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Abstract 

Coral calcification is intricately linked to the chemical composition of the fluid in the 

extracellular calcifying medium (ECM), which is situated between the calcifying cells and the 

skeleton. Here we demonstrate that the acid-base sensing enzyme soluble adenylyl cyclase 

(sAC) is expressed in calcifying cells of the coral Stylophora pistillata. Furthermore, 

pharmacological inhibition of sAC in coral microcolonies resulted in acidification of the ECM as 

estimated by the pH-sensitive ratiometric indicator SNARF, and decreased calcification rates, as 

estimated by calcein labeling of crystal growth. These results indicate that sAC activity 

modulates some of the molecular machinery involved in producing the coral skeleton, which 

could include ion-transporting proteins and vesicular transport. To our knowledge this is the first 

study to directly demonstrate biological regulation of the alkaline pH of the coral ECM and its 

correlation with calcification. 

 

Key words: cyclic AMP, biomineralization, subcalicoblastic medium, acid-base, calicodermis, 

coral reef 

 

Abbreviations 

cAMP: cyclic adenosine monophosphate; pHi: intracellular pH; pHECM: pH of the extracellular 

calcifying medium; sAC: soluble adenylyl cyclase; ECM: extracellular calcifying medium 

 

Introduction 

Precipitation of calcium carbonate (CaCO3) by reef-building corals drives the formation 

of the largest biological structures on earth, and the physical complexity of these skeletal 

networks generates the habitat needed to support the large biodiversity found within coral reef 

ecosystems. The coral skeleton is secreted by specialized calcifying cells in the calicodermis, 

the tissue layer that lies directly on top of the skeleton. Underlying the calicodermis, the 
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extracellular calcifying medium (ECM) is at the interface between the calcifying cells and the 

skeleton. The fluid in the ECM has an alkaline pH and high concentrations of dissolved 

inorganic carbon (DIC) and calcium ions (Ca2+), resulting in an hyper-saturated aragonite 

saturation state (Ω) that promotes skeleton biomineralization and prevents its dissolution [1–3]. 

The transport of DIC and Ca2+ from calcifying cells to the ECM is hypothesized to take place via 

recently identified SLC4 HCO3
- transporters [4–6], CO2 diffusion [7], plasma membrane Ca2+-

ATPase [4,8], and Na+/Ca2+ [9]. Calcifying cells also abundantly express Na+/K+-ATPase [4], 

which presumably provides the driving force for the transport of these and other molecules to 

and from the ECM. In addition, calcifying cells possess abundant intracellular vesicles (reviewed 

in [10]), and cytoskeletal inhibitors have been shown to decrease Ca2+ incorporation into the 

skeleton suggesting a role of vesicular trafficking in coral calcification [11]. Recent evidence has 

suggested that intracellular vesicles within calcifying cells could deliver amorphous CaCO3 to 

the site of calcification [4,9,12]. Finally, coral calcification requires the removal of H+ from the 

ECM possibly via Ca2+ATPases and other yet unidentified mechanisms. 

While there is wide consensus that corals are able to regulate the activity of proteins 

involved with Ca2+ and DIC secretion, vesicular trafficking, and H+ removal to promote 

calcification, the underlying molecular mechanisms are unknown. Thus, the goal of the current 

study was to establish whether the enzyme soluble adenylyl cyclase (sAC) is one of the 

molecular mechanisms that regulate the pH of the ECM (pHECM), and to explore its relevance for 

coral calcification. As an evolutionarily conserved acid-base sensor [13], sAC is stimulated by 

HCO3
- to produce cyclic adenosine monophosphate (cAMP), a universal messenger molecule 

that can modulate a variety of downstream physiological responses (reviewed in [14]). In 

addition to acid-base status, sAC may act as a sensor of intracellular Ca2+ and ATP ([15], 

reviewed in [16]), two molecules critical for calcification. In the coral Pocillopora damicornis, sAC 

was recently identified to be essential for regulating intracellular pH (pHi) in response to acid-

base challenges from both internal and external origin [17]. Scaling up from cells to organisms, 
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sAC activity has been shown essential for extracellular acid-base regulation in sharks [18], and 

for intestinal CaCO3 precipitation in bony fishes [19,20]. The highly conserved nature of sAC 

makes it a likely candidate for biological regulation of the acid-base chemistry at the site of coral 

calcification. The current study provides experimental evidence in support of this hypothesis.  

 

Materials and methods 

Coral culture: Microcolonies of Stylophora pistillata were grown on glass coverslips and 

maintained in aquaria at the Centre Scientifique de Monaco as previously described [1]. 

 

Western blotting and immunochemistry: Immunological detection of S. pistillata sAC (spsAC) 

was performed using affinity-purified polyclonal anti-coral sAC antibodies described in Barott et 

al., (2017). Specificity of the antibodies for spsAC was verified by Western blotting, which was 

conducted following the methods described in detail in [4], with anti-coral sAC primary 

antibodies (0.55 μg ml-1) or primary antibodies pre-incubated with 20-fold molar excess of 

peptide (‘peptide pre-absorption control’). Localization of spsAC was determined by 

immunohistochemistry on coral tissue sections prepared as previously described [4,21]. Briefly, 

coral fragments were fixed in 3% paraformaldehyde in S22 buffer overnight at 4°C, decalcified 

over ~7 days, and the remaining tissue was dehydrated and embedded in paraffin. Tissues 

were cut into 6-7 μm sections, rehydrated, and incubated for 1h at room temperature in blocking 

buffer (4 mL PBS-0.2% Triton-X, 80 µL normal goat serum, 0.8 µL keyhole limpet hemocyanin 

solution). Sections were then incubated overnight at 4°C with anti-coral sAC primary antibodies 

(1.8 μg ml-1), antibodies preabsorbed with 20x excess peptide, pre-immune serum (1.8 μg ml-1), 

or blocking buffer alone. After three 5-min washes in PBS-0.2% Triton-X, secondary antibodies 

(goat anti-rabbit-Alexa Fluor 555, 4 μg/ml; Invitrogen) were then added for 1h at room 

temperature, followed by 5-min room temperature incubation with DAPI DNA Stain (1 μg/ml). 

Sections were again washed 3 x 5 minutes PBS-0.2% Triton-X to remove unbound secondary 
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antibodies, and imaged using a confocal microscope with super-resolution capabilities (Zeiss 

LSM800 with Airyscan). 

 

Reagents: Stock solutions Pluronic acid F-127 (Invitrogen) and KH7 were prepared in 

anhydrous DMSO (Invitrogen). SNARF1 (Invitrogen) was dissolved in 0.22 μm filtered seawater 

(FSW). 

 

Imaging of pHECM: To avoid confounding effects of photosynthesis on calcification rate and 

pHECM, all experiments were conducted in the dark. pHECM was quantified as previously 

described [1]. Briefly, live S. pistillata microcolonies of ~1 cm2 were loaded into a microscope 

chamber (PECON POC-R2), submerged in 2 ml FSW and held in the dark for 20 min, the final 

10 min of which they were incubated with 50 μM of the cell-impermeable dye SNARF1 in FSW. 

After dye loading, 500 μl of FSW was removed with a pipet and mixed with 10 μl (0.5% v/v) of 

the stock solution (DMSO or KH7 in DMSO) then returned to the coral chamber and mixed by 

gently pipetting up and down for a final concentration of 10 μM KH7. The coral remained 

submerged in FSW for the duration of this procedure. Coral microcolonies were imaged using 

an inverted confocal laser scanning microscope (Leica SP5) with a temperature-controlled 

microscope stage set to 25C. Using an excitation wavelength of 543 nm, fluorescence 

emission of SNARF1 was recorded at 585  10 nm and 640  10 nm, and chlorophyll 

autofluorescence was recorded at 690  10 nm. A brightfield image was also captured 

simultaneously. Three optical sections (Z-stack) were imaged from below along the growing 

edge of the coral at 0, 5, 10, 15, 25, and 40 min following exposure to the treatment, and five 

regions of interest (ROI) were analyzed per time point across the Z-stacks (i.e. 15 

measurements per time point per coral). Calibration of SNARF1 was performed in FSW 

containing 50 µM SNARF-1 adjusted to pH 7 – 9 as previously described [1].  
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Measurement of calcification rates:  Microcolony calcification rates were measured by 

incorporation of fluorescent calcein dye into CaCO3 crystals at the growing edge of colonies on 

glass coverslips as described in [22]. Colonies were fitted into a perfusion chamber and placed 

on the confocal microscope in darkness. Temperature was maintained at 25C. Each colony 

was incubated in 20 µM calcein dye in 3 ml FSW for 30 minutes in dark, during which time 

images of crystals at the growing edge were captured every 3 min. Following this first period 

each colony was then incubated for a second 30 min period in FSW containing 20 µM calcein, 

with the addition of either 10 µM KH7 (from a DMSO stock) or equivalent DMSO volume. 

Images were captured every three minutes. Acquisition parameters were as follows: 

magnification 40X, excitation 488 nm, emission 510-530 nm, resolution 512 x 512, scan speed 

500 Htz. 12 images were captured for each time point in a Z-stack of about 12 µm height. These 

images were combined to provide a total fluorescence value for each time point. The time series 

of Z-stacks were analysed using the object analyser in Huygens Essential (Scientific Volume 

Imaging, Netherlands). The rate of increase in total calcein fluorescence of all the crystals 

combined in the image was used as a measurement of calcification rate. The DMSO treatment 

induced a slight reduction in calcification rate compared to FSW; however, the difference was 

not significant (one sample t-test, p=0.2). The data are presented relative to the increase in 

calcein fluorescence in the DMSO treatment.  

 

Statistical analyses: pHECM time series data were analyzed using two-way repeated measures 

ANOVAs with a Boferroni multiple comparisons test. Calcein incorporation rates were analyzed 

using a two-tailed t-test. 

 

Results and Discussion  

Soluble adenylyl cyclase (sAC) is expressed throughout coral tissues. 
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Anti-coral sAC antibodies specifically recognized spsAC for both WB and IF (Fig. 1). 

Western blot showed that S. pistillata expressed a ~90 kD isoform of sAC (Fig. 1A), which was 

similar in size to the dominant isoform expressed in the closely related coral species P. 

damicornis [17]. Immunofluorescence staining on histological sections showed that spsAC 

protein was expressed throughout S. pistillata tissues (Fig. 1B). Higher magnification images 

revealed that spsAC was present in all cell types and tissues, and more abundant in the 

gastrodermis compared to the epidermis for both the oral and aboral tissues (Fig. 2A). Within 

the gastrodermis, spsAC was abundant in all cell types, including those with and without 

intracellular symbionts (Fig. 2B). This expression pattern is similar to what has been observed in 

P. damicornis, where sAC was shown necessary for regulating pHi in response to both internal 

and external acid-base perturbations [17]. The widespread localization of sAC described in the 

current study indicates similar roles in S. pistillata, and possibly in corals in general. 

Furthermore, spsAC expression throughout the calicodermis (Fig. 2C) suggests a role in 

regulating skeletal formation. Thus, we next investigated a potential role of sAC in regulating the 

pHECM and calcification. 

 

sAC activity promotes ECM alkalinization  

To test the hypothesis that sAC is important for maintaining an elevated pHECM, we 

monitored pHECM through time in microcolonies loaded with the dye SNARF1 (Fig. 3A) following 

application of 10 µM KH7, a small molecule that specifically inhibits coral sAC activity [17,23]. 

Compared to controls, KH7-treated corals experienced a drop in pHECM of ~0.45 pH units 

(equivalent to an increase in [H+] from 5 to 13 nM; Fig. 3B). These data confirm that sAC in the 

calcifying cells indeed plays a regulatory role on the cellular mechanisms that alkalinize the 

ECM. Previous studies have reported that similar decreases in coral pHECM occur in response to 

abiotic factors, and these declines were also associated with depressed calcification rates 

[24,25]. Thus, we next tested the effect of sAC inhibition on coral calcification.     
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sAC activity promotes calcification rate  

To test whether the observed sAC-dependent pHECM regulation had an effect on coral 

calcification, we performed additional experiments on S. pistillata microcolonies and quantified 

calcification via the incorporation of calcein into growing CaCO3 skeletal crystals (Fig. 4A). 

Indeed, inhibition of sAC with 10 µM KH7 resulted in a significant decrease in calcification rate 

of ~40% (p<0.05, two-tailed t-test; Fig. 4B). Put together, the SNARF1 and calcein results 

indicate that sAC activity plays an important regulatory role in maintaining the alkaline pHECM, 

which in turn promotes coral calcification.  

To our knowledge, this is the first functional characterization of a molecular mechanism 

that regulates both coral pHECM alkalinization and calcification. These results confirm the 

chemistry of the ECM is under coral biological control and is intrinsically linked to calcification. 

Future research should address two immediate questions. The first question is about the acid-

base parameters that modulate sAC activity and pHECM in vivo, including during the steep daily 

fluctuations in CO2, pH and HCO3
- [24,26] and in response to the more gradual changes 

predicted to take place as a result of ongoing anthropogenic ocean acidification [2,27–29]. A 

second question concerns the downstream targets of sAC activity. Since sAC produces the 

messenger molecule cAMP, sAC activity could regulate virtually every cellular process through 

protein kinase A-dependent phosphorylation, channel gating, or exchange protein activated by 

cAMP signaling (reviewed in [30,31]). Based on research from vertebrate animals, potential 

downstream targets of sAC activity in coral calcifying cells include HCO3
- transporters like in the 

eye ciliary body [32] and airway epithelial cells [33], Na+/K+-ATPase as in kidney collecting duct 

cells [34], and vesicular trafficking, HCO3
- secretion and H+ absorption as shown in shark gill 

epithelial cells [35]. However, identifying the targets of sAC activity in coral requires a deeper 

understanding of the molecular and cellular mechanisms responsible for coral calcification, as 
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well as further developing essential experimental tools such as specific pharmacological drugs, 

cell cultures and genetic manipulation, to name a few.  
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Figure/Table legends 

Table 1. Effect of sAC inhibition on coral pHECM. Summary values. See Figure 3 and text for 

details. Data are shown as mean  SEM, n=3, *p<0.05. 

 

Figure 1. Presence of sAC in the coral S. pistillata. (A) Western blot in coral tissue 

homogenates showing a specific band of ~90 kDa. Left: anti-spsAC antibodies; Right: peptide 

pre-absorption control. The total amount of protein loaded in the gel is shown above each lane. 

(B-D) Immunohistochemistry in coral tissue sections. sw: seawater; sk: skeleton. The green 

signal is from coral endogenous green fluorescence protein (GFP) and chlorophyll from 

symbiotic algae. 

 

Figure 2. Cellular localization of sAC in S. pistillata. (A) Representative coenosarc section 

demonstrating widespread spsAC localization throughout the coral tissues. (B) Detail of oral 

tissues showing abundant spsAC expression in cells of the oral gastroderm (OG) and limited 

expression throughout the oral ectoderm (OE). (C) Detail of aboral tissues showing abundant 

spsAC expression in cells of the aboral gastrodermal (AG) and calicodermis (CD). co, 

coelenteron; sk, skeleton; sw, seawater.  

 

Figure 3. Effect of sAC inhibition on coral pHECM. (A) Overlay of brightfield and fluorescence 

images of a S. pistillata microcolony loaded with SNARF1 (orange). pHECM was quantified within 

5 distinct extracellular calcifying medium (ECM) pockets (arrowhead) within each microcolony 

from an average of three z-planes within each ECM pocket. Asterisks indicate newly formed 

CaCO3 crystals (gray with defined edges); calicodermis appears gray; sw, seawater. (B) 

Inhibition of sAC by KH7 (10 μM) caused acidification of the ECM under dark conditions. Data 

are shown as mean  SEM. (n=3, *p<0.05 compared to the corresponding DMSO time point). 
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Figure 4. Effect of sAC inhibition on coral calcification rate. (A) Image of calcein incorporation 

(green) into calcium carbonate crystals of the coral skeleton. Dashed line indicates the outer 

edge of live tissue of the colony; sw, seawater (B) Inhibition of sAC by KH7 (10 μM) reduced 

calcification rate by ~60% relative to DMSO carrier controls (N=4). Data are shown as mean  

SEM (*p<0.05; two-tailed t-test).  
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Figures/Tables 

Table 1. 

Time (min) DMSO KH7 

0 8.11  0.06 8.30  0.09 

5 8.05  0.07 8.10  0.07 

10 8.10  0.12 7.93  0.07 

15 8.12  0.10 7.93  0.03 

25 8.33  0.16 7.87  0.08* 

40 8.34  0.18 7.89  0.07* 
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Figure 1.   
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Figure 2.   
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Figure 3.   



 20 

  

Figure 4.  

 



 Soluble adenylyl cyclase (sAC) is an acid-base sensing enzyme 

 sAC is present in coral calcifying cells 

 sAC activity helps maintain an elevated pH at the site of coral calcification 

 sAC activity also influences calcification rate 

 Thus, sAC is a molecular mechanism linking coral acid-base sensing to 
calcification 
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