
Lawrence Berkeley National Laboratory
Recent Work

Title
DISTRIBUTED SCIENTIFIC VIDEO MOVIE MAKING

Permalink
https://escholarship.org/uc/item/18g7k4qd

Authors
Johnston, W.E.
Hall, D.E.
Huang, J.

Publication Date
1988-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/18g7k4qd
https://escholarship.org
http://www.cdlib.org/

, "

LBL-24996 <:'".~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing
Sciences Division Q - "' '-, , r:: \.., ,- I .

To be presented at the IEEE Conference, Supercomputing 1988,.~~.,,.. LP'~VRt~I~E
Kissimmee, FL, November 14-18, 1988, and to be published ~ - ," i ':' 1.!4.?nR~' ,

in the Proceedings
lWG.311988

Distributed Scientific Video Movie Making

W.E. Johnston, D.E. Hall, J. Huang, M. Rible, and D. Robertson

March 1988

TWO-WEEK LOAN COpy

This is a Library Circulating Copy
which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract Number DE-AC03·76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

)

Distributed Scientific Video Movie Making

* W. E. Johnston, D. E. Hall, J. Huang, M. Rible, and D. Robertson

Advanced Development Group
Lawrence Berkeley Laboratory

University of California
Berkeley, California, 94720

ABSTRACT

We describe a versatile, low cost, video movie making
system for generating and displaying scientific graphics from
remote supercomputers. The system makes video movies by
single frame animation from the output of time dependent,
numerical simulations typically done on supercomputers.
The system uses extensive data compression to permit its use
over wide area, as well as local area networks. The system
demonstrates an easily used, elementary visualization capabil­
ity for time dependent data in a heterogeneous, distributed
computing environment.

1. Introduction

Most sCientists access supercomputers remotely. **
Supercomputing will probably always be a scarce and over­
subscribed resource for the general scientific community.
Usage is characterized by slow turn around, large quantities
of data, and remote locations connected by wide area net­
works.

Supercomputer output may often be displayed as
animated sequences that we will refer to as "scientific
movies' '. These movies provide an insightful way to view
time dependent results, such as flow fields and moving sur­
faces, and complex 3D structures that can be animated by
rotation and translation.

We have developed a scientific movie system that is
both easily used in the environment of remote supercomput­
ing, and relatively low cost ($IOK - $I5K). The distributed
graphics system has modules that are distributed among the

.. All of the authors can be reached via USMaiI at: Lawrence Berke­
ley Laboratory, Bldg. SOB, Rm. 3238, Berkeley, CA 94720. Email ad­
dresses are: wejohnston@lbl.gov, ... ucbvax!Jbl-csam.arpa!johnston;
hall@lbl-csam.arpa, huang@lbl-csam.arpa, max@lbl-csam.arpa,
davidr@lbl-csam.arpa. The work presented in this paper is supported by
the u.s. Department of Energy under contract DE-AC03-76SF00098.
Any conclusions or opinions, or implied approval or disapproval of a
company or product name are solely those of the authors and not neces­
sarily those of The Regents of the University of California, the Lawrence
Berkeley Laboratory, or the U.S. Department of Energy. Trademarks are
ackn<~~ledged by TM.

Only a handful of sites in the U.S. supply supercomputing to the
general scientific community: National Magnetic Fusion Energy Center
(NMFECC), National Center for Atmospheric Research (NCAR), and the
NSF supercomputer centers (SDSC, PSC, lvNC, NCSA). The primary ac­
cess to all of these centers is via wide area networks.

supercomputer, a local workstation for some of the intermedi­
ate steps (optional), and a video animation controller works­
tation. The modules use Berkeley Sockets [1 and 2] and Sun
Microsystem's Remote Procedure Call package (RPC) and
External Data Representation language (XDR) [3], to effect
interprocess communication (!PC). Using these, the movie
system operates over the many networks that make up the
TCP/IP Internet. This internet provides supercomputer access
for a substantial fraction of the U.S. scientific community.

The system is written mostly in C, and has been demon­
strated to run in a variety of environments including V AX
VMS™, Sun OSTM, 4.3 BSD Unix, Cray Unicos™ and CTSS.

2. Scientific Video Movies

Video graphics are different from pen plotter, terminal
and film graphics. The spatial resolution of the NTSC video
signal used for video recording is low compared to the more
traditional media [4,5], while the color resolution is relatively
high. These factors must be taken into account when design­
ing a graphics representation for video tape. One does not
count on producing the fine line drawings that are displayed,
for instance, on laserprinters, but rather uses smoothly shaded
areas that are easily reproduced on video tape. However,
even with the relatively low spatial resolution of NTSC video,
line and point drawings can still be useful if special care is
taken in their design. Figure 1 shows sample frames from
four movies made by using this system and supercomputer
generated data. Each movie illustrates different data transfer
and compression characteristics. (The original color movie
frames are reproduced in black and white in Figure 1).

The system provides interfaces at several levels, includ­
ing the compression and transfer of a frame buffer, 2D and
3D graphics primitives. and visualization modules such as 3D
surface tessellation and particle advection.

The design goal of the system is to provide scientific
visualization using state of the art graphics algorithms. A
certain degree of "realism" is necessary, for instance, when
presenting 3D geometric shapes to resolve any viewing
hypothesis ambiguities. For example, the front of the torus
in Figure Id is clipped away so that the inside is visible. A
reasonable level of sophistication in the rendering is needed
to produce the realism necessary to be able to recognize that
we are looking at the concave inner surface of the object,
rather than the convex outside surface. The use of simple
"flat" shading frequently produces an image in which the

.: ... : VJ

Figure Ia
Flow Over a Backward Facing Step - J. Sethian, UC Berkeley, A.

Ghoniem, MIT
eBB 883-2578

~ :';":, '.' . ..:.,.

Figure Ib
Vortex Modeling - S. Baden, Lawrence Berkeley Laboratory

eBB 883-2580

concave-convex distinction cannot be made. On the other
hand, for the Kummer surface in Figure lc, the function is
defined on a l00xl00xl00 grid and the tessellated surface for
one function value results in about 100,000 polygons. With
this many polygons flat shading is generally used, as the
interpolation of Gouraud shading [18] is both expensive and
not needed to improve the visualization. Our approach is to
use the minimal shading and lighting algorithms necessary to
accomplish an unambiguous representation. This reduces
CPU and network demands while keeping the software
volume manageable. See [6] for more information.

3. The Distributed Movie System

The video movie system software is a distributed appli­
cation with several modules. The optimal distribution stra-

2

w

Figure Ic
Kummer Surface - E. Yeh, W. Johnston, D. Robertson and M.

Rible, Lawrence Berkeley Laboratory

eBB 887-6918

201

Figure Id
3D Flow 1brough a Torus - C. Peskin and D. McQueen, Courant

Institute, New York University, and D. Robertson, Lawrence
Berkeley Laboratory

eBB 883-2584

tegy for wide area networks is usually to select the partition­
ing that minimizes the data transported over the wide area
network. However, this may be tempered by the relative cost

. of computing on supercomputers as opposed to workstations.

The modules that make up the system are illustrated in
Figure 2. There are four main groups of modules: generating
a numerical representation of some mathematical model (the
application); converting the numerical representation to a
graphics representation; converting the graphics representa­
tion to a raster image representation; and finally the display
and recording of the image. These steps are connected pro-

•
(

II

Supercomputer
Application

exact and precision
limiting compression
channel compression
IPC (rpc & sockets)

numeric
data

IPC

r decompress

Generate a
Graphics

Representation

graphics
primitives

20 & 3D
Graphics Viewing &

Rendering

image coherence
compression
channel compression

raster
IPC (rpc & sockets)

image

IPC
I decompress

Display
and

Record Video

• Video Optical Disk
or

VTR

SOFTWARE MODULES
AND INTERFACES

Figure 2

II -----.-.. -. _ .. _

Cray Cray

r···Sun······

PC Movie PC Movie
Server Server

ALTERNATE
PARTITIONINGS

cedurally on a local system, or by data compression and tran­
sport to remote systems, depending on the distribution of the
modules.

Though not fonnal "objects" in the Smalltalk sense [7],
these modules are designed to have many of the characteris­
tics found in an object oriented programming environment
We feel that this view of distributed computing aids in imple­
menting distributed applications in a heterogeneous environ­
ment.

3.1 The Numerical Representation: Generating the Data

The supercomputer application is a numerical implemen­
tation of a mathematical model. Typical applications include
modeling of 20 and 30 flow fields, wave propagation, 3D
surface topology studies, and various simulations (e.g.
accelerator design studies) that produce 20 and 30 particle
position fields. These models produce a numeric representa­
tion that is converted to a graphics representation (either on
the local system or on a remote workstation after the numeric
data is sent over a network). If the data is sent over a net­
work, it is compressed by limiting its precision and removing
redundancy as described in section 7. Table I gives typical
per frame volumes of data for several applications at various
points in the pipeline illustrated in Figure 2 (partitioning IT).

3.2 The Graphics Representation: Conversion to Graphics
Primitives

The Distributed Software Architecture

A graphics representation algorithm converts a numeric
representation of the model output into the graphics primi­
tives (points, lines, polygons and text) that describe an image.
The process is not graphics per se, but algorithms that
transfonn the numeric representation to a geometric fonn that
can be displayed as an image. Typical examples of graphics
representations algorithms are: level curve following through
a 20 scalar field (z=f(x,y» to produce "contour plots";
advecting particles through a flow field to obtain tracer parti­
cle positions that can be plotted (as in Figure la and Ib); and
tessellating the level surface of a 30 scalar field (Figure lc),
or some geometric description of the borders of an area of
flow, to get a polygonal representation that can be rendered
as a shaded surface (Figure Id).

Table 1
Data Volumes per Frame for Typical Applications

Figure number and data type Numeric representation Graphics representation type, and data Compressed raster image size (un-
of the data volumes of the resultinll: I!:raohics orimitives comoressed imalre size is 410KBl

la; 2D flow field (u, v) on l00Xll 5000 tracer particles + 5000 attributes =
grid 17KB 90KB 2.5KB (164:1)
Ib; 2D flow field on 13,000 grid 13000 tracer particles + 13000 attributes =

. points 310KB 230KB 6.2KB (66:1)
lc; 3D scalar field on l00XI00Xl00 Tessellated level surface: 110,000 polygons
grid 4000KB = 7.8KB (52:1)

1800KB
Id; 3D flow field on l00XlOOXlOO 2000 tracer particles + 4500 polygons =

i grid 24000KB l00KB 19KB (21:1)

3

The volume of data associated with an op-code and
coordinate form of the graphics primitives depends on the
graphics representation algorithm. For example, particle
advection converts a flow field description to positions of a
set of tracer particles. The number of particles is independent
of the flow field size. When tessellating a sequence of sur­
faces that evolve in time, the number of polygons in a sur­
face at each time step is frequently roughly proportional to
the number of points on the outer surface of the grid. Table
I gives some examples of data volumes generated by graph­
ics representation algorithms.

The graphics primitives produced by this step are usu­
ally sent by a procedural interface to a rendering module on
the same system, though they are sometimes sent over the
network.

3.3 Graphics Rendering: Conversion to a Raster Image
Representation

The graphics rendering process converts the primitives
generated by the graphics representation into a raster image.
In the distributed movie system, graphics primitives are ren­
dered by scan conversion into a software frame buffer located
in main memory. For 3D primitives the hidden surface, or
visibility problem, is solved by using a "z" or "depth"
buffer approach. This results in the final image having visual
priority that corresponds to the geometric priority of the
scene and eye point. The rendering of polygons additionally
entails shading (varying the pixel color across the polygon
surface to present the appearance of a curved surface) accord­
ing to some interpolation model, and assignment of color
according to some lighting model (calculating the color of a
pixel based on the position of the light source and glossiness
of the surface).

The size of the software frame buffer is fixed according
to the targeted output device. In the case of the current
hardware of the distributed movie system [4] this is
400x512x3x5 bits == 400K bytes. This software frame buffer
is compressed and sent over the network to the video anima­
tion controller workstation.

3.4 Compressing the Raster Representation

The utility of compression is obvious in wide area net­
works. Sending 400KB/frame is currently out of the question.
What is less obvious is that compression is also advantageous
in local area networks. Typical 4 MIP workstations can send
about 200 packets, or 300K bytes, per second among them­
selves on an Ethernet. This is well below the Ethernet
bandwidth and packet rate limits. The limiting factor i,s the
CPU time spent in the "protocol stack". For a slower proces­
sor, like the PC used for the animation workstation in our sys­
tem, the maximum packet rate is substantially lower than 200
per second (more like 30 packets/second). Therefore,
compression that reduces the number of packets per graphics
frame will result in a net increase in the throughput, provided
that the PC processor does less work decompressing the data
than it would do to handle the packets of uncompressed data.
Variations of the Block Truncation Coding (BTC) compression
algorithms [8 and 10] provide this tradeoff. For BTC most of
the work is in the encoding. The decoding process is just a

4

table lookup to reconstruct the compressed image into the
hardware frame buffer. This technique reduces the number of
packets to be processed by the PC animation controller
workstation without adding any significant overhead on the
PC. The result is noticeably higher throughput, even on an
Ethernet.

Over a wide area network, bandwidth dependence is the
limiting factor. When using wide area networks, further
compression of the image is obtained by processing the BTC

compressed image through an adaptive Huffman compression
algorithm [9]. This algorithm is much more symmetric than
BTC, and takes as much CPU time to decode as it does to
encode. Therefore, there is a network bandwidth break-even
point above which the PC CPU time to decode is greater than
the time to send an uncompressed BTC image over the net­
work. We believe that the break-even point is a few hundred
Kbits/second of network bandwidth for an mM PC/AT1M.

However, this break even point is pushed to above 10
Mbits/second by using a 68020 co-processor in the PC to
decode the Huffman coding. Therefore, compression pays off
even in high speed local area networks where both BTC and
Huffman coding are used to advantage.

3.5 The Video Animation Controller Workstation
The animation controller workstation accepts raster data

from the network, and generates and records a video signal
one frame at a time. The hardware consists of an mM
PC/AT

1M (or clone), an Ethernet controller used for TCP/IP
based IPC,a video frame buffer for reconstructing the raster
image and generating the video signal, a single frame anima­
tion controller and a video tape recorder (VTR) (or alterna­
tively a video-optical disk) for recording, and optionally a
680201M co-processor board for doing the Huffman
decompression. The hardware configuration is discussed in
more detail in [4].

The PC runs as a remote procedure call server whose
only task is to receive compressed images from the graphics
workstation or remote supercomputer and record them on
video tape or video disk. There is no user interaction with the
PC server. It is just a peripheral hardware controller serving
the system that generates and sends the compressed images.
The PC server looks like any other RPC server, except that it
will only accept one connection at a time, and there is no
portmapper function [3]. This implies that the user must
know both the Internet address of the video animation con­
troller workstation, and the (fixe<!) port that the RPC server
responds to. Given the role that it plays (running video
recorders that record frame-at-a-time movies) the "single
client" PC server is a useful paradigm.

In the case where a video-optical disk is used instead of
the VTR, the PC also serves as a simple, but useful and con­
venient, video editing system. The movie clips from the
supercomputer are recorded frame-at-a-time onto the optical
disk, and title frames are usually added later, anywhere on
the disk. (Titling may be generated from a front end system,
with a paint program on the PC, or simply by aiming a video
camera at laserprinter output and recording a single analog
frame on the optical disk.) The optical disk has a simple set
of commands that allow a sequence of frames to be played at

any speed, forward or backward, and separate sequences of
frames to be played in any order. The movie making
scenario is to: generate the graphics movie clip; put a titling
frame on the video-optical disk; and write a script on the PC
to compose the movie. A typical script contains instructions
to: play the title frame for a cenain number of seconds; seek
to the graphics clip; hold the first frame for 10 seconds; play
the remaining frames at 1/3 speed (10 frames/second anima­
tion); and hold the last frame for a few seconds. To achieve
smooth animation, the graphics frames must be recorded in
sequence on the video-optical disk, since the disk cannot seek
to "out of sequence" frames fast enough to generate smooth
video. When the user has constructed a script that produces
a satisfactory movie, a VHS recorder is connected to the out­
put of the optical disk, the script is loaded and executed, and
the resulting video is recorded to produce a scientific anima­
tion that can be viewed on a home VHS player.

4. Partitioning a Distributed Application

We had severa). design goals related to the distributed
aspects of the system. First the modules had to be easy to
distribute. This meant we had to design the primary inter­
faces to be implementable on a variety of systems, and
minimize our use of non-standard operating system functions.
Second, whenever possible we wanted to take advantage of
the coarse grained parallelism afforded by pipelines. There­
fore, our algorithms were implemented to perform local
operations on data streams rather than to read an entire data
set before beginning processing. Third, we hoped eventually
to compare our data stream design to an object oriented
design. Therefore, all modules were instrumented for perfor­
mance monitoring.

The movie making process is typically distributed across
three different systems (panition I in Figure 2). The super­
computer application generates data (e.g. flow field vectors)
that are compressed and sent to a graphics workstation. The
graphics workstation environment is used to design and
debug the graphics representation for a movie. The graphics
workstation then produces the frames of the movie. These
raster images are compressed and sent to the animation con­
troller workstation. The modules are all tied together by
remote procedure call based collections of servers and clients.

Panition II of Figure 2 has all the modules executing on
the Cray up to, and including, the generation and compres­
sion of the software frame buffer. This panition is used
when it is impractical to move the application data off the
Cray. For instance, in making a movie of a 3D flow field, the
vector field data may easily amount to 30 to 50 Mbytes' per
frame. Even the advected panicles can be more than lOOK
bytes per frame. The compressed movie frame is usually less
than 20K bytes (see Table 1), an amount that is practical to
send over current wide area networks.

S. Internetworking

The established TCP/IP networking infrastructure is a
versatile and powerful tool for distributed applications geo­
graphically dispersed around the country.

An internet is a network of networks. It accommodates
multiple, diverse underlying hardware technologies, network

5

technologies, and operating systems while providing a uni­
form set of conventions for usage. The distributed movie
system takes advantage of the extensive internet technology
of the TCP/IP Internet. The success of internetworking is that
our application sees and uses only one, uniform interface:
The Internet protocols and Berkeley sockets [2].

6. Numeric and Image Data Compression

Data compression is an imponant aspect of wide area
network based distributed applications. Compression can be
divided into two types: entropy reduction, an irreversible
compression since some (maybe insignificant) information is
lost; and redundancy reduction, a reversible compression
technique that tries to identify redundant information and
encode it more efficiently. We use both types of compres­
sion, frequently together, in the movie system.

Synthetic raster images generated by computer graphics
have an enormous amount of redundancy. There is typically
high spatial coherence in the image, and high temporal
(frame to frame) coherence. To compress these images, the
system first applies entropy reduction techniques. Block
truncation coding (BTC) [8,10] reduces the total number of
colors needed to represent an image by reducing the colors in
a block of pixels to two "best" representatives. A further
compression is achieved by limiting the choice of possible
representative colors to those of a shon table whose index is
then used to represent the colors in the blocks. Heckben's
median cut algorithm is used to populate the table with a set
of colors that best reproduces the image. See [11]. One
effect of this encoding is that areas of an image that appear
different may result in the same block code, thus increasing
the redundancy. This entropy reduced form is then encoded
with a redundancy reduction algorithm such as Lemple-Ziv
coding [9]. Using these techniques in combination, the
overall compression of synthetic raster images can be sub­
stantial. Averaged over the length of a movie we typically
see 20: 1 - 60: 1 compression for complex, shaded 3D images
that fill most of the frame (e.g. Figure lc-d), and 100:1 -
200:1 for simpler 2D images (e.g. Figure la-b).

The traditional wisdom is that floating point numbers
from numerical simulations do not compress. Indeed, this can
be seen to be true by applying an adaptive Huffman coding
to a collection of floating point numbers, where one seldom
sees greater than 1.3:1 - 1.5:1 compression. However, if we
accept a limiting of precision then we can compress floating
point numbers. To compress these numbers we use what
amounts to a sequential quantization entropy reduction tech­
nique similar in principle to differential pulse code modula­
tion [12]. We quantize the floating point numbers, limit their
dynamic range and reduce them to integers. We then take
differences between adjacent integers to further reduce the
size requirement. In addition to reducing the word size, these
techniques tend to generate repeated patterns that are then
ericoded by redundancy reduction techniques. The amount of
information lost by this scheme is controlled primarily by
specifying the quantization. It has been our experience that
quantization to five digits, and limiting dynamic range to five
orders of magnitude, is adequate for the graphics representa­
tion algorithms that we use. Using these techniques we typi-

.; .'<

l.

cally achieve 12:1 - 15:1 compression of numeric data. (See
[13] for more information.)

In Figure 2 "channel compression" is a term that we
use to describe a type of redundancy reduction algorithm that
compresses an unsttuctured byte stream. Channel
compression is frequently used as the last step of a multistep
compression process before that data is handed off to the net­
work transport (or disk storage) functions.

7. The Structure of the User Interface
The typical user of the movie system is a

physicist/programmer who needs to produce a movie of the
output of a mathematical model. The basic user interface to
the distributed movie system is the rendering module. This
module implements a low level, GKS like interface for 2D
viewing and graphics [14], and a SIGGRAPH Core like inter­
face for 3D viewing and graphics [15]. To the 3D interface
we have added a more intuitive set of 3D viewing controls
[16]. This interface also has a polygon prirnitive with the

. necessary provisions for shading and lighting. To the basic
depth buffer we have added a mechanism that allows clipping
of a fixed portion of the object, as opposed to the usual view
volume clipping. This is illustrated by the clipped torus of
Figure Id. The display of complex 3D objects, such as those
illustrated in Figure Ic and Id, is facilitated by the use of a
routine that varies the view position from frame to frame in a
way that results in a smooth yaw and pitch rotation. This
provides a slow, continuously changing view of the 3D
object [6].

Layered on top of this interface are two graphics
representation algorithms that are general enough to be con­
sidered part of the system. The first is an algorithm to advect
particles through a rectangular region of 2D flow. The user
interface to this algorithm is where, and how many particles,
to inject into the flow field, and the specification of (u,v,x,y)
defining the flow. No provision is made for at the interface
to change the boundary conditions of laminar flow. This
algorithm was used to make the movie illustrated in figure
Ia.

The other representation algorithm is Lorensen's March­
ing Cubes [17]. This algorithm provide a mechanism for
displaying the level surfaces of a 3D scalar field of arbitrary
complexity. We have used this to explore mathematical func­
tions by displaying a sequence of surfaces
f (x ,y ,z }=c I,e 2,e 3, . .. as a movie, as well as showing a
single level surface evolving in time for applications such as
flame front propagation studies. The user interface to this
algorithm entails specification of a 3D grid of function
values, and the function value to be displayed (as well as the
color, light source position, viewing position, etc.). The Kum­
mer surface in Figure Ic was produced using this algorithm.

In addition to the graphics, there is a user interface for
numeric data compression. We have attempted to identify a
few prototypical "types" of data, and to provide user call­
able functions to compress this data. We have, for example,
routines that accept 2D particles and attributes, 2D flow fields

6

(u ,v ,x ,y), and 3D scalar fields (function values on a 3D
grid). In each case the user supplies the data, and the preci­
sion that needs to be recovered after decompression. The
compressed data stream is written to a network stream or
disk file.

8. Conclusions

From the success of this system we conclude: 1) Distri­
buted computing among remote supercomputers and local
workstations is a viable technique even over wide area net­
works. 2) Sophisticated graphics techniques and displays can
be made available to the general scientific community by
leveraging on the low cost of home video equipment. 3)
Compression is an essential part of distributed computing.

References

[1] S. Leffler, R. Fabry, W. Joy, P. Lapsley, S. Miller, C. Torek.
"An Advanced 4.3BSD Interprocess Communication
Tutorial," Computer Science Research Group, University of
California, Berkeley, CA, 94720, 1986 .

[2] D. Comer, 11Ilernetworking With TCPIIP: Principles, Proto­
cols, and Architecture, Prentice Hall, 1988.

[3] Sun Microsystems, Inc., "Networking on the Sun Worksta­
tion," Report 800-1324-03, Mountain View, CA, 1986.

[4] W. Johnston, D. Hall, F. Renema, D. Robertson, "Principles
and Techniques for Low Cost Computer Generated Video
Movies," LBL-22330, University of California, Lawrence
Berkeley Laboratory, Berkeley, CA, 1987.

[5] D. Fink, Editor, Color Television Standards: Selected Papers
and Records of the National Television System Committee,
McGraw-Hill, 1955.

[6] D. Robertson, "Use of a Distributed Movie Making System
for Presentation of Huid How Data," San Francisco State
University, San Francisco, CA, (Masters Thesis - available as
LBL-25036 from Lawrence Berkeley Laboratory), 1988.

[7] A. Goldberg, D. Robson, Smalltalk-80: The Language and Its
Implementation, Addison Wesley, 1983.

[8] G. Campbell, T. DeFanti, J. Frederiksen, S. Joyce, L. Leske,
J. Lindberg and D. Sandin, "Two Bit/Pixel Full Color Encod­
ing," Computer Graphics, vol. 20, no. 4, 1986. (proceedings
ACM SIGGRAPH, 1986) .

[9] T. Welch, "A Technique for High Performance Data
Compression," IEEE Computer, vol. 17, no. 6, June, 1984.

[10] N. Texier, W. Johnston, D. Robertson, "Encoding Synthetic
Animated Images," LBL-24236, University of California,
Lawrence Berkeley Laboratory, Berkeley, CA, 1987.

[11] P. Heckbert, "Color Image Quantization for Frame Buffer
Display," Computer Graphics, vol. 16, no. 3, 1982.
(Proceedings ACM SIGGRAPH, 1982)

[12] T. Lynch, Data Compression, Van Nostrand Reinhold, 1985.

[13] J. Huang, "Numeric Data Compression for Graphics," San
Francisco State University, San Francisco, CA, (Masters
Thesis - available as LBL-25037 from Lawrence Berkeley
Laboratory), 1988.

[14] G. Enderle, K. Kansy, G. Pfaff, Computer GraphiCS Pro­
gramming: GKS, 2ed., Springer-Verlag, 1987.

"

•
{

\

.1

[15] Graphics Standards Planning Committee, "Status Report of
thc Graphics Standards Planning Committee," Computer
Graphics, vol. 13, no. 3, 1979.

[16] BJ Wishinsky, W. Johnston, "A Simplified Interface for SIG­
GRAPH Core Viewing," LBL-25038, University of Califor­
nia, Lawrence Bcrkeley Laboratory, Berkeley, CA, 1987.

7

[17] W. Lorensen, H. Oine, "Marching Cubes: A High Resolu­
tion 3D Surface Construction Algorithm," Computer Graph­
ics, vol. 21, no. 4, 1987. (proceedings ACM SIGGRAPH,
1987)

[18] J. Foley, A. Van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley, 1982.

-,.1" -r:.-~.io-

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

:P)

