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Distributed Scientific Video Movie Making 

* W. E. Johnston, D. E. Hall, J. Huang, M. Rible, and D. Robertson 

Advanced Development Group 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California, 94720 

ABSTRACT 

We describe a versatile, low cost, video movie making 
system for generating and displaying scientific graphics from 
remote supercomputers. The system makes video movies by 
single frame animation from the output of time dependent, 
numerical simulations typically done on supercomputers. 
The system uses extensive data compression to permit its use 
over wide area, as well as local area networks. The system 
demonstrates an easily used, elementary visualization capabil­
ity for time dependent data in a heterogeneous, distributed 
computing environment. 

1. Introduction 

Most sCientists access supercomputers remotely. ** 
Supercomputing will probably always be a scarce and over­
subscribed resource for the general scientific community. 
Usage is characterized by slow turn around, large quantities 
of data, and remote locations connected by wide area net­
works. 

Supercomputer output may often be displayed as 
animated sequences that we will refer to as "scientific 
movies' '. These movies provide an insightful way to view 
time dependent results, such as flow fields and moving sur­
faces, and complex 3D structures that can be animated by 
rotation and translation. 

We have developed a scientific movie system that is 
both easily used in the environment of remote supercomput­
ing, and relatively low cost ($IOK - $I5K). The distributed 
graphics system has modules that are distributed among the 

.. All of the authors can be reached via USMaiI at: Lawrence Berke­
ley Laboratory, Bldg. SOB, Rm. 3238, Berkeley, CA 94720. Email ad­
dresses are: wejohnston@lbl.gov, ... ucbvax!Jbl-csam.arpa!johnston; 
hall@lbl-csam.arpa, huang@lbl-csam.arpa, max@lbl-csam.arpa, 
davidr@lbl-csam.arpa. The work presented in this paper is supported by 
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company or product name are solely those of the authors and not neces­
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Only a handful of sites in the U.S. supply supercomputing to the 
general scientific community: National Magnetic Fusion Energy Center 
(NMFECC), National Center for Atmospheric Research (NCAR), and the 
NSF supercomputer centers (SDSC, PSC, lvNC, NCSA). The primary ac­
cess to all of these centers is via wide area networks. 

supercomputer, a local workstation for some of the intermedi­
ate steps (optional), and a video animation controller works­
tation. The modules use Berkeley Sockets [1 and 2] and Sun 
Microsystem's Remote Procedure Call package (RPC) and 
External Data Representation language (XDR) [3], to effect 
interprocess communication (!PC). Using these, the movie 
system operates over the many networks that make up the 
TCP/IP Internet. This internet provides supercomputer access 
for a substantial fraction of the U.S. scientific community. 

The system is written mostly in C, and has been demon­
strated to run in a variety of environments including V AX 
VMS™, Sun OSTM, 4.3 BSD Unix, Cray Unicos™ and CTSS. 

2. Scientific Video Movies 

Video graphics are different from pen plotter, terminal 
and film graphics. The spatial resolution of the NTSC video 
signal used for video recording is low compared to the more 
traditional media [4,5], while the color resolution is relatively 
high. These factors must be taken into account when design­
ing a graphics representation for video tape. One does not 
count on producing the fine line drawings that are displayed, 
for instance, on laserprinters, but rather uses smoothly shaded 
areas that are easily reproduced on video tape. However, 
even with the relatively low spatial resolution of NTSC video, 
line and point drawings can still be useful if special care is 
taken in their design. Figure 1 shows sample frames from 
four movies made by using this system and supercomputer 
generated data. Each movie illustrates different data transfer 
and compression characteristics. (The original color movie 
frames are reproduced in black and white in Figure 1). 

The system provides interfaces at several levels, includ­
ing the compression and transfer of a frame buffer, 2D and 
3D graphics primitives. and visualization modules such as 3D 
surface tessellation and particle advection. 

The design goal of the system is to provide scientific 
visualization using state of the art graphics algorithms. A 
certain degree of "realism" is necessary, for instance, when 
presenting 3D geometric shapes to resolve any viewing 
hypothesis ambiguities. For example, the front of the torus 
in Figure Id is clipped away so that the inside is visible. A 
reasonable level of sophistication in the rendering is needed 
to produce the realism necessary to be able to recognize that 
we are looking at the concave inner surface of the object, 
rather than the convex outside surface. The use of simple 
"flat" shading frequently produces an image in which the 
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Figure Ia 
Flow Over a Backward Facing Step - J. Sethian, UC Berkeley, A. 

Ghoniem, MIT 
eBB 883-2578 
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Figure Ib 
Vortex Modeling - S. Baden, Lawrence Berkeley Laboratory 

eBB 883-2580 

concave-convex distinction cannot be made. On the other 
hand, for the Kummer surface in Figure lc, the function is 
defined on a l00xl00xl00 grid and the tessellated surface for 
one function value results in about 100,000 polygons. With 
this many polygons flat shading is generally used, as the 
interpolation of Gouraud shading [18] is both expensive and 
not needed to improve the visualization. Our approach is to 
use the minimal shading and lighting algorithms necessary to 
accomplish an unambiguous representation. This reduces 
CPU and network demands while keeping the software 
volume manageable. See [6] for more information. 

3. The Distributed Movie System 

The video movie system software is a distributed appli­
cation with several modules. The optimal distribution stra-
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Figure Ic 
Kummer Surface - E. Yeh, W. Johnston, D. Robertson and M. 

Rible, Lawrence Berkeley Laboratory 

eBB 887-6918 
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Figure Id 
3D Flow 1brough a Torus - C. Peskin and D. McQueen, Courant 

Institute, New York University, and D. Robertson, Lawrence 
Berkeley Laboratory 

eBB 883-2584 

tegy for wide area networks is usually to select the partition­
ing that minimizes the data transported over the wide area 
network. However, this may be tempered by the relative cost 

. of computing on supercomputers as opposed to workstations. 

The modules that make up the system are illustrated in 
Figure 2. There are four main groups of modules: generating 
a numerical representation of some mathematical model (the 
application); converting the numerical representation to a 
graphics representation; converting the graphics representa­
tion to a raster image representation; and finally the display 
and recording of the image. These steps are connected pro-
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cedurally on a local system, or by data compression and tran­
sport to remote systems, depending on the distribution of the 
modules. 

Though not fonnal "objects" in the Smalltalk sense [7], 
these modules are designed to have many of the characteris­
tics found in an object oriented programming environment 
We feel that this view of distributed computing aids in imple­
menting distributed applications in a heterogeneous environ­
ment. 

3.1 The Numerical Representation: Generating the Data 

The supercomputer application is a numerical implemen­
tation of a mathematical model. Typical applications include 
modeling of 20 and 30 flow fields, wave propagation, 3D 
surface topology studies, and various simulations (e.g. 
accelerator design studies) that produce 20 and 30 particle 
position fields. These models produce a numeric representa­
tion that is converted to a graphics representation (either on 
the local system or on a remote workstation after the numeric 
data is sent over a network). If the data is sent over a net­
work, it is compressed by limiting its precision and removing 
redundancy as described in section 7. Table I gives typical 
per frame volumes of data for several applications at various 
points in the pipeline illustrated in Figure 2 (partitioning IT). 

3.2 The Graphics Representation: Conversion to Graphics 
Primitives 

The Distributed Software Architecture 

A graphics representation algorithm converts a numeric 
representation of the model output into the graphics primi­
tives (points, lines, polygons and text) that describe an image. 
The process is not graphics per se, but algorithms that 
transfonn the numeric representation to a geometric fonn that 
can be displayed as an image. Typical examples of graphics 
representations algorithms are: level curve following through 
a 20 scalar field (z=f(x,y» to produce "contour plots"; 
advecting particles through a flow field to obtain tracer parti­
cle positions that can be plotted (as in Figure la and Ib); and 
tessellating the level surface of a 30 scalar field (Figure lc), 
or some geometric description of the borders of an area of 
flow, to get a polygonal representation that can be rendered 
as a shaded surface (Figure Id). 

Table 1 
Data Volumes per Frame for Typical Applications 

Figure number and data type Numeric representation Graphics representation type, and data Compressed raster image size (un-
of the data volumes of the resultinll: I!:raohics orimitives comoressed imalre size is 410KBl 

la; 2D flow field (u, v) on l00Xll 5000 tracer particles + 5000 attributes = 
grid 17KB 90KB 2.5KB (164:1) 
Ib; 2D flow field on 13,000 grid 13000 tracer particles + 13000 attributes = 

. points 310KB 230KB 6.2KB (66:1) 
lc; 3D scalar field on l00XI00Xl00 Tessellated level surface: 110,000 polygons 
grid 4000KB = 7.8KB (52:1) 

1800KB 
Id; 3D flow field on l00XlOOXlOO 2000 tracer particles + 4500 polygons = 

i grid 24000KB l00KB 19KB (21:1) 
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The volume of data associated with an op-code and 
coordinate form of the graphics primitives depends on the 
graphics representation algorithm. For example, particle 
advection converts a flow field description to positions of a 
set of tracer particles. The number of particles is independent 
of the flow field size. When tessellating a sequence of sur­
faces that evolve in time, the number of polygons in a sur­
face at each time step is frequently roughly proportional to 
the number of points on the outer surface of the grid. Table 
I gives some examples of data volumes generated by graph­
ics representation algorithms. 

The graphics primitives produced by this step are usu­
ally sent by a procedural interface to a rendering module on 
the same system, though they are sometimes sent over the 
network. 

3.3 Graphics Rendering: Conversion to a Raster Image 
Representation 

The graphics rendering process converts the primitives 
generated by the graphics representation into a raster image. 
In the distributed movie system, graphics primitives are ren­
dered by scan conversion into a software frame buffer located 
in main memory. For 3D primitives the hidden surface, or 
visibility problem, is solved by using a "z" or "depth" 
buffer approach. This results in the final image having visual 
priority that corresponds to the geometric priority of the 
scene and eye point. The rendering of polygons additionally 
entails shading (varying the pixel color across the polygon 
surface to present the appearance of a curved surface) accord­
ing to some interpolation model, and assignment of color 
according to some lighting model (calculating the color of a 
pixel based on the position of the light source and glossiness 
of the surface). 

The size of the software frame buffer is fixed according 
to the targeted output device. In the case of the current 
hardware of the distributed movie system [4] this is 
400x512x3x5 bits == 400K bytes. This software frame buffer 
is compressed and sent over the network to the video anima­
tion controller workstation. 

3.4 Compressing the Raster Representation 

The utility of compression is obvious in wide area net­
works. Sending 400KB/frame is currently out of the question. 
What is less obvious is that compression is also advantageous 
in local area networks. Typical 4 MIP workstations can send 
about 200 packets, or 300K bytes, per second among them­
selves on an Ethernet. This is well below the Ethernet 
bandwidth and packet rate limits. The limiting factor i,s the 
CPU time spent in the "protocol stack". For a slower proces­
sor, like the PC used for the animation workstation in our sys­
tem, the maximum packet rate is substantially lower than 200 
per second (more like 30 packets/second). Therefore, 
compression that reduces the number of packets per graphics 
frame will result in a net increase in the throughput, provided 
that the PC processor does less work decompressing the data 
than it would do to handle the packets of uncompressed data. 
Variations of the Block Truncation Coding (BTC) compression 
algorithms [8 and 10] provide this tradeoff. For BTC most of 
the work is in the encoding. The decoding process is just a 
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table lookup to reconstruct the compressed image into the 
hardware frame buffer. This technique reduces the number of 
packets to be processed by the PC animation controller 
workstation without adding any significant overhead on the 
PC. The result is noticeably higher throughput, even on an 
Ethernet. 

Over a wide area network, bandwidth dependence is the 
limiting factor. When using wide area networks, further 
compression of the image is obtained by processing the BTC 

compressed image through an adaptive Huffman compression 
algorithm [9]. This algorithm is much more symmetric than 
BTC, and takes as much CPU time to decode as it does to 
encode. Therefore, there is a network bandwidth break-even 
point above which the PC CPU time to decode is greater than 
the time to send an uncompressed BTC image over the net­
work. We believe that the break-even point is a few hundred 
Kbits/second of network bandwidth for an mM PC/AT1M. 

However, this break even point is pushed to above 10 
Mbits/second by using a 68020 co-processor in the PC to 
decode the Huffman coding. Therefore, compression pays off 
even in high speed local area networks where both BTC and 
Huffman coding are used to advantage. 

3.5 The Video Animation Controller Workstation 
The animation controller workstation accepts raster data 

from the network, and generates and records a video signal 
one frame at a time. The hardware consists of an mM 
PC/AT

1M (or clone), an Ethernet controller used for TCP/IP 
based IPC,a video frame buffer for reconstructing the raster 
image and generating the video signal, a single frame anima­
tion controller and a video tape recorder ( VTR ) (or alterna­
tively a video-optical disk) for recording, and optionally a 
680201M co-processor board for doing the Huffman 
decompression. The hardware configuration is discussed in 
more detail in [4]. 

The PC runs as a remote procedure call server whose 
only task is to receive compressed images from the graphics 
workstation or remote supercomputer and record them on 
video tape or video disk. There is no user interaction with the 
PC server. It is just a peripheral hardware controller serving 
the system that generates and sends the compressed images. 
The PC server looks like any other RPC server, except that it 
will only accept one connection at a time, and there is no 
portmapper function [3]. This implies that the user must 
know both the Internet address of the video animation con­
troller workstation, and the (fixe<!) port that the RPC server 
responds to. Given the role that it plays (running video 
recorders that record frame-at-a-time movies) the "single 
client" PC server is a useful paradigm. 

In the case where a video-optical disk is used instead of 
the VTR, the PC also serves as a simple, but useful and con­
venient, video editing system. The movie clips from the 
supercomputer are recorded frame-at-a-time onto the optical 
disk, and title frames are usually added later, anywhere on 
the disk. (Titling may be generated from a front end system, 
with a paint program on the PC, or simply by aiming a video 
camera at laserprinter output and recording a single analog 
frame on the optical disk.) The optical disk has a simple set 
of commands that allow a sequence of frames to be played at 



any speed, forward or backward, and separate sequences of 
frames to be played in any order. The movie making 
scenario is to: generate the graphics movie clip; put a titling 
frame on the video-optical disk; and write a script on the PC 
to compose the movie. A typical script contains instructions 
to: play the title frame for a cenain number of seconds; seek 
to the graphics clip; hold the first frame for 10 seconds; play 
the remaining frames at 1/3 speed (10 frames/second anima­
tion); and hold the last frame for a few seconds. To achieve 
smooth animation, the graphics frames must be recorded in 
sequence on the video-optical disk, since the disk cannot seek 
to "out of sequence" frames fast enough to generate smooth 
video. When the user has constructed a script that produces 
a satisfactory movie, a VHS recorder is connected to the out­
put of the optical disk, the script is loaded and executed, and 
the resulting video is recorded to produce a scientific anima­
tion that can be viewed on a home VHS player. 

4. Partitioning a Distributed Application 

We had severa). design goals related to the distributed 
aspects of the system. First the modules had to be easy to 
distribute. This meant we had to design the primary inter­
faces to be implementable on a variety of systems, and 
minimize our use of non-standard operating system functions. 
Second, whenever possible we wanted to take advantage of 
the coarse grained parallelism afforded by pipelines. There­
fore, our algorithms were implemented to perform local 
operations on data streams rather than to read an entire data 
set before beginning processing. Third, we hoped eventually 
to compare our data stream design to an object oriented 
design. Therefore, all modules were instrumented for perfor­
mance monitoring. 

The movie making process is typically distributed across 
three different systems (panition I in Figure 2). The super­
computer application generates data (e.g. flow field vectors) 
that are compressed and sent to a graphics workstation. The 
graphics workstation environment is used to design and 
debug the graphics representation for a movie. The graphics 
workstation then produces the frames of the movie. These 
raster images are compressed and sent to the animation con­
troller workstation. The modules are all tied together by 
remote procedure call based collections of servers and clients. 

Panition II of Figure 2 has all the modules executing on 
the Cray up to, and including, the generation and compres­
sion of the software frame buffer. This panition is used 
when it is impractical to move the application data off the 
Cray. For instance, in making a movie of a 3D flow field, the 
vector field data may easily amount to 30 to 50 Mbytes' per 
frame. Even the advected panicles can be more than lOOK 
bytes per frame. The compressed movie frame is usually less 
than 20K bytes (see Table 1), an amount that is practical to 
send over current wide area networks. 

S. Internetworking 

The established TCP/IP networking infrastructure is a 
versatile and powerful tool for distributed applications geo­
graphically dispersed around the country. 

An internet is a network of networks. It accommodates 
multiple, diverse underlying hardware technologies, network 
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technologies, and operating systems while providing a uni­
form set of conventions for usage. The distributed movie 
system takes advantage of the extensive internet technology 
of the TCP/IP Internet. The success of internetworking is that 
our application sees and uses only one, uniform interface: 
The Internet protocols and Berkeley sockets [2]. 

6. Numeric and Image Data Compression 

Data compression is an imponant aspect of wide area 
network based distributed applications. Compression can be 
divided into two types: entropy reduction, an irreversible 
compression since some (maybe insignificant) information is 
lost; and redundancy reduction, a reversible compression 
technique that tries to identify redundant information and 
encode it more efficiently. We use both types of compres­
sion, frequently together, in the movie system. 

Synthetic raster images generated by computer graphics 
have an enormous amount of redundancy. There is typically 
high spatial coherence in the image, and high temporal 
(frame to frame) coherence. To compress these images, the 
system first applies entropy reduction techniques. Block 
truncation coding (BTC) [8,10] reduces the total number of 
colors needed to represent an image by reducing the colors in 
a block of pixels to two "best" representatives. A further 
compression is achieved by limiting the choice of possible 
representative colors to those of a shon table whose index is 
then used to represent the colors in the blocks. Heckben's 
median cut algorithm is used to populate the table with a set 
of colors that best reproduces the image. See [11]. One 
effect of this encoding is that areas of an image that appear 
different may result in the same block code, thus increasing 
the redundancy. This entropy reduced form is then encoded 
with a redundancy reduction algorithm such as Lemple-Ziv 
coding [9]. Using these techniques in combination, the 
overall compression of synthetic raster images can be sub­
stantial. Averaged over the length of a movie we typically 
see 20: 1 - 60: 1 compression for complex, shaded 3D images 
that fill most of the frame (e.g. Figure lc-d), and 100:1 -
200:1 for simpler 2D images (e.g. Figure la-b). 

The traditional wisdom is that floating point numbers 
from numerical simulations do not compress. Indeed, this can 
be seen to be true by applying an adaptive Huffman coding 
to a collection of floating point numbers, where one seldom 
sees greater than 1.3:1 - 1.5:1 compression. However, if we 
accept a limiting of precision then we can compress floating 
point numbers. To compress these numbers we use what 
amounts to a sequential quantization entropy reduction tech­
nique similar in principle to differential pulse code modula­
tion [12]. We quantize the floating point numbers, limit their 
dynamic range and reduce them to integers. We then take 
differences between adjacent integers to further reduce the 
size requirement. In addition to reducing the word size, these 
techniques tend to generate repeated patterns that are then 
ericoded by redundancy reduction techniques. The amount of 
information lost by this scheme is controlled primarily by 
specifying the quantization. It has been our experience that 
quantization to five digits, and limiting dynamic range to five 
orders of magnitude, is adequate for the graphics representa­
tion algorithms that we use. Using these techniques we typi-

.; .'< 
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cally achieve 12:1 - 15:1 compression of numeric data. (See 
[13] for more information.) 

In Figure 2 "channel compression" is a term that we 
use to describe a type of redundancy reduction algorithm that 
compresses an unsttuctured byte stream. Channel 
compression is frequently used as the last step of a multistep 
compression process before that data is handed off to the net­
work transport (or disk storage) functions. 

7. The Structure of the User Interface 
The typical user of the movie system is a 

physicist/programmer who needs to produce a movie of the 
output of a mathematical model. The basic user interface to 
the distributed movie system is the rendering module. This 
module implements a low level, GKS like interface for 2D 
viewing and graphics [14], and a SIGGRAPH Core like inter­
face for 3D viewing and graphics [15]. To the 3D interface 
we have added a more intuitive set of 3D viewing controls 
[16]. This interface also has a polygon prirnitive with the 

. necessary provisions for shading and lighting. To the basic 
depth buffer we have added a mechanism that allows clipping 
of a fixed portion of the object, as opposed to the usual view 
volume clipping. This is illustrated by the clipped torus of 
Figure Id. The display of complex 3D objects, such as those 
illustrated in Figure Ic and Id, is facilitated by the use of a 
routine that varies the view position from frame to frame in a 
way that results in a smooth yaw and pitch rotation. This 
provides a slow, continuously changing view of the 3D 
object [6]. 

Layered on top of this interface are two graphics 
representation algorithms that are general enough to be con­
sidered part of the system. The first is an algorithm to advect 
particles through a rectangular region of 2D flow. The user 
interface to this algorithm is where, and how many particles, 
to inject into the flow field, and the specification of (u,v,x,y) 
defining the flow. No provision is made for at the interface 
to change the boundary conditions of laminar flow. This 
algorithm was used to make the movie illustrated in figure 
Ia. 

The other representation algorithm is Lorensen's March­
ing Cubes [17]. This algorithm provide a mechanism for 
displaying the level surfaces of a 3D scalar field of arbitrary 
complexity. We have used this to explore mathematical func­
tions by displaying a sequence of surfaces 
f (x ,y ,z }=c I,e 2,e 3, . .. as a movie, as well as showing a 
single level surface evolving in time for applications such as 
flame front propagation studies. The user interface to this 
algorithm entails specification of a 3D grid of function 
values, and the function value to be displayed (as well as the 
color, light source position, viewing position, etc.). The Kum­
mer surface in Figure Ic was produced using this algorithm. 

In addition to the graphics, there is a user interface for 
numeric data compression. We have attempted to identify a 
few prototypical "types" of data, and to provide user call­
able functions to compress this data. We have, for example, 
routines that accept 2D particles and attributes, 2D flow fields 
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(u ,v ,x ,y), and 3D scalar fields (function values on a 3D 
grid). In each case the user supplies the data, and the preci­
sion that needs to be recovered after decompression. The 
compressed data stream is written to a network stream or 
disk file. 

8. Conclusions 

From the success of this system we conclude: 1) Distri­
buted computing among remote supercomputers and local 
workstations is a viable technique even over wide area net­
works. 2) Sophisticated graphics techniques and displays can 
be made available to the general scientific community by 
leveraging on the low cost of home video equipment. 3) 
Compression is an essential part of distributed computing. 
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