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Effect of predators on Anopheles arabiensis 
and Anopheles funestus larval survivorship 
in Homa Bay County Western Kenya
Pauline Winnie Orondo1,2*, Guofa Zhou3, Kevin O. Ochwedo2, Xiaoming Wang3, Benyl M. Ondeto2, 
Ming‑Chieh Lee3, Steven G. Nyanjom1, Harrysone Atieli2, Andrew K. Githeko4, James W. Kazura5 and 
Guiyun Yan3* 

Abstract 

Background The rise of insecticide resistance against malaria vectors in sub‑Saharan Africa has resulted in the need 
to consider other methods of vector control. The potential use of biological methods, including larvivorous fish, 
Bacillus thuringiensis israelensis (Bti) and plant shading, is sustainable and environmentally friendly options. This study 
examined the survivorship of Anopheles arabiensis and Anopheles funestus larvae and habitat productivity in four per‑
manent habitat types in Homa Bay county, western Kenya.

Methods Predator densities were studied in a laboratory setup while habitat productivity and larval survivorship 
was studied in field setup.

Results Fish were observed as the most efficient predator (75.8% larval reduction rate) followed by water boatman 
(69%), and dragonfly nymph (69.5%) in predation rates. Lower predation rates were observed in backswimmers (31%), 
water beetles (14.9%), water spiders (12.2%), mayflies (7.3%), and tadpoles (6.9%). Increase in predator density in 
the field setup resulted in decreased Culex larval density. Larval and pupa age–specific distribution was determined 
and their survivorship curves constructed. Combined larvae (Stage I–IV) to pupa mortality was over 97% for An. 
arabiensis and 100% for An. funestus. The highest larval stage survival rate was from larval stages I to II and the lowest 
from larval stage IV to pupa. Stage‑specific life tables indicated high mortality rates at every developmental stage, 
especially at the larval stage II and III.

Conclusion Determination of the efficiency of various larval predators and habitat productivity will help 
with the correct identification of productive habitats and selection of complementary vector control methods 
through environmental management and/or predator introduction (for instance fish) in the habitats.
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Background
Malaria remains a major public health concern in sub-
Saharan Africa despite major control advances in many 
countries. Africa still suffers from the highest morbid-
ity and mortality rates with over 90% of all malaria cases 
globally being reported from the continent [1]. The bur-
den of this disease has persisted due to challenges includ-
ing parasite drug resistance [2, 3], residual transmission 
[4], and mosquito insecticide resistance [5, 6] thus ham-
pering malaria eradication in Africa. With the recent 
introduction of the malaria vaccine in children under the 
age of 5  years [7]; which is one of the most vulnerable 
groups affected by malaria, a further decrease in malaria 
deaths is anticipated [8]. This coupled with timely effec-
tive malaria treatment and vector control measures 
should reduce reported malaria cases.

Recent interest in the control of immature malaria vec-
tors has been hailed as a potential for vector control in 
certain vector habitats like abandoned goldmines and 
rice paddies [9–11]. This has been proposed to be poten-
tially effective as it targets mosquitoes confined in their 
aquatic habitats before dispersal and feeding on humans 
and other hosts. Understanding survivorship and mor-
tality of immature Anopheles mosquitoes and their rela-
tionship with other macroinvertebrates in the aquatic 
habitats can contribute towards larval control strategies. 
Anopheles arabiensis, a major malaria vector in Africa, 
is known to inhabit specific habitat types which include 
temporary small sunlit pools [12]. Recent studies have 
shown that habitat stability has a direct negative impact 
on malaria vector larval densities [12]. Temporary pools 
are observed to harbour more immature An. arabiensis 
[12] than the permanent and semi-permanent habitats, 
which are often inhabited with more predators [13], thus 
ovipositing females prefer temporary pools to more sta-
ble ones for the sake of the survival of the immature into 
adults [14]. This is in addition to other oviposition selec-
tion site cues preferred by the gravid mosquito for larval 
survival and maturation.

Larval survivorship and maturation in the aquatic habi-
tats are highly dependent on the stability of the aquatic 
habitats. These aquatic habitats are a host to a variety of 
predatory and symbiotic insects. These predators play a 
major role in the regulation of vector populations before 
they emerge as adults. Studies have shown that several 
aquatic predator species prey on mosquito immature 
stages including Coleopterans, Amphibians, Hemipter-
ans, Odonates, fishes, Arachnids, and Ephemeropterans 
[15, 16]. These species affect larval densities, survival 
and maturation thus affecting adult mosquito popula-
tions and competency. In addition to predator popula-
tions, studies have shown that the densities of the vectors 
within a habitat affect the final habitat productivity of 

adult vectors [17]. It has been observed that the higher 
the density of larvae in a habitat the less productive 
the habitat is as compared to one that is not densely 
populated.

This study examined age-specific survivorship of An. 
arabiensis and Anopheles funestus in permanent habitats 
in Homa Bay County, western Kenya. The abundance and 
contribution of potential larval predators was also tested 
in the laboratory and in their natural environment.

Methods
Study site
This study was conducted in Homa Bay County, West-
ern Kenya, along the shores of Lake Victoria (34.6°E and 
0.5°S; 1330  m above sea level). The mean annual maxi-
mum temperature of the area is approximately 30 ℃ and 
the mean annual rainfall is around 1100  mm, with two 
rainy seasons. This area has been previously described in 
details by previous studies [12, 18–20]. Briefly, the area 
has been modified by the construction of concrete-based 
irrigation canals to increase household food produc-
tion. The locals engage in animal husbandry, crop and 
fish farming. This area is known to be a malaria endemic 
area with malaria transmission occurring throughout the 
year. The main malaria vectors are An. arabiensis and to a 
lesser extent, An. funestus [19].

Laboratory predator experiment
This experiment was conducted following Allo and 
Mekhlif [21] methods, with slight modifications. The 
following predators were used in the study: Coleoptera 
(beetles), Amphibians (tadpoles), Hemiptera (boatmen, 
backswimmers, and water scorpions), Odonata (dam-
selfly nymphs and dragonfly nymphs), fish (Gambusia 
affinis), Arachnida (spiders), and Ephemeroptera (May-
flies). These predators were not identified to species 
level except for the fish. A basin with no predator was 
also included as a control. The experiments were carried 
out on a daily basis, with the predators and mosquito 
larvae being replaced-every-24  h for fit and uncompro-
mised samples. Larval stages II and III were introduced 
in predator- inhabited larval basins at 1:20 ratio, with a 
max of 5 predators and 100 larvae. The tops of the basins 
were covered with a netting material which was secured 
with rubber bands to prevent the predators from escap-
ing, oviposition from other wild mosquitoes, and larval 
predation by other predators. The predators were not 
fed prior to the commencement of each experiment as 
they were collected daily from their natural habitats and 
introduced in the experimental basins. The experimental 
basins were placed on the bench in the insectary work 
space with free air flow. After 24  h, larval counts were 
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performed. A minimum of 3 replicates were performed 
for each predator.

Vertical life tables: field experiment
The survivorship and mortality of An. arabiensis and 
An. funestus were determined using vertical life tables 
in the natural habitats. A vertical life table was created 
using natural habitats that allow for continuous oviposi-
tion resulting in overlapping generations, as opposed to 
a horizontal life table which is used for a cohort of habi-
tats that are followed over time until a single generation 
is exhausted [14, 22, 23]. Four permanent habitat types 
were chosen for follow-up, which included six repli-
cates of rice paddies, drainage ditches, fish ponds, and 
five replicates of man-made ponds. Larval sampling was 
conducted daily for 29 days in September and October of 
2019. Larval species and densities of various larval stages, 
as well as predator types and densities, were recorded 
after sampling using standard dipping method.

Data analysis
Raw field data was entered into data forms and later 
entered into MS Excel. JMP Pro Ver. 16 software was 
used to analyse the data. Larval reduction rates in preda-
tor laboratory experiments and the predator—larvae 
relationship in the field experiment were calculated 
using generalized regression with Poisson distribution. 
To determine the larval survival rates in the life table 
analysis, the overall average daily survival rates from one 
larval stage to the next was determined for both An. ara-
biensis and An. funestus in the different habitats. Five-day 

smoothed dynamics of different stages of mosquitoes by 
species and habitat types was also determined.

Results
Predator experiment
The experiment used a predator-to-larvae ratio of 1:20 
with each experimental basin containing 3 to 5 predators. 
A significant predation effect (F = 35.5, P < 0.0001) on lar-
val numbers (Table 1) was observed within 24 h. Among 
the predators studied, predation by fish resulted in the 
greatest larval reduction (75.8%; F = 40.98, P < 0.0001) 
in the experimental basins. However, when fish 
(75.8%; F = 40.98, P < 0.0001), boatman (69%; F = 33.59, 
P < 0.0001), and dragonfly nymph (69.5%; F = 28.83, 
P < 0.0001) reduction rates were compared, there was no 
significant difference in their predation rates. Dragonfly 
nymph (69.5%; F = 28.83, P < 0.0001), damselfly nymph 
(52.4%; F = 17.68, P < 0.0001), and water scorpion (49.8%; 
F = 11.25, P = 0.0145) were also similar in predation rates. 
Water beetles (14.9%; F = −  20.03, P = 0.0001), water 
spiders (12.2%; F = −  21.27, P < 0.0001), mayflies (7.3%; 
F = −  27.72, P < 0.0001), and tadpoles (6.9%; F = −  27.99, 
P < 0.0001) were found to be poor predators, with lar-
val reduction rates that were not significantly different 
from the control basins. Backswimmers (31%; F = − 1.11, 
P = 0.92) were deemed average larval consumers because 
their consumption was within the median range (Fig. 1).

Habitat types
Larval samples were collected from 23 different perma-
nent habitats over the course of the study. These habi-
tats were classified into four habitat types. These were 
6 replicates of rice paddies, drainage ditches, fish ponds 
each and five replicates of man-made ponds. The rice 

Table 1 Summary results of the model fit of the predator laboratory experiment

Predator Number of predators 
used

Estimate Std Error t Ratio P-value 95% Confidence 
interval

Gambusia affinis fish (Family Poeciliidae, order 
Cyprinodontiformes)

65 40.98 5.38 7.61  < 0.0001 51.6—> 30.4

Water boatman (Family Corixidae, Order Hemiptera) 111 33.59 3.88 8.65  < 0.0001 41.2—> 25.9

Dragonfly nymph (Family Corduliidae, Order Odonata) 22 28.83 4.91 5.87  < 0.0001 38.5—> 19.1

Damselfly nymph (Family Lestidae, Order Odonata) 99 17.68 4.06 4.35  < 0.0001 25.7—> 9.7

Water scorpion (Family Nepidae, order Hemiptera) 68 11.25 4.56 2.47 0.0145 20.2—> 2.3

Backswimmer (Family Notonectidae, Order Hemip‑
tera)

10 − 1.11 10.75 − 0.1 0.92 20.1‑ > − 22.3

Water beetles (Family Hydrophilidae and Dytiscidae, 
Order Coleoptera)

71 − 20.03 5.05 − 3.97 0.0001 − 10.1—> − 30.0

Water spiders (Family Dictynidae, Order Araneae)
Spider

30 − 21.27 4.37 − 4.87  < 0.0001 − 12.7—> − 29.9

Mayfly (Family: Baetidae Order: Ephemeroptera) 26 − 27.72 5.38 − 5.15  < 0.0001 − 17.1—> − 38.3

Tadpoles (Class Amphibians) 108 − 27.99 4.28 − 6.53  < 0.0001 − 19.5—> − 36.4
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paddies contained recently transplanted rice thus were 
highly flooded. The drainage ditches were used to drain 
excess water from the farms while the fishponds were 
abandoned tilapia fishponds. The man-made ponds 
were formed as a result of human activities such as 
sand and ballast harvesting. There was no association 
between predator and An. arabiensis densities when 
all habitats were combined (Fig.  2a) (F = 2.37, df = 1114, 
P = 0.127). However, there was a strong negative associa-
tion between predator densities and Culex larvae densi-
ties, which was statistically significant (Fig. 2b) (F = 10.44, 
df = 1114, P = 0.0016).

Vertical life tables
Anopheles arabiensis survived best in drainage ditches, 
while An. funestus thrived best in rice paddies (Fig. 3). 
In all habitat types, the highest larval stage survival 

rate was observed in both An. arabiensis (Fig.  3a) and 
An. funestus (Fig.  3b) species from larval stage I to II, 
with the lowest being larval  stage IV to pupae for An. 
funestus. During the study period, no An. funestus 
pupae were collected. The mortality rates of An. arabi-
ensis immatures (larval stages I–IV) were 97.9%, 100%, 
98.3%, and 99.2% in drainage ditches, fishponds, man-
made ponds, and rice paddies respectively while the 
mortality of An. funestus was 100% in all habitat types. 
Furthermore, an increase in younger larval stages 
resulted in an increase of older larval stages a few days 
and vice versa (Fig. 4). Anopheles arabiensis immature 
larval stages peaked between the 10th and 20th  day 
in drainage ditches, man- made ponds, and rice pad-
dies habitat types as opposed to fish ponds (Fig.  4). A 
5-day smooth dynamics average of the larvae and pupae 
in the four habitat types showed that the age distribu-
tion of An. arabiensis and An. funestus larvae fluctuated 
over the study period. In the case of immature larval 
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stages of An. funestus, only fish ponds and rice pad-
dies had similar peak patterns between days 15 and 25, 
whereas drainage ditches peaked before day 15 (Fig. 5).

Discussion
This study was conducted to understand age-specific sur-
vivorship of immatures of malaria vectors in permanent 
habitats and how predators and habitat types affect larval 
to pupal survivorship. Fish was observed to be the most 

efficient predator of all tested. A strong negative correla-
tion was observed between predator numbers and Culex 
larvae reduction. This study observed the highest stage 
survival rate from larval stages I to II and the lowest from 
larval stage IV to pupae. An increase in younger larval 
stage resulted in a corresponding increase of older stages. 
Stage-specific life tables indicated high mortality rates at 
every developmental stage, especially at the larval stages 
II and III. Mortality was over 97% for An. arabiensis 
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and 100% for An. funestus. Previous studies have dem-
onstrated that mortality at various aquatic stages result 
from several factors including predation, cannibalism 
and environmental factors [24–26].

Various macroinvertebrates have been known to effec-
tively predate on mosquitoes including Hemiptera, 
Coleoptera, fishes, amphibians, Odonata, and other Dip-
tera [27, 28]. Chemical use on larval habitats for mos-
quito control might be effective in small habitats due to 
the ease of administration of the chemical and the acces-
sibility of the aquatic habitat while use of natural preda-
tors might be effective in larger habitats [29], which are 
mostly not fully accessible during vector control using 
insecticide. Mosquito predators are more abundant in 
larger, older and more stable habitats due to more prey 
and lesser chances of the habitat drying up [29] to enable 
the completion of their aquatic stages. Habitat preference 
for oviposition by gravid mosquito species is depend-
ent on several factors (usually visually or with the use 
of chemoreceptors e.g. tactile or olfactory on its legs or 
antennae) to determine the suitability of the habitat to 
sustain the larvae to maturation. Amongst these factors, 
a gravid mosquito usually compromises between com-
petition from other larval species as observed in small 
habitats and predation which is common in large habitats 

[29]. Studies have demonstrated that An. arabiensis seeks 
for favourable habitats to improve their chances of sur-
vival [30], while other mosquito species avoid habitats 
with predators and competitors [31, 32]. However, some 
mosquitoes prefer habitats with conspecific larvae, as this 
may be indication of the suitability of the habitats [33].

Fish belonging to the Gambusia species performed 
comparably with dragonflies and water boatman. This is 
similar to results from previous studies which showed 
that fish and dragon flies resulted in significant reduc-
tion of larvae [28, 34]. Dragonflies, are known to be 
effective predators in semi-field conditions but are not 
selective feeders in natural conditions [28]. Various bugs 
in the order Hemiptera have also been observed to pos-
sess predatory habits stirring interest in their use as bio-
logical control agents against mosquito larvae including 
Notonectids, commonly known as backswimmers. These 
have been considered the most promising [35–37]. More 
recent studies have however shown that these predators 
are more efficient with increase prey density [21] and are 
more effective against late stages of larvae [38]. There-
fore, low prey densities could explain the low predation 
rates observed in this study. Some studies have however 
shown that some predators (dragonfly and mayfly) are 
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more effective against early instar larvae and predation 
decreases with increased larval instar stage [39].

Colonization of habitats by predators has been 
observed to be partly due to the presence of mosquito 
larvae and other inherent water physical and chemical 
parameters. Understanding these abiotic and biotic fac-
tors which allow for the co-existence of immature mos-
quitoes and predator may contribute to the control of 
malaria [40]. It has been demonstrated that some mos-
quito species avoid habitats with supposed competitors 
and predators [41, 42]. These results show that, in the 
natural set-up, increase in predator densities resulted in 
decline in Culex density. This is concurrent with other 
studies [43] which observed that an increase in preda-
tor abundance increased the chances for mosquito 
larvae being present. In contrast, there was no effect 
of predator densities on Anopheles species. This could 
be due to the types of habitats selected as these were 
permanent habitats and previous studies have shown 
that Anopheles mosquitoes avoid permanent habitats 
due to the presence, high abundance, and diversity of 
predators and competitor larvae thus suppressing the 
mosquito population densities [44]. Therefore, habitat 
productivity is also determined by the age of the habitat 
[45].

The low densities of An. funestus observed in the region 
[19] could be the reason behind the non-observance of 
An. funestus pupae during the study period. The high 
mortality rates of An. arabiensis immatures and An. 
funestus observed in the natural aquatic habitats is simi-
lar to previous findings in western Kenya [14], where lar-
val survivorship was observed to be very low.

In summary, fish, dragonfly and water boatman were 
observed as efficient Anopheles larval predators. High 
larval mortality and low pupal productivity in larval habi-
tats was also observed. A combination of efficient pre-
dation and high larval mortality will result in decreased 
adult malaria vector abundance and subsequently 
decreased malaria transmission in the area [46, 47]. The 
strength of this study was observed to be the comparison 
of the different predator types simultaneously and this 
provided a clear comparison of the larval predation rates 
amongst different classes of predators in a controlled 
environment. As a result, this study provided information 
on potential mosquito predators and their effectiveness. 
However, this study encountered a weakness of una-
vailability of species-specific predation rates within the 
predator classes as predation was only assessed at order 
or family level. This could result in considerable variation 
between species. There was also inability of reflect pre-
dation in natural conditions where mosquitoes may hide 
under aquatic vegetation or where the presence of other 
food sources for the predators may divert predators from 

mosquitoes. In addition, the biology and adaptations of 
certain predators, for example the odonates, which spend 
most of the time at the bottom while the Anopheles mos-
quitoes are found at the surface. This may affect their 
importance and capacity as predators.

In conclusion, the determination of the efficiency 
of various larval predators and habitat productivity 
will enhance the understanding of the mechanisms of 
mosquito larval density regulation and help with the 
correct identification of productive habitats and devel-
opment of vector control methods that target produc-
tive habitats.
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