
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Workload-Adaptive Management of Energy-Smart Disk Storage Systems

Permalink
https://escholarship.org/uc/item/18k8082k

Author
Otoo, Ekow

Publication Date
2010-09-08

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/18k8082k
https://escholarship.org
http://www.cdlib.org/

Workload-Adaptive Management of Energy-Smart Disk Storage
Systems

Ekow Otoo, Doron Rotem, Shih-Chiang Tsao
Lawrence Berkeley National Laboratory

University of California
Berkeley, CA 94720

{ejotoo, drotem, weafon}@lbl.gov

Abstract

Recent studies have identified disk storage systems as one ofthe major consumers of power in data
centers. Many disk power management (DPM) schemes were suggested where the power consumed
by disks is reduced by spinning them down during long idle periods. Spinning the disks down and up
results in additional energy and response time costs. For that reason, DPM schemes are effective only
if the disks experience relatively long idle periods and thescheme does not introduce a severe response
time penalty. In this paper we introduce a dynamic block exchange algorithm which switches data
between disks based on the observed workload such that frequently accessed blocks end up residing on
a few “hot” disks thus allowing the majority of disks to experience longer idle periods. We validate the
effectiveness of the algorithm with trace-driven simulations showing power savings of up to 60% with
very small response time penalties.

keywords: Disk storage, Energy Efficiency, File allocation, Scientific workload, Workload-Adaptive
Management.

1 Introduction

High energy costs of data centers have become an emerging critical issue.Among the various components
of a data center, spinning disks and their cooling are known to be one of themajor consumers of energy
with budget estimations of about $7–9 million per year in medium size data centers. This trend is expected
to continue as both commercial and scientific organizations need to store hugevolumes of data and on the
other hand disk vendors are introducing faster spinning disks which have higher power requirements. [21].

Recognizing this trend, researchers and vendors developed the concept of MAID (massive array of idle
disks) [2,4] storage systems where only a small fraction of the disks in the storage array are spinning while
the rest of the disks are kept in standby mode until some data residing on themis requested. Powering up
a standby disk to serve a request incurs a penalty of both time (typically about 10-15 seconds) and energy.
For that reason, careful optimizations must be performed to determine whento power off disks. More
specifically, a decision during runtime must be made concerning the optimal threshold on the length of the
idle period after which it is beneficial to power the disk off. The main factorsthat must be considered are
the expected energy to spin up a powered-off (standby) disk as compared with the energy savings realized
during the standby period. Another factor that must be weighed is the expected response time penalties
incurred by requests made to standby disks.

It is well known that energy savings can be improved by extending the expected length of the disk idle
period. Several methods have been used to extend the expected idle time of disks, these include using a
memory or SSD based cache such that disks do not need to be powered onwhen reading blocks which are in

1

the cache. Although the use of a cache may reduce response time and extend the idle period of disks, it may
not reduce much power if the idle period is not long enough. Our experiments and several recent research
papers show that the presence of a cache by itself provides only small improvements to energy consumption.
More details about these solutions are presented in Section 2. Thus, besides cache, we need other ways to
further prolong the idle time of disks.

Another approach for extending the disk idle period is to exchange data between disks such that the
most frequently accessed data ends up residing on a few of the disks which are kept almost always spinning
(active state) while the rest of the disks can be powered off most of the time.In this paper we present a
new dynamic algorithm for performing such data exchanges. The general idea is best explained in terms of
temperatures of the disks and of Exchange Blocks (XB), where each XBmay consist of several physical disk
blocks. The temperature of a disk is determined by the arrival rate of requests to it. It becomes hotter with
higher arrival rates. Similarly, an XB is hot if it is accessed frequently otherwise it is considered cool. Our
exchange algorithm moves relatively cool XBs from hot disks and replaces them with hot XBs taken from
cool disks. At the same time, to guarantee desirable response times, disks that are overloaded are cooled off
by removing hot XBs from them to cooler disks.

Our main contributions are:

• We propose a new dynamic block exchange algorithm which may save up to 50% of energy consump-
tion while satisfying response time constraints.

• We use a queuing model and measurements of observed workloads in order to re-distribute the work-
load among the disks by exchanging blocks such that a small fraction of the disks are kept spinning
while the rest can be placed in standby mode.

• The algorithm can be used with off-the-shelf disk storage systems such asnested RAID or MAID
with or without the presence of SSD caches.

• We developed efficient data structures to keep track of disk block maps to allow fast location of blocks
that can be beneficially exchanged.

• We developed a simulation program (written in SimPy [5]) based on modern diskcharacteristics
found in data centers rather than the commonly used DiskSim program which isbased on older disks
models. Results showing power savings of over 50% with small response tinepenalties were obtained
for workloads taken from two real life traces as well as a synthetic workload.

The rest of the paper is organized as follows. In Section 2 we survey some additional related work. In
Section 3 we present the exchange algorithm and the computations that are needed to determine which disks
will participate in block exchanges. In section 4 we describe the data structures used in locating blocks that
can be exchanged. In Section 5 we present our experimental results. Finally, in Section 6 we present our
conclusions and topics for future work.

2 Related Work

The area of energy efficient storage systems has received much attention lately from multiple communities
such as storage hardware vendors, software designers, system architects and theoretical computer scientists.
Hardware vendors are now offering energy-friendly alternatives tohard disk drives (HDD) generally referred
to as SSD (Solid State Devices). These typically use non-volatile flash memory or battery backed RAM
which offer great energy savings as there are no mechanical parts involved in storing or accessing data.
Another recent hardware trend are hybrid-disks [18] that use a smaller SSD drive as a cache in front of the

2

HDD in order to allow reading of frequently accessed data and also buffering of writes without the need to
power the HDD. Hybrid disks are produced by Samsung as well as other vendors.

Energy efficient storage systems including both hardware and softwareare offered by companies such as
COPAN mainly targeting write-once/read-occasionally (WORO) data. Their solution is based on the MAID
(Massive Array of Idle Disks) platform which guarantees that only about 25% of the disks in each enclosure
are powered at any one time. Another energy efficient prototype storage system for this kind of data, called
Pergamum, has been reported in [15]. It is based on a distributed networkof disk-based storage appliances
using the hybrid-disk approach. Pergamum uses a relatively small NVRAMattached to each node, called
Tome, to allow storage of data signatures (used in disk recovery) and alsometadata.

A different approach is taken by the experimental system Hibernator [21] which assumes the availability
of multi-speed disks. The system divides the disks into tiers where disks in different tiers can spin at
different speeds. The system dynamically assigns speeds to differenttiers based on observed workloads
while also automatically migrating data between the disks in order to save energy while satisfying response
time constraints. A storage system called PARAID (Power-Aware RAID) presented in [19] introduces a
skewed striping pattern that allows RAID devices to use just enough disks tomeet the system load. The
system “shifts gears” based on the observed workload by varying the number of powered-on disks to meet
the response time constraints while conserving energy. The main difference between these systems and
the block exchange algorithm in this paper is that both Hibernator and PARAID allow exchange of blocks
only within a single RAID group whereas our algorithm is more powerful as wealso allow exchanges of
blocks between different RAID groups. Also, Hibernator assumes multispeed disks which are not currently
available whereas in this paper we assume the disks can only be in either of twostates (active or standby).
Furthermore PARAID needs to reserve extra space on active disks forstoring the replicated data from the
standby disks. The idea of concentratingfrequentlyaccessedblocks on a few disks in this paper, has some
similarity with thepopulardataconcentration(PDC), of [10]. However, PDC exchanges popular ”files”,
instead of ”data blocks”. Exchanging fixed-size blocks below the file system may be more efficient and
portable than exchanging the variable-length files above the file system because of the response time and
storage allocation issues.

Several interesting theoretical results have been published during the last decade in the area of Dynamic
Power Management (DPM) for disk systems. Many of these results are reviewed in [7]. Most of this work
assumes a single disk and attempts to find an optimal idle waiting period (also called idleness threshold
time) after which a disk should be moved to a state which consumes less power. Requests can only be
served when the disk is at the highest power state (active state) and thereis a penalty associated with moving
from a lower power state to the active state. The problem is that of devising dynamic on-line algorithms
for selecting optimal idleness threshold times, based on observed idle periods between request arrivals, to
transition the disk from one power state to another. The most common case hasonly two states namely,
active state (full power) and standby (sleep) state. The quality of these algorithms is measured by their
competitive ratio which compares their power consumption to that of an optimal offline algorithm. It has
been shown that in the two state case a competitive ratio of 2 is the best possible. Another type of theoretical
work uses a probabilistic model checking tool PRISM used to explore DPM using probabilistic models.

Other algorithmic approaches to conserve energy include power-awarecaching policies where replace-
ment is based on minimizing energy consumption rather that minimizing cache misses.Several caching
algorithms that use dynamic programming are presented in [22, 23]. Yet another method to save power in
disk systems uses a compiler-driven approach targeted at scientific applications that use arrays and execute
on parallel architectures [14]. This is done by exposing disk layout information to the compiler and deriving
optimal disk access patterns in terms of the order in which parallel disks are accessed.

Another area of active research is that of devising new benchmarks for measuring energy efficiency of
database servers, and storage subsystems. Recently the Transaction Processing Performance Council (TPC)
has formed a working group to look into adding energy efficiency metrics to all its benchmarks. In [11] this

3

is done by extending benchmarks such as TPC-C with power measurement features. In [12] an external sort
benchmark, for evaluating the energy efficiency of a wide range of computer systems is presented.

3 The Block Exchange Algorithm

3.1 The Disk Storage Configuration

Our storage architecture is illustrated in Figure 1. It consists of an array of conventional disk storage con-
figured into identicalRAID Groups(RDG). A RAID (Redundant Array of Inexpensive Disks), is a formof
storage system in data centers that provides high performance and faulttolerance at a relatively low cost.
Each RDG in our systems can be configured as RAID-0, RAID1, RAID-4or RAID-5. We will assume, from
now on, that each RDG is configured as a RAID-5 unit. ARAID Group uses a Solid State Drive (SSD) as a
large cache to stage data read from and written into an RDG. Using an SSD for each RDG is attractive since
it is fast, durable, noiseless and energy efficient and currently is also available in large capacities of the order
64,128,256 and 512 Gbytes [16]. An I/O sub-system, complete with I/O nodes, maintains a large number of
RDGs. Clients interact with the I/O subsystems by writing and reading files eitheras a parallel file system or
as Storage Area Network (SAN), with the provision that each block of a filemust be entirely contained in an
RDG unit. A good conceptual view of our systems is that of nested RAID-5+0 [8] (see Figure 6, except that
the RAID-0 controller maintains modules that provide equivalent functionalityof MAID (Massive array of
Idle Disks) and has a strip-width of 1. It allows for migratingRDGsegments (as explained subsequently) of
disk blocks from one RDG to another.

Files in each RDG unit are striped according to the configured RAID level of the RDGs. One primary
objective of the system is to concentrate active files in a small enough numberof active RDG units without
compromising the aggregate I/O bandwidth that satisfies the required response time of data accesses. Two
approaches to achieving this is by dynamically migrating either entire files orRDGsegments from an RDG
with less I/O requests to others with high I/O activity but with just enough load onthe active RDGs that the
overall bandwidth is sufficient to meet the response time requirement. In this manner the less active RDGs
can be idle long enough for the entire RDG unit to be spun down.

The SSD caches may prolong the idle times of RDG units and extend the shutdownperiods of an RDG
unit. We call the set of disk blocks (also termed disk chunks) in an RDG that form astripe anRDGsegment.
In this paper the unit of exchange is called an XB (exchange block) whichwhich consists of one or more
RDG segments.

File I/O
Requests

Dispacher

Disks

SSD Caches

RAID Groups

Interface Parallel I/O
or iSCSI

Block I/OBlock−to−
Device
Map Table

Figure 1: Overview of the energy smart disk storage

4

3.2 Arrival and Departure Rate

Figure 2: Arrivals, Departures and Exchanges for
Disks

Figure 3: Two ways of XB exchanges

Before introducing the exchange system, we first define the arrival and departure rate for a disk. As
shown in Figure 2, the arrival rate for a disk means the arrival rate of block requests received by a disk but
excluding the requests introduced by the data exchange. We divide the timeline into epochs ofT seconds
and predict the mean arrival rateR for the next epoch as a weighted average of our predicted arrival rate
Rold and the measured arrival rateRmeas for the previous epoch. The rateR is computed by the following
equation,

R = w ·Rold +(1−w) ·Rmeas,

where the constantw represents the weight of the old predicted arrival rate. As shown later,whenR exceeds
a given threshold the arrival rate of the disk is too high and its workload should be off-loaded to other disks.
In computingR, we intentionally ignore the portion of the arrival rate caused by block exchanges in order
to prevent off-loading a disk whose load is caused only by exchanges but not by real data requests. We now
turn to describing the procedure for predicting departure rates from thedisk. The predicted departure rateD
includes serviced requests due to either original data requests as well asrequests caused by exchanges. To
ensure proper update ofD under heavy workload, we updateD after everyK requests are serviced, instead
of the fixed time epochs used for computingR. We use the following equation to computeD,

D = w ·Dold +(1−w) ·Dmeas,

where similar to the computation ofR, Dold is our previous prediction andDmeas is the average measured
departure rate over the latestK requests, i.e.,Dmeas = K/q whereq is the number of seconds it took to
service the lastK requests. By such a definition, the departure rate of ahot disk reflects whether the disk is
still suitable to share more workload from other disks immediately, particularly when the disk becomes busy.
Including the exchange workload in the computation ofD can stop a disk from a short term overloading due
to exchange. In this work, we setw to 0.875,T to 10 sec, andK to 128 based on our experience with several
real workload traces.

3.3 Hot and Cool Disks

We maintain a sorted listL of then disks in decreasing order of theirD (departure rate) values. Each time
the value ofD changes for any disk, the disk will be moved to its appropriate position inL according to the
sorting order. As shown in Figure 3, the system dividesL into two groups. The firstm disks inL are named
hot disks while the othern−m disks arecool disks. We now describe the general ideas behind our exchange
algorithm, more details are given in Section 3.5 .

5

In the following we refer to the unit of data exchanged between disks by thealgorithm as XB (exchange
block), it may consist of one or several RAID stripes. We use two types of block exchanges. The first
type of exchange is performed after a block is accessed on acool disk. The algorithm interchanges the XB
containing this block with an XB that was not accessed recently residing on ahot disk starting the search for
the first such XB with the disk at positionm in L followed by positionm−1 etc. The logic behind this type
of exchange is to ”lower” the temperature ofcool disks to further reduce their request arrival rate and thus
extend their idle time periods. The second type of exchange is used to avoid overheating ofhot disks that
may cause long queuing delays and excessive response times. This exchange is performed after accessing
a block on ahot disk at positionj in L where 1< j < m if it is determined that the disk is overloaded.
In this case, the XB containing the accessed block will be interchanged with an XB that was not accessed
recently in ”cooler” disks still in thehot disk group. The search for such an XB starts from disks at position
m,m−1, . . . , j +1 until a first such XB is found.

The number,m, of hot disks is dynamically determined based on the arrival rate of user requests. If the
arrival rate is high, then more disks would be included in this group. Thesehot disks are never shut down
in order to serve the bulk of arriving requests efficiently. On the other hand, thecool disks are supposed to
have long idle time periods allowing greater power saving. The calculation ofm is shown in the following
subsection.

3.4 Sustainable Rate of Disk

As explained above, the goal of the block exchange system is to dynamicallybalance the load of thehot
disks. By moving out the frequently-accessed XBs from an overloadeddisk, the arrival rate of the disk
would be reduced and the response time of requests can be efficiently shortened. However, the penalty
associated with this exchange is that it can potentially cause more disks to move toan active state in order to
serve the user requests. Let us denote byt the constraint on expected response time acceptable to users. We
now show how to calculate the maximum arrival rate that is sustainable by a hard disk while still satisfying
t. In the remainder of this paper, we will call this rate thesustainable rate of a disk and denote it byS(R).

In [9] we analyzed the energy savings and response time trade-offs, and presented an analytical model
to estimate the power cost and response time of a disk under different arrival rates and service times of
requests. We now describe howS(R) is computed. From [9], we know that the expected response time,E[J]
in in thehot disks is

E[J] =
ρ

1−ρ
E[S2]

2E[S]
+E[S].

whereρ is the load, i.e.,ρ = R ∗E[S], whereR is the arrival rate, andE[S] is the expected service time of
requests. In our case, based on the disk characteristics given in Figure 10 and the real life workload of [17] ,
we get E[S]=0.022 and E[S2]=5.24E-4. Figure 4 plots the relationship between the expected responsetime,
E[J] and the arrival rateS[R] for a singlehot disk as calculated from the above expression. From the figure,
we can see that, to achieve a response time constraintt = 0.05, the sustainable rate of a diskS(R) should be
set to 30 requests per second assuming block exchange operations areexecuted.

Then, after determiningS(R), we can calculate the numberm of hot disks as follows,

m =

n
∑

i=1
Ri

S(R)

whereRi is the arrival rate of theith disk.

6

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

S
(R

)=
su

st
a

in
a

b
le

 r
a

te
(r

e
q

u
e

st
s

p
e

r
se

c)

E[J]=the expected response time(s)

Figure 4: Relationship between expected response
time and sustainable rate of a disk

Figure 5: The potential power saving ratio of EXG-
BLK under different request arrival rates

Also, based on our analysis model, we can estimate the potential power savingby our block exchange
algorithm called BLKEXG. For example, in Figure 5 we plot the power saving ratio as a function ofP the
percentage of requests arrivals (including exchanges) to the cool disks for different values ofm (hot disks).

Figure 5 shows the normalized power saving of BLKEXG, compared to the NPS (no power saving)
case over differentP andm, respectively. In this figure we assume the system consists ofn = 24 disks with
t = 0.08, from which we deriveS(R) to be 35 based on Figure 4.

3.5 Thresholds to Start Block Exchanges

There are three thresholds, LowTH, TargetTH, and HighTH, applied to each disk to determine whether to
proceed with a block exchange. Since our goal is to keep the arrival rate of eachhot disk close to theS(R),
sustainable rate of a disk, we set TargetTH toS(R). Then, as described inProcedureRecv(), to achieve a
load balance among thehot disks, whenever a request arrives for blocks in ahot disk, we check whether
the arrival rate of the disk is higher than the high threshold HighTH. If it is,then the disk will be marked
as ahotspot disk. Next, for each of the requests arriving to the disk, after serving the request, the ExgBlk
function is called to locate the XB which contains the requested block. Then, the XB is exchanged with an
un-accessed XB starting the search from disk currently rankedm in L (hot disk with the lowest departure
rate) and proceeding tom−1 up to 1. In the search,hotspot disks will be skipped due to their heavy loads.
Also, if the currently accessed disk is rankedj, then the search is stopped after the disk rankedj + 1 is
searched as continuing the search will only encounter disks with ranks smaller than thanj which must have
higherD (departure rates) and thus are more busy.

The procedure to locate the un-accessed block in a selected disk is called GetUnaccessedXB() and is
described in Section 4 and uses a tree data structure. It returns -1 if all blocks on the disk are accessed.

Such an exchange will proceed whenever a request arrives to the hotspot disk until the arrival rate of
the disk is lower or equal to the TargetTH. Then, thehotspot mark will be removed from the disk. The
following functions are used in the algorithm, for lack of space we simply explain here what each of them
does.

(1) GetMappedDevID(): Get the current ID of the device to be accessed by a request.

(2) GetMappedBlockID(): Get the address of a block on a device.

(3) ForwardToDev(): Forward a request to a device.

(4) GetCorrespondingXB(): Locate the XB (exchange block containinga given block).

(5) GetDevIDWithRank(): Get the ID of a device with a given rank inL.

7

(6) Exchange(): Perform an exchange between two XBs.

ProcedureRecv(Req,HotSpot)

begin
Input : Req: Received Request
Output : HotSpot: a bit vector where each bit corresponds to a storage device
id dev← GetMappedDevID(req) ;
id blk← GetMappedBlockID(req) ;
ForwardToDev(iddev,id blk) ;
if (isHot(id dev)then

if R(id dev)≥ HighTH then
HotSpot[iddev]← 1

else
if R(id dev)< TargetTHthen

HotSpot[iddev]← 0

if HotSpot[iddev]=1then
ExgBlk(id dev,id blk)

else
if R(id dev)< LowTH then

ExgBlk(id dev,id blk)

end

Function ExgBlk(id dev,id blk)

begin
Input : id dev: device id, idblk: block id
id XB ← GetCorrespondingXB(idblk) ;
for i ← m downto 1 do

nid dev← GetDevIDWithRank(i);
if HotSpot[niddev]= 1 then continue ;
if nid dev= id devthen break ;
nid XB ← GetUnaccessedXB(niddev) ;
if nid XB < 0 then continue ;
Exchange(iddev,id XB,nid dev,nidXB) ;
break ;

end

Let us now turn to the procedure for extending the idle time of thecool disks which is similar to the above
procedure. Whenever a request arrives for blocks in acool disk, we examine whether the arrival rate of the
disk is lower than the low threshold LowTH. If it is, after serving the request, we call ExgBlk to locate the
XB which covers the requested block and then exchange the XB with an un-accessed XB located at thehot
disk starting the search with the disk with the lowest departure rate.

Note that we exchange blocks withhot disk based on measurements of departure rate (the lowest de-
parture rate), instead of the lowest arrival rate. The reason is that a disk with low arrival rate may be busy
serving the queued requests. Also, since the exchange itself also adds loading to the selectedhot disk, by
picking thehot disk with the lowest departure rate, we can further avoid the selected disk from short-term
overloading due to the exchange operations. Also note that due to the dynamic sorting of the disks based
on their departure rates, the blocks are exchanged with differenthot disks at different times thus leading to
load balancing among thehot disks.

8

RAID−5 RAID−5RAID−5

RAID−0 + MAID

F1 F2 Fp

J1 Jp J2

Mp M1 M2
N1 N2 Np
O1 Op O2

K1 K2 Kp
G1 Gp G2

I1 I2 Ip

A1 A2 Ap
B1 Bp B2
Cp C1 C2
D1 D2 Dp
E1 Ep E2

RAID−5 RAID−5RAID−5

RAID−0 + MAID

F1 F2 Fp

J1 Jp J2

Mp M1 M2
N1 N2 Np
O1 Op O2

K1 K2 Kp
G1 Gp G2

I1 I2 Ip

A1 A2 Ap
B1 Bp B2
Cp C1 C2
D1 D2 Dp
E1 Ep E2

Hp H1 H2
L1 Lp L2

Lp L1 L2
H1 Hp H2

After XB Exchange

Before XB Exchange

Figure 6: Illustration of XB exchanges in a RAID-0 + MAID configurations

4 Data Structures and File Chunking

4.1 Selection of Non frequently Accessed Exchange Blocks

As described in Section 3.3, we need to pick a non-frequently accessed XB from the coolesthot disk for the
exchange. Thus, we need a method to quickly find such an XB on a disk. Tosimplify the problem, let’s first
assume we want to distinguish between the XBs accessed at least once from the ones who have never been
accessed called un-accessed XBs. The naı̈ve way to satisfy this goal is to allocate a bit vector (initialized
to all 0’s)which we call XB-Access-Vector where each bit in the vector corresponds to one XB on the disk.
Once an XB is accessed, we turn its corresponding bit to 1 if it is 0. Then, tofind an un-accessed XB, one
can sequentially search the XB-Access-Vector until encountering a 0 bit.However, this method needs N-bits
of space and O(N) search time, where N is the number of XBs in one disk. Toreduce the search time, we
propose a binary tree structure as shown in Figure 7 which we call double-bit tree (DBT).

Each internal node of the DBT consists of two bits called the left-bit and the right-bit. The leaves of
the DBT are formed from the entries of the XB-Access-Vector, i.e each bitcorresponds to an XB and it
is set to 0 or 1 according to whether the corresponding XB was accessedor not respectively. The left-bit
(right-bit) of an internal node in a DBT is set to 0 if at least one of the leavesin its left (right) sub-tree are
0 otherwise it is set to 1. To find an un-accessed XB, one starts searching from the root of the DBT, if both
left and right bits at the root are 1 all XBs at the leaves have been accessed and the search stops. Otherwise
we search recursively in the left sub-tree of the root if the left-bit=0 or search in the right sub-tree if left-
bit=1. For reference purposes we call this DBT search procedure GetUnaccessedXB. It is easy to see that
GetUnaccessedXB operates inO(logN) steps. Updating the DBT once an un-accessed XB gets accessed is
done by changing the bit at the leaf corresponding to that XB to 1 and updating the internal nodes on the
path from the leaf to the root as necessary. The update procedure simplychanges the left-bit (right-bit) of a
parent node to 1 if both the left and right bits of its left (right) child are 1. This can also be done inO(logN)
steps.

4.2 Block Exchange Information

We can now build a slightly more complex data structure that monitors the access frequency of XBs across a
time window ofs time units and decides whether an XB is frequently accessed during the time window. To
do this we maintain a set of XB-Access-Vectors (XAB) calledXAB(Ti) for the lasts time unitsT1,T2, ...,Ts.
We then compute an additional vector called Total-XB-Access-Vector where each of its entries is a function
g (based on some weighted average) of the corresponding entries inXAB(Ti) for i = 1,2, ..,s. The DBT is
then built using the Total-XB-Access Vector entries as its leaves. An exampleof this is given in Figure 8 for
s = 3. In the formula below we give more weight (Wi) to more recent accesses than ones that occurred in the
past but at the same time our function also gives some fixed weight to the frequency of accesses independent

9

Figure 7: The Tree Structure to locate an un-
accessed-accessed Block

0 2 4 6 8 10 12 14
0 0 0 0 01 1 1 1 1 1 1 0 0 0 1

0 2 4 6 8 10 12 14
0 0 01 1 1 0 0 1

0 2 4 6 8 10 12 14
0 0 01 1 1 0 0 1

0 2 4 6 8 10 12 14
0 1 1 0

0 2 4 6 8 10 12 14
0 01 1 01 0 1 1

00 0 1 0 01 1 00

1 0

1 0 1 0

1 0

1 0

1 0

0

1

1

1

0 1 0 11 11

Old Total−XB−Access−Vector

New Total−XB−Access−Vector

T1

T3

T
2

w2=2

w3=4

w1=1

Figure 8: Information retained to track frequently
accessed XBs

of when they occurred. In this case the functiong(j) which determines the value of thejth bit in the New
Total-XB-Access-Vector is set as follows

exp(j) =
3

∑
i=1

XAB(Ti)[j](Wi +1)

and

g(j) =

{

1
0

exp(j)≥ 5
otherwise

5 Experimental Results

5.1 Simulation

Figure 9: Configuration of disks used in the simulation

We developed a simulation model to examine the block exchange system proposed in Section 3. The
simulation environment was developed and tested using SimPy [5], as illustratedin Figure 9. The environ-
ment consists of a workload generator, a block dispatcher, and a groupof hard disks. Figure 10 shows the
characteristics of the hard disk used in the simulation. With the specifications taken from [13] and [20] we
built our own hard disk simulation modules. A hard disk is spun down and set into standby mode (see Fig-
ure 11) after it has been idle for a fixed period which is called idleness threshold [10], [3]. We do not use the
recently revised DiskSim simulator [1], that is commonly used in the literature forour simulations because
the number of events needed to handle a file request is highly correlated withfile sizes making DiskSim too
slow for a realistic data center simulation that involves disks, each of the order of 500 GBytes and tens of
thousands of files requiring terabytes/petabytes of total data storage.

The workload generator supports two different ways to produce blockrequests. First, the generator can
follow a Poisson process to produce requests at a rateR to access disks. Based on the statistics collected

10

Figure 10: The characteristics of the hard disk

Description Value
Disk model Seagate ST3500630AS
Standard interface SATA
Rotational speed 7200 rpm
Avg. seek time 8.5 msecs
Avg. rotation time 4.16 msecs
Disk size 500GB
Disk load (Transfer rate) 72 MBytes/sec
Idle power 9.3 Watts
Standby power 0.8 Watts
Active power 13 Watts
Seek power 12.6 Watts
Spin up power 24 Watts
Spin down power 9.3 Watts
Spin up time 15 secs
Spin down time 10 secs

Standby
0.8W

Idle
9.3W

Active
Read/Write

13W
seek 12.6W

sp
ind

ow
n

10
s

9.3
W

spinup 15s

24W

Figure 11: Power usage modes of a disk drive

from the real workload [17], we set the number of disks to 24 and the datasize required by each request to
8, 16, 24, or 32KB with even probabilities. Then, the arrival requests todisks are generated based on a Zipf
distribution whose cumulative density functionF(x) is given by

F(x) = P(x < i) = (i/N)θ ∀1≤ i≤ N.

whereN=24 and its skew parameterθ is set to log 0.8/log 0.2, which means 80% of all requests would go
to 20% of disks. Similarly, we divided the space of a disk into 500 segments. Then, the Zipf distribution is
used again to determine the frequency of requests for blocks in each segment, whereN is set to 500.

Besides producing workload based on probability model, the workload generator can produce requests
based on a log of block access to a storage system. Two realistic workload logs are used in our experimental
results. The first log is recorded on a storage system operating a financial application [17]. There are
4099352 write requests and 1235632 read requests for the blocks distributed in 24 hard disks. The mean
rate of arrival requests is 123.5/s. The second log is recorded on a storage system that supports a web search
engine. There are 4579809 read requests invoked within 4.5 hours and99% of requests are concentrated on
three disks. The mean arrival rate is 297.487/s. Finally, once a requestis generated by the generator, the
block dispatcher forwards it into its corresponding hard disk.

In the experiments, the sustainable rate of a disk was set to 35 requests persecond. The high threshold
(HighTH in Section 3) is 1.3 times of 35, or 45 while the low threshold (LowTH) is half of 35, i.e. 17.5.
Besides, to compare the effects of the block exchange algorithm on powersaving and response time, we
also examined the effects of cache and DPM with fixed idleness thresholds.To measure effect of caching,
each disk was allocated a LRU cache. Multiple cache sizes were tested in the experiment where the page
size in the cache is fixed to 16K. Dynamic power management (DPM) algorithms have been proposed [7] to
determine on-line when the disk should be transitioned to a lower power dissipation state while experiencing
an idle period. Analytical solutions to this on-line problem have been evaluated in terms of their competitive
ratio. This ratio is used to compare the energy cost of an on-line DPM algorithm to the energy cost of an
optimal offline solution which knows the arrival sequence of disk accessrequests in advance. It is well
known [6] that for a two state system where the disk can be in either standbyor in idle mode there is a tight
bound of 2 for the competitive ratio of any deterministic algorithm. This ratio is achieved by setting the
idleness threshold, Tt , to b/(Pt-Ps) where b is the energy penalty (in joules) for having to serve a request

11

while the disk is in standby mode, (i.e., spinning the disk down and then spinning itup in order to serve a
request). Pt and Ps are the rates of energy consumption of the disk (in watts) in the idle mode and in the
standby mode, respectively. We call this value the competitive idleness threshold, which value herein is 53s,
computed based on the characteristics of hard disks shown in Figure 10.

5.2 Power Saving Results for Financial Workload

Figure 12 shows the power saving ratios of DPM, CACHE+DPM, EXG, andEXG+CACHE under the
financial application workload, which ratios are normalized with the power cost of 24 disks which are
always spinning. As shown in the figure, for this workload, simply using DPM can save 10% of power only.
Then, even using DPM and 256MB LRU cache can only save 20% of power. The reason is that the mean
arrival rate for each disk in the workload, 123.5/24 or 5.15/s, is too high for DPM to save power. Although
by using 256MB LRU cache, a 68% of hit ratio is achieved and the arrivalrate of each disk can be effectively
reduced to 1.65/s, which however is not low enough to save power by DPM. According to [9] DPM can only
save power if the arrival rate of a disk is smaller than 0.029/s. As shown in Figure 13, increasing the cache
size is useless since it cannot increase the hit ratio and thus cannot further reduce the arrival rate of disks or
extend the idle time of disks to save power.

Figure 12: Power saving ratio of DPM,
DPM+Cache, BLKEXG and BLKEXG+Cache

Figure 13: The hit ratio, power saving ratio and %
of used space for different cache sizes

Finally, compared to the of power saving of using cache and DPM which is atmost 20%, the BLKEXG
system can save 50% power cost. Fig 14 further displays the power costfor each disk. Obviously, by con-
centrating frequently accessed blocks into thehot disks from thecool disks, only three disks are necessary
to be active(always spinning) to serve requests. The other 21 disks can have longer idle periods to save
power and thus their mean power cost is only 4W. On the other hand, by using a large cache to reduce the
arrival rate of requests, although 10 disks may have long idle periods which are sufficient to produce ben-
eficial power savings from DPM, the other 14 disks are still too busy to save any power. Figure 15 shows
the mean idle period of disks affected under these power saving mechanisms. Using this figure, we can find
that BLKEXG can increase the length of the idle period by a factor of almost 100 times of that under DPM
and 10 times of Cache + DPM, by concentrating blocks into thehot disks. The BLKEXG curve shows that
the ”hottest” three disks are chosen to always spin as they have short idletimes due to the concentration of
frequently accessed blocks on them, this however makes the other 21 diskshave long idle periods sufficient
to produce power savings. Figure 16 displays the frequency of exchange produced by BLKEXG. The mean
number of exchanged blocks is 0.5 per second, which obviously is not high and thus does not cost much
power.

12

Figure 14: The power cost of each disk under DPM,
DPM+Cache and BLKEXG

Figure 15: The mean idle period of each disk under
DPM, DPM+Cache and BLKEXG

5.3 Response Time Results for Financial Workload

Saving power often implies an increase in response time. Therefore, it is important to measure the response
time penalty due to the power saving policy. Figure 17 shows the response timesof requests using DPM,
cache + DPM, BLKEXG, and BLKEXG + cache. Again, while DPM and cache only save 10∼20% of
power, they seriously impact the performance, i.e. increase the response time by a factor of more than 20
of that of disks without power saving (NPS), i.e. from 0.013s to 0.40 and 0.25, respectively. On the other
hand, using BLKEXG + cache only increases the response time to 0.036 whilesaving 50% of power cost.
Obviously, deploying the block exchange system with cache is a preferable option.

Figure 16: The frequency of block exchanges in
BLKEXG

Figure 17: Comparison of response times for differ-
ent power saving schemes

5.4 Power Savings and Response Time Results For the Search Engine Workload

We now examine the power saving and response time provided by BLKEXG under the search engine server
workload log. This workload is more skewed than the first one. In the firstlog requests arrived for blocks
unevenly distributed on all 24 disks, whereas arrival requests in the second log are highly concentrated for
the blocks in three disks only. Thus, as shown in Figure 18, by simply enabling DPM on disks, 70% of
power can be saved for this workload. However, the response times of requests under NPS and DPM are
very high (19), because the three disks are actually overloaded. Evenwhen a large 640MB cache is deployed
for each disk, these disks are still overloaded. Besides, due to the high arrival rate and short idle periods, no

13

additional power can be saved by using the cache, as compared to DPM without cache.

Figure 18: Comparison of power savings of
search engine workload for different power saving
schemes

Figure 19: Comparison of response times of
search engine workload for different power saving
schemes

On the other hand, since the BLKEXG system estimates the actual number ofhot disks necessary to
serve the arrival workload and keeps on balancing the load among thesedisks, the response time under
BLKEXG can be dramatically reduced to 0.12 sec while still saving about 60% of power, after an off-
loading procedure works consequently on the three hotspot disks for 250 seconds. In fact, according to the
workload in the second log, about 10 active disks are necessary to serve these requests, but under DPM only
6 disks are active, which leads DPM to save additional 10% of power but causes an unacceptable expected
response time.

5.5 Results for Synthetic Workload

To further verify BLKEXG under different heavy levels of workloads, we used the synthetic workloads
with different arrival rate of requests and measured the effect on power saving and response time of the
BLKEXG system. We also, measured power savings and response times forNPS, DPM, CACHE+DPM and
BLKEXG+CACHE for comparison.In all cases the cache size for each disk was set to 128MB. Figure 20
shows the power saving ratios of these policies under this workload, the ratios are normalized with the power
cost of 24 disks which are always spinning. The results show that BLKEXG can save 75% of power while
DPM or CACHE only provide about 15% of power saving on average. Also, the effect of cache on power
saving is insignificant under these synthetic workloads.

Figure 21 shows the response time of requests provided by these power saving mechanisms. Similarly
to the results under the real workloads, DPM and CACHE cause very longresponse times particularly when
the arrival rate is low, because each request has a high probability of arrival during the periods where the
disk is in standby mode and then has to wait a long time for the spinning up of the disk. However, since
BLKEXG would concentrate frequently-accessed blocks intohot disks, most requests would be redirected
to these disks and only a few requests which are directed to thecool disks may suffer such long response
time delays. Therefore, the response time under BLKEXG is much shorter than DPM and CACHE.

6 Conclusion

In this paper we developed a response time sensitive adaptive algorithm for reducing energy consumption of
disk storage systems. It operates by measuring arrival rates at the diskand then dynamically re-distributing

14

Figure 20: Power saving ratios of different schemes
under varying request arrival rates

Figure 21: Response times of requests for different
schemes under varying arrival rates

the workload by exchanging data between disks when necessary. We also developed the data structures
needed to support the fast location of blocks which are candidates for such exchanges. We have shown that
under real life workloads the algorithm leads to the concentration of the bulkof the disk access traffic on
a small fraction of the available disks. This allows the remaining disks to experience longer idle periods
which in turn makes the DPM (dynamic power management) procedures much more effective.

Extensive simulations with our block exchange algorithm showed that it is muchmore efficient than
simply using known DPM procedures or just power-aware caches. It can save up to 50% of the energy
consumption while still satisfying response time constraints. The algorithm doesnot need any specialized
hardware such as multispeed disks and can be readily applied to existing diskstorage configurations such as
nested RAID or MAID systems found in many commercial and scientific data centers.

In the future, we plan to investigate our techniques on more real life workloads that include various
mixes of read and write requests obtained from our scientific data center atNERSC. To further validate our
results, we plan to test the algorithm on several disk storage configurationsthat will allow us to compare
energy consumption measurements with the simulation results.

Acknowledgment

This work is supported by the Director, Office of Laboratory Policy and Infrastructure Management of the
U. S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of
the National Energy Research Scientific Computing (NERSC), which is supported by the Office of Science
of the U.S. Department of Energy.

References

[1] J. Bucy, J. Schindler, S. Schlosser, and G. Ganger. The disksim simulation environment.

[2] Dennis Colarelli and Dirk Grunwald. Massive arrays of idle disks for storage archives. InSupercomputing’02:
Proc.ACM/IEEE ConferenceonSupercomputing, pages 1 – 11, Los Alamitos, CA, USA, 2002. IEEE Computer
Society Press.

[3] Carlos Cunha, Azer Bestavros, and Mark Crovella. Characteristics of www client-based traces. Technical report,
Boston University, Boston, MA, USA, 1995.

[4] A. Guha. Data archiving using enhanced maid (massive array of idle disks), May 15 – 18 2006.

[5] SimPy: SimPy Simulation Package in Python. http://simpy.sourceforge.net/archive.htm.

15

[6] S. Irani, R. Gupta, and S. Shukla. Competitive analysis of dynamic power management strategies for systems
with multiple power savings states. InDATE ’02: Proceedingsof theconferenceonDesign,automationandtest
in Europe, page 117, Washington, DC, USA, 2002. IEEE Computer Society.

[7] Sandy Irani, Gaurav Singh, Sandeep K. Shukla, and RajeshK. Gupta. An overview of the competitive and adver-
sarial approaches to designing dynamic power management strategies.IEEE Trans.VLSI Syst., 13(12):1349–
1361, 2005.

[8] Nested RAID Levels. http://www.absoluteastronomy.com/topics/nestedraid levels.

[9] Ekow J. Otoo, Doron Rotem, and Shih-Chiang Tsao. Energy smart management of scientific data. In21stInt’l.
Conf.onSc.andStat.DatabaseMgmnt., New Orleans, Louisiana, USA, Jun. 2009. To Appear.

[10] E. Pinheiro and R. Bianchini. Energy conservation techniques for disk array-based servers. InProc.Int’l. Conf.
onSupercomputing(ICS’04), Saint-Malo, France, June 26 2004.

[11] Meikel Poess and Raghunath Othayoth Nambiar. Energy cost, the key challenge of today’s data centers: a power
consumption analysis of tpc-c results.Proc.VLDB Endow., 1(2):1229–1240, 2008.

[12] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. Joulesort: a balanced energy-efficiency benchmark.
In SIGMOD ’07: Proceedingsof the 2007ACM SIGMOD internationalconferenceon Managementof data,
pages 365–376, New York, NY, USA, 2007. ACM.

[13] Seagate.SeagateBarracuda7200.10SerialATA ProductManual. Seagate Technology, Scotts Valley, CA, Dec
2007.

[14] S. W. Son, G. Chen, O. Ozturk, M. Kandemir, and Alok Choudhary. Compiler-directed energy optimization for
parallel disk based systems.IEEETransactionsonParallelandDistributedSystems, 18(9):1241–1257, 2007.

[15] M. W. Storer, K. M. Greenan, and E. L. Miller. Pergamum: Replacing tape with energy efficient, reliable, disk-
based archival storage. InProc.6th USENIX Conf. on File andStorageTechnologies(FAST’2008), pages 1 –
16, San Jose, California, Feb. 2008.

[16] Solid State Drives From Toshiba. http://www.toshiba.com/taec/catalog/family.do - ?fami-
lyid=7&subfamilyid=900314.

[17] UMassTraceRepository. http://traces.cs.umass.edu/index.php/storage/storage.

[18] A. A. Wang, G. Kuenning, P. Reiher, and G. Popek. The conquest file system: Better performance through a‘
disk/persistent-ram hybrid design.ACM Trans.onStorage(TOS), 2(3):309 – 348, Oct. 2006.

[19] C. Weddle, M. Oldham, J. Qian, and A. Wang. PARAID: A gearshifting power-aware RAID.ACM Trans.on
Storage(TOS), 3(3):28 – 26, Oct. 2007.

[20] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and R. Wang. Modeling hard-disk power consump-
tion. In FAST’03: Proc.2nd USENIX Conf. on File andStorageTech., pages 217–230, Berkeley, CA, USA,
2003. USENIX Association.

[21] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes.Hibernator: Helping disk arrays sleep through the
winter. In SOSP’05:Proc.20th ACM Symp.on OperatingSyst.Principles, pages 177–190, NY, USA, 2005.
ACM Press.

[22] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P. Cao. Reducing energy consumption of disk storage
using power-aware cache management. InHPCA’04: Proc.of the 10th Int’l. Symp.on High Perform.Comp.
Arch., page 118, Washington, DC, USA, 2004. IEEE Computer Society.

[23] Qingbo Zhu and Yuanyuan Zhou. Power-aware storage cache management.IEEE Trans.Comput., 54(5):587–
602, 2005.

16

