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ARTICLE

A hierarchical anti-Hebbian network model for
the formation of spatial cells in three-dimensional
space
Karthik Soman1,2, Srinivasa Chakravarthy1 & Michael M. Yartsev 2

Three-dimensional (3D) spatial cells in the mammalian hippocampal formation are believed

to support the existence of 3D cognitive maps. Modeling studies are crucial to comprehend

the neural principles governing the formation of these maps, yet to date very few have

addressed this topic in 3D space. Here we present a hierarchical network model for the

formation of 3D spatial cells using anti-Hebbian network. Built on empirical data, the model

accounts for the natural emergence of 3D place, border, and grid cells, as well as a new type

of previously undescribed spatial cell type which we call plane cells. It further explains the

plausible reason behind the place and grid-cell anisotropic coding that has been observed in

rodents and the potential discrepancy with the predicted periodic coding during 3D volu-

metric navigation. Lastly, it provides evidence for the importance of unsupervised learning

rules in guiding the formation of higher-dimensional cognitive maps.
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Empirical studies in rodents show that hippocampal and
parahippocampal regions contain a multitude of spatial cells
that contribute to the creation of a cognitive map for

navigation. Rodent hippocampus is reported to have place cells
that fire at localized regions of space1,2. Medial entorhinal cortex
(MEC) of rodents is reported to contain grid cells that activate
when the animal passes through one of multiple locations
arranged on the vertices of a hexagonal grid-like pattern2,3.
Direction-sensitive cells that encode the animal’s head direction
(HD) in the yaw plane are reported from a wide range of regions
including post-subiculum and MEC4–6. Subiculum and MEC are
reported to have border cells that encode the borders of the
environment7–9.

Efforts to determine the precise coding for 3D space in rodents
are ongoing, yet appeared to yield contradicting results under
different behavioral conditions where they were constrained to
move within a pair of orthogonal two-dimensional (2D)
planes10–14. In parallel, results on 3D spatial maps have been
obtained from bats, a mammal that naturally navigated through
3D volumetric space in unconstrained fashion during flight15–17.
Bat hippocampus is reported to contain place cells that are active
in confined 3D volumes18. 3D HD cells, which form an internal
compass for animal’s 3D navigation, have been reported in the
dorsal pre-subiculum of the Egyptian fruit bats19. These HD cells
code for the direction of motion in terms of the three Eulerian
angles viz. azimuth, pitch, and roll19. Grid-cell activity has thus
far only been reported from the MEC of bats during 2D navi-
gation, yet has been shown to exhibit many of the classical grid-
cell features that have previously been reported in rodents, such
as hexagonal firing fields and gradient in grid scale across the
dorso-ventral MEC axis17,20. Apart from pure grid cells, bat MEC
is also reported to have other spatial cells (OSCs) viz. conjunctive
grid cells, pure HD cells, and border cells20; yet, these have thus
far only been studied in 2D environments.

These rich empirical data raise difficult questions about spatial
maps in higher dimensions such as: What is the learning rule for
the formation the 3D spatial cells? What form of symmetry does a
grid cell take in higher dimensions? What contributes to the
isotropic and anisotropic coding schemes of spatial cells and why
different mammals differ from each other with respect to 3D
spatial coding properties? Can there exist other kinds of spatial
cells to represent the space in higher dimensions? A systematic
comprehensive computational model is pertinent to answer these
queries. Although a significant corpus of computational models
exists in the case of the 2D navigation problem21–36, models of
3D navigation are comparatively fewer in number. Mathis et al.37

treated the probable nature of grid-like representations in higher
dimension as a packing problem and concluded that the periodic
grid-like pattern in 3D navigation may take face-centered cubic
(FCC) lattice structure37. A rate adaptation network model, where
the grid cell is assumed to receive place-cell inputs—empirically
validated in the case of 2D navigation in rodents9,38, but not yet
in bats nor in 3D navigation—suggests the possibility of an
asymptotic state of FCC or hexagonal close packing (HCP) lattice
grid structure in 3D space39. A four ring integrator model for 3D
grid cells, proposes the grid activity as a function of the co-
occurrence of neuronal activity in the four distinct ring neural
integrators whose reference vectors differ by 109.5°40, an idea that
is motivated by the 2D grid-cell oscillatory interference models22.
The model produces 3D grid cells with FCC lattice structure in
3D space. The emergence of this lattice structure could be
attributed to the explicit use of reference vectors with an angular
spacing of 109.5° for the ring integrators. Since the actual peri-
odicity of the grid-cell in the 3D space has not been empirically
confirmed yet, the biological validity of the chosen phase con-
straint on the ring integrators in the model remains to be

determined. The plausible patterns of spatially periodic 3D grid
cells have been extensively reviewed in ref. 41. With regard to the
computational modeling work on HD system, Laurens and
Angelaki42 proposed a model that gives a comprehensive multi-
sensory framework of self-motion estimation from the vestibular
signal, retinal flow, proprioception, and other sensory inputs42.
The model also suggests relevant possibilities regarding the
dynamics of the 3D HD system and raises the possibility of the
gravity influence on head tilt system43. It also proposes a tilted
azimuth model based on the dual-axis rule44. Analysis of the
existing modeling works on the 3D spatial representation
suggests a lack of unified modeling approach to account for
the wide spectrum of spatial representations. Importantly,
the sparsity of modeling efforts designed to address the encoding
of 3D space in which most animals live in represents a
major challenge to the understanding of its underlying neural
computations.

To bridge this major gap, we propose here a hierarchical net-
work model which accounts for the formation of all spatial cells
reported to date in 3D space. The model shows how 3D spatial
maps could be formed using unsupervised anti-Hebbian neural
network while the animal follows a naturalistic complex trajectory
in 3D space. The presented generalized framework not only
accounts for a gamut of empirical results in 3D navigation but
also makes significant predictions on the learning rule, isotropy in
spatial coding and possible nature of periodic grids fields in 3D.
Lastly, it also makes direct predictions for the possible existence
of other kinds of novel 3D spatial representations that have yet to
be reported in animals navigating in 3D. Hence, the proposed
model sheds light on the principle behind the formation of 3D
spatial representations across species by adopting a hierarchical
systems-level modeling approach.

Results
Model architecture for 3D spatial cells. The proposed model is
driven by considering the movement of the virtual animal during
its active exploration in the 3D space (see Supplementary Note 1).
Simulated flight trajectories concur with the empirical trajectory
of bats in terms of its azimuth and pitch distribution statis-
tics18,19. Azimuth angle is sampled from a uniform distribution
which spans the complete angular space (Fig. 1b). However, since
the animal’s flight is devoid of sharp dives and ascents, its pitch
exhibits a narrower range than azimuth (Fig. 1c).

The model adopts a hierarchical architecture comprising of:
HD encoding layer, path integration layer, and finally lateral anti-
Hebbian neural (LAHN) layer (Fig. 1a). Empirical studies in bats
report the existence of separate neural ensembles to code for the
three Eulerian angles—azimuth, pitch, and roll, with the roll-
coding population comprising a non-significant population19,42.
Conforming to this empirical result, HD layer in the proposed
model has two parallel layers viz. azimuth and pitch direction
encoding layers. Roll cells are not considered in the proposed
model. This is because previous studies42,44 have shown that
sufficient combinations of pitch and yaw angle could account for
any rotation in the 3D space. Hence, 3D direction could be
encoded even in the absence of explicit roll-coding cell. Since
azimuth cells are higher in distribution compared to pitch cells19,
they are taken in a ratio of 7:3 in the model, as reported
empirically in the bat19. Irrespective of this distribution, the
preferred directions of both cell types span the complete 360°
angular space. Hence, in the model, these cell types compute the
projection of the current heading direction and forward pass the
information to the downstream path integration layer. Like HD
layer, path integration layer also splits into two parallel layers of
azimuth and pitch, respectively, which ensures a one-to-one
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connectivity with the upstream HD layer. The path integration
layer is an array of low-frequency phase oscillators, compatible
with reports in bats (0.5 Hz, see refs. 18,20,45) where path
integration in achieved by integrating the afferent encoded
direction and speed information of the animal’s flight into the
phase of the oscillator.

In the final hierarchy of the model, the information from the
parallel pathways (azimuth and pitch pathways) converges and
forms the afferent input to the anti-Hebbian network. Hence
LAHN receives the integrated information of the 3D space in
which the animal navigates. LAHN is a recurrent neural network
whose afferent weight connections are updated using Hebbian
rule, that is, higher correlation of pre-synaptic and post-synaptic
neural activity strengthens the synaptic weights between them46.
Lateral recurrent connections are updated using anti-Hebbian
rule, that is, higher correlation of pre-synaptic and post-synaptic
neural activity suppresses the synaptic weights between them46.
From now on, we call anti-Hebbian rule as Stent rule, after the
original formalization of this rule47. Hence, the lateral connec-
tions induce competition among the neurons, whereas the
afferent Hebbian connections enable extraction of principal
components (PCs) from the input data48,49. Such an iterative
learning network also has the advantage of analyzing the
temporal evolution of the spatial cells. Owing to its generalized

architecture and the local learning rules, LAHN qualifies as a
biologically plausible neural network.

After training the model, the LAHN neural activity is tracked
along realistic 3D flight trajectories of the animal. Whenever the
activity of a neuron crosses a threshold value, we assign this
threshold crossing moment an action potential, which allows us
to compute the firing fields of that particular neuron.

Emergence of 3D place fields. While training the LAHN, 32.43%
neurons evolve firing fields that eventually occupy a confined
volume in the 3D space (Fig. 2a). Place cells from the CA1 region
of bat hippocampus are reported to have isotropic firing fields,
that is, the firing fields show equal variance in all configurations
of three orthogonal dimensions18. Compatible with these
empirical results, we find that once the LAHN network converges,
the emerging firing fields resemble the empirically reported
volumetric place fields in flying bats (Fig. 2b–e). To explicitly
compare the place fields evolved from the model with their
empirical counterparts, we compared their isotropic index (ξ),
which is derived by fitting an ellipsoid to the 3D firing field18. ξ is
the ratio of the largest to the smallest axis of the fitted ellipsoid.
The Gaussian distribution fitted on the ξ shows that a significant
number of simulated neurons (65.25%) exhibit isotropic firing
fields (mean= 1.3042, s.d.= 0.2179) (Fig. 2f). (Elongation index
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Fig. 1 Model architecture and trajectory statistics. a The architecture of the proposed model. Illustration of the hierarchical nature of the model starting
from the head-direction encoding layer with parallel layers that code for the azimuth and pitch angle. Inside the head-direction encoding layer, toroidal
representations for pure azimuth (left) and pure pitch (right) are shown. Head-direction layer ensures one-to-one connectivity with the corresponding
oscillatory path integration layer which further converges to the anti-Hebbian network. Green arrows indicate the afferent synaptic weight connections that
are trainable by Hebbian rule and the red arrows indicate the lateral inhibitory synaptic connections that are trainable by Stent rule. Top right side to the
figure shows the depiction of the pitch and the azimuth angle in the 3D Cartesian coordinate system. b Angular distribution of the azimuth direction of the
simulated trajectory. Azimuth angle of the simulated trajectory is uniformly distributed. c Angular distribution of the pitch direction of the simulated
trajectory. Pitch angle of the simulated trajectory has a narrow range as shown in the figure with a Gaussian distribution (mean (μ)= 0, variance (σ2)=
58.25)
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threshold is taken as 1.38 from a shuffling analysis, see Supple-
mentary Note 2a.)

Emergence of 3D spatial periodicity. In the bat experimental
literature, HD and place cells are the only two spatial cells
reported while the animal navigates in 3D space18,19,50, whereas
grid cells have only been recorded in animals crawling on 2D
planes20. Although empirical studies for 3D grid cells have been
performed in rodents51,52, the existence of 3D periodic spatial
representations is still unresolved. Nevertheless, predictions for
the existence of such representations can emerge from the pro-
posed model, as we shall show next.

Apart from the spatially localized activity of the aforemen-
tioned place cells, LAHN neuronal ensemble shows spatially
periodic activity too. Spatially periodic activity is evident from the
rate maps of the grid neurons (Fig. 3a, c). However, autocorrela-
tion maps are computed to analyze the symmetry of the grid
periodicity in higher dimensions (Fig. 3b, d). Previous modeling
studies have predicted the possibility of FCC lattice structure for
the grids in the 3D space owing to its higher packing fraction37,39.

FCC is a cubic lattice structure that results from stacking
hexagonally arranged layers of spheres one above the other53.
Considering three layers A, B, and C where B and C are the
translations of A, the sequence ABCABC results in an FCC
structure53. In FCC symmetry, one can find four planes, at an
angular difference of 72°, transecting the center of FCC, and each
plane has peaks arranged in a hexagonal fashion39. An ideal FCC
lattice structure can be analytically simulated by a linear
combination of four 3D waves whose wave vectors are at angles
of 109.5°39,40.

In FCC symmetry analysis of 3D grid fields, initially the
autocorrelation map is transected into many slices that pass
through the origin. Hexagonal gridness score (HGS) of each slice
is computed. The slice with the highest gridness score is taken as
the reference plane. As per Stella and Treves39, FCC lattice
structure has apparently three more planes with hexagonal
symmetry at 72° from the reference plane and among one another
(Fig. 3e shows two such planes; see Supplementary Note 3 for the
explanation on the generation of the transection planes) and an
average of top three gridness scores of those planes is computed.
A similar procedure is performed on the analytical FCC too
(Fig. 3f). An FCC score is computed by taking the ratio of these
two average gridness scores (analytical FCC in the denominator).
Negative average gridness score (if any) is set to zero so that FCC
score will be between 0 and 1. Hence, if the spatial periodicity is
close to FCC symmetry, the FCC score will be ~1. The
aforementioned analysis on the LAHN spatially periodic neurons
shows that the grid neurons from the model apparently do not
show FCC symmetry (Gaussian distribution fitted on the FCC
score has mean= 0.1575 and s.d.= 0.1098) (Fig. 3g).

Since the spatially periodic neurons from the model show less
tendency towards the FCC structure (mean is <50% of the
maximum value of FCC score), to check the symmetry adopted
by the grids in the model, rate maps are projected on to the three
major orthogonal planes XY, YZ, and XZ, respectively (Fig. 3h, i).
Sixty degree rotational symmetry is checked on each plane by
computing their HGS3,21. Along with the HGS, square gridness
score (SGS) is also computed to consider the possibility of 90°
planar symmetry21. A gridness score greater than the threshold
value (obtained by shuffling analysis; see Supplementary Note 2b)
on any one of the planes means that the grid cell shows a planar
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Fig. 2 Emergence of 3D place cells and their isotropic nature. a Figure, from left to right, shows the snapshots of the temporal evolution of the localized
volumetric 3D place-cell firing field of a LAHN neuron that resembles the empirically reported 3D place cells. Iteration number (Itr) is given above each
box. b–e show the rate maps of four example 3D place cells from the trained model, overlaid on the flight trajectory traversed by the animal (gray lines). It
is evident from the figure that the place cells code for different regions of the space. f The distribution of the elongation index of the fitted ellipsoids results
in similar values to those observed empirically in freely flying bats18. Elongation index is the descriptor of the isotropic nature of the firing map. The
Gaussian curve fitted to the distribution (red curve) mainly shows the emergence of isotropic nature of place cells from the model (mean (μ)= 1.3042,
standard deviation (s.d.)= 0.2179). Approximately 65% of place cells from the model exhibit isotropic place fields
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symmetry in the 3D space. Scattering the computed gridness
scores on a 2D space of HGS and SGS (Fig. 3j) confirmed the
planar symmetry of the spatially periodic neurons from the
model. The critical information conveyed by this figure (Fig. 3j) is
that the grid activities of the simulated neurons show both square
and hexagonal symmetry with a preference for the hexagonal
symmetry (55%), and, although a minority (7%), the remaining
neurons evolve neither square nor hexagonal symmetry in the
model.

In the experimental study, when the rat forages on a 2D plane
(XY), place cells exhibit isotropic localized firing fields and grid
cells exhibit hexagonal representations. Yet, when the rat is made
to climb over a pegboard (vertical YZ plane), the spatial
representations of the same cells are reported to transform into
an anisotropic representation, manifested as a single stripe for
most place cells and multiple stripes for the grid cells52. This
intriguing transformation exhibited by spatial neurons is still an
enigma. This enigma is further enhanced by the empirical data
obtained in bats. Place and grid cells of bats exhibited similar

spatial firing patterns to those of rodents when the bats were
navigating in 2D environments (Yartsev et al.21). However, unlike
anisotropic place fields in rodents moving along the z-axis, place
cells of flying bats are reported to be isotropic (Yartsev and
Ulanovsky18). Since 3D grid cells have not been empirically
reported from flying bats so far, nothing conclusive can be stated
with regard to its isotropic nature. The proposed model probes
this problem of anisotropy and the reason behind this
transformation. Specifically, we postulate that because the move-
ment patterns of rodents and bats on 2D planes are far more
similar to each other than in 3D space, these differences in spatial
movement patterns might lie at the core of the differences in
neural coding. Such notions have been expressed before, yet never
actually tested18.

To achieve this, two different trajectories are simulated on two
different planes, one on horizontal and the other on a vertical
plane (Fig. 4a, f). Since, thus far, only place cells have been
recorded in both species, we begin our investigation there. When
the virtual animal navigates on the horizontal XY plane (Fig. 4a),
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Fig. 3 Emergence of 3D spatially periodic neurons and their symmetry. a 3D firing map of a LAHN neuron overlaid on the animal’s flight trajectory. b 3D
autocorrelation map of the same neuron computed to observe the inherent periodicity of the spatial representation. c 3D firing map of another LAHN
neuron overlaid on the animal’s flight trajectory. d 3D autocorrelation map of the same neuron computed to observe the inherent periodicity of the
representation. Two neurons (a and c) are purposefully taken to show the difference in their periodic representations which will be made clearer through
figures h, i. e Two planes at 72° transecting through the central peak of the volumetric autocorrelation map of a spatially periodic LAHN neuron. This is
done to check for any FCC symmetry in the 3D grid representation of that neuron. f Two planes at 72° transecting an analytically simulated FCC lattice
structure through its central peak. g Distribution of the FCC scores of the spatially periodic neurons from the model. The Gaussian curve fitted to the
distribution (red curve) shows that the neurons have less tendency to form the FCC symmetry (mean (μ)= 0.1575, standard deviation (s.d.)= 0.1098).
h (Left) Projection of the 3D firing map shown in a onto the XY plane which shows hexagonal rate map. (Right) Autocorrelation map of the 2D firing map to
quantify the 60° periodicity. (i) (Left) Projection of the 3D firing map shown in c onto the XY plane which shows square rate map. (Right) Autocorrelation
map of the 2D firing map to quantify the 90° periodicity. j Scatter plot of hexagonal and the square gridness scores of each neuron (marked as star) on a
2D plane. The red area represents the hexagonal grid regime (55%; hexagonal gridness threshold value is 0.1686), the green area represents the square
grid regime (23%; square gridness threshold value is 0.1952), and other neurons whose gridness scores are not significantly higher than the prescribed
thresholds (star marks outside the green and red box) do not belong to hexagonal nor square symmetry
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the model gives rise to localized isotropic place fields (Fig. 4b, c)
akin to classical place cells. When the animal is made to navigate
on the vertical YZ plane (Fig. 4f), the previously formed isotropic
firing field stretches out and forms stripe-like firing field (Fig. 4g,
h). Grid neurons in the network exhibit hexagonal firing fields
when the virtual animal navigates on the horizontal XY plane
(Fig. 4d). When the plane of navigation is switched from
horizontal to vertical, it results in a transformation of the firing
fields from hexagons (Fig. 4d) to multiple stripes (Fig. 4i). These
symmetries are also reflected in the autocorrelation maps of the
respective firing fields (Fig. 4e, j).

Emergence of spatial representations in the proposed model is
a result of the projection of path integration values on the weight
vectors that maximize the variance of the output. It is important
to emphasize here that the animal is not retrained on the vertical
plane i.e. it is the same LAHN weight vectors (trained for
horizontal navigation) that are used for the navigation on both
planes and exhibit different coding schemes. Hence, we
hypothesize that the absence of hexagonal representations on
the vertical dimension may not be a network property and could
be attributed to the lesser range in the vertical pitch distribution
(Fig. 1c). If this is the case, change in the range of pitch
distribution should reflect a corresponding change in the grid-cell
anisotropy too.

To test this hypothesis, three different trajectories with
different pitch ranges are considered, such as: trajectory with
restricted motion on the vertical plane (Fig. 5b) due to highly
skewed pitch distribution (Fig. 5a), trajectory with less restricted
motion on the vertical plane (Fig. 5f) due to an increase in the
pitch range compared to the first one (Fig. 5e), and an

unconstrained trajectory on the vertical plane (Fig. 5j) with
uniform pitch distribution (Fig. 5i). Since both grid and place
neurons in the LAHN undergo similar stripe-like transformation,
the proposed hypothesis is analyzed only on one type of spatial
cell, that is, grid cell (grid representation can also be quantified
using the gridness score). LAHN grid neurons exhibit spatial
periodicity on the vertical plane in all the three cases (Fig. 5c, g,
k), but the neural representations are different for each case. As
the pitch range increases, the spatial representations on the
vertical plane gradually transform from stripes to hexagons,
which is evident from the respective neural firing fields (Fig. 5c, g,
k) and the autocorrelation maps (Fig. 5d, h, l).

To obtain a conclusive result on the relation between the pitch
range and the grid formation on the vertical plane, pitch
distributions with standard deviation (s.d.) ranging from 10° to
100° (with a step size of 10°) are considered. Average HGS of
spatial representations formed on trajectories from each pitch
distribution is plotted against the respective s.d. (Fig. 5m). The
HGS score takes a value greater than the threshold (shown as
horizontal like in Fig. 5m) for 110° s.d. (Fig. 5m). We call this the
critical angle at which the stripe representations get transformed
to significant hexagonal representations. This aspect is addressed
again in the Discussion section.

In the previous case where the animal climbed over a vertical
wall with a varying range of pitch values, the firing fields
exhibited an intriguing grid transformation from stripes to a
more optimal hexagonal representation (optimal on a 2D
surface). Now, we ask if there is a possibility for the 3D grid
representation to transform from planar to a more optimal FCC
representation while the animal is less constrained in its 3D
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Fig. 4 Horizontal and vertical anisotropy in grid cell coding. a A cartoon of a virtual animal navigating on horizontal XY plane (top) and the trajectory
traversed by the animal (bottom). b, c Raw data (movement trajectories in gray and action potentials in red) and firing rate map of a LAHN place neuron in
the model showing localized isotropic representation on the horizontal XY plane. d, e Firing rate and autocorrelation map of a LAHN grid neuron in the
model showing hexagonal representations on the horizontal XY plane (HGS > HGSthresh). Hexagonal periodicity is evident from the autocorrelation map
and the gridness score (HGS). f A cartoon of a virtual animal navigating on vertical YZ plane (left) and the trajectory traversed by the animal (right).
g, h Raw data (movement trajectories in gray and action potentials in red) and firing rate map of the same LAHN place neuron in the model showing stripe-
like representations on the vertical YZ plane. i, j Rate map data (movement trajectories in gray) and autocorrelation map of the same LAHN grid neuron in
the model showing stripe-like representations on the vertical YZ plane (HGS < HGSthresh). Stripe periodicity is evident from the autocorrelation map

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06441-5

6 NATURE COMMUNICATIONS |  (2018) 9:4046 | DOI: 10.1038/s41467-018-06441-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


navigation? To answer this, we vary the range of the pitch values
while the animal performs a complete 3D volumetric navigation.

We initially computed the FCC score of the periodic neural
representations while the animal flies with a skewed pitch
distribution (s.d. of 10°) (Fig. 6a). Since varying the pitch
distribution in a continuous fashion and computing the FCC
score is computationally expensive, we consider two other flight
trajectories with contrasting pitch distribution (i.e., one with 25°

s.d. (Fig. 6c) and the other with 75° s.d. Figure 6e). If the grid
representations show a tendency to move towards the FCC
regime, it should be evident from these two contrasting pitch
distributions. In doing so, we find that by increasing the range of
the animal’s flight trajectory pitch distribution, the corresponding
3D rate maps of the spatially periodic neurons in the model
(Fig. 6b, d, f) show a tendency to shift towards FCC
representation, as evident from the histogram and the
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Fig. 5 Influence of pitch range on grid cell anisotropy. a Skewed pitch distribution with mean (μ)= 0; standard deviation (s.d.)= 10°. b Trajectory simulated
on the vertical wall using the skewed pitch distribution as shown in a. c Stripe-like firing fields of the LAHN neuron formed on the simulated vertical plane
trajectory. d Autocorrelation map of the representation that clearly shows the stripe periodicity. e Less skewed pitch distribution with μ= 0; s.d.= 70°.
f Trajectory simulated using less skewed pitch distribution. g Firing fields of the same neuron formed on the vertical plane trajectory. Loss of stripe-like
representation is evident from the firing field. h Autocorrelation map of the representation that shows 60° grid symmetry. i Uniformly distributed pitch
distribution. j Trajectory simulated using the uniform pitch distribution that gives the animal the leverage to choose any direction on the vertical plane.
k Hexagonal firing fields of the neuron on the vertical plane trajectory formed from uniform pitch distribution. l Autocorrelation map of the same firing fields
that shows cogent hexagonal grids. m Dependence of the 60° rotational symmetry of the neural representation formed on the vertical plane (quantified as
HGS on the y axis) to the s.d. of the pitch distribution of the animal’s trajectory on the same vertical plane. A significant increase of HGS score (i.e., crossing
the HGSthresh shown as horizontal red dotted line) is evident at 110° s.d. (critical angle)
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corresponding Gaussian fit (Fig. 6g). This result along with the
one shown in Fig. 5 reinforces the dependence between the neural
spatial representations and the fine details of the animal’s
trajectory statistics. Considering the current result and also the
higher packing ratio of FCC structure (compared to the other 3D
lattice structures)37,39,40, it is quite likely that the grids exist in an
FCC form in 3D space. However, we do not neglect the possibility
of the existence of other kinds of grid representations as
mentioned in ref. 41. We will return to this notion in the
Discussion section.

Emergence of 3D border and plane cells. Border cells convey
information about the borders of the environment in which the
animal navigates. These types of cells are reported from the
rodent MEC and pre-subiculum and post-subiculum7–9. How-
ever, similarly to 3D grid cells, the description of 3D border cells
has yet to be provided empirically as these are thus far only
reported in animals moving on 2D planes7–9,20. Here, we report
the possibility of the existence of border-like activity even in
higher dimensions. After training the model, some LAHN neu-
rons start to exhibit higher activity near the borders of the
environment (Fig. 7a–d). This border related activity is quantified
by calculating the border score (BS) of the respective neuron on
each orthogonal plane. For a neuron to qualify as a 3D border
cell, the BS on any two major orthogonal planes should exceed a
threshold value (the threshold value is chosen based on the

shuffling analysis, see Supplementary Note 2c). To compute the
BS, we adopted the same approach as in the case of 2D naviga-
tion, that is, the ratio of the difference between the extent of a
single field on any wall and the average distance to the nearest
wall of each bin in the rate map (weighted by its activity) to the
sum of these quantities7,9,54. Hence, the model predicts the pos-
sibility of the existence of border cells in 3D navigation.

Our model also revealed the possibility of a previously
undescribed spatial cell type in 3D space which codes for 2D
surface while the animal performs 3D navigation. We call these
neurons plane cells. Some LAHN neurons show this type of
coding where neuronal firing fields are arranged on a 2D plane in
a 3D space (Fig. 7e–g (left)). The amount of planeness of a cell is
quantified by the R2 value of the plane fitted to the 3D firing field
(Fig. 7e–g (right)). R2 value, which is the proportion of the
variance in the dependent variable predictable from the
independent variable, ranges from 0 to 1. The border cells also
can have high plane index (PI) since it is also coding for a plane
(border), or an entire face of the navigation volume. Hence, for a
cell to qualify as a pure plane cell it should have high R2 value
(>0.7528, see Supplementary Note 2d) and less BS value
(<0.5228). Apart from the plane cells that have a single plane
of firing field, we also observed LAHN neurons with multiple
planes of firing fields (Fig. 7g) and termed them as stack cells. We
believe that this model prediction on the possible existence of
plane cells or stack cells is critical because coding of lower-
dimensional subspace (a plane) while performing navigation in
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higher dimensions (3D space) may be functionally relevant for
animals navigating in 3D volumetric environments. For instance,
a horizontal plane cell can convey the information about the
altitude of the animal’s flight from the ground which is critical for
the efficacy of its navigation.

Statistical analysis of cell types from the model. Based on
indices such as spatial information (SI), grid score (GS), BS, and
PI, a quantitative analysis is done to account for the distribution
of cell types that emerge from the model. Initially the distribution
of spatial and non-spatial cells in the model is computed based on
the SI index of each LAHN neuron. Based on the SI index, 95% of
LAHN neurons evolve as spatial cells (based on average SI
obtained after retraining the LAHN for 20 times; see Supple-
mentary Note 2e) and remaining 5% as non-spatial cells (Fig. 8a).
This means that the network is able to code for one or the other
spatial variables like place, grid, border, plane, and so on. Further
analysis is done to check the distribution of the spatial cells
formed from the model. The spatial cells are clustered in the
spatial descriptor space based on their threshold values (Fig. 8b).
The distribution values convey that, out of the 95% spatial cells
formed from the model, 32.43% are place cells, 23.97% are grid
cells, 28.1% are border cells, and 15.5% are plane cells (Fig. 8c).

Network size is a critical factor in the present modeling study.
Previous modeling works on grid cells in 2D environments have
also shown the criticality of this factor23. Hence, a range of
network sizes (10 to 90 neurons with a step size of 10) are
considered and each network is trained 20 times to check the
percentage of spatial cells formed for each time. As in the

previous case, spatial cells are defined based on their SI index.
Here, we do not account for the explicit spatial cell types; instead,
we are interested in the influence of network size on capturing
any spatial variable. The trend line shows that as the size of the
network increases, it accounts for more spatial features and form
more spatial cells (Fig. 7d). However, there is an upper bound on
the size of the network that can be used in the current model.
This is because of the learning rule of LAHN. It has been
previously proven that if the afferent and the lateral connections
of a network are trained using Hebbian and Stent learning rules,
respectively, weights in such a network converge to the subspace
spanned by the PCs of the input data46. Hence, LAHN can be
considered as a neural network implementation of PC analysis
(PCA). PCA is an orthogonal linear transformation that rotates
the data to the maximal variance direction and hence performs
dimensionality reduction of the input with minimal loss of
information55. Taking this into consideration, LAHN represents
the path integration inputs with minimal number of neurons
where each neuron specializes to code for some unique feature of
the space and eventually turns out into one of the spatial cell
types as shown above. Hence, the maximum network size that can
be implemented using LAHN is N− 1, where N is the total
number of path integration neurons. If the network size is more
than N− 1, the network carries redundant information which is
not an optimal way of coding any stimulus.

Formation of spatial cell bands on the eigen spectrum. The
LAHN network has been previously shown as a neurally plausible
implementation of PCA46. Here, the analysis of LAHN network
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Fig. 7 Emergence of 3D border and 2D plane cells. a–d 3D rate maps of four LAHN neurons that show affinity towards the 3D borders or walls of the box.
Each 3D border cell has its own preferred border (either single or double preferred borders) to fire akin to the 2D border cells in the rodents. Border score
(BS) (average of top two BS) of each neuron is shown near to each box. e, f (Left) Raw data (movement trajectories in gray and action potentials in red) of
three neurons that activate predominantly on a 2D plane in 3D space, that is, they are coding for a lower-dimensional subspace and hence termed as plane
cells. (Right) 3D plane fitted to each plane cell firing field to quantify their planeness in terms of the R2 value of the fitted plane. g (Left) Raw data
(movement trajectories in gray and action potentials in red) of a neuron showing activity on multiple 2D planes and termed as stack cells. (Right) Two 3D
planes fitted to the upper and lower firing fields. R2 value of each plane is shown near to the box
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shows that for a network size of 50 neurons, around 95% cells
extract some spatial features and qualify themselves as spatial
cells, by virtue of their high SI index (Fig. 8a). The spatial cell
types which we consider here such as place cells, border cells, grid
cells, and plane cells show a defined way of distribution among
themselves (Fig. 8c). To analyze the reason behind this, a direct
PCA is done on the input path integration matrix. The cumula-
tive variance graph shows that the first 30 PCs (out of 100)
capture ~99% of the input variance (Fig. 8e). Hence, further
analysis is done only using the first 30 PCs. Spatial descriptors
such as SI, BS, GS, and PI are computed for the rate maps
obtained from the projections of the path integration values on to
each PC. Graphical plot of each descriptor (averaged over 35
trajectories) with respect to the PC index (up to first 30 PCs)
shows a clear band of spatial cell distribution in the eigen spec-
trum (Fig. 8f–i). Place cells that show high SI index (because of
their localized activity) show a band in the high variance side of
the eigen spectrum (green box in Fig. 8f). Border cells whose BS
are greater than the border threshold occupy the middle band of

the eigen spectrum (yellow box in Fig. 8g). Grid cells that show
positive GS occupy their position next to the border-cell band in
the eigen spectrum (red box in Fig. 8h). Plane cells whose PI
crosses the plane threshold come next in the eigen spectrum
(white box in Fig. 8i). We want to mention here that apparently
there also exists a separate independent band between the place
and the border regime on the eigen spectrum. This band qualifies
to be a spatial cell since the SI index of this band exceeds the SI
threshold (black dotted line in Fig. 8f). However, they do not pass
the other spatial descriptor criteria such as GS, BS, and the PI
score. Owing to its SI index, we name this as OSC band. This
finding is reminiscent of the result from Diehl et al.54, where
neurons in the MEC of the rat can exhibit a high SI index but
with atypical non-grid activity structure54. It may be possible that
OSC bands, even though not yet empirically tested, may represent
such non-grid spatial cells in 3D navigation (please see Supple-
mentary Note 7). Hence, arranging the spatial cell bands
(excluding OSC band) in the descending order of their PC var-
iance goes as: place cells, border cells, grid cells, and plane cells.
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This ordering in the eigen spectrum shows correlation with the
spatial cell distribution from the LAHN (Fig. 8c). This shows a
close relation with the spatial map formation and the PCA-like
learning rule.

Discussion
We present here a hierarchical network model for the formation
of a variety of spatial cells in the 3D space which captures the
empirical results of 3D spatial cells reported to date17,18,56. It
further accounts for the puzzling anisotropy of grid-cell coding as
reported in rodents by revealing the relationship between the
anisotropy and the range of pitch values of the animal’s trajectory.
While 3D spatial cell types such as grid cells and border cells have
yet to be reported in an animal navigating in the complete 3D
space, the model further makes explicit predictions about their
expected properties: first, on the spatially periodic representations
in 3D space the model contests the emergent periodic structure
with the FCC symmetry and shows the possibility of a planar
symmetry in 3D space rather than FCC-like lattice structure. This
is in partial agreement with the empirical reports that support
planar symmetry of the spatial representations in 3D space51,
notwithstanding the fact that these report emerges from rodents
that do not span the complete volumetric space during naviga-
tion. This shows the need for a new model organism like bats to
study the problem of full 3D navigation57. The model also pre-
dicts the existence of 3D border cells by showing the emergence
of such cells whose 3D rate maps show bias towards any one or
two borders (walls) of the box. Importantly, the model predicts
the existence of novel spatial cell types, unreported in experi-
mental literature. Apart from the border cells, the model also
shows the emergence of neurons that code for a lower-
dimensional subspace like a plane (plane cells) or more than
one plane (stack cells). The aforementioned results are obtained
using anti-Hebbian network, in which the afferent and lateral
connections are trained by Hebbian and Stent rules, respectively.
These learning rules qualify the biological plausibility of the
network and also strengthen the model predictions. To our
knowledge, this is the first model to explain the formation of all
3D spatial cells at a systems level.

An extensive empirical study on the navigational behavior of
the Egyptian fruit bats resulted in the discovery of 3D place cells
in their dorsal hippocampus18,58. This extends the implications of
cognitive spatial maps onto navigation in higher-dimensional
space. 3D place cells exhibit volumetric firing fields on their 3D
flight trajectory and cover the entire space uniformly. Around
33% of LAHN neurons in the model show the emergence of
localized firing fields akin to the aforementioned empirically
reported 3D place cells (Figs. 2b–e and 8c). It is evident from
Fig. 2a that the model takes 175,000 iterations to form a localized
place-cell activity and this corresponds to ~30 min time period
(one iteration takes 0.01 s). This time corresponds to the time-
scales of empirical experiments conducted in flying bats where 3D
spatial firing fields have been reported18. Isotropic coding is an
important feature that singles out 3D place cells of bats from their
rodent counterpart18. Place neurons from the model also exhibit
isotropic 3D spatial encoding which is evident from the dis-
tribution of the elongation index obtained from a fitted ellipsoid
(Fig. 2f). The reason for isotropy has been attributed to the
evolutionary pressure to encode and decode the 3D SI in an
efficient manner18.

Place cells and grid cells are empirically reported to exhibit an
intriguing transformation of their representations in rodents from
classical localized isotropic place field and hexagonal grid firing
fields to stripe-like firing fields as navigation changes from hor-
izontal XY to vertical YZ plane, respectively52. The role of the

trajectory statistics of a navigating animal in the manifestation of
its neural spatial representation cannot be ruled out. This
hypothesis has been reinforced by the simulation results shown
here (Figs. 4 and 5). We also corroborated the validity of this
hypothesis by simulating the reverse case (i.e., training the net-
work by making the animal move on the vertical wall and then
testing the network by making the animal move on the horizontal
floor), which essentially gave a similar result (i.e., stripes on
vertical wall and grids on the horizontal floor; please see Sup-
plementary Note 6). This result is significant because it is gen-
erally believed that the type of a spatial cell depends on the model
parameters alone. However, our modeling approach suggests that
it is a joint effect of both the model parameters (weights) and the
behavior. Hence, we attribute this anisotropic coding schema to
the variance in the animal’s direction distribution. Learning rules
of the anti-Hebbian network performs PCA-like transformation,
that is, projecting the high-dimensional spatial inputs provided by
the path integration oscillators to those weight vectors in the
direction of maximal variance. Place and grid representations are
high-level spatial encoding produced by combining the high
variance–high-dimensional sensory information. At smaller
values of the s.d. of pitch, we observe an anisotropic transfor-
mation in both place cells and grid cells in the model. This
suggests that the representations formed by the brain to encode
any sensory stimulus may not be a static one, but adapts dyna-
mically to sensory inputs.

Empirical data on full 3D spatial navigation is sparse compared
to the enormous 2D navigation empirical data from
rodents1–3,6–9,38,54,59. The proposed model makes many predic-
tions with respect to 3D spatial representations. Indeed, spatially
periodic neurons like grid cells have been observed in crawling
bats20 and there are also experimental efforts using rodents to
study the 3D structure of grid cells51,52. However, there are no
conclusive results regarding the nature of 3D grid cells. In the
proposed model, ~24% of LAHN neurons exhibit spatial peri-
odicity (Fig. 8c). The spatially periodic neurons are analyzed to
check for any FCC symmetry, which has been previously pre-
dicted as the possible form for the 3D grid structure on the basis
of their optimal packing efficiency37,39. However, grid neurons in
the model apparently do not exhibit FCC symmetry (Fig. 3g).
Future work must study conditions for emergence of other forms
of 3D grid structure such as HCP structure39,41,51, body-centered
cubic structure, or columnar structure41. Further analysis of
rotational symmetry on 2D orthogonal planes (Fig. 3h, i) points
to both hexagonal and square planar symmetrical nature of the
grid neurons in 3D space, compatible with empirical reports from
rodent studies41,51. However, it is very unlikely for the brain to
choose a non-optimal structure (2D hexagons in 3D space) when
there is an option to choose a structure (FCC lattice) that is
optimal in terms of packing fraction. The question is what does a
network like LAHN do when there is not enough variance/
information regarding the 3D component because of highly
skewed pitch distribution? In such a case, it may rely upon the
very next option, a planar hexagon, which is an optimal structure
in the subspace (2D space), which has high variance in the azi-
muth distribution. An increase in the pitch range could possibly
bring a transformation from planar to lattice symmetry. Further
analysis along these lines shows that as the animal navigates in 3D
space in a way that is less pitch-constrained, the more grid
representations tends towards FCC regime (Fig. 6g). FCC struc-
ture, as mentioned in the previous modeling studies37,39,40,
appears to offer a highly efficient packing ratio and hence possibly
encodes the 3D volumetric space more efficiently. However, the
current simulation result shows the possibility for the dependence
of the lattice grid structure formation on the trajectory statistics of
the animal. Future experimental work in animals navigating in
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3D space while exhibiting adequate trajectory variability will be
crucial for addressing this important prediction. The model
exhibits another interesting encoding scheme of a lower-
dimensional subspace, that is, a 2D plane while the animal per-
forms a complete 3D navigation (Fig. 7e–g). We exclude border
cells from this category even though border cells also code for a
plane (walls of the box). This kind of lower-dimensional coding
has got important functional implications. For instance, a hor-
izontal plane cell could potentially code for the animal’s current
altitude. This neuronal prediction could be empirically tested only
when the animal engages in flight rather than crawl on the
ground.

If we analyze the distribution of the spatial cell types formed
from the model, it is evident that place and border cells together
comprise 60.53% of the total distribution (Fig. 8c). This is con-
sistent with the empirical reports from rat/bat study where both
place cells and border cells are reported from the hippocampal
formation. (Note: 3D border cells are not reported from flying
bats.) Finally, grid cells that comprise 23.97% of the distribution
(in the model) also co-exist with the OSCs in the model, but as
per the empirical literature grid cells arise once synapse upstream,
that is, in the entorhinal cortex3,20. When we analyze the eigen
spectrum, the grid-cell band comes after the place-cell and
border-cell bands (Fig. 8h). This may point to the possibility that
the anatomical hierarchy may be performing computations that
extract specific eigen bands. For example, the entorhinal cortex
may extract the lower eigen bands that possibly carry grid
information, whereas the hippocampus may extract the higher
eigen bands, which possibly carry place and border information.
Since the border cell comes between the place and the grid bands
(Fig. 8g), it is highly likely to see those cells in different structures
of the hippocampal formation, which has been reported in rodent
studies7,8. This kind of band separation across anatomical
structures could potentially enhance the computational efficacy of
the navigation system since each specific information (like place
info, border info, displacement info) is well segregated into dif-
ferent bands and also into different anatomical circuits. A pos-
sible analog for this band separation is the frequency modulation
principle in communication theory where information is
embedded at different bands of frequencies. This allows the dif-
ferent bands to not interfere with each other, thereby increasing
the efficacy of the information transfer system60. Since the model
consists of an abstract hierarchy of neuronal layers, a strictly
anatomical interpretation of model components is not feasible at
the moment. Also, the extensive literature on the quantitative
analysis of the anti-Hebbian network (e.g., with m number of
neurons) has shown that the network essentially minimizes the
reconstruction error (quadratic cost function), which after gra-
dient descent optimization gives rise to optimal transformation
matrix whose row space is spanned by the eigenvectors corre-
sponding to the m highest eigenvalues of the covariance matrix of
the input data61–63. This means that using the current archi-
tecture of the anti-Hebbian network, it is not possible to make the
weight connections converge to a restricted subspace until and
unless additional constraints are applied to the aforementioned
cost function. This analysis (which may include constrained
quadratic optimization) could be exhaustive and will need to be
addressed in future studies.

To our knowledge, this is the first network-level modeling
effort to explain the formation of empirically reported 3D spatial
cells along with the predictions on the other possible kinds of
spatial cells. However, there are other possible add-ons to this
network model. Here, the model is driven by the readily available
direction information (both azimuth and pitch), which are
assumed to come from the upstream areas like dorsal pre-
subiclum19. This directional information could be extracted from

the visual, proprioceptive, and echolocation (in the case of bats)
sensory information in a more biological way to produce a tor-
oidal map of HD using self-organization principles. This will
further allow study of the influence of these sensory modalities on
the 3D spatial cells. What are the possible dynamic configurations
that the spatial cells can assume to account for any change in the
sensory stimulus? We would like to extend this model to study
the goal-directed navigation problem in 3D space where the
animal searches for a target location and over the course of time it
learns to find the target rapidly (this is a benchmark experimental
paradigm used to study the 2D navigation problem under the
name Morris water-maze task64). This will shed light onto the
possible ways in which the 3D spatial cells aid the animal to find
its goal location.

Methods
Azimuth and pitch direction computation. Given change in the position across all
the dimensions Δx, Δy, and Δz:

θAzðtÞ ¼ tan�1 ΔyðtÞ=ΔxðtÞ½ �; ð1Þ

θPðtÞ ¼ tan�1 ΔzðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔxðtÞ2 þ ΔyðtÞ2

q� �
; ð2Þ

where θAz and θP are azimuth and pitch directions, respectively.

HD response. There are a total of M azimuth and pitch neurons divided in 7:3
ratio as per the empirical data19. Neurons in the azimuth and pitch are tuned to
preferred directions that span 360°. Activity of neurons in each layer is computed
as given below:

ϕiAzðtÞ ¼ cos½θAzðtÞ � θiAz�; ð3Þ

ϕiPðtÞ ¼ cos½θPðtÞ � θiP�; ð4Þ

where ϕiAz and ϕiP are the activities of the azimuth and pitch neurons, respectively,
and θiAz and θiP are the preferred directions of ith azimuth and pitch neurons,
respectively.

Path integration layer. Each neuron in this layer is a phase oscillator whose
dynamics is given in Eqs. 5 and 6. This layer has one-to-one connectivity with the
preceding direction encoding layer. The direction and speed information is inte-
grated into the phase of the oscillators:

�
θiPIAz

¼ ωþ βsϕiAz; ð5Þ

yiPIAz ¼ sin θiPIAz

� �
; ð6Þ

where ω is the angular frequency of the oscillator such that ω= 2πf, where f is
the base frequency of the oscillator, β is the modulation factor, and s is the speed of
navigation given as:

s ¼ XðtÞ � Xðt� 1Þk k; ð7Þ

X 2 R
3: ð8Þ

Similar equations (i.e., Eqs. 5 and 6) hold for the pitch path integration layer too
(with the only change that the direction input it receives comes from the pitch
direction neurons). Empirically, it is reported that the spectrum of local field
potential oscillations in the bat hippocampal area lack θ oscillations18,20,45. Hence,
in the model also we used a very low base frequency (f= 0.5 Hz) for the oscillators.

Response equation of anti-Hebbian network. Oscillatory activity (i.e., the phase
variable passed through the sine function) in the azimuth and pitch path inte-
gration layer (Eq. 6) serves as the input to the downstream LAHN. Hence, both
azimuth and pitch path integration values are concatenated together (concatena-
tion operation is shown by the symbol | in Eq. 10) and passed to the downstream
neural LAHN layer. This ensures that LAHN layer is endowed with complete 3D
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information. The activity of a neuron in the LAHN is given as46:

γiðtÞ ¼
Xm
j¼1

qijy
j
PIðtÞ þ

Xn
k¼1

pikγkðt � 1Þ; ð9Þ

yPI ¼ ½yPIAz jyPIP �; ð10Þ

where γi is the activity of ith LAHN neuron, qij is the afferent weight connection
from jth component of input signal yPI to ith neuron of LAHN, pik is the lateral
weight connection from kth to ith LAHN neuron, m is the dimension of the input,
and n is the total number of neurons in LAHN.

Neural plasticity rule of anti-Hebbian network. The plasticity rules for the
synaptic weight connections of LAHN are as given below:

Δqij ¼ ηF yjPIðtÞγiðtÞ � qijγ
2
i ðtÞ

h i
; ð11Þ

Δpik ¼ �ηLγiðtÞγk t � 1ð Þ; ð12Þ

where Δqij is the change in the afferent weight connections (Hebbian rule), Δpij
is the change in the lateral weight connections (Stent rule), and ηF and ηL are the
learning rates for the afferent and lateral weight connections, respectively.

The information required for the unsupervised learning of LAHN neuron is
available locally at its synaptic connections (Eqs. 11 and 12) and this makes the
network biologically plausible.

While training the anti-Hebbian network, we continuously monitored the
change in the afferent and lateral weight connections and the training is stopped if
it meets the following criteria:X

Δpj j þ
X

Δqj j<T;

where Δp is the change in the afferent weight connections, Δq is the change in the
lateral weight connections, and | | symbol stands for the absolute operation. If the
change in the summation of the absolute of both synaptic connections goes less
than a tolerance value T, the training is stopped since it assures the convergence of
both weight connections.

Empirically, a typical behavioral session of the bat takes ~30 min duration
(31.8 ± 6.9 min data obtained from the Supplementary Information of ref. 18). In
the proposed modeling study, the total sample size of a simulated 3D trajectory for
training is 175,000 samples and the integration time constant (dt) used for the
generation of this trajectory is 0.01 s (see Supplementary Note 1 for the generation
of the random 3D trajectory). Hence, the total time taken for training during the
active 3D navigation of the virtual animal is ~29.2 min, which is on par with the
empirical data18.

3D firing rate map formation. 3D volume of the physical space is binned into
41 × 41 × 41 voxels. Neuronal activity is assigned to the respective voxel depending
on the firing field position. After this, the rate map is smoothed by a 3D Gaussian
filter of σ= 3.

3D autocorrelation map formation. Autocorrelation map is mainly computed to
analyze the spatial periodicity of the neural activity by computing the respective
gridness scores. Autocorrelation map, r, is computed as follows:

r τx ; τy ; τz

� �

¼
M
P
x;y;z

λ x;y;zð Þλ x�τx ;y�τy ;z�τzð Þ�P
x;y;z

λ x;y;zð Þ
P
x;y;z

λ x�τx ;y�τy ;z�τzð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M
P
x;y;z

λðx;y;zÞ2�
P
x;y;z

λðx;y;zÞ
� �2� �

M
P
x;y;z

λ x�τx ;y�τy ;z�τzð Þ2� λðx�τx ;y�τy ;z�τzÞ½ �2
� �s ; ð13Þ

where λ(x, y, z) is the firing rate at (x, y, z) location of the rate map, M is the
total number of voxels in the rate map, and τx, τy, and τz correspond to x, y, and z
coordinate spatial lags.

Fitting a plane to the firing field. Since the firing field in this case has three
dimensions, multiple regression is done to fit a plane to the firing field data. The
model is as follows65:

ŷ ¼ α0 þ α1x1 þ α2x2;

where y ̂ is the variable that has to be predicted, α's are the regression coefficients
that has to be determined, and x1 and x2 are the regressors.

Regressors are computed by minimizing the sum of squares of the residuals
(SSR) such as:

SSR ¼
X
i

yi � ŷið Þ2; ð14Þ

where yi is the actual value and yî is the predicted value from the multiple
regression model.

Fitting an ellipsoid to the place-cell firing field. Ellipsoid is fitted to the firing
field data of a place-cell by minimizing the following cost function:

Min
ðx � cxÞ2

r2x
þ ðy � cyÞ2

r2y
þ ðz � czÞ2

r2z
� 1

�����
�����; ð15Þ

where cx, cy, and cz are the coordinates of the center of the ellipsoid in the 3D
Cartesian coordinate system, and rx, ry, and rz are the semi-axis lengths of the
ellipsoid.

Computation of spatial descriptors. SI index is used to classify if a neuron carries
any spatially relevant information or not18. It is computed from the neuron’s firing
rate map as given below:

SI ¼
X
i

pi
λi
λ
log2

λi
λ

� 	
; ð16Þ

where pi is the probability for the animal being in the ith voxel. This can be
computed as the ratio of the number of times the animal visited that voxel to the
total time of its flight. λi is the firing rate in the ith voxel. λ is the mean firing rate
across the rate map. SI is expressed as bits per spike.

Gridness score is used to analyze the spatially periodic grid activity of a neuron.
We adopted the standard methodology for the gridness score computation as
mentioned in ref. 3. From the 2D autocorrelogram of the neuron (this can be the
projections of a 3D autocorrelogram on a plane), the local peaks near to the central
peak of the autocorrelogram are cropped out and the central peak is further
masked. Following this, 60° and 90° rotational symmetry of the autocorrelograms
are further analyzed to quantify the HGS and SGS gridness score of a neuron,
respectively. The relevant equations are as shown below:

HGS ¼ min cor r; r60
0

� �
; cor r; r120

0
� �h i

�max cor r; r30
0

� �
; cor r; r90

0
� �

; cor r; r150
0

� �h i
;

ð17Þ

SGS is computed as follows21:

SGS ¼ cor r; r90
0

� �
�max cor r; r45

0
� �

; cor r; r135
0

� �h i
; ð18Þ

where rθ is the autocorrelation map rotated by θ°.
BS is used to analyze the border activity of a neuron. To compute BS, two

quantities are assessed such as: the maximal extent of a single field on any wall
(CM) and the mean firing distance (dM). dM is computed as the average distance of
each bin in the firing rate map to the nearest wall, weighted by the firing rate
activity in that bin. BS is then computed as follows7,54:

BS ¼ CM � dM
CM þ dM

: ð19Þ

BS ranges between −1 and 1, where −1 represents a central firing and +1
represents a firing field that is perfectly aligned with a border.

PI is used to analyze the planeness of a neuron. This is obtained by fitting a
plane to the 3D firing field, and the goodness-of-fit R2 value is considered as the PI
score. R2 value is the coefficient of determination whose value ranges between 0
and 1. It is defined as the proportion of the variance in the dependent variable that
can be explained using the independent variable65. R2 value can be estimated as
follows:

R2 ¼ 1� SSR
SST

; ð20Þ

where SSR is the sum of squared residuals as mentioned above.
SST is the total sum of squares which gives the information on the total variance

of the data around its mean. It is given as follows:

SST ¼
X
i

yi � �yð Þ2;
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where y ̅ is the mean of the data to be predicted. Fitting of Gaussian distribution on
the histogram of data is done using histfit function in MATLAB.

All simulations are done in MATLAB R2016a. Please see Table 1 for the
parameter values.

Data availability
All the relevant data and code are available from the corresponding author upon rea-
sonable request.
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