracking the overall

inconsistency between environmental demands and their internal belief/prediction

model (i.e., a “goodness-of-fit” estimate), rather than action-specific inconsistency,

with negative consequences on inhibitory performance. Thus, rather than promoting

a failure to recruit specific frontostriatal regions to predict appropriate actions, MD

may impair neural tracking of model-based expectancy violation, which may be

useful more generally in preparing individuals for switching strategy in response

to significant changes in the environment [AJ08, DMM+14] (e.g., sudden change in

reward rate), rather than in model updating (i.e., P(stop) estimation). The absence

of group difference in overall P(stop) activations across trial type indeed suggests that

groups did not differ in their mean estimates of P(stop), which lends credence to this

interpretation.
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Interestingly, MDIs further exhibited poorer neural encoding of stopping expec-

tations [i.e., P(stop)] on SE trials in a set of parietal and subcortical regions, consistent

with their failure to slow down following SE trials. Specifically, CSs but not MDIs

activated the right thalamus and IPL proportionally to a positive UPE on SE trials

relative to other trials (go and SS). Such UPE activations were associated with lower

error rates for difficult trials among CSs, suggesting that this selective UPE encoding

(attenuated or absent in MDIs) may be particularly important to adjust and improve

inhibitory performance. Such results are congruent with evidence of prediction error

signaling in the thalamus [AIS+00, HSJ06] and the IPL, with functional connections

to the dorsal caudate [AAD+08] and premotor areas [MTH06], which has also been

implicated in predictive coding [BG07, VKM+11], and most recently in instrumental

(action-reward) contingency learning [MEJB11] and tracking the degree of divergence/

volatility in instrumental action probability distributions [MSJJ13].

This study has several limitations. First, we recognize that our computations

of prediction errors are not inherently Bayesian, and they overlap with Bayesian

and Information Theory estimates of precision, volatility [TMMM07], and surprise

[RST+08]. Brain processes associated with UPE/SPE are, however, an important

first step and provide good approximations of the optimal Bayesian model updating

[AJ08, DMM+14]. Nevertheless, the present study did not explicitly measure volatility

and model accuracy or precision, and thus cannot address whether the observed neural

difference in UPE may reflect a difference in Bayesian estimates of volatility (i.e.,

degree of expectancy violation) or in precision (inversely related to the variance around

mean expectation). Second, our model could be refined by including a more direct

prediction of behavior such as RTs, as we have done behaviorally in previous work
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[PJ11]. Such approach, however, would require significantly larger data collection

owing to additional model parameters, which was not feasible for this fMRI study.

Finally, we note that participants’ interpretation of the stop-signal task instructions,

which include incentives to limit post-stop error slowing, may lend some level of

confound in the interpretation of our results, for example, reduced post-stop slowing

could relate to more rigid instructions following in MDIs.

In summary, the present findings suggest that both cortical and subcortical

structures in MDIs fail to adequately track the changes in environmental characteristics

that would help to predict the need for increased inhibition. Importantly, using the

same parameter values across groups allowed us to assess group differences in an

objective measure of the “need to stop” and the “surprise” associated with each trial

(i.e., participants’ sensitivity to surprising or informative trials) in terms of their

behavioral and neuronal responses. Our results further suggest this group difference

may reflect MDIs’ poorer tracking of expectancy violation (i.e., weaker sensitivity

to surprising task events), rather than real-time mean predictions per se. Although

we did observe a relationship between UPE activations in the IPL and error rates,

suggesting a negative impact of such weaker activations in MDIs on their behavioral

performance, future studies are needed to determine how such neural alterations may

specifically relate to Bayesian estimates of volatility and precision, and how they may

directly impact performance. This study highlights the utility of Bayesian learn- ing

models for investigating subtle cognitive alterations guiding goal-directed actions in

addiction and other psychiatric populations, which can be used to develop precise

addiction medicine approaches for better diagnosis and treatment of this disorder.
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fixed values were optimal for both groups.2 Given these
parameters and sequence of observed stop/go trials experi-
enced by participants, we computed the corresponding
sequence of subjective P(stop). In subsequent fMRI analyses,
the trial-by-trial estimation of Pk(stop) 5 P(sk 5 1 | Sk21) 5〈rk〉
(i.e., most up-to-date estimate of stop trial likelihood based on
all previous trials) was used as a parametric regressor.

In previous work (30), we showed that the Bayesian belief
updating model for P(stop) can be approximated by a linear-
exponential filter of past observations, such that whether the
previous trial was a stop trial (sk 5 1) or a go trial (sk 5 0)
linearly contributes to the estimated P(stop) for the current
trial, and the coefficient for each trial decays exponentially into
the past. This model is also equivalent to a version of a delta

rule, where P(stop) on each trial is an appropriately tuned linear
combination of P(stop) on the last trial, how the most recent
observation (sk 5 1 or 0) differs from the last P(stop), in other
words, a signed prediction error (SPEk 5 sk2Pk(stop)), and a
constant bias term, which may be realistically implemented at
the neural level (30).

Behavioral Statistical Analyses

We applied hierarchical generalized mixed-effect linear models
to participants’ trial accuracy (stop-success [SS] vs. stop-error
[SE]) and RTs (dependent variables), treating subject as a
random effect (with varying intercepts and slopes, unstruc-
tured variance/covariance assumed) and other independent
variables as fixed effects (39). The first set of models for go
RTs used a linear mixture of Bayesian model-based estimate
of P(stop), group, previous trial type, and previous trial SSD.
Go trials with a reaction time .1300 ms were automatically
counted as go errors and were not included in those analyses.
The second set of models for error data used a logit link
function (40) in terms of linear mixtures of SSD, group, and
P(stop). We report change in log-likelihood ratio (following

Figure 1. (A) Stop signal task. Participants
completed a total of 288 trials, including 216 go
trials (baseline condition), and 72 stop trials. Each
trial lasted 1300 ms and trials were separated by
200-ms interstimulus intervals (blank screen).
Participants performed six blocks of 48 trials
(25% stop and 75% go trials in each block). Trial
order was pseudo-randomized throughout the
task and counterbalanced. Prior to scanning,
participants performed the stop task outside the
scanner in order to determine their average
response latency ([ARL]; i.e., mean reaction time
on go trials). Such individual measures were used
to determine the stop signal delay for the six
different stop trial types, providing a subject-
dependent jittered reference function. Specifi-
cally, stop signals were delivered at 0 (ARL-0),
100 (ARL-100), 200 (ARL-200), 300 (ARL-300),
400 (ARL-400), or 500 (ARL-500) ms less than the
mean reaction time after the beginning of the trial,
thus providing a range of difficulty level; ARL
ranged from 504 to 925 ms (mean 5 664 ms,
SD 5 112 ms). Task instructions: Participants
were instructed to “press as quickly as possible
the left button when an ‘X’ appears, or the right
button when an ‘O’ appears.” They were also
instructed not to press either button whenever
they heard a tone during a trial (stop condition).
(B) Bayesian hidden Markov model used, a ver-
sion of the dynamic belief model (30), which
computes trialwise sequential predictions about
the frequency of stop trials. The model assumes
that subjects constantly anticipate the likelihood
of encountering stop trials, P(stop), on a trial-by-
trial basis based on trial history, whereby experi-
enced stop trials increase P(stop) and go trials
decrease P(stop). A change in P(stop) then
changes the decision strategy within a trial, such
that the overall objective function, encompassing

costs related to response delay, stop errors, and go errors, is optimized by an ideal observer who, faced with a larger P(stop), reduces stop error costs by
lowering stop error rate and increasing go reaction time. The previous probability of encountering a stop signal on trial k, Pk(stop), is compared with the actual
trial outcome (0 5 go; 1 5 stop) to produce a signed prediction error ([SPE]; i.e., outcome-Pk(stop)), which is combined with the prior to produce a new
updated prior for the next trial k 1 1 (see the Supplement). UPE, unsigned prediction error (i.e., |outcome-P(stop)|).

2We specifically examined whether the model predictions would
be sensitive to parameters α and the previous distribution p0(r)
at the individual level (29) and found that produced P(stop)
values were highly correlated across parameter settings and
did not differ significantly between individual level or group
level settings (r . .9; R2 . .8). For this reason, we opted for
fixed or universal parameter values across individuals.
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Figure 5.1: (A) Stop signal task. Participants completed a total of 288 trials,
including 216 go trials (baseline condition), and 72 stop trials. Each trial
lasted 1300 ms and trials were separated by 200-ms interstimulus intervals
(blank screen). Participants were instructed to press as quickly as possible
the left button when an ‘X’ appears, or the right button when an ‘O’ appears.
They were also instructed not to press either button whenever they heard
a tone during a trial (stop condition) (B) Bayesian hidden Markov model
used, a version of the dynamic belief model [AJ08], which computes trialwise
sequential predictions about the frequency of stop trials. The previous
probability of encountering a stop signal on trial k, Pk(stop), is compared
with the actual trial outcome (0 = go; 1 = stop) to produce a signed prediction
error ([SPE]; i.e., outcome-Pk(stop)), which is combined with the prior to
produce a new updated prior for the next trial k+1. UPE, unsigned prediction
error (i.e., |outcome-P(stop)|).
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SS trials (p , .05), whereas MDI showed no significant P(stop)
activation on either SS or SE trials (p . .05).

To further assess whether these activation patterns may be
linked to group difference in the coding of Bayesian predication
errors, we extracted activation associated with both UPE and
SPE in those five regions. Only two of these areas (right
thalamus and right inferior parietal lobule [IPL]/BA 40) (see
Figures 5A and 6A) were associated with activation patterns

consistent with a selective encoding of a positive UPE on SE
trials among CSs. In contrast, MDIs showed no significant
activations to UPE on SE or any other trials (Cohen’s d 5 0.41
and 0.62 in right thalamus and IPL, respectively) (see Figures
5B–C and 6B–C). Correlational analyses further showed that
such UPE activation on SE trials among CSs (not significantly
different from zero in MDIs) was associated with lower error
rates for difficult trials (r 5 2.47, p , .05) (see Figure 6D).

Figure 2. (A) Histograms of go reaction times (RT) for both comparison subjects ([CSs]; gray; n 5 36) and methamphetamine-dependent individuals ([MDIs];
red; n 5 63). (B) Bayesian model prediction and behavioral data presented for each group: red for MDI, black for CS. As predicted by our Bayes optimal
decision-making model, a significant positive relationship was observed between individuals’ go RT and trialwise P(stop) model estimates in each group. CS
(black) and MDI (red) model lines represent best linear regression fit to mean go RT. Error bars are SEM for P(stop) bins. (C) Go RTs on trials following a go,
successful stop (stop success), or failed stop trial (stop error). CSs had similar RTs following go and successful stop trials, but exhibited slower reaction times
following stop error trials (p , .05). MDIs were generally slower on stop trials relative to go trials, but they did not exhibit a similar slowing after stop error trials
relative to stop success trials (p . .05). Error bars are within-group SEM. (D) Fitted logistic inhibitory functions by group representing the likelihood of error on
stop trials as a function of the stop signal delay, that is, individual mean go RT (i.e., average response latency [ARL]) – X with X ranging from 500 ms to 0 ms.
n.s., not significant.
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Figure 5.2: (A) Histograms of go reaction times (RT) for both comparison
subjects ([CSs]; gray; n = 36) and methamphetamine-dependent individuals
([MDIs]; red; n = 63). (B) Bayesian model prediction and behavioral data
presented for each group: red for MDI, black for CS. As predicted by our
Bayes optimal decision-making model, a significant positive relationship was
observed between individuals’ go RT and trialwise P(stop) model estimates
in each group. CS (black) and MDI (red) model lines represent best linear
regression fit to mean go RT. Error bars are SEM for P(stop) bins. (C) Go
RTs on trials following a go, successful stop (stop success), or failed stop trial
(stop error). CSs had similar RTs following go and successful stop trials, but
exhibited slower reaction times following stop error trials (p < .05). MDIs
were generally slower on stop trials relative to go trials, but they did not
exhibit a similar slowing after stop error trials relative to stop success trials
(p > .05). Error bars are within-group SEM. (D) Fitted logistic inhibitory
functions by group representing the likelihood of error on stop trials as a
function of the stop signal delay, that is, individual mean go RT (i.e., average
response latency [ARL]) - X with X ranging from 500 ms to 0 ms. n.s., not
significant.).
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Figure 5.3: Group difference in sensitivity to surprising trials, that is, in
activation to Bayesian unsigned prediction error (UPE), in the left posterior
caudate. (A) Blood oxygen level?dependent signal in the posterior caudate
showing group difference in percentage signal change modulation by UPE (red
cluster). Yellow areas are other regions surviving whole brain analysis for a
significant interaction between group and P(stop)-modulated trial type, but in
which activation patterns are not consistent with a neural response correlated
with a Bayesian UPE or signed prediction error. (B) Bar graph displays
average P(stop) modulation of percentage signal change by trial type (go
vs. stop) and group (comparison subjects [CSs]: n = 34; methamphetamine-
dependent individuals [MDIs]: n = 62; error bars indicate ±1 SEM). In
this area, CSs (gray bars) demonstrated a neural response consistent with
a positive UPE (|outcome - P(stop)|), in other words, a positive correlation
between percentage signal change and P(stop) on go trials and a negative
correlation on stop trials, whereas MDIs (maroon bars) failed to show such
differential P(stop)-dependent activation. (C) Average percentage signal
change correlation with a positive Bayesian UPE (|outcome - P(stop)|) for
each group (error bars: ±1 SEM). Relative to CSs (gray, black stripes),
MDIs (maroon, black stripes) showed attenuated UPE-dependent activation
(Cohen’s d = 0.45). β was not statistically different from 0 in the MDI group
(p > .05).
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Figure 5.4: Group difference in sensitivity to surprising trials, that is, in
neural activation to a Bayesian unsigned prediction error (UPE) in the left
middle frontal gyrus (Brodmann area 11). (A) Blood oxygen level-dependent
signal in the left middle frontal gyrus showing a group difference in percentage
signal change modulation by UPE (red cluster). Yellow areas are other
regions surviving whole brain analysis for a significant interaction between
group and P(stop)- modulated trial type, but in which activation patterns
are not consistent with a neural response correlated with a Bayesian UPE or
signed prediction error. (B) Bar graph displays average P(stop) modulation
of percentage signal change by trial type (go vs. stop) and group (comparison
subjects [CSs]: n = 34; methamphetamine-dependent individuals [MDIs]: n =
62; error bars indicate ±1 SEM). In this area, CSs (gray bars) demonstrated a
neural response consistent with a positive UPE (|outcome - P(stop)|), in other
words, a positive correlation between percentage signal change and P(stop) on
go trials and a negative correlation on stop trials, whereas MDIs (maroon bars)
failed to show such differential P(stop)-dependent activation. (C) Average
percentage signal change correlation with a positive Bayesian UPE (|outcome
- P(stop)|) for each group (error bars: ±1 SEM). Relative to CSs (gray, black
stripes), MDIs (maroon, black stripes) showed attenuated UPE-dependent
activation (Cohen’s d = 0.42). β was not statistically different from 0 in the
MDI group (p > .05).
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Figure 5.5: Group difference in the modulation of neural activation correlated
with P(stop) by inhibitory success (right thalamus). (A) Blood oxygen level-
dependent signal regions representing a significant interaction between group
and P(stop)-modulated activation for stop success (SS) vs. stop error (SE)
trials (yellow and red clusters). The right thalamus (red cluster), one of these
regions, further showed an activation pattern consistent with a group difference
in percentage signal change correlated with unsigned prediction error (UPE)
on stop error trials. (B) Bar graphs represent average percentage signal change
for parametric regressors SE x P(stop) and SS x P(stop) in comparison subjects
([CSs]; n = 34) and methamphetamine-dependent individuals ([MDIs]; n =
62). Percentage signal change in CSs (gray bars) was negatively correlated
with P(stop) on SE trials and positively correlated with P(stop) on SS trials.
MDIs (maroon bars) had significantly lower P(stop)-modulated activation on
both SS and SE trials, which was not significantly different from 0 (p > .05).
(C) Region of interest analysis (right thalamus). In this region, percentage
signal change was selectively positively correlated with a Bayesian UPE, in
other words, the amount of surprise or expectancy violation, on SE trials
among CSs (gray striped bars), and not significantly correlated with a UPE
on successful go and stop trials. In contrast, no statistically significant UPE-
dependent activation was observed in MDIs for any type of trial (successful or
errors; p > .05; group difference on SE: Cohen’s d = 0.41); error bars indicate
±1 SEM.
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Figure 5.6: Group difference in the modulation of neural activation corre-
lated with P(stop) by inhibitory success (right inferior parietal lobule [IPL];
Brodmann area 40). (A) Blood oxygen level-dependent signal regions rep-
resenting a significant interaction between group and P(stop)-modulated
activation for stop success (SS) vs. stop error (SE). The IPL (red cluster), one
of these regions, further showed an activation pattern consistent with a group
difference in percentage signal change correlated with unsigned prediction
error (UPE) on SE trials. (B) Bar graphs represent average percentage signal
change for parametric regressors SE x P(stop) and SS x P(stop) in compari-
son subjects ([CSs]; n = 34) and methamphetamine-dependent individuals
([MDIs]; n = 62). Percentage signal change in CSs (gray bars) was negatively
correlated with P(stop) on SE trials and positively correlated with P(stop)
on SS trials. MDIs (maroon bars) had significantly lower P(stop)-modulated
activation on both SS and SE trials, which was not significantly different
from 0 (p > .05). (C) Region of interest analysis. In this region (right IPL),
percentage signal change was selectively positively correlated with a Bayesian
UPE, that is, the amount of surprise or expectancy violation, on SE trials
among CSs (gray striped bars), and not significantly correlated with a UPE
on successful go and stop trials. In contrast, no statistically significant UPE-
dependent activation was observed in MDI for any type of trial (successful
or errors; p > .05); group difference on SE trials: Cohen’s d = 0.62; error
bars indicate ±1 SEM. (D) This UPE activation on SE trials in the right IPL
among CSs was further associated with lower error rates on difficult trials
(stop signal delays . mean reaction time 200 ms). Graph shows the scatter
plot for this significant negative correlation (r = −0.47, p < .05).
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