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Abstract
This scale-up study demonstrated the feasibility of an ionic liquid (IL) pretreatment process at 40 kg scale, using the IL 1-ethyl-3-
methylimidazolium acetate ([C2C1Im][OAc]) as the solvent. The pretreatment was followed by enzymatic hydrolysis through which the pro-
cess efficiency for biomass conversion to monomeric sugars was determined. The results show that 43 wt% of switchgrass was dissolved in IL
after 2 h of pretreatment at 160 �C with 15 wt% solid loading. A 120 h enzymatic hydrolysis of the pretreated switchgrass results in 96% glucan
and 98% xylan conversion. [C2C1Im][OAc] pretreatment has been successfully scaled up to 40 kg with improved sugar titers and yields relative
to bench scale (6 kg). The mass flow of the overall process was established and the major scale-up challenges of the process were identified.
© 2018, Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communi-
cations Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ionic liquids (ILs) are a class of salts that are generally
composed of organic cation and inorganic anion with melting
points lower than 100 �C. There are approximately a thousand
structures of ILs reported so far with one third of them
commercially available. Unlike traditional solvents, ILs
exhibit superior properties such as high thermal stability,
minimal or no volatility, and recyclability at high yields [1].
Interestingly, some ILs can dissolve a wide range of bio-
macromolecules, such as cellulose, hemicellulose, silk
fibroin, lignin, starch and zein protein, chitin/chitosan, wool
keratin, etc. with high efficiency under certain conditions [2].
In addition, ILs have been used as solvents or catalysts for
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biomass pretreatment, showing high efficiency to overcome
the natural recalcitrance of lignocellulosic biomass. This
recalcitrance is mainly caused by cellulose crystallinity,
presence of lignin, functional groups on hemicellulose, and
interwoven linkages among these major components. To date,
most IL-based processes of biomass conversion have been
performed at lab-scale, the scalability evaluation and their
impact on subsequent downstream processes is still lacking.

Common biomass pretreatment approaches such as those
using dilute acid, dilute alkali ammonia, wet oxidation, steam
explosion, organosolv, or irradiation, etc. can be selective for
which feedstocks are most efficiently deconstructed [3,4].
However, IL-based pretreatments are usually feedstock
agnostic and more broadly able to efficiently break down
various feedstocks or blends. According to recent studies, IL-
based biomass pretreatments are usually carried out in the
temperature range of 50–160 �C at solid loadings of 5–20%
[5–7]. Depending on the structures of the ILs, either cellulose
n using 1-ethyl-3-methylimidazolium acetate as the solvent, Green Energy &
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alone or lignin together with hemicellulose are targeted during
the pretreatment process. 1-ethyl-3-methylimidazolium ace-
tate ([C2C1Im][OAc]) is one of the most effective ILs reported
in biomass pretreatment [8]. Lab-scale studies (<1 kg) [9–11]
on switchgrass pretreatment and process scale-up to the 6 kg
level [12] have been reported. The challenges of optimization
and scale-up of the [C2C1Im][OAc] pretreatment process
include biomass handling at high solid loading, high water use
for washing of pretreated solids, formation of downstream
fermentation inhibitors, lack of IL tolerance to downstream
processes, etc. [12]. Lab-scale process designs may not be
straightforward to transfer to a larger scale, in particular, the
pretreatment and downstream conversion and upgrading pro-
cesses may require redesign of suitable reactors and other
equipment. Therefore, this study focuses on further scaling up
the [C2C1Im][OAc] pretreatment on switchgrass to a 40 kg
batch in a 210 L customized pressure reactor [13]. Specif-
ically, the reactor is corrosion resistant and equipped with a
powerful helical impeller for efficient mixing. The data ob-
tained from this study will identify the major scale-up chal-
lenges and point out research directions for further process
development.

The significance of this development campaign lies in
bridging the gap between lab and bench studies to pilot-scale
implementation. The effect of [C2C1Im][OAc] pretreatment on
switchgrass at 40 kg scale and subsequent enzymatic
saccharification were evaluated. Bottlenecks and major pro-
cess challenges at larger scale were also addressed. Pinpoint-
ing current technical limitations will lead to better plan and
design of further scaling, and a promising outlook in IL-
related biomass conversion technologies.

2. Materials and methods
2.1. Feedstock and compositional analysis
Switchgrass was received from the Idaho National Labo-
ratory. Switchgrass samples were milled and passed through a
sieve with a mesh size of 2 mm. Received switchgrass was
stored in plastic drums and placed in a cold room at 4 �C, with
humidity maintained at 64–68%. Compositional analysis of
switchgrass before and after each reaction was carried out
using the two-step sulfuric acid hydrolysis procedure devel-
oped by National Renewable Energy Laboratory (NREL) [14].

Absorbance measurements of acid soluble lignin was taken
at 205 nm using a UV–Vis spectrophotometer (Shimadzu UV-
2401). Quantification of monosaccharides was conducted
using a high-performance liquid chromatography (HPLC)
system (Thermo Fisher Scientific, Ultimate 3000, Waltham,
MA, USA), equipped with an electrochemical detector and an
Aminex HPX-87H column (Bio-Rad, 300 � 7.8 mm, Hercu-
les, CA, USA). The mobile phase was 5 mM sulfuric acid with
a flow rate at 0.6 mL min�1 and column oven temperature at
65 �C. At least two parallel samples were used in all analytical
determinations, and data are presented as the mean of
replicates.
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2.2. Ionic liquid pretreatment
The 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc],
>97% purity) was purchased from BASF (Ludwigshafen,
Germany). IL pretreatment was carried out in a 210 L
customized Andritz thermochemical reactor (integrated by
Harris Group Inc., R-100). This reactor, constructed of Has-
telloy C-276, has an oil jacket and a temperature control unit
(TEMPEST 2073-1110, Cleveland, OH, USA) to supply heat
in the range of 10–232 �C. A helical impeller in the Andritz
reactor was maintained at 50–75 rpm during pretreatment.
Switchgrass was loaded to the reactor at 15 wt% solid loading
(6 kg). 34 kg of [C2C1Im][OAc] was pumped into the reactor
at room temperature. Pretreatment was then performed at
160 �C for 2 h.
2.3. Ionic liquid removal by ethanol extraction
After 2 h of IL pretreatment, the temperature was decreased
to 60 �C. Any pressure left in the reactor was vented. Then,
40 kg of ethanol (Sigma Aldrich, 95% purity, St. Louis, MO,
USA) was slowly pumped into the reactor through the feed
port to initiate precipitation. [C2C1Im][OAc] was extracted
from the switchgrass suspension by ethanol as the anti-solvent.
After 1 h incubation with constant stirring, the slurry was then
washed with 100 L of water. A lab blender (Waring Com-
mercial, Model CB15, Torrington, CT, USA) was used to
disrupt the precipitated solids. An additional 200 L of water
was used to ensure residual [C2C1Im][OAc] was removed
from the switchgrass. Basket centrifugation (Western States,
STM-2000, Fairfield, OH, USA) was then performed to
separate the switchgrass solids and liquids. Washed solids
were collected for the subsequent enzymatic saccharification.
Presence of [C2C1Im][OAc] was determined by conductivity
measurement (Shimadzu UV-2401).
2.4. Enzymatic saccharification
Batch enzymatic saccharification was performed in a 50 L
stirred tank reactor (IKA Works, Model SPP50, Inc., Wil-
mington, NC, USA), equipped with an anchor impeller and
flow breakers to enhance mixing. The reaction was carried out
at 50 �C for 120 h with 15 wt% solid loading based on dry
weight of the pretreated switchgrass and a stirring rate at
40 rpm. Cellulase (Cellic® CTec2 with protein concentration:
190 mg mL�1) and hemicellulase (Cellic® HTec2 with pro-
tein concentration: 174 mg protein/mL) enzyme cocktails
were provided by Novozymes, Inc. (Davis, CA, USA). After
pH adjustment to 5.0 with 6 N hydrochloride acid, the mixture
of CTec2 and HTec2 was loaded at a fix ratio based on the
cellulose content (54 mg CTec2/g cellulose, 6 mg HTec2/g
cellulose) of the switchgrass. Samples were taken every 24 h
to monitor sugar release. Basket centrifugation was performed
after 120 h of saccharification to collect the switchgrass
solids. Washed solids were collected for compositional
analysis.
n using 1-ethyl-3-methylimidazolium acetate as the solvent, Green Energy &
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3. Results and discussion
3.1. IL pretreatment
After 2 h pretreatment in [C2C1Im][OAc], the slurry had a
dark brown color with the presence of biomass particles, indi-
cating that switchgrass was not completely dissolved during the
process. After washing and solid/liquid separation, 56.6 wt% of
the starting switchgrass (6 kg) was recovered as solids. The
other 43.4 wt% mass was owing to the dissolution of carbohy-
drate, lignin, and other extractives into [C2C1Im][OAc]. Inevi-
tably, there was a small volume loss during the material transfer
from the reactor to the receiving container, as well as during
washing, drying and final collection. In comparison with the
6 kg scale experiment, Li et al., reported a 55.3 wt% solid re-
covery after 3 h [C2C1Im][OAc] pretreatment at the same solid
loading (15 wt%) [12]. In this study, it was observed that
[C2C1Im][OAc] extracted more xylan than glucan: 64 wt% of
the xylan dissolved/degraded in the IL/liquid stream, while
96wt% glucan remained in the recovered solids. In addition, the
2 h [C2C1Im][OAc] pretreatment resulted in a significant
delignification of the switchgrass. About 48 wt% mass of total
lignin from the original switchgrass feedstock was removed
during the IL pretreatment and subsequent water washing step.
The level of delignification is influenced by the type of IL, the
severity of pretreatment reaction (temperature, duration), the
initial lignin composition in the biomass, etc. IL-pretreated
biomass is also rich in cellulose and hemicellulose, indicating
that the pretreated biomass is suitable for glucose/xylose co-
fermentation after enzymatic saccharification [15,16].
Methods and processes of recovering dissolved sugars from
aqueous IL have been discussed in other studies [17].
3.2. IL recovery
In the biomass recovery process, 40 kg of ethanol was
added to the slurry with constant agitation to ensure effective
mixing. Dark colored (brown to black) precipitate formed
immediately. Ethanol-induced flocculation of the regenerated
biomass has been observed in milliliter scale experiments
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Fig. 1. (a) IKA SPP50 reactor used for enzymatic saccharification; (b) Sugar release d

Please cite this article in press as: L. Liang, et al., Scale-up of biomass conversio

Environment (2018), https://doi.org/10.1016/j.gee.2018.07.002
reported in other studies, but this phenomenon was exacer-
bated and made worse during this scale-up development
campaign. This issue led to increased difficulty during solids
recovery. To resolve this problem, 80 kg of water was added
into the reactor and stirred for 2 h, to soak and dilute the
solids. In this scale-up study, the use and performance of
ethanol as the anti-solvent was unsatisfactory, even though it
had worked well at small scale. A better solvent should be able
to extract the IL and prevent the biomass from the formation
of gel or large chunks. The following solid homogenization
and extensive wash consumed considerable amount of water:
300 kg of water was used to remove excess IL, nearly 8 times
of the batch total weight.

To lower the cost of IL pretreatment and reduce its envi-
ronmental impact, IL recovery is particularly important. It is
generally accepted that ILs must be recovered at levels >99%
for large-scale industrial applications. This would require the
ILs to be structurally stable under reaction conditions and/or
easily regenerated from the pretreatment liquor. Techniques
such as pervaporation [18], distillation, extraction, adsorption,
membrane separation and induced phase separation have been
discussed as feasible IL recycle methods (Mai et al., 2014).
Developing efficient IL recycle processes may require a
combination of multiple techniques.
3.3. Enzymatic saccharification
Pretreated switchgrass was loaded in the 50 L bioreactor at
15 wt% solid loading for enzymatic saccharification. Without
drying, the moisture content of recovered switchgrass solids
from pretreatment is high (about 70 wt% moisture content). In
order to ensure high solid loading of pretreated biomass for
high sugar titters in the hydrolysate, the amount of water used
to dilute enzymes was very limited. However, given the
effective mixing of the bioreactor (Fig. 1a), the product liq-
uefied after 3 h of incubation. Fig. 1b shows the sugar release
over time. During the 166 h incubation, HTec2 and CTec2
successfully converted the polysaccharides in the pretreated
switchgrass to the monosaccharides glucose and xylose. The
concentrations of glucose and xylose increased rapidly in the
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Table 1

Composition of switchgrass (dry weight basis).

Feedstocks Glucan (wt%) Xylan (wt%) Klason lignin (wt%) Acid-soluble lignin (wt%) Ash (wt%)

Raw SG 29.79 ± 0.00 22.32 ± 1.57 17.84 ± 0.32 1.96 ± 0.04 1.37 ± 1.07

After PT 50.57 ± 1.91 14.07 ± 1.14 16.48 ± 0.30 1.70 ± 0.01 0.96 ± 0.45

After ES 7.72 ± 0.19 2.15 ± 0.10 57.12 ± 2.01 2.40 ± 0.09 5.13 ± 1.30
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first 24 h. After 24 h, glucose kept increasing at a lower rate
while xylose concentrations remained relatively constant. By
166 h the glucose concentration reached 69.7 g L�1, and
xylose concentration reached 15.8 g L�1. In the 6 kg scale
performed by Li et al. they also observed rapid sugar release
and reported sugar titers of 62.1 g L�1 for glucose and
15.0 g L�1 for xylose after 72 h saccharification [12].

The overall glucose conversion during enzymatic sacchar-
ification was 95.9% and xylose conversion was 98.3% calcu-
lated based on the glucan and xylan loadings in the pretreated
biomass, indicating efficient [C2C1Im][OAc] pretreatment and
very limited enzyme inhibition from the IL after extensive
washing. The concentration of [C2C1Im][OAc] residue in the
hydrolysate was measured as only 0.02 wt%. The resulting
hydrolysate has been used to produce the jet-fuel precursor
candidate D-limonene using an engineered IL-tolerant E. coli
strain [19]. The E. coli DH1 rcdA mutant strain produced
about 400 mg L�1

D-limonene in the presence of residual
[C2C1Im][OAc]. No toxicity was observed when the strains
were grown in hydrolysate-derived growth medium containing
12 mM [C2C1Im][OAc] compared to glucose-derived growth
medium.
3.4. Composition of switchgrass before and after
reactions
The composition of switchgrass could vary by region, age,
harvest season, storage conditions and other factors. In this
Fig. 2. (a) Morphology of switchgrass in each unit operation: switchgrass mixing wi

switchgrass; (d) hydrolysate after 166 h enzymatic saccharification; (e) captured

switchgrass residue.
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study, the average moisture content of raw switchgrass (Raw
SG) was 9.21 wt%. As shown in Table 1, switchgrass has
about 30 wt% glucan and 22 wt% xylan. Klason lignin and
acid soluble lignin accounted for a total lignin of about 20 wt
%. In other studies, similar [10] or higher [20–22]glucan
content have been reported for different populations of
switchgrass. After the IL pretreatment (After PT), the glucan
content in recovered switchgrass increased to over 50 wt%,
xylan content decreased to 14 wt%, with the lignin and ash
content remaining similar. After enzymatic saccharification
(After ES), less than 10 wt% of carbohydrate remained in
solids and the materials was primarily rich in lignin with about
60 wt% lignin and 5 wt% ash. Fig. 2 shows the material
morphology in each process.
3.5. Mass flow of the IL based conversion process
The mass flow of [C2C1Im][OAc] during pretreatment,
enzymatic saccharification, and subsequent solid/liquid sepa-
ration is summarized in Fig. 3. Initially, a reaction mixture was
prepared by combining 6 kg of dry switchgrass (15 wt% solid
loading) with 33.4 g of [C2C1Im][OAc]. The starting switch-
grass contained approximately 1787 g glucan, 1339 g xylan,
1188 g lignin and 82 g ash. After the IL pretreatment at 160 �C
for 2 h, about 3.7 wt% glucan, 63.7 wt% xylan and 48.0 wt%
lignin in the original switchgrass were extracted by the IL and
dissolved into the aqueous IL stream. Under the selected
conditions, IL pretreatment preserved >95 wt% glucan in the
th [C2C1Im][OAc]; (b) slurry after 2 h IL pretreatment; (c) recovered pretreated

wet solid during solid/liquid separation using a basket centrifuge; (f) dried

n using 1-ethyl-3-methylimidazolium acetate as the solvent, Green Energy &
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160 ºC/2h
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saccharification

(ES)

Hydrolysate

Residual 
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6.0 kg dry SG

1787  g glucan         
1339 g xylan                  
1188  g lignin                   
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1604  g other

402 g residual

31     g glucan
9       g xylan                 
239   g lignin        
21     g ash    
102  g other 

16.5 L 
1649   g glucose    
470     g xylose  
306     g lignin
8  g ash

33.4 kg 
[C2C1Im][OAc]

Liquid stream

76     g glucose
973   g xylose                 
570   g lignin        
49     g ash

3.4 kg dry SG 
(3.0 kg used for ES)

1719 (1517) g glucan
478 (422)     g xylan                 
618 (545)     g lignin    
33 (29)         g ash 
552(487)      g other 

Wash

Fig. 3. Mass flow of [C2C1Im][OAc] pretreatment and enzymatic saccharification for switchgrass (SG).
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pretreated switchgrass with >60 wt% xylan stripped off to the
liquid stream.

The pretreated switchgrass was then rinsed with water to
remove IL residue, and the washed switchgrass was collected
for subsequent enzymatic saccharification. 3.4 kg (56.7 wt%)
of pretreated switchgrass was recovered after washing,
retaining 96.2 wt% of glucan, 35.7 wt% of xylan, 52.0 wt% of
lignin and 40.2 wt% ash from the original switchgrass. Nearly
half of the lignin was removed, which is beneficial for the
following enzymatic hydrolysis. After 166 h enzymatic
saccharification, 83.1 wt% of glucan and 30.7 wt% of xylan
(based on carbohydrate content in the original biomass) were
converted to monomeric sugars, and 25.8 wt% of original
lignin was extracted to the hydrolysate. Lastly, pretreated
switchgrass that had not been hydrolyzed by enzymes was
separated from the hydrolysate through solid/liquid separation,
and 402 g residue was obtained after drying. From the original
switchgrass, about 1.7 wt% original glucan, 0.7 wt% original
xylan, and 20.1 wt% original lignin were left unreacted in
solid residue which is supposed to be the most recalcitrant
portion of the plant cell wall. The mass balance also indicated
some mass loss, likely due to the formation of other degra-
dation products and mass during material handling (transfer,
centrifugation, etc.).
3.6. Scale-up challenges
The combination of IL pretreatment and enzymatic catal-
ysis has shown its advantage in being relatively feedstock
agnostic, performing efficient delignification, converting
biomass with high sugar yields and fast kinetics. However,
challenges still exist prior to pilot scale demonstration. In
general, biomass deconstruction and downstream conversion
requires ILs to have excellent thermal stability, high extract-
ability of the major biomass components (cellulose, hemicel-
lulose or lignin), recyclability, and preferably low toxicity and
low cost. As yet, there have been limited reports of IL-based
pretreatment of biomass at larger scale (>1 L). The scale-up
of IL-based biomass pretreatment is still in its early stage
with numerous possibilities of IL structures and characteristics
Please cite this article in press as: L. Liang, et al., Scale-up of biomass conversio
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unidentified. In addition to the lack of knowledge on physi-
cochemical properties and eco-toxicity, the expected diffi-
culties of current process scale-up still exist in the material
handling and product recovery.

Considering process economics, ILs have to be efficiently
recycled and reused. The high production cost of ILs, relative
to materials such as simple acid and base catalysts, is still one
of the major impediments to IL utilization in cellulosic bio-
refineries [6]. Significant price differences (from 1 to 800
$/kg) exist in the IL market based on the IL structure and
production scale [34]. The most influential factors that affect
IL prices are industrial demand and prevailing scale of pro-
duction. Identifying efficient and economically viable ILs is
crucial for future research and commercialization. Researchers
have made significant progress to date in this regard,
including: reduction of the concentrations required for ILs and
enzymes during biomass deconstruction [23,24], development
of efficient IL recycling technologies [18,25], optimization of
IL-tolerant enzyme cocktails [26–28], increasing solid loading
during pretreatment and/or saccharification [29], employment
of integrated systems approaches such as “one-pot” process
configurations [30,31], development of more cost-effective ILs
[32], and evaluation of process scale-up [33,34]. In IL
manufacture, synthesis and purification are the major steps
that affect IL properties. Solvent properties can also be tuned
by selection of anions and cations for specific tasks. Lately,
lignin and hemicellulose-derived compounds have also been
used as starting materials for IL synthesis [35]. Some reported
techno-economic analysis (TEA) models are useful to evaluate
the economic impact of pretreatment processes and to identify
process challenges or bottlenecks [36–39].

Generally, pretreatment processes always address and
target high feedstock solid loadings to save solvent/catalyst
cost and achieve high sugar titers. To date, there have been
limited reports of potential ILs that can achieve high sugar
yields with low IL/biomass ratio at lab scale. Most reported
solid loadings have been in the range of 5–30 wt% and high
purity and concentrations of ILs are needed. Based on our
observation, the IL/feedstock slurry begins to challenge the
reactor impeller and drive at solid loadings above 15 wt%.
n using 1-ethyl-3-methylimidazolium acetate as the solvent, Green Energy &
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High purity ILs have a moderate to high viscosity at low
temperatures compared to water-based solvents, which also
contributes to torque burden. Thus, the appropriate reactor
must be equipped with sufficient driving force to enable
stirring the slurry with high solid loadings. Efficient mixing
and mass/heat transferring are the keys to ensure even tem-
perature of the slurry as well as to prevent biomass from
overheating.

Moreover, the manufacturing material of the reactors,
storage tanks, delivery and transport equipment such as pumps
should be able to tolerate the pH of the ILs for long term
usage, which could be highly acidic or basic especially at
elevated temperatures. Some high quality stainless steel and
alloy manufacturing equipment can meet this prerequisite.
Studies on IL corrosion to metals are very limited. At high
operating temperatures, the corrosion from ILs could be more
severe. For example, a coupon testing of reactor metal has
been carried out in a recent scale-up study of biomass pre-
treatments using two chloride-based ILs [33]. The study found
that these ILs are more corrosive at elevated temperatures to
hastelloy C-276.

The eco-toxicity and other hazards of most ILs remain
unknown or unpublished and these chemicals will require
environmental and occupational health and safety assessments
for large scale process design. Furthermore, one of the general
characteristics of ILs is their high electrical conductivity,
which opened up their applications as electrolytes in batteries,
double-layer capacitors or solar cells [40]. However, as a
process solvent, the high conductivity of ILs can lead to
electrical hazards. For example, ILs may penetrate into the
electrodes, wires, circuit boards, and sockets if spilled, and the
leakage of ILs to the electrical components may cause a short
circuit or fire. From a safety standpoint, chemical resistant,
heat resistant and waterproof cables should be considered in
critical operating zones where IL exposure may occur.

It is reported that some ILs inhibit subsequent enzymatic
saccharification and fermentation [41,42]. In the presence of
ILs for biomass pretreatment, ILs can easily inactivate the
enzymes [6]. Therefore, identifying ILs that can be tolerated
by enzymes and fermentation microbes has become a new
approach to the development of IL processes [31,43]. IL
tolerance has also become a key factor in the genetic engi-
neering of the strains that produce advanced bioproducts [44].

4. Conclusions

[C2C1Im][OAc] pretreatment of switchgrass has been suc-
cessfully scaled up to 40 kg in this study. [C2C1Im][OAc] was
proven to be efficient in delignification and has enhanced
subsequent enzymatic saccharification in sugar conversions.
High titers of fermentable sugars were obtained in the hy-
drolysate with limited presence of IL. Challenges and oppor-
tunities in the overall processes were discussed. Efforts are
needed in the future to improve transitional processes such as
material transfer, biomass recovery from aqueous IL stream,
anti-solvent selection, IL recycling, and improvement of en-
zymes tolerance to ILs.
Please cite this article in press as: L. Liang, et al., Scale-up of biomass conversio
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