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On the accuracy of the vortex method 

Mirta Perlman 

Department of }.<lathematics 

and 

Lawrence Berkeley Laboratory 

University of California, Berkeley. 

Introduction 

The vortex method is a grid free method that simulates thud flow by approx

imating the vorticily by blobs of vorticity and compuling t.heir evolution. We 

briefly describe the vortex method for an inviscid, incompressible fluidi.n the 

absence of boundarie::;. A cielaiicci ciescripLion at Li"w rneLi10ci can be found in 

Consider Euler's equalions 

CJt + (u. \7):.; = 0, 

by =-:.i, 

where u = \ u j , u2 ) is the velocity vector, Z = , I , Y ) is the pOSition vector, CJ 

is the vorlicity and t is the stream function. 

We ivnte ~I as a convolution of the Creen's ru..'1ction of the Laplace operator 

with c..: ; lhe velocily'u is then given by the Biot-SaV21rt integral 
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u(z,t)=K*c.;=J K(z -Z') CJ(z') dz', 

where 

1 r 8y j 1 r Yj 
K(z) = -2ri1-0z loglz 1 = -271"IZ 12 l-X' (1) 

Assume the vorticity c.; has bounded support in the ball of radius R cen-

tered at the origin. Introduce a grid with squares Bj of side h centered at 

jh = (j 1,h)h and approximate the initial vorticity distribution by 

c.;h(Z) = I: V6(Z - jh) e;" 
j 

where the e/s have one of the following two forms 

C j = [ c.;( z) dz , 
1 

Cj = c.;(jh) h 2, 

(2) 

(2.a) 

(2.b) 

and1/!6 is a smooth approximation to the Dirac delta function, defined by 

V6(Z) = +V( ~ ) , where V satisfies the followL.'1g conditions: 
6 . 

(ii) Moment c andition: 

J 1/I(z) dz = 1 

I z?' 1f.'(z) dz = 0 1~ 1 I' 1 ~p- ..... 

(iii) FOT some L>O, andfoT any multi-iniex {3 the F~urier transform ~(O satisfies 

V6 is said Lo be of order p if (ii) holds. 

The vorticity approximation (2) by a sum of vortex blobs results in the velo-

city ilpproximation {in. : 

un.(z,t) = L K6(Z - ;j(t) ej' 
i 

(3) 
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where K6 is defined by 

the corresponding vorticity is 

C:;h(Z ,t) = 2::: 1/I6(Z - ;j(t)) Cj' 
i 

(4) 

where ;j (t) are the approximate particle paths which can be found by solving 

the system of ordinary differential equations 

The accuracy of the vortex method depends both on the approximation of 

Lhe initial vorticity distribution and the choice of cutoff functions 1/16 . 

Hald and Del Prete [8] and Hald [7] using a special class of cutoff functions 

and the vorticity approximation (2.a) proved .that the vortex method converges 

to the solution of Euler's equatiOns in the absence of boundaries. 

Recently Beale and \o:ajda ~~] using the vorticity apprOximation (2.b) and a 

more general class of cutoff functions proved that the vortex method can be 

made to converge with arbitrarily high accuracy, under the same restrictions. In 

their proof they used stability and consistency estimates to establish conver-

gence. 

CoLlet [6] proved that using the vorticiLy approximalion (2a), the vortex 

method converges only with second order accuracy, [or any cutoff function 

satisfying (i) -(i,'i'i,) with p ~ ~. 

Let Zj (t) denote the exact particle paths, z; (0) = jh , i.e. the particle paths 

determined by the exact solution of Euler's equations. Let u h (z ,t) and ~h(z ,t) 

be the discrete approximations to the velocity and the vorticity determined by 

the 2 j 'S , i.e. the velocity and vorticity Aelds obtained by using 2j(t) rather than 
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uh(Z ,t) = 2: K6(Z - Zj(t)) Co)j h 2, 
j 

c.>h(Z ,t) = 2: 'I./I6(z - Zj(t)) Wjh2, 
j 

The consistency error is defined by 

Eu = II u - u h II 

for the velocity, and 

E = II:..>-d/. u 
C.J. I U 

(5) 

(6) 

(7) 

(8) 

for the vorticity, where Eu and EC.J depend on the mesh length h and the time t. 

The stability error measures the difference between u h and the discrete 

velocity approximation {;;h due to a collection of vortex blobs moving under the 

influence of the computed particle paths Zj . 

Beale and ~:ajda estimated the consistency error as the sum of two terms. 

The first term, the smoothing error, is due to the fact that the singular kernel K 

in (:) is replaced by the smooth kernel Kc = K • 1fc resulting in the velocity 

approximation: 

UC(z,t) = !Kc(z-z')Co)(z') az', 

which can also be ;,.-iewed as approximatin::r the vorticitv :.; bv :.;c = './,;. * Co) o ",.,. v 

The smoothing error depends on the parameter 6 and on the time t and is 

deflned by: 

t~ = ~ u - U
C ii ,,5 = II ,. - .... C 'I'i 

~~ ~ ~ I i.O) 
\ U 

The second term, the discretization error, is due to the fact that we approx-

imale u 6 and :.;6 by their discrete analogues u h and :.;h deCmed in (5), (6). We 
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denote this error term by ED. It depends upon the mesh length h , the parame-

ter 0 and the time t . 

(10) 

Beale and Majda have shown that provided the flow is smooth, the first error 

term E S is of order 6P , wpere p is related to the number of moments of the 

cutoff function 'if; that vanish, while the discretization error ED is of order 

6-[ h -[-1-(; . Here h is the initial distance between the vortices, and L measures 

the decay of the Fourier transform of 'if; . The best error estimates are attained 

when the two errors E S and ED are in balance. Choosing 6 = h'l with 

L-'-E 
q = L - , we balance the errors and obtain a total error of order hP'l . Cutoff 

+p 

fUI1ctions 'if; with L arbitrarily large, ( for example Gaussian cutoff functions) 

allow us to choose 6 = h I-c , t; small. and obtain essentially a pth order method, 

Note that the Hald and Beale-~:ajda proofs do not establish that cutoff func-

tiens 'Y which fail to satisfy conditions (i )-(iii) above cannot lead to conver-

gence Chorin ~3]. ~ .:;], :5], used a different cutoff function ""'hich does not satisfy 

these conditIOns, but has been shown experimentally to be of second order accu-

rilcy'5],:8]. 

To test the accuracy of the vortex method in practice, l,\'e carried out a 

number of numerical experiments wilh several choices of cutoff functions and 

djf[erenl values of hand 6. We measured Lhe consistency errors Ell. and Ec.; as 

well as Lheir components, the smoothmg and discrelization errors. These results 

arc presenled in Lhe next section. 

In Lhe numerical experiments we used culoff functions i/; which are linear 

combll1Lltions of gausslan functions as suggested m :2J Since both 1/;. and its 

FOUrier lrLlnsform decay rapidly, L is arbitrarily' large allo1slng us in principle to 

choose r5 = h l - c wilh E small. 
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The numerical experiments show that if p ~ 4- and 0 close to h, then the 

error develops in an unexpected fashion both as a function of h and as a func-

tion of t. Looking at the two components of the error we find that this behavior 

is due to the discretization error, which grows sharply in time and for t > 0 does 

not decrease as h 4 O. This behavior of the discretization error is present for all 

6 = h q with 0.5 < q < 1 , but the error decreases as 0 increases. 

The decrease of the discretization error as 0 increases, and the fact that 

the smoothing error increases with 0, allow us to eliminate the 'odd' behavior of 

the consistency error by choosing 6=h'l substantially larger than h, Le., 

q ~ 0.65 for p = 4 and q ~. 0.60 for p = 6, 8. Thus the accuracy provided by 

Lhis new class of cutoff functions is reduced, i.e., instead of pth order accuracy 

for a pth order cutoff (p ~4 ) , we obtain pq order accuracy, q ~ .65 . 

Numerical results 

In this section we present the numerical experiments carried out to test 

the accuracy of the vortex method. As initial vorticity distribution we choose a 

radially symmetric function: 

~(z) = ! ~ IZl2f Izl~~~ 
I z I > ~ 

The corresponding solution of Euler's equations is 

u (z) = 
- : 6 I ~z I 2 ( 1 - ( 1 

.i! ) 
- . ~ I I 2 , y, -x 

.:.b I Z 

We measure the consistency errors Eu and E~ defined in (7), (8) in the 
[ 

discrete L 2 norm 
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E u 

where Zj' U, uh. and c.:;h. are as defined in the previous section. 

We also estimate the rate of convergence by : 

rate af canvergence 
= log [Eh.l I Eh.~) 

log [hI I h2) . 

In our calculations we use gaussian cutoff functions of various orders (suggested 

by BeaJe and N:ajda, [2]): 

(i) P = 2 

(ii) P - , - ~ 

('iii) p = 6 

1 (? 'Y6 = -?-,_e 
110-

_1_1 
'/16 = -2' 

110 

8 
--0 3 ~ 

6-": 
1/;6 

.. = -,-. , -e 
110<: 21 

I 
':::""e 
2 

- e 

_r.:.. , 
62 
~ -
3 

--_0 
,,") ~ 

.!.>= ... 

_.z:.:.... 
26 2 

+ -=""'-g 
6 

_L _L 
-<6 2 
~ 862 

) 
:68 

The runs were made for ,05 -::; h -::; 0.2, where h is the initial spacing 

bclween the particles. This corresponds to 60-950 \"ortices. We let 6 = h q with 

0.5 < q < ~ and assume that 0-::; t -::;20. At lime t. = '20 Lt-le particles near zero 

trilVel ~O radians while those on I z I = : travel ~.25 radians, 

We fmd that Lhe errors using the cutoff functions (ii)-~iv) are qualitatively 

similc:tr. Hence we group them together as hi,2,her order cutoff functions as 

opposed to the second order cutoff function (i) for which the results are 
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different. 

The errors Eu. and Ec.J depend on three parameters: h, the initial distance 

between the particles, (;, the core size which depends on h, and the time t. For 

any of the cutoff functions (ii)-(iv), we find that as a function of each one of 

these three parameters the errors Eu. and E"" develop in an unexpected fashion. 

As a function of t ,for (; = h q with 75 «;, q < ~, Eu. and E r.; increase sharply 

reaching a maximum and then oscillating. Let To the time at which the max

imum occurs. Although To > 12 ( one rotation of the inner particles ), To does 

not necessarily increase as h ~ 0 (Figures la-b) 

As a function of h, and with 6 as above, neither Eu. nor E r.; decrease uni

formly as h ~ 0 , this is clearly seen when we compute the rate of convergence, 

(see figures 2a-b). The rate of convergence stays constant for a short time inter

val and then decreases sharply. The time interval becomes shorter as h -+ O. We 

also fuld that after T > 0 the errors do not decrease with h. This effect is more 

pronounced for the cOI"'.3istency error in the vorticity than in the velocity. 

Consider no'S a fixed h and let 6 = h q with 05 < q < ~. Beale and ~Iajda's 

est lmates ~ ~ ] show that if 6 = h q with q < 1 then the error is of order h pq 
, 

where p is the order of the cutofffunction. Hence the error should increase as q 

decreases. Vie (ind that this holds for a shorl lime interval ~O, T.]. This time 

intervai becomes shorter as h ~O and as P Increases. For t > T. and p =.;. the 

error decreases for 0.75<q <: and increases for q <0.75, -while for t >T. and 

p = 6,3 the error decreases for 0.65 < q <: and Increases for q < 0.65, (Figures 

3a-b). 

As q decreases the sharp increase of the error in time is gradually 

attenuated and we observe a more uniform decrease of the error as a h ~O. 1f 

q «;, 0.65 for a fourlh order cutoff function and q «;, 0.60 for the 6th. and 8th. order 

cutoff functions then the accuracy is asymptotically pq throughout the interval 
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[0, 20]. for h = 0.05, which corresponds to 925 vortices, and 0 = h 65 the errors 

are less than 1% for the velocity and between 2 and 3% for the vorticity, with the 

cutoff function (ii). For the same h but 6 = h·6e the errors are 0.6% for the velo-

city and 1.4 - 2% for the vorticity, with the cutoff function (iii). Finally for the 

cutoff function (iv) we obtain an error of 0.3% in the velocity and 0.8 - 1.8% in 

the vorticity ( Tables :i.a-b"). 

1n contrast to the higher order cutoffs, we obtain good results for 0 = h g , 

q ~ 09, 'with the second order cutoff function (i). For example with 6 = h 9 

h = 0.05, the errors are 3% and 5% for the velocity and vorticity (Table 2 ). 

To further understand the error behavior and following the spirit of the 

proof in ~ 1], we measured the two components of the error, namely the smooth-

ing error and the discretization error, in the discrete [2 norm: 

\'.here:../ and :.;h are as detined in (9). (:0). 

We computed :.i by numerical integration using the routine DO :DAF of the 

i\AG library. with an error tolerance of :'0-7 Since ::.} does not change in time 

and neither does:.; , the smoothing error E~ remains consL:'tnt for all t 1t is 

lherefore enough Lo look at E~ at time t = O. From tables 3a-b we tind that E~ is 

asymptotically of order 6P for a pIll. order cutoff function. 

The discretization error Ee has the same qualitative beba';-ior for all cutoff 

fu;\cLions (i)-('i:v). We And from Agures ~a-d that the discretization error E& 

incred:::es sharply in time. reaching a maximum, oscillatinF later on. The time at 

which the ma:.:imum occurs changes with h . .. \s a function of h the error 

decreases al l = 0 , but for later limes the error does not decrease as h ..... O. This 
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behavior in hand t is present for all t5 = h q with 0.5 < q < : . 

As a function of t5 , keeping h fixed, the error EE decreases as t5 increases. 

This indicates the presence of a negative power of 6 in EE, (see [1], [7] ). 

If we keep hand t5 fixed, and compare the discretization error E& for the 

different cutoff functions, we find that the error for the second order cutoff 

function (i) is substantially smaller than the errors for the higher order cutoff 

functions (ii )-(iv) . The latter are of comparable size, but increase slightly as 

p increases. 

Having observed the behavior of the smoothing and discretization errors we 

can understand how the conSistency error develops as a function of h , t5 and t. 

Consider the second order cutoff function (ii), as ;;...-e mentioned above the 

discretization error E£ increases sharply in time and for T> 0, does not 

decrease as h ->0, however it is small relative to the size of the smoothing error 

E~ , which is of order 6P . Thus the 'odd' behavior of E£ is not felt in the total 

consistency error and we obtain an accuracy of order 2q with q ~ 0.9. 

For higher order cutoff function and £5 = h q ,0. ,';) < q <: the sharp increase 

of Lhe error in lime and its behavior as h --0 is caused by its discretization com

ponenl"'ir: observe that the consistency error is almost equal to the discretiza

lion error. This indicates that except fora short initial time, there is no balance 

of Lhe error components, but the dominant term in trie total conSistency error 

is Lhe discretization component. Because E S and E!J are of opposite character; 

Le, E-<j increases w1th £5 while ED decreases as r5 increases, we are able to 

attcnUiJ.te t.he shLirp increase of Lhe error as a functlon of t and to eliminate the 

uneven decrease as a function of h , by mcreasmg :5 so thaL ES becomes the 

dommilnt term. We can clearly observe this in Table.:;. \\-rlich compares the con

sl:::lency error E:.; to Lhe smoothmg and d1scretization errors for £5 = h 65 and the 

cuLofT fune tlOn (i7:). 
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Conclusion 

Numerical e>..-periments carried out to test the accuracy of the vortex 

method using cutoff functions suggested in [2] show that less than pth. order 

accuracy is obtained with a pth. order cutoff function. The rapid decrease of 

these cutoff functions and of their Fourier transform should allow us to choose 

6 = hi-I: , ismall. However, with this choice of 6, the conSistency error grows 

sharply in time and decreases in an unexpected manner as h -> O. We find that 

while the smoothing error is of order 6P , the discretization error grows sharply 

in time and for T > 0 does not decrease as h -> O. This phenomena is present for 

all 6 = h g with .5 < q < 1 , but as a function of 6, the disc retization error 

decreases as 6 increases. This decrease of the discretization error and the fact 

that the smoothing error increases with 6, allow us to eliminate this 'odd' 

behavior of the consistency error, by choosing 6 substantially larger than h. In 

doing so we lose some of the increased accuracy provided by the higher order 

cutoff functions ?\evertheless, higher order cutolI functions improve the accu

racy of the results. For example, with p = 2, h = 0.05 and 6 = h 90
, the con

Sistency error for the velocity is 3%, while with p = i3, h = 005 and 6 = h'6C the 

error is 0.8%. 

lYe have not found an explanation for the be ha\'ior of the discretization 

error. 
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Table i-a. Consistency errors for different cutoff functions, h = 0.05 

I Eu. I E" 
I 

t=O 10 20 I t=O 10 20 

6=h·65 P = 4 1.336 -03 1.336 -03 1.445 -03 1 .9385 -02 .9399 -02 1.429 -02 

<5 =h·60 P = 6 0.798 -03 0.798 -03 .8791 -03 .6262 -02 .6264 -02 .9348 -02 

6 =h 60 P = 8 i 0.42~ -03 .4210 -03 .5765 -03 
I 

.3574 -02 .3577 -02 .8343 -02 
I 

Table 1-b. Relative errors for different cutoff functions, h = 0.05 

I 
I Eu. I ~ 11. 11 I Ejllc,;11 
I 

I 
t=O 10 20 

I 
t=O 10 20 

16 = h·65 P = 4 .9118-02 .9~~9-02 .9866 -02 .205~ -O~ .2054 -01 .3123 -01 
I 
16 = h 60 P = 6 .5447 -02 .54.;7 -02 .6002 -02 .1358 -0: . ~370 -01 .2043-01 
i 
I I. 
16=h6C P = 8 i .2874 -02 .287'; -02 .3936 -02 .78:0 -02 .7816 -02 .1823 -01 

I I 
I 

, 

Table 2. Absolute and relative consistency errors for second order cutoff, 

h = 0.05, 6 = h 90. 

I 
t = 0 ~O 20 t = 0 ~o 20 I 

I 

I I 
i . .;05 -02 . .;05 -02 .42: -02 E,-" .220-0: .223 -0: .319.m-lEu 
I 

I Eu E,-" 
.276 -Ol .276-01 .287 -01 .482-0: . .;8G -01 .697 -01 I 

I ~ u II -r;r ! 

I I 
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Table 3-a. Smoothing error E~ 

6 P =4 P =6 P =8 

0.2 .1414 .2801 -01 .1406 -01 

0.14 .8345 -01 .9099 -02 .2977 -021 

0.10 I .4586 -01 .2636 -02 .5093 -03 I I 

I I 
0.07 j .2411 -01 .7122-03 .7642 -04 i 

i 

.1237 -01 .1853 -03 .1059 -04
1 

0.-05 I 
i 

Table 3-b. Order of accuracy of the approximation to the vorticity ~ by ~6 

I 6 P =4 P =6 P =8 I 
I 

1
0 .2 1.52 3.24- 4.4-8 

I 0 ~ L 1.73 3.57 5.09 
I 
10 iO I . ~ 1.85 3.78 5.47 

i 

1
0

.
07 1.92 3.88 5.70 
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Table 4-. Consistency error compared to its smoothing and discretization 

components, h =0.05, O=h·65 , P =4-

I Et-J E~ E& I 

I t=O 
I 

.9386 -02 .9385 -02 .54-62 -05 : 
I 

I I 
t = 10 I .9398 -02 .9385 -02 .1416 -03 I I 

I 

I 
t = 20 I .1429 -Ol .9385 -02 .9995 -02 

i 

., 
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Figure captions. 

Figure 1a Consistency errors Eu andEr.;, p =4, 0.05:::;;h:::;;0.2, 6=h· 95 . 

Figure lb Consistency error Eu and Er.;. P =6. 0.05:::;;h:::;;0.2. 6=h 95 . 

Figure 2a Rate of convergence for the velocity arid the vorticity approxima-

tl'on- p-~ OO"<h<O? J:_h· 95 :::', - '"= J • U - -- . -..J J U - . 

Figure 2b Rate of convergence for the velocity and the vorticity approxima-

tions, p =6, 0.05:::;;h:::;;0.2, 6=h 95 . 

Figure 3a Consistency errors Eu and Er.;. P = 4, h = 0.1. 6 = hq . 0.75:::;; q:::;; 0.95. 

Figure 3b Consistency errors Eu and E:.;. P = 4, h = .05, 6 = h g , 0.75:::;; q:::;; 0.95. 

Figure 4a Discretization error E& ' P = 2., 0.05:::;; h:::;; 0.2, 6 = h 95 . 

Figure 4b Discretization error Ee, p = 2, 0.05:::;;h:::;; 0.2, 6 = h 65 . 

Figure 4c Discretization error Ee, p = ~, 005:::;; h:::;; 0.2, 6 = h g5
. 

Figure 4d Discretization error Ee, p= ~, 0.65:::;; h:::;; 0.2, 6 = h 65 . 

\. 
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