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Abstract 

Affordances offer AI research an alternative from 
representations for linking perception to action in autonomous 
systems. Affordances are based in the informational structure 
of the environment and the somatic capacities of the agent 
and arise in their interaction. AI implementations of 
affordance perception typically utilize relatively basic, natural 
affordances such as the graspability of a handle. Culturally-
scaffolded affordances, such as the letter-mailing capacity of 
a postbox, pose a more intractable problem for affordance-
based robotics. This class of affordances requires 
acculturation and is highly culture-specific. AI 
implementations of affordance perception typically bypass 
this difficulty by making recourse to representations. I begin 
by reviewing affordance perception and the difference 
between natural and cultural affordances. I then critically 
discuss implementations of cultural affordance perception in 
autonomous agents. Finally, I argue that AI affordance 
perception does not require a robust representationalism in 
order to implement cultural affordances. 

Keywords: affordances; AI perception; embodied cognition; 
philosophy of AI; representations 

Introduction 

The perpetually shifting nature of the environment poses a 

significant challenge to robotics research. Autonomous 

agents must negotiate and adapt to dynamically changing 

environments. Representational architectures limit 

autonomous agents’ capacity to do so, however (Raubal & 

Moritz, 2008). Problems arise with the bandwidth, 

processing power, computational time, and programming 

time required to represent shifting environments (Rome et 

al., 2006). Nonrepresentational and affordance-based 

architectures have been proposed to overcome these 

difficulties (Braitenberg, 1984; Brooks, 1990, 1991; Horton, 

Chakraborty, & St. Amant, 2012). These architectures do 

not rely on separate layers for perception, action, and 

planning or reasoning. Instead, they offload part of the 

computational process onto the environment. As Rodney 

Brooks, the pioneer of embodied robotics and the inventor 

of the Roomba, said, “the world is its own best model” 

(1990, p. 4). 

Many nonrepresentational architectures utilize 

affordances to replace otherwise separate perceptual and 

actional layers. Natural affordances, like the graspability of 

a handle, are embedded in the basic informational structure 

of the immediate environment (Gibson, 1979/2015). The 

agent picks up on information available in the environment, 

such as the light waves and pressure feedback of the handle. 

The affordance arises as the agent interacts with the object 

and is an opportunity for action that is highly constrained by 

the agent’s form of embodiment.  

Implementations of affordance perception are beset by a 

difficulty, however, once they encounter cultural 

affordances, or affordances that implicate background 

knowledge that is culturally mediated. Few AI 

implementations of affordance perception have attempted to 

incorporate such higher-order affordances (see Awaad, 

Kraetzschmar, and Hertzberg, 2015; Chu, Fitzgerald, and 

Thomaz, 2016; Raubal & Moritz, 2008). While the 

graspability of a handle can be modeled as an online, 

dynamical interaction unfolding between the agent’s 

sensorimotor processes and the object’s properties, the mail-

ability of a letter implicates a vast background knowledge of 

letters, the postal service, postboxes, writing, and 

interpersonal communication. This background knowledge 

poses a significant problem. If all the rules and background 

knowledge pertinent to the mail-ability affordance must be 

represented, then affordance-based robotics offers little 

advantage over traditional architectures.  

In this paper, I critically review extant AI 

implementations of cultural affordance perception and 

sketch a framework for perceiving cultural affordances with 

minimal recourse to representations. My aim is to show that 

a robust representationalism is not conceptually necessary 

for cultural affordance perception. 

Affordance Perception 

In classical computational models, the perception of the 

environment involves the creation of an inner, 

representational model (Fodor, 1985; Marr, 1982/2010).1 

The agent is decoupled from its environment and interacts 

with it through the medium of representations, which are 

processed computationally. The term ‘representation’ is 

used in a wide variety of senses, from a minimal sense of a 

covariation between an internal and external state, to a more 

robust internal mapping of an external state. To avoid the 

deep complexities involved in this term, I here use it to pick 

out any internal state that tracks an external state in the 

world, when that state is decoupled from perception and 

action. In autonomous agents, typically representations are 

instantiated in a planning or reasoning layer mediating 

between perceptual and actional layers. Processing can be 

                                                           
1 While computationalism and representationalism do not 

necessarily entail one another (see Dennett, 1969), in practice they 

usually work in tandem. 
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through classical, serial processing architectures (as in 

Turing machines), or they can be massively parallel (as in 

connectionist, neural network, and similar architectures).  

Autonomous agents in the real world encounter a wide 

variety of environments, no two of which will exactly be the 

same. Even the same environment often shifts in content 

through time. This creates a significant computational 

challenge, in addition to being resource- and energy-

intensive. The existence of an inner representational layer 

places all the computational burden on the agent itself. 

Affordances, however, arise in the agent-environment 

interaction, offloading part of the processing burden onto 

the environment. Introducing affordance perception into 

autonomous agents enables them to continuously and 

dynamically adapt to shifting and changing environments. 

Traditional autonomous agents separated sensing, 

planning/reasoning, and acting into different processes that 

would only link up at a later stage (Gat, 1998; Maes, 1991). 

The perceptual process sends information to the planning 

process, which in turn sends instructions for action (Horton, 

Chakraborty, & Amant, 2012). However, “[e]ven if an agent 

has perfect segmentation and feature recognition 

capabilities, this new form of information may be hard to 

translate into appropriate actions” (Nye & Silverman, 2012, 

p. 184). Affordance perception dispenses with the 

intermediary planning layer, instead generating affordances 

within a tight perception-action loop. What planning there 

may be is performed online through the perception-action 

loop, instead of offline between perception and action. This 

does not mean that the agent does no planning whatsoever; 

rather, it means there is often no representational layer 

mediating between perceptual and actional processes—at 

least, not at the level of basic perceptual processes (see 

Şahin et al., 2007). What planning there may be is 

performed online through the perception-action loop, 

instead of offline between perception and action. 

Furthermore, machine learning alone is insufficient; a 

robotic body is required for an affordance to be perceived. 

This is because affordances are not merely perceptual 

processes—they are perception-action processes and require 

dynamic engagement with the environment. 

Natural and Cultural Affordances 

Affordance perception in AI is complicated by the fact there 

are two very different types of affordances: natural and 

cultural. Natural affordances involve very basic cognitive 

processes. Cultural affordances are comparatively richer and 

involve culturally- and intersubjectively-mediated processes 

in order to be perceived and acted upon.2 Cultural 

affordances, however, pose a particularly intractable 

problem. While natural affordances arise from the 

informational structure of the environment, cultural 

                                                           
2 Although affordances may differ regarding their basicness or 

their cultural scaffolding, in practice it is difficult to disentangle 

these two (see Wagman, Caputo, & Stoffregen, 2016). Indeed, for 

human agents, even basic perception-action processes like picking 

up an apple are culturally mediated. 

affordances require that the percipient be acculturated. 

There seems, prima facie, to be a level of decoupled, even 

representational, processing required to perceive a cultural 

affordance (Ramstead, Veissière, & Kirmayer, 2016). 

Natural affordances are possibilities in the environment 

available for action (Dotov, Nie, & de Wit, 2012). Different 

agents can perceive different affordances based on their 

embodied capacities and species-typical behaviors. For 

example, a twig affords different actions to a cat, a finch, 

and a human. To the cat, the twig affords bite-ability and 

play-ability. To the finch, it affords graspability by the beak 

and build-ability for a nest. Finally, to the human, it affords 

manual manipulation. In each case, the embodied capacities 

and species-typical behaviors of the agent shape what kind 

of action the twig affords. 

Affordances are based on the real information (light, 

pressure, scent) available in the environment. However, they 

do not themselves exist in the environment. They are 

generated in the agent-environment interaction. Affordance-

perception occurs because the agent and environment form a 

complex, emergent system (Favela & Chemero, 2016; 

Thompson, Varela, & Rosch, 1991/2016; Gallagher, 2017; 

Thompson, 2007). That is, the agent is dynamically coupled 

with the environment. This coupling is modeled in 

ecological psychology and embodied cognition research 

using dynamical systems theory (Beer, 2014; Chemero, 

2009; Turvey, 2019). 

Several formalizations of affordances have been proposed 

(see Chemero, 2003; Stoffregen, 2003; Turvey, 1992). 

Stoffregen’s (2003) formalization, which has been 

successfully utilized in AI affordance perception research 

(Nye & Silverman, 2012), is:  

“Let Wpq (e.g., a person-climbing-stairs system) = (Xp, Zq) 

be composed of different things Z (e.g., person) and X 

(e.g., stairs). Let p be a property of X and q be a property 

of Z. The relation between p and q, p/q, defines a higher 

order property (i.e., a property of the animal−environment 

system), h. Then h is said to be an affordance of Wpq if 

and only if 

• Wpq = (Xp, Zq) possesses h. 

• Neither Z nor X possesses h” (Stoffregen, 2003, p.         

123). 

Cultural affordances require the agent to utilize “explicit 

or implicit expectations, norms, conventions, and 

cooperative social practices” (Ramstead, Veissière, & 

Kirmayer, 2016, p. 3). It is precisely these elements that 

seem, prima facie, to require a representational layer 

decoupled from perception-action processes. For example, 

Gibson (1979/2015) remarks that a buyer and a seller each 

afford one another opportunities for action (viz., buying and 

selling). However, he goes on to say, 

“The perceiving of these mutual affordances is 

enormously complex, but it is nonetheless lawful, and it is 

based on the pickup of the information in touch, sound, 

odor, taste, and ambient light” (p. 127).  

The information, in this case, is directly out there in the 

environment, and the agent perceives it. The affordances for 
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action, however, arise in the interaction of the agent with its 

environment. It is the information, not the affordance, that is 

objectively embedded in the immediate environment. 

However, how could a buyer be perceived as such merely 

based on light waves, sound pressure waves, and other 

ecological information?  

Gibson also claims that “the real postbox…affords letter-

mailing to a letter-writing human in a community with a 

postal system” (1979/2015, p. 130). In this example, we 

have a culturally-scaffolded process of perception and 

action that functions only within a highly-specific cultural 

framework. It is not clear, however, how these culturally-

scaffolded processes could be “directly” perceived based on 

the immediate information available in the environment. 

Memory and background knowledge are required for the 

postbox to be perceived with a letter-mailing affordance. 

However, there is little in the postbox’s shape, color, and 

size that informs the agent of the postal system, letter-

writing culture, and letter-reading agents enabling it to have 

mail-ability. Either cultural affordances are representational 

(see Ramstead, Veissière, & Kirmayer, 2016), or they must 

somehow be generated in a cultural milieu and for an 

acculturated agent by utilizing nonrepresentational, 

memory-based processes (see Rietveld & Kiverstein, 2014). 

AI Cultural Affordance Perception 

Most AI implementations of affordance perception have 

focused on natural affordances. These are, no doubt, 

relatively easier to implement because they do not require 

background knowledge of culture or a process of 

enculturation in order to perceive and act upon them. They 

are based only on the informational structure of the 

immediate environment. The true challenge for AI 

affordance perception is to achieve the perception of 

cultural affordances. If, however, cultural affordance 

perception turns out to require a robust representationalism, 

it is not clear that it has any advantage over non-affordance-

based AI. 

Raubal and Moratz (2008) provide an AI implementation 

of cultural affordance perception whereby cultural 

affordances are scaffolded onto natural affordances by 

representations of cultural knowledge. Their target agent is 

the Bremen Autonomous Wheelchair Rolland, which 

interprets linguistic commands by its human occupant and 

navigates across the environment. The need for cultural 

affordance perception arises because the wheelchair does 

not blindly perform actions commanded by their users. For 

example, the user may request to visit a center outside of 

operational hours. In this case, the AI utilizes cultural 

affordances integrating knowledge of the institution and its 

operating hours when selecting for action outputs. 

Cultural affordances arise in their system by a system of 

constraints upon natural affordances. A natural affordance is 

constrained within a given social and institutional context. 

For example, the mailbox affords a multiplicity of actions, 

including smashing, opening, inserting objects, and 

touching. In their model, it is the social and institutional 

context of the postal system, letter-readers, and letter-

writing that constrain the possible natural affordances into a 

smaller subset of cultural affordances. The agent then 

performs internal actions on these cultural affordances—

essentially, planning or reasoning processes—in order to act 

upon the more basic natural affordance of opening and 

inserting.  

The cultural affordances utilized by Raubal and Moratz’ 

(2008) agent are representational. A separate planning layer 

is retained by their AI wheelchair. Their conception of 

cultural affordances is simply a subset of natural 

affordances that are given social and institutional 

constraints. Knowledge such as closing and opening hours 

is certainly representational and linguistically-based. The 

problem with their implementation of cultural affordances is 

that there is little that distinguishes them from classical 

representations. The construct of ‘cultural affordance’ is not 

doing any work that the construct of ‘representation’ does 

not already do. Their agent is essentially a hybrid system 

incorporating affordance perception for low-level navigation 

and symbolic representations for higher-level constraints 

upon that navigation. 

Furthermore, some forms of social and institutional 

knowledge that Raubal and Moratz (2008) discuss, such as 

navigating across a city, are not necessarily fully 

representational processes. Unwritten norms such as 

walking on the right side of the sidewalk in many Western 

countries could be conceived of as representational rules. 

However, spontaneous pedestrian patterns can emerge 

without any specific intention (Moussaid et al., 2009).  

Socialization and Supervised Learning 

Awaad, Kraetzschmar, and Hertzberg (2015) provide an 

affordance-based model for AI agents that can “socialize” 

by learning expected uses of objects. The practical 

applications of this are in producing service robots that 

perform actions commanded by humans without being 

“robotic.” When humans perform service tasks, an entire 

body of knowledge is brought to bear. Take the example of 

sweeping the floor. The human agent needs to know how to 

use a broom. However, the possibility space for utilizing a 

broom to sweep in deviant ways is quite large: one could 

sweep under the feet of others, sweep at the wrong times 

(e.g., while others are cooking), or sweep with furious 

movements and kick up dust. All these behaviors 

accomplish the task of sweeping but are social nuisances 

and perhaps even physically dangerous. There is an entire 

network of social expectations and etiquette surrounding the 

tool use in question. There is, in short, a “right way to do 

things.” Furthermore, humans 

“effortlessly adapt our actions to unexpected situations, 

especially given the dynamic nature of our environment 

and the amount of uncertainty about it” (p. 422). 

While moving a broom back and forth can be largely 

explained with natural affordances, these cultural constraints 

cannot. The broom affords more actions than are socially 

acceptable or considered appropriate to the task. Awaad, 
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Kraetzschmar, and Hertzberg (2015) attempt to integrate 

them within an affordance-perception paradigm, however. 

They note that programming procedural knowledge is 

insufficient to cover these cases of “the right way to do 

things” because the agent will always encounter novel 

situations. They implement Hierarchical Task Network to 

decompose tasks into a set of individual tasks in order to 

accomplish a goal.  

In order to reduce the possibility space for action to one 

for socially-appropriate action, Awaad, Kraetzschmar, and 

Hertzberg (2015) store information about the object, the 

commanding agent, and the intended uses of the object. 

These constraints are scaffolded on the natural affordance of 

the object. The broom, for example, is defined by its 

socially-intended purpose of cleaning. The commanding 

agent, the human who demands cleaning, would have a set 

of preferences and expectations as to how that task is 

accomplished. The authors implement this cultural 

scaffolding through coded representations. Like Raubal and 

Moratz (2008), they conceive of cultural affordances simply 

as subsets of natural affordances that arise through 

representational cultural constraints. 

Although the authors use representations to implement the 

socially-scaffolded constraints on the object’s affordances, 

their broader proposal shows how a nonrepresentational 

framework could be used to do the same work. While they 

programmed the constraint knowledge into their agents, 

they suggest that this would be better done by supervised 

learning, particularly learning by demonstration. In the 

following section, I argue such supervised learning by 

demonstration of affordances does not require a strong 

concept of representations for its implementation. 

Joint Interaction and Cultural Affordances: 

Unsupervised and Supervised Learning 

Chu, Fitzgerald, and Thomaz (2016) develop autonomous 

agents that learn to perceive and use affordances through a 

combination of unsupervised and supervised learning 

through interaction with a human. A human teacher 

physically guides the robot to certain affordances. For 

example, a robot is taught that drawers have an openable 

affordance by guiding its hand. The robot learns to mimic 

this movement and perceive the openability affordance of 

the drawer’s handle. 

While the openability of the drawer prima facie appears 

to be a natural affordance provided by the structure of the 

robot’s hand and the drawer’s handle, there is a large 

possibility space for socially-deviant drawer-opening 

behavior. Although Chu, Fitzgerald, and Thomaz (2016) do 

not note this, the human teacher is not merely teaching the 

autonomous agent how to perceive and act upon the 

openability affordance of the drawer. They are 

simultaneously teaching the AI agent the acceptable way to 

perform this action. The drawer is not to be forcefully 

opened or rapidly opened and closed in succession (as a 

small child may annoyingly do), for example. The process 

of supervised learning allows the AI agent to learn the 

socially-acceptable affordances. This makes the drawer’s 

openability affordance not simply natural, but also 

culturally-scaffolded. 

Ramstead, Veissière, and Kirmayer (2016) invoke 

Gricean norms to understand these contexts. Grice (1975) 

articulated a set of rules governing conversation. These rules 

are ancillary to the communicative and phatic functions of 

language and facilitate nondeviant interactions. For 

example, one ought to convey as much detail as the topic 

requires without divulging too much detail. If one fails to do 

the former, one is perceived as terse, reticent, or 

uncommunicative. If one fails to do the latter, one is 

perceived as a windbag. In either case, deviation from the 

unwritten norm has the effect of interrupting the 

communicative act itself. Likewise, mundane actions have 

ancillary but unwritten norms guiding how they ought to be 

performed. These norms can only be learned by actual 

practice and observation of these actions in a social context. 

They are not symbolic rules because there may be no 

explicit representation of their content. They are merely 

habitual patterns of behavior used to accomplish certain 

tasks—e.g., opening a drawer slowly rather than forcefully. 

While the robot may not develop shared intentions with 

the human teacher, in this case, it is significant that the 

robot only learns to perceive and act upon affordances 

through a process of interaction with a human (who is a 

“native” affordance perceiver-actor). In this case, 

representations are not necessary to explain how the AI 

agent learns to perceive and act upon the drawer’s 

openability affordance in a socially-nondeviant way. While 

Awaad, Kraetzschmar, and Hertzberg (2015) programmed 

in cultural knowledge through representations, this 

supervised learning process does not specifically require the 

agent to store representations of cultural constraints, 

expectations, and other social rules. Rather than storing 

social rules and using them to constrain the agent’s 

affordance perception and action, supervised learning allows 

the agent to learn to perceive and act upon the affordance in 

certain typical ways. Instead of inducing a rule based on the 

multiple supervised learning instances of opening the 

drawer—e.g., if drawer, then constraint x, y, z—the agent 

can simply follow the typical range of paths that have been 

learned. 

One objection is that human agents are conscious of not 

deviating from socially-accepted norms of tool usage. These 

norms may be at a higher level than “not kicking up dust.” 

One may be aware that one ought not to bother or annoy 

anyone. Nonetheless, even that does not require a specific 

rule. Even if the human agent has such a rule in mind, it is 

generally not the cause of their socially-nondeviant 

behavior. We do not walk around constantly thinking “I 

ought not to annoy x.” If we can formulate such a rule, and 

even implement it in some cases, it is the exception (perhaps 

applying to a highly novel situation) rather than the norm. 

There is nothing here that cannot also be explained through 

processes of social learning, acculturation, and operant 

conditioning. These parallel the supervised learning trials in 
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AI affordance perception (Awaad, Kraetzschmar, & 

Hertzberg, 2015; Chu, Fitzgerald, & Thomaz, 2016).  

AI Perception of Cultural Affordances without 

Representations: Learning and Habit 

Representations such as rules can be used to constrain 

behavior in highly novel situations. Indeed, these kinds of 

rules may be part of the learning process itself. However, 

programming a database of representational cultural 

constraints for autonomous agents is a task just as 

formidable as that of traditional, non-affordance-based AI 

and computer vision. It is not clear that utilizing affordances 

in AI perception gains us anything. The problem, however, 

is that implementations of cultural affordance perception 

have generally been representational. The supervised 

learning in Chu, Fitzgerald, and Thomaz (2016) provides a 

way of thinking about what partially-nonrepresentational 

cultural affordances may look like in autonomous agents. 

Their autonomous agent learned how to open cabinet 

drawers in nondeviant and socially-acceptable ways. The 

drawer’s handle information could afford multiple 

possibilities for action that are deviant, such as forcefully 

opening or rapidly opening and closing. During its 

supervised learning trials, the autonomous agent only learns 

the socially-acceptable way of opening the drawer. The 

agent does not perceive a natural affordance of open-ability. 

It perceives a cultural affordance of gentle-open-ability, one 

that is only salient within a given social structure and 

context.  

Their autonomous agent does not have to learn or be 

preprogrammed with a rule about acceptable ways to open 

drawers. It is through multiple supervised learning trials that 

the cultural affordance begins to emerge—it is, in short, a 

habit. By habit, I mean a pattern of behavior that develops 

through supervised and unsupervised learning. The agent’s 

habitual patterns of behavior are not representational in the 

sense that they are not primarily guided by symbolic rules, 

although the latter may constrain habits in actual behavior. 

Habit emerges from a set of previous behaviors and 

continues to guide future ones without necessarily having 

any explicit formulation. Surely some affordances must be 

constrained by symbolic representations. The closing time 

of a building or institution is something that could be 

learned by habit. The agent could develop a sense of when it 

closes by a long process of trial and error. However, that 

would be far less efficient than simply having a rule 

representing its closing time. In many cases, though, the 

work being done by representations can just as well be done 

by supervised and unsupervised learning or habit. 

Returning to the example of sweeping, when the AI agent 

learns how to sweep from a human teacher, the latter will 

only teach the socially-accepted ways to sweep. The teacher 

will not teach how to sweep under people’s feet, around 

them while walking, vigorously so as to kick up dust, or any 

other socially-deviant manner. The agent would learn these 

patterns of use of the object. Inducting a specific 

representational rule to cover these cases is supernumerary 

and fails to add explanatory value. The agent does not need 

a representational rule (“do not kick up dust”), because they 

have been taught to use the broom in a set of patterns that 

do not include kicking up dust. Following Ockham’s razor, 

if the explanation can be had without representations, then 

we ought to dispense with them as an explanans in those 

cases.  

One of the challenges for robustly-representationalist 

implementations of cultural affordance perception is that 

they require just as thorough programming with rules as 

traditional representational architectures. Habit, however, 

could greatly reduce the set of background knowledge that 

needs to be programmed. This is also a primary way that 

human agents develop habits during development. Children 

do not learn about their culture’s interpersonal distance—

the typical distance people stand from one another during 

communication—by learning a rule about how many 

centimeters away from another person to stand. They merely 

develop a habit of standing a certain distance away from 

another person. This habit is reinforced by observation of 

others and by violations of the norm (e.g., standing too close 

to someone can be perceived as aggressive). They may not 

even be aware that there is such a social norm guiding their 

behavior. If a representational rule happens to be extracted 

by a reflecting agent, it is still habit and not that rule that 

continues to guide its behavior. A humanoid autonomous 

agent could likewise learn to communicate using nondeviant 

interpersonal distance without any representational rules 

dictating how many centimeters away to stand by recourse 

to supervised learning (observation and mimicry) and 

unsupervised learning (violations).  

Conclusion 

Affordance perception offers a new paradigm for perception 

and action in autonomous agents. While traditional three-

level systems dissociate perception, planning or reason, and 

action into separate layers, nonrepresentational affordances 

involve a dynamic and bidirectional perception-action loop 

with online planning. Many implementations of affordance 

perception in AI research have retained the 

representationalist paradigm even as they seek to integrate 

affordances. While this is certainly feasible from a technical 

standpoint, the construct of ‘affordance’ loses much of its 

power. An affordance-based robotics that remains largely 

representationalist has no clear advantage over traditional 

architectures.  

Examining several implementations of cultural affordance 

perception in AI research, I argue that representations are 

not necessary for cultural affordances. I sketched a possible 

way for autonomous agents to implement cultural 

affordance perception by habit gained through supervised 

and unsupervised learning. AI implementations of 

affordance perception do not conceptually require a robust 

representationalism. If affordance-based robotics is to have 

any advantage over traditional architectures, it may need to 

reconsider the role of representations in cultural affordance 

perception. 
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