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We report a new determination of q̂, the jet transport coefficient of the quark-gluon plasma. We use the 
JETSCAPE framework, which incorporates a novel multistage theoretical approach to in-medium jet evolution 
and Bayesian inference for parameter extraction. The calculations, based on the MATTER and LBT jet quenching 
models, are compared to experimental measurements of inclusive hadron suppression in Au + Au collisions at 
the BNL Relativistic Heavy Ion Collider (RHIC) and Pb + Pb collisions at the CERN Large Hadron Collider 
(LHC). The correlation of experimental systematic uncertainties is accounted for in the parameter extraction. 
The functional dependence of q̂ on jet energy or virtuality and medium temperature is based on a perturbative 
picture of in-medium scattering, with components reflecting the different regimes of applicability of MATTER 
and LBT. In the multistage approach, the switch between MATTER and LBT is governed by a virtuality scale Q0. 
Comparison of the posterior model predictions to the RHIC and LHC hadron suppression data shows reasonable 
agreement, with moderate tension in limited regions of phase space. The distribution of q̂/T 3 extracted from 
the posterior distributions exhibits weak dependence on jet momentum and medium temperature T , with 90%
credible region (CR) depending on the specific choice of model configuration. The choice of MATTER+LBT, with 
switching at virtuality Q0, has 90% CR of 2 < q̂/T 3 < 4 for  pT,jet > 40 GeV/c. The value of Q0, determined 
here for the first time, is in the range 2.0–2.7 GeV.
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I. INTRODUCTION

The quark-gluon plasma (QGP) is the state of matter in
conditions of extreme temperature and density, similar to
those of the universe a few microseconds after the Big Bang,
with structure and dynamics governed by interactions of sub-
hadronic quanta [1]. The QGP is generated in the laboratory
by collisions of heavy nuclei (A + A) at the BNL Relativistic
Heavy Ion Collider (RHIC) and the CERN Large Hadron
Collider (LHC), and its properties have been measured ex-
tensively by large experiments at those facilities ([2] and
references therein). Comparison of these measurements with
theoretical calculations show that the QGP exhibits collective
behavior with very low specific viscosity [3]. The QGP is
likewise found to be opaque to penetrating probes carrying
color charge, a phenomenon known as “jet quenching” [4].

Jets in high-energy hadronic collisions are generated by
hard (high Q2) interactions of partons (quarks and gluons)
from the incoming projectiles. The scattered partons are ini-
tially highly virtual and evolve through QCD bremsstrahlung
and pair production, forming a parton shower that hadronizes
into a collimated spray of stable particles that is observable
experimentally (a “jet”). Jet production rates and jet struc-
ture have been measured extensively in p( p̄) + p collisions
[5–12], and theoretical calculations based on perturbative
QCD (pQCD) are in excellent agreement with such measure-
ments [13–17].

Jets are likewise produced in high-energy A + A collisions,
in parallel with formation of the QGP. Jets generated in A + A
collisions propagate during their shower evolution through
the QGP and interact with it, thereby modifying final-state
jet structure and jet distributions relative to production in
vacuum. Measurements of these modifications provide unique
and sensitive probes of the QGP.

A key experimental observable of jet quenching is the
suppression of inclusive hadron production at high transverse
momentum (high pT ) [4,18]. Hadron suppression is measured
using the ratio RAA of the inclusive hadron yield in A + A
collisions to that in a reference system, usually pp collisions at
the same collision energy, whose yield is scaled to account for
nuclear geometry [19]; RAA = 1 corresponds to the absence
of nuclear effects in high-pT hadron production. Such effects
arise from both nuclear parton distribution functions and from
jet quenching in the QGP. Inclusive hadron suppression at
high pT has been measured extensively at RHIC [20,21] and
the LHC [22–25].

Jet quenching is understood theoretically to arise from
elastic and inelastic interactions of the partons in the jet
shower as it traverses the QGP, with coherence effects playing
an important role [4,18,26–30]. Several different formalisms
have been developed to describe this process, as reviewed
in [31]. Calculations based on these formalisms have been
carried out for inclusive hadron suppression [32–35], dihadron
production [36–38], γ -hadron correlations [39–43], recon-
structed jets [41,44–49], and jet substructure [50–54].

These formalisms are based on various approximations
that are applicable in limited ranges of shower energy and
virtuality scales. Several of these formalisms have recently
been implemented in a unified analysis framework, called

JETSCAPE [55], providing a multistage model of jet evolu-
tion in which each jet quenching formalism is applied only in
its appropriate range of validity in shower energy and virtual-
ity.

Models of in-medium jet-thermal parton interactions have
parameters, known as jet transport coefficients, that can be de-
termined by comparison of their calculations to jet quenching
measurements [27–29,56–72]. Phenomenologically, the most
significant transport coefficient is q̂, which denotes the mean
square of the momentum transfer between the propagating
hard jet and the soft medium per unit length, q̂ ≡ d〈k2

⊥〉/dL,
where 〈. . . 〉 indicates the average over all jet propagation
paths for the event population.

A quantitative determination of q̂ and related quantities, by
comparison of theory models with experimental data, has been
carried out by several groups [66–75]. The JET Collaboration
extracted q̂ from the comparison of multiple jet quenching
model calculations to inclusive hadron RAA measurements at
RHIC and the LHC [66], which are expected to generate
a QGP with different initial temperature. Nonperturbative
contributions to the value of q̂ can also be calculated using
first-principles lattice QCD [76] though challenges remain to
include quark dynamics into a full QGP calculation. A recent
2 + 1 flavor calculation with physical quark masses on Nτ = 8
lattices [77,78] yields a value for q̂/T 3 in the range of 2.5–3.5
for the highest temperatures generated in heavy-ion collisions
at RHIC and the LHC, consistent with the results reported by
the JET Collaboration.

Each model in the JET calculation of q̂ has a single free
parameter, either q̂ or the effective strong coupling parameter
αs, which is determined separately for RHIC and LHC data.
In order to go beyond separate extractions of q̂ at RHIC and
LHC, and instead obtain a distribution for q̂ that is a smooth
function of the medium temperature and jet energy, parameter
extraction incorporating data from both colliders is required.
However, that approach is beyond the scope of the least-
squares minimization approach used by the JET analysis, and
a more comprehensive approach is needed, based on Bayesian
inference [79–81].

Bayesian inference has been utilized previously to extract
parameters of the QGP from heavy-ion collision data, in
particular the specific shear viscosity η/s [82–85] and the
equation of state (EoS) [86], with the latter result agree-
ing well with lattice QCD calculations. See also [87]. This
approach has likewise been used to study the heavy quark
diffusion coefficient of the QGP [88].

The theoretical description of jet modification includes loss
of energy-momentum by hard partons in the shower, genera-
tion of softer partons by medium excitation, and excitation
of the medium due to energy and momentum exchanges at
a scale below that describable by perturbative techniques. A
complete description of the entire jet, in terms of all available
jet observables, requires the modeling of several transport
coefficients. Focus on high-pT hadrons constrains discussion
to the hardest partons in the shower, whose distribution is
modified by (mainly transverse) momentum exchanges with
the medium that depends primarily on q̂.

This paper presents a quantitative extraction of the tem-
perature and momentum dependence of q̂ in the QGP, using



Bayesian inference methods in the JETSCAPE framework.
The analysis extends that of the JET collaboration [66] by
determining the functional dependence of q̂ on the jet en-
ergy and virtuality, and the local temperature. Comparison
of model calculations with data from both RHIC and the
LHC provides a broad scan in jet energy and virtuality. Two
collision centralities are utilized, providing variation in the
medium temperature profile.

As the jet shower propagates through the QGP, it ex-
changes energy and momentum with the dense medium.
Momentum exchanges above a certain scale are described
using perturbative QCD (pQCD), whereas softer momentum
exchanges are modeled by partial thermalization of the ex-
changed four-momentum with a hydrodynamic background.
This calculation incorporates multistage jet evolution, using
the MATTER model [89,90] at high virtuality scale, and the
LBT model [35,42,43,55] at low virtuality scale, with the
switching between models governed by a free parameter Q0.
Two different analytic parametrizations of q̂ are explored
which are functions of the medium temperature and either jet
energy or jet virtuality, and which are based on perturbative
treatment of jet-medium interactions.

The experimental data used to for Bayesian parameter ex-
traction are measurements of inclusive hadron suppression
in central and semicentral Au + Au collisions at

√
sNN =

200 GeV for pT,h > 8 GeV/c [21], and Pb + Pb collisions at√
sNN = 2.76 and 5.02 TeV for pT,h > 10 GeV/c [23,24].
The paper is organized as follows. Section II presents the

jet evolution models. Section III presents the q̂ parametriza-
tions. Section IV presents the experimental data and treatment
of their uncertainties. Section V presents training of the Gaus-
sian process emulator. Section VI presents implementation
of Bayesian inference. Section VII presents closure tests.
Section VIII presents the results in terms of posterior distribu-
tions for q̂ from the Bayesian parameter extraction and Sec. IX
gives a summary and outlook.

II. MODELING JET-MEDIUM INTERACTIONS

JETSCAPE provides a general numerical framework for
simulating jet-medium interactions, with several alternative
models to simulate the QGP and jet evolution. QGP evolution
is modeled using relativistic hydrodynamics. In this study, jet
evolution is calculated using the MATTER model to describe
interactions with the QGP at high virtuality and the LBT

model to describe interactions with the QGP at low virtuality.
MATTER and LBT are also combined in a multistage approach.
This section discusses each model in turn.

The primary goal of this calculation is to explore the appli-
cation of Bayesian inference to the determination of q̂, with
careful assessment of experimental uncertainties. For clarity
we therefore limit the complexity of the calculation in its other
aspects. The theoretical approach we utilize does not account
for all known factors in the modeling of the jet-medium inter-
action and the hydrodynamic medium. The effects we neglect
include variation in equilibration time and initial conditions
for hydrodynamic evolution [69], the role of event-by-event
fluctuations in initial energy density for the hydrodynamic
evolution [70], and variation in jet quenching model parame-

ters such as start and stop time, and length dependence, of the
interaction [91,92]. We assess the impact of such choices in
the following sections. Other calculations addressing the ex-
traction of q̂ from inclusive measurements, that each include
some of these effects, are found in [67,68,71].

A. QGP evolution

The evolution of the QGP is simulated with second-
order relativistic hydrodynamics as implemented in VISH2+1
[93–97]. An initial entropy density profile from the Monte
Carlo Glauber model [19,98] is evolved with dissipative fluid
dynamics, starting at longitudinal proper time τ0 = 0.6 fm/c.
For Au-Au collisions at

√
sNN = 200 GeV and Pb-Pb col-

lisions at
√

sNN = 2.76 TeV, a partial chemical equilibrium
equation of state was used with Tchem = 165 MeV (s95p-
v0-PCE165 [99,100]), along with a constant specific shear
viscosity η/s = 0.08 and no bulk viscosity; these choices
were found to provide a good description of data at RHIC and
the LHC in Ref. [101]. For Pb-Pb collisions at

√
sNN = 5.02

TeV, the hydrodynamic profiles were later tuned in Ref. [97]
with a different equation of state and shear viscosity: partial
chemical equilibrium equation of state with Tchem = 150 MeV
(s95p-v1-PCE150 [99,100]) and a temperature dependent η/s
[97]. The hydrodynamic model provides the space-time evo-
lution profile of the temperature T and flow velocity uμ;
the viscous part of the energy-momentum tensor is not used.
The in-medium jet evolution equations are solved using these
profiles, as discussed in the following subsections.

In this work, we apply event-averaged hydrodynamic pro-
files for jet evolution and only consider jet energy loss
inside the QGP phase; interactions in both the brief pre-
hydrodynamic stage (τ < 0.6 fm/c) and the dilute hadronic
stage (T < Tstop) are neglected. The choice of the bulk param-
eters τ0, Tstop, and η/s affect the calculated value of inclusive
hadron RAA. In the present study their values are fixed by com-
paring the VISHNU hydrodynamic model with soft hadron
data. Jet-medium interactions are stopped at Tstop = 165 MeV,
close the the pseudocritical chiral temperature Tc. If a lower
value of Tstop is used, the jet energy loss will increase and a
smaller value of q̂ will be extracted from the jet quenching
data, though the effect is expected to be small due to the minor
enhancement of jet energy loss at such low temperature.

B. Jet production

Energetic jets are generated in hard scatterings, with rate
based on a leading-order perturbative QCD (LO pQCD) calcu-
lation in momentum space using the CTEQ5 parametrization
of parton distribution functions [102]. In nucleus-nucleus
collisions, the EPS09 parametrizations of nuclear PDF modi-
fication [103] are taken into account for the momentum space
distribution of hard partons. Their position space distribu-
tion is sampled according to the Monte Carlo (MC) Glauber
model.

C. Jet-medium interaction at high virtuality: MATTER

The Modular All Twist Transverse-scattering Elastic-drag
and Radiation (MATTER) model [89,90,104] simulates the



splitting of highly virtual partons, i.e., jet partons whose vir-
tuality is much larger than the multiple-scattering scale of
the medium it probes (∼√

q̂E ), where E is the parton en-
ergy. At high virtuality, the number of splittings dominates
over the number of scatterings inside the medium, and the
parton splitting process is described by a medium-modified
virtuality-ordered shower [64,105–107], where the scattering
in the medium provides an additional contribution to the split-
ting functions.

A jet shower is initiated by a single hard parton produced
at a point r with a forward light-cone momentum p+ = (p0 +
n̂ · �p)/

√
2, in which n̂ = �p/| �p| specifies the direction of the

jet. The virtuality (Q) of a particular parton is sampled based
on the Sudakov form factor that determines the virtuality
distribution [89,108],

�
(
Q2, Q2

0

)
=

∏
a

�a
(
Q2, Q2

0

)

=
∏

a

exp

[
−

∫ Q2

Q2
0

dQ2

Q2

αs(Q2)

2π

∫ 1−zc

zc

dzPa(z, Q2)

]
. (1)

Here, a represents the channels through which the jet parton
can split, Q varies from the maximum possible value Qmax that
initiates at the parton energy down to the minimum allowed
value of Q0 below which the virtuality-order parton shower
breaks. In the equation above, zc is taken as Q2

0/Q2, and the
splitting function contains both vacuum and medium-induced
contributions,

Pa(z, Q2) = Pvac
a (z) + Pmed

a (z, Q2). (2)

Here, the medium-induced part is adopted from the higher-
twist formalism [60,64,109,110] and treated as a perturbation
to the vacuum part:

Pmed
a (z, Q2) = Pvac

a (z)

z(1 − z)Q2

∫ ζmax
+

0
dζ+q̂g(r + ζ )

×
[

2 − 2 cos

(
ζ+

τ+
f

)
− 2

ζ+

τ+
f

sin

(
ζ+

τ+
f

)

+ 2

(
ζ+

τ+
f

)2

cos

(
ζ+

τ+
f

)]
. (3)

Here, q̂g denotes the gluon transport coefficient; it is evaluated
locally at �r + n̂ζ+ and is related to the quark transport coeffi-
cient q̂q by color factors. The maximum length sampled ζ+

MAX
is taken as 1.5τ+

f , where τ+
f = 2p+/Q2 is the mean light-cone

formation time.
After Q of the parent parton is determined, z is chosen by

sampling the splitting function P(z). The maximum possible
virtualities of the two daughters are thus zQ and (1 − z)Q,
from which the virtualities of the two daughters Q1 and Q2 are
similarly assigned by sampling the form factor in Eq. (1). The
transverse (to n̂) momentum of the produced pair is then cal-
culated according to the difference in invariant mass between
the parent and daughters:

k2
⊥ = z(1 − z)Q2 − (1 − z)Q2

1 − zQ2
2. (4)

The actual time/length for each splitting process is sampled
using a Gaussian distribution with a mean value of τ+

f [90].
This process is iterated until virtualities of all partons within
the jet shower reaches the predetermined value of Q0. This
virtuality-ordered parton shower method is similar to the time-
like shower implemented in PYTHIA, except that here the
medium effect is included in a consistent way.

Hard partons evolve through multiple splittings in MATTER

starting with maximum possible virtualities (Q = E ) until
their virtualities drop below Q0. When the MATTER model is
applied alone, Q0 is fixed at 1 GeV. For proton-proton colli-
sions, only the vacuum contribution to the splitting function
Eq. (2) is taken into account. As shown in Ref. [90], this
approach provides a good description of the single inclusive
hadron and jet spectra at high pT in proton-proton collisions,
serving as a reliable baseline for studying their nuclear modifi-
cation in heavy-ion collisions. For nucleus-nucleus collisions,
both the vacuum and medium-induced parts are implemented.
At Q0 = 1 GeV, all partons are converted into hadrons using
PYTHIA fragmentation.

Partons are fragmented independently using the PY1ENT

function of PYTHIA [111]. We note that there is sizable un-
certainty in parametrized fragmentation functions at LHC
energies [112]. However, since the combined calculation of
initial production and hadronization in JETSCAPE accurately
describes jet spectra in proton-proton collisions [113], we
assume that is can also be used to calculate in-medium modi-
fication in heavy-ion collisions.

For the medium-induced part of the splitting function in
Eq. (2), the local fluid velocity of the dynamical medium is
taken into account by rescaling q̂ in Eq. (3) via q̂ = q̂local ·
pμuμ/p0 [114], where pμ is the four-momentum of the jet.
The value of q̂ is zero before jets enter the thermal medium
(τ0 < 0.6 fm) and after they exit the QGP; in both regions only
the vacuum splitting function contributes to the parton shower.
In the remainder of this paper, in the interest of brevity, we
will refer to q̂local as q̂. It should be understood that a boost is
invoked within the calculation for the case of a moving frame.

The jet transport coefficient of the QGP medium is the sole
parameter of the MATTER model. As discussed in [90], the
minimal assumption that q̂ is proportional to the entropy den-
sity s in the local rest frame, q̂/s = q̂0/s0, is able to describe
single inclusive hadron and jet RAA, but distinct values of q̂0

at a given reference point s0 are required at RHIC and the
LHC. The present work explores a more general form of q̂ as
a function of medium temperature, jet energy, and virtuality
scale, which can be uniformly applied to data from RHIC and
the LHC.

D. Jet-medium interactions at low virtuality: LBT

The linear Boltzmann transport (LBT) model calculates the
time evolution of jets in a thermal QGP generated in rela-
tivistic heavy-ion collisions, by using a kinetic approach that
includes elastic and inelastic collisions [35,41–43,47,115].
The evolution of the phase space distribution of a jet parton a
with pμ

a = (Ea, �pa) is described using the Boltzmann equation

pa · ∂ fa(xa, pa) = Ea
(Cel

a + C inel
a

)
, (5)



where Cel
a and C inel

a are the collision integrals for elastic and
inelastic scatterings.

For elastic scattering of a with a thermal parton b from the
medium background, the collision term Cel

a is evaluated with
the leading-order vacuum matrix elements for all possible
ab → cd channels. The collinear (u, t → 0) divergence of the
matrix element is regulated by imposing S2(s, t, u) = θ (s �
2μ2

D)θ (−s + μ2
D � t � −μ2

D), in which μ2
D = g2T 2(Nc +

Nf /2)/3 is the Debye screening mass. Therefore, the elastic
scattering rate of parton a reads

�el
a =

∑
b,c,d

γb

2Ea

∫ ∏
i=b,c,d

d[pi] fb( �pb)S2(s, t, u)

× (2π )4δ(4)(pa + pb − pc − pd )|Mab→cd |2, (6)

where d[pi] = d3 pi/[2Ei(2π )3], and γb and fb represent the
spin-color degeneracy and thermal distribution of parton b,
respectively. The probability of elastic scattering of parton a
in each time step �t is thus Pel

a = �el
a �t .

During the propagation of a jet through the QGP medium,
each elastic scattering changes its transverse momentum
(perpendicular to its initial direction). This results in an
increase of the average transverse momentum square (or
transverse momentum broadening) over time. This transverse
momentum broadening per unit time (or length) is known as
the jet transport coefficient q̂, characterizing both the local
thermal parton density and the strength of jet-medium inter-
action. In LBT the value of q̂ may be inferred by evaluating
Eq. (6) weighted by the transverse momentum broadening of
the jet parton

q̂a =
∑
b,c,d

γb

2Ea

∫ ∏
i=b,c,d

d[pi][ �pc − ( �pc · p̂a)p̂a]2 fb( �pb)

× S2(s, t, u)(2π )4δ(4)(pa + pb − pc − pd )

× |Mab→cd |2. (7)

In addition to elastic scattering, inelastic scattering which
generates medium-induced gluon radiation is also included in
the LBT model. The inelastic scattering rate at a given time t is
defined as the average number of emitted gluons from parton
a per unit time, and is evaluated as [115–117]

�inel
a (Ea, T, t ) = 1

1 + δa
g

∫
dzdk2

⊥
dNa

g

dzdk2
⊥dt

, (8)

in which the δa
g term is imposed to avoid double counting

for the g → gg process. The medium-induced gluon spec-
trum is taken from the higher-twist energy loss formalism
[60,64,118],

dNa
g

dzdk2
⊥dt

= 2αs(k2
⊥)Pvac

a (z)k4
⊥

π
(
k2
⊥ + x2m2

a

)4 q̂g sin2

(
t − ti
2τ f

)
. (9)

Here, z and k⊥ are the fractional energy and transverse mo-
mentum of the emitted gluon with respect to its parent parton
a, and Pvac

a (z) is the vacuum splitting function, and q̂g is
the gluon transport coefficient. The initial time ti denotes the

production time of the parent parton a from which the gluon is
emitted, and τ f = 2Eaz(1 − z)/(k2

⊥ + z2m2
a ) is the formation

time of the radiated gluon with ma being the mass of the
parton.

In this work, we assume zero mass for light quarks and
gluons. Note that the gluon spectrum is proportional to q̂g,
which is related to the medium parameters in LBT through
Eq. (7). To avoid possible divergence as z → 0 as well as
violation of detailed balance for low momentum partons, a
lower cut-off zmin = 2πT/E is implemented for the energy
of the emitted gluon [116]. Note that Eq. (9) is consistent
with the medium-induced splitting function Eq. (3) used in
MATTER, except that the (ζ/τ f ) and (ζ/τ f )2 terms are ig-
nored here in LBT. The contribution from these two terms has
been discussed in [89] and shown to be small when ζ � τ f .
Multiple gluon emissions are allowed in each time step �t .
Different medium-induced gluon emissions are assumed to
be independent of each other; their number n is therefore a
Poisson distribution with mean as 〈Na

g 〉 = �inel
a �t ,

P(n) =
〈
Na

g

〉n
n!

e−〈Na
g 〉n

. (10)

Thus, the probability of an inelastic scattering process oc-
curring is Pinel

a = 1 − e−〈Na
g 〉. Interference effects arising from

multiple-gluon emission have not been taken into account.
Multiple-gluon emission and resummation of multiple scat-
terings [119–122] will be explored in future work.

To combine the elastic and inelastic processes, the total
scattering probability is divided into two regions: pure elastic
scattering with probability Pel

a (1 − Pinel
a ) and inelastic scatter-

ing with probability Pinel
a . The total scattering probability is

thus Ptot
a = Pel

a + Pinel
a − Pel

a · Pinel
a . Based on these probabili-

ties, the Monte Carlo approach is used to determine whether a
given jet parton a scatters in the thermal medium, and whether
the scattering is purely elastic or inelastic. For a selected
scattering channel, the energy and momentum of the outgo-
ing partons are sampled using the corresponding differential
spectra given by Eqs. (6) and (9).

For realistic nuclear collisions, we initialize jet partons
from hard scatterings in the same way as for the MATTER

model (Sec. II C). To account for the effect of medium flow
effect on jet transport during the QGP phase, in each time
step we first boost each jet parton into the local rest frame
of the fluid cell in which its energy and momentum are up-
dated based on the LBT model, and then boost it back to the
global collision frame where it propagates to the space-time
of the next time step. Note that the previous rescaling of q̂ in
MATTER [p0q̂ = (p · u)q̂local] has the same effect as the boost
method here when the medium-induced gluon spectrum is
written in a boost-invariant form. On the freeze-out hypersur-
face of the QGP (Tstop = 165 MeV), high pT jet partons are
passed to PYTHIA 6 for conversion into hadrons.

In the original work of LBT the strong coupling con-
stant αs was the sole parameter determining both the elastic
[Eq. (6)] and inelastic [Eq. (8)] scattering processes. In this
work we take an alternative approach, parametrizing q̂ directly
(Sec. III).



E. Multistage evolution with MATTER+LBT

Both the medium-modified virtuality shower with MATTER

alone, and the vacuum virtuality shower with LBT low-
virtuality parton transport, can be used to describe the
modification of inclusive hadron and jet distributions in
heavy-ion collisions. However, the application of either of
these models alone to the entire jet evolution is not theoret-
ically complete; the MATTER formalism is not applicable for
parton virtuality below the medium scale, and LBT ignores
the in-medium modification of jets in the highly virtual stage.
JETSCAPE has therefore developed a multi-stage approach
to calculating in-medium jet evolution, in which MATTER is
applied for partons with high virtuality and LBT is applied for
partons with low virtuality [55].

For an energetic parton generated by a hard scattering,
MATTER is used to simulate its virtuality-ordered splitting
process (Sec. II C). In each splitting, the virtuality of each of
the daughter partons is smaller than that of the parent. When
the virtuality of a parton in the shower falls below a specified
scale Q0, it is passed to LBT for the subsequent time-ordered
in-medium evolution. In this combined approach, MATTER

largely determines the spectrum of final state partons for
high-energy jets or short in-medium path length, while LBT

predominantly governs low energy parton scattering, espe-
cially when the in-medium path length is large [55].

A key parameter of this multi-stage approach is the sep-
aration (or switching) scale Q0 between MATTER and LBT

evolution, whose value is expected to be similar to that of the
medium scale, Q2

0 ∼ q̂τ f . A similar separation scale was ex-
plored in [123]. Substituting τ f = 2E/Q2

0, one obtains Q2
0 ∼√

q̂E , as mentioned above. Note that E is the energy of a given
parton; in the current implementation, where we transition
from one module to another, Q0 has to be replaced by an
average scale. While the value of Q0 may be considered as
a matching scale between the high and low virtuality phases,
there is no external physical observable (e.g., jet or hadron
pT ) with which it can be linked. We therefore introduce it as
a parameter in the Bayesian analysis and obtain a mean value
and range over which Q0 can be varied. This analysis thus
provides the first phenomenological determination of Q0 from
experimental data, using Bayesian inference.

Note that in the LBT stage we assume zero virtuality for
thermal QGP partons, and recoiling partons are scattered out
of the background medium by the jet. In contrast, the virtuality
of jet partons is fully tracked since it is fed from MATTER.
When a parton splits in LBT, we assume that its two daugh-
ters share its virtuality in proportion to their z fraction. At
temperature below Tstop ∼ Tc, LBT partons with Q < 1 GeV
are converted into hadrons using PYTHIA 6, while those with

virtualities still above 1 GeV are passed back to MATTER for
subsequent vacuum showering until all partons satisfy Q < 1
GeV, at which point they are converted to hadrons.

In the pre-equilibrium (τ0 < 0.6 fm) and the late (T <

Tstop) stages, only MATTER vacuum shower is applied with
the value of Q0 = 1 GeV. This same vacuum shower is used
for p + p collisions. It is only in the hydrodynamic stage
(τ0 > 0.6 fm and T > Tstop) of A + A collisions that the
MATTER(Q > Q0) + LBT (Q < Q0) model is used with a Q0

value greater than 1 GeV.
To summarize, in this calculation we utilize two differ-

ent implementations of energy loss, which are applicable in
complementary regimes of parton virtuality. This requires the
introduction of a separation or matching variable, in this case
Q0. If a JETSCAPE calculation were to use a completely
different set of energy loss modules which transition in some
other variable, e.g., parton energy E , that would require a
different matching variable, say E0, whose value could also
be determined using the Bayesian framework that we describe
here.

III. q̂ PARAMETRIZATION

As discussed in Sec. II, the jet transport coefficient q̂ is
the sole quantity constrained by fitting MATTER and LBT

calculations to experimental data. We employ three different
parametrizations of q̂. The form of the parametrization is de-
rived from Eq. (7), which is based on perturbative scattering of
a jet parton inside a medium. Assuming a thermal distribution
for fb and taking the small-angle approximation for elastic
scattering gives [124–127]

q̂ ≈ CR
42ζ (3)

π
α2

s T 3 ln

(
2CET

4μ2
D

)
, (11)

where CR is the color factor of the jet parton (4/3 for quark and
3 for gluon), T is the medium temperature, and C is a constant
depending on the kinematic cuts implemented in Eq. (11). For
the LBT model using a constant αs = 0.3, C is approximately
5.6 for gluons and 5.8 for quarks [127]. In this work q̂ refers to
the light-quark jet transport coefficient; the gluon jet transport
coefficient is obtained by scaling with the relative color factor.

The parameter q̂ defined above characterizes jet transverse
momentum broadening due solely to elastic scattering, which
is commonly applied for evaluating medium-induced gluon
emission. An additional double-logarithmic dependence of
jet transverse momentum broadening would arise if radiative
processes are taken into account [128,129].

The definition of q̂ need not be limited to perturbative
scattering of a jet parton with a thermal medium at the scale T .
Thus, we extend Eq. (11) to a more general form as follows:

q̂(E , T )|A,B,C,D

T 3
= 42CR

ζ (3)

π

(
4π

9

)2
{

A
[
ln

(
E


) − ln(B)
]

[
ln

(
E


)]2 + C
[
ln

(
E
T

) − ln(D)
]

[
ln

(
ET
2

)]2

}
, (12)

where (A, B,C, D) are parameters that will be determined
from the experimental data using Bayesian parameter extrac-

tion. If the first part in the braces {...} (or parameter A) is set
to zero, the second part reduces to Eq. (11) if the coupling



constant αs = 4π/9/ ln(ET/2) is assumed to run with both
jet energy and medium temperature scales at leading order.
For the parameter  we use  = 0.2 GeV.

The first part of the expression in the braces is an ansatz
applicable to a highly energetic parton whose virtuality is
much higher than the thermal scale of the medium, and which
is therefore blind to the thermal scale. In this case, after being
scaled by the density of the scattering centers (∼T 3), the value
of q̂ is controlled solely by the scale of the jet parton itself,
and not by the medium temperature. This first part in {...},
with parameters A and B, represents the physics assumed by
the MATTER model.

The second part in {...} represents an on-shell jet parton
scattering with quasi-particles inside a thermal medium, as
assumed by the LBT model. The arguments of the logarithms
in Eq. (12) involve additional constant factors that depend
on the particular cut-off value implemented in the t-channel
scattering. We treat these as parameters, called B and D, even
though the jet observables considered here are not expected
to be very sensitive to them. This expectation is validated by
their broad posterior distribution function obtained from the
model-to-data comparison, as shown below.

We consider Eq. (12) to be a a sufficiently general ansatz
of the energy and momentum dependence of q̂ within the
perturbative picture of jet-medium interaction. We use this
parametrization consistently in both MATTER and LBT when
they are applied separately to describe experimental data. We
expect that the physics of the high virtuality stage in MATTER

is described predominantly by the first term (with A and B),
while the physics of the thermal stage in LBT is described by
the second term (with C and D).

For the multistage calculation combining MATTER+LBT

we utilize two different parametrizations of q̂. The first
parametrization uses Eq. (12) to calculate q̂ in both MATTER

and LBT stages, while introducing an additional parameter Q0

that represents the virtuality boundary between the two stages.
This five-parameter formulation is denoted “MATTER+LBT1”.
Since it is based on the same physical assumptions as q̂, it can
be compared directly to the parametrization in which MATTER

and LBT are applied separately.
To reduce the number of parameters and capture the jet

physics of virtuality evolution in MATTER more precisely,
we introduce a second q̂ parametrization for the multistage
MATTER+LBT model, as follows:

q̂(Q, E , T )|Q0,A,C,D

T 3
= 42CR

ζ (3)

π

(
4π

9

)2
{

A
[
ln

( Q


) − ln
(Q0



)]
[
ln

( Q


)]2 θ (Q − Q0) + C
[
ln

(
E
T

) − ln(D)
]

[
ln

(
ET
2

)]2

}
. (13)

This parametrization is denoted “MATTER+LBT2”. Compared
to Eq. (12), we use the jet virtuality Q as the scale in the first
term instead of the jet energy E . The motivation behind this
parametrization is that the MATTER model better characterizes
the parton shower as a function of virtuality. However, the
value of q̂ determined using this parametrization cannot be
directly compared to that from LBT.

The parameter B is replaced by the switching virtuality
Q0, so that this formulation likewise has four parameters. The
θ function ensures that, during the MATTER stage (Q > Q0),
q̂ receives contributions from both terms, while during the
LBT stage (Q < Q0) only the second term contributes. In this
parametrization, the distribution of q̂ is continuous at Q = Q0.

IV. EXPERIMENTAL DATA

This analysis carries out Bayesian parameter extraction
using experimental measurements of inclusive hadron produc-
tion in A + A collisions at RHIC and LHC (RAA). Selection
of experimental data for this process requires consideration
of the pT range suitable for comparison to theoretical cal-
culations of jet quenching, in particular the possible role of
medium-modified hadronization at low pT .

The energy loss formalism in this paper involves the con-
volution of initial state and hard scattering distributions with
energy loss calculations applied to hard partons as they prop-
agate through the medium. The final parton distributions are
then convoluted with vacuum fragmentation functions to cal-
culate the hadron distributions to be compared to data. The
calculations are therefore based on the assumption that the

hadronization of leading hadrons takes place outside the dense
medium.

The space-time distribution of jet hadronization in the
presence of the QGP is currently an open issue, to be re-
solved using both experimental data and theoretical modeling.
Relevant experimental data to address this question include
high-pT dihadron correlations in central Au + Au collisions
at RHIC [130], whose jet-like angular distributions indicate
that charged hadrons with pT � 4 GeV/c arise predominantly
from vacuum fragmentation; and particle-identified relative
yields in reconstructed jets in central Pb + Pb collisions at
the LHC, which are similar to those for jets in vacuum for
pT > 4 GeV/c, in contrast to a striking enhancement in the
baryon/meson ratio for bulk (nonjet) production [131]. These
experimental observations suggest that hadrons with pT � 4
GeV/c are generated in central A + A collisions predomi-
nantly by jet fragmentation in vacuum; in other words, that the
processes of jet-medium interactions and hadron formation
largely factorize for hadrons with pT > 4 GeV/c. On the other
hand, parametric theoretical arguments suggest that vacuum
hadronization occurs only for hadrons with pT > 10 GeV/c,
at both RHIC and the LHC.

In order to simplify the analysis presented in this paper,
we therefore restrict the pT range of the inclusive hadron RAA

measurements considered for comparison to the theory calcu-
lations to pT > 8 GeV/c at RHIC and pT > 10 GeV/c at the
LHC. We note that this cut limits significantly the statistical
weight of the RHIC data relative to that at the LHC, due to the
much narrower kinematic range accessible at the lower

√
sNN

of RHIC (see Sec. VIII). Lowering of this limit, to enable



greater statistical weight of RHIC data, will be explored in
future work.

The experimental datasets used in this analysis, which
cover a wide range in hadron pT and medium temperature,
are as follows:

(i) Au-Au collisions at
√

sNN = 200 GeV, 0–10% and
40–50% centrality [21];

(ii) Pb-Pb collisions at
√

sNN = 2.76 TeV, 0–5% and
30–40% centrality [23];

(iii) Pb-Pb collisions at
√

sNN = 5.02 TeV, 0–10% and
30–50% centrality [24].

A. Experimental uncertainties

Bayesian parameter extraction requires specification of ex-
perimental uncertainties, optimally the full covariance matrix
�E . However, the full covariance matrix of measurement un-
certainty is difficult to determine, and it is usually not reported
in experimental publications. We focus here on measurements
of inclusive hadron RAA, and discuss how the covariance ma-
trix is determined for the reported measurements used in this
analysis.

For these measurements, the experimental uncertainties are
specified as a function of hadron pT . The CMS [24] and
ATLAS [23] publications report the following four types of
uncertainty:

(1) uncorrelated statistical error and systematic uncer-
tainty on each data point;

(2) luminosity uncertainty, fully correlated in all centrality
bins for a given collision system;

(3) Glauber scaling (〈TAA〉) uncertainty, fully correlated in
pT for a given collision system and centrality bin; and

(4) other correlated errors of unspecified origin, with only
qualitative dependence on hadron pT specified.

Because the luminosity and 〈TAA〉 uncertainties are in-
dependent of pT , it is straightforward to calculate their
contribution to the off-diagonal terms of the covariance ma-
trix. However, the other correlated uncertainties arise from
sources such as track selection, momentum resolution, and ef-
ficiency correlations, which vary in different ways with pT . To
account for this complexity we introduce a correlation-length
parameter � (defined below) to represent the range in pT over
which these uncertainties contribute.

For the RAA distribution of a specific collision system
and centrality from a specific experimental publication (in-
dexed by k), let �E

k be the corresponding covariance matrix
block constructed from “uncorrelated”, “fully correlated”, and
“length-correlated” uncertainty vectors respectively, {σ uncorr

k },
{σ fcorr

k }, {σ lcorr
k }, as reported by the experiments. Then the

uncertainty covariance block �E
k is given by

�E
k = �uncorr

k + �fcorr
k + �lcorr

k ,

�uncorr
k,i j = σ uncorr

k,i σ uncorr
k, j δi j,

�fcorr
k,i j = σ fcorr

k,i σ fcorr
k, j ,

�lcorr
k,i j = σ lcorr

k,i σ lcorr
k, j exp

[
−

∣∣∣∣ pk,i − pk, j

�k

∣∣∣∣
α]

. (14)

FIG. 1. Latin Hypercube Design for input parameters A and C
for the LBT model.

Here, pk,i is the ith pT value in block k, and δi j = 1 if i = j
and 0 otherwise. Thus, �uncorr

k is a diagonal matrix, repre-
senting the combined, uncorrelated statistical and systematic
experimental uncertainties. �fcorr

k corresponds to the fully cor-
related, pT -independent luminosity and 〈TAA〉 uncertainties,
and �lcorr

k is constructed from the correlated experimental
uncertainties using a power exponential covariance function.
We set the exponent α = 1.9, similar to the common choice
α = 2 but computationally more stable [132]. The pk,i trans-
verse momentum values and correlation length �k in Eq. (14)
are linearly rescaled so that all values lie within [0,1]. The
rescaled correlation length �k is nominally set to a value of
�k = 0.2. Other values were used to study the sensitivity of
our results to this parameter choice.
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FIG. 2. Percent of the output data variance as a function of the
number of components determined in the PCA. 99% of the variance
is described with two components, while 99.9% is described with
three components.



FIG. 3. Validation of the Gaussian process emulator predictions. For each design point, the emulators are re-trained without constraint
from that holdout point, and the emulator predictions are compared with the model calculations at the design point.

The PHENIX publication [21] reports uncertainties in a
similar fashion but with different labels. Uncorrelated errors
are denoted as Type A, fully correlated and pT -independent
are reported as Type C, and Type B refers to correlated sys-
tematic errors with an unspecified pT -dependence. Therefore
Type A, B, and C errors are treated as σ uncorr, σ lcorr, σ fcorr,
respectively, according to Eq. (14).

V. GAUSSIAN PROCESS EMULATORS

Because JETSCAPE model calculations are computation-
ally expensive, we use Gaussian process emulators (GPEs) to
interpolate the model-parameter space [79,133]. GPEs offer
a nonparametric method of regression, providing a statistical
surrogate for the computationally expensive model by using a
limited set of training points to predict with a defined uncer-
tainty any untried value of input parameters. This allows us to
make rigorous statistical comparisons to the experimental data
efficiently, and perform inference on the input parameters.

Our implementation of the GPE is identical to that used in
[134], except for the choice of the covariance function which
controls the correlation between pairs of points. To improve
emulator stability, we replace the squared-exponential func-
tion used in [134] with a Matérn 5/2 covariance function,

c(xi, x j ) =
(

1 +
√

5di, j

�
+ 5d2

i, j

3�2

)
exp

(
−

√
5di, j

�

)
, (15)

where di, j = |xi − x j | denotes the difference between pairs
of points. The correlation length parameters {�} are found
through hyperparameter optimization in the SCIKIT-learn
package [135].

By far the most CPU-intensive part of the present study
is calculating the result of the physics model for each design
point sample in the parameter space. For each choice of cen-
trality bin and colliding system, we simulate over 10 million

jet events for a given model setup and set of parameters (or
training point). A single such simulation requires over 1000
CPU hours. Since multiple colliding systems, model setups
and training points are utilized for this study, over 10 million
CPU hours have been utilized in total on the Open Science
Grid.

A. Design points

Performance of the GPE depends critically on the choice
of design points. We base our initial choice of the design
points on the method of a space-filling Latin Hypercube De-
sign (LHD) [136,137], which ensures marginal uniformity and
optimizes the distance between points. This was implemented
with the function optimumLHS in the R package lhs. In order
to reduce the emulator interpolation uncertainty in the most
relevant regions of phase space, the choice is then revisited
and improved by adding more design points. For instance,
for the LBT model calibration described later, we start with
60 training points uniformly sampled within A × C ∈ [0, 2] ×
[0, 2]. Based on their preliminary posterior distribution after
the entire analysis procedure (as will be discussed in the fol-
lowing sections), we sequentially add more training points–20
points in [0, 0.4] × [0, 0.4], 40 points in [0, 1] × [0, 1], and
then 20 points in [0, 0.6] × [0, 0.75]—and repeat the calibra-
tion procedure several times to ensure that sufficient training
points have been sampled within the region where the peaks
of the posterior distributions of our model parameters locate.
Note that the design point parameter space has four or five
dimensions, which cannot be directly visualized. To illustrate
the final set of design points, the distribution of inputs A and
C for the LBT model is shown in Fig. 1.

B. Multivariate output

For each design point, we run the computer model for three
collision systems and two centralities (Sec. IV) to determine



FIG. 4. Example closure test for a single design point. The truth
(solid line) is compared to the inferred 90% range of q̂ (band delin-
eated by dashed lines), as a function of (a) temperature and (b) jet
momentum.

the inclusive hadron RAA at various pT values. The set of RAA

values at each pT provides a 66-dimensional output for each
design point. Instead of passing the 66-dimensional output di-
rectly to a high-dimensional GPE, we first employ a principal
component analysis (PCA). The PCA both reduces the output
dimensionality and provides a linearly independent descrip-
tion, making the output data more tractable and allowing the
application of independent GPEs.

PCA rotates the data onto an orthogonal space, utilizing the
singular value decomposition (SVD) of the data, as follows.
Let Y be the centered and scaled output with n rows and p
columns; then for a diagonal matrix S and orthogonal matrices
U and V, the SVD of Y is

Y = USV′, (16)
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FIG. 5. Distribution of p values from the closure tests performed
using all the design points.

where V′ denotes the transpose of V. The rotation of Y by V
gives the matrix US, which has uncorrelated columns. If we
assume normality of the data, then the columns are indepen-
dent as well. Thus, we apply the transformation

Z = YV (17)

and train independent GPs on the columns of Z. To predict a
new point, we take the GP predictions and rotate them by V′.

PCA can also be used for dimension reduction. The val-
ues {sr} of S are the square roots of the eigenvalues {λr} of
the scaled sample covariance matrix of Y, in non-increasing
order, with associated eigenvectors in V. The fraction of vari-
ance corresponding to the first R eigenvectors, for R � p, is

FR =
∑R

r=1 λr∑
r λr

. (18)

If we use only the first R columns of V in our transformation
(call this matrix VR), we capture FR of the variance explained
by Y. Thus the goal is to choose a value of R that is large
enough to explain a suitable amount of variance, and small
enough for a tractable number of GPEs. Figure 2 depicts the
variance corresponding to R for the LBT data. For these data
we choose R = 3, which captures 99.9% of the variation.

C. Emulator validation

To validate our GPEs, we perform “hold out” tests in
which we remove a design point from the emulator training
procedure, and compare the emulator predictions at that de-
sign point to the corresponding model calculation. We repeat
this procedure for all design points, in order to validate the
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FIG. 6. Inclusive hadron RAA for the three measured datasets [21,23,24], together with prior calculations based on LBT using design points
of the parameter space. Inner error bars on experimental data points are statistical errors; outer error bars are the quadrature sum of statistical
error and systematic uncertainty.

emulator performance broadly across the design space.
Figure 3 depicts examples of these comparisons for the LBT
model, along with a comparison to the emulator uncertain-
ties in the right panel. We find that the GPEs generally
predict the model well, and that the emulator uncertain-
ties capture the deviations reasonably well; the emulator
uncertainties in fact slightly overestimate the observed devi-
ations. There exist a small number of design points which
are poorly predicted, as shown by the off-diagonal scatter
points. These points originate at the boundaries of the param-
eter space, where interpolation is not possible; we verified
that they do not impact our results. We validated the GPE
performance for all models, with the average emulator uncer-
tainties in the range 〈σemulator〉 ≈ 8–22% (LBT), 〈σemulator〉 ≈
5–14% (MATTER), 〈σemulator〉 ≈ 4–14% (MATTER+LBT 1),
and 〈σemulator〉 ≈ 9–24% (MATTER+LBT 2), depending upon
collision system.

VI. BAYESIAN CALIBRATION

With a validated emulator, we can proceed to calibration—
using the experimental data to perform inference on the input
parameters. We use Bayesian inference, treating model pa-
rameters as random variables characterized by probability
distributions, and use Bayes’ rule to update the prior distri-
bution of input parameters θ (e.g., for LBT, these are θ =
{A, B,C, D}) to the posterior distribution θ conditional on the
experimental values YE [81,138]. Let m(θ ) denote the com-
putationally expensive computer model; then, the posterior
distribution f (θ | YE ) is

f (θ | YE ) ∝ f (YE | m(θ )) f (θ ). (19)

Because the posterior f (θ | YE ) is not analytically tractable,
we employ an affine invariant Markov chain Monte Carlo
algorithm [139] to draw samples from f (θ | YE ).
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FIG. 7. Posterior predictive distributions of inclusive hadron RAA using LBT compared to the same data as Fig. 6.
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FIG. 8. Posterior predictive distributions of inclusive hadron RAA using MATTER compared to the same data as Fig. 6. Data points at lower
pT values are excluded from this comparison due to the applicability of the model.

Recall that we train R independent GPEs on the first R
columns of Z = YV. Let m∗

r (θ ) be the GPE interpolation for
given inputs θ . Then m∗

r (θ ) has Normal distribution with mean
μ∗

r (θ ) and variance σ ∗
r

2(θ ).
Note that each predictive mean μ∗

r (θ ) and variance σ ∗
k

2(θ )
are implicitly conditioned on column r of Z (i.e., transformed
design output) and design input. Because the GPEs are inde-
pendent, we can easily write down the joint distribution of
m∗(θ ) = [m∗

1(θ ), . . . , m∗
R(θ )]′:

m∗(θ ) ∼ N(μ∗(θ ), �∗(θ )),

μ∗(θ ) = [μ∗
1(θ ), . . . , μ∗

R(θ )]′,

�∗(θ ) = diag
([

σ ∗
1

2(θ ), . . . , σ ∗
R

2(θ )
]′)

. (20)

Since we emulate in PCA space, we must rotate our predictive
interpolations back into the observable space, i.e., multiply
m(θ ) by V ′

R. However, even though we capture over 99% of
the variance with our choice of R, we have found calibra-
tion to be more stable if we add back the extra variation
lost when transforming back to the physical space. From the
SVD decomposition Y = USV′, we see that Y′Y = VS2V′.
Additionally, if we let Vb denote the matrix comprised of the
columns of V from R + 1 onward (and similarly to S) then we
can decompose the VS2V′ into the sum

VS2V′ = VRS2
RVR

′ + VbS2
bVb

′. (21)

TABLE I. Median values of posterior parameter distributions for
the various model parametrizations. Note that the median values do
not take account of correlations between the parameters.

Parameter A B C D Q

MATTER 0.386 3.03 0.197 3.81 –
LBT 0.225 7.20 0.354 7.95 –
MATTER+LBT1 0.130 2.39 0.151 2.78 2.02
MATTER+LBT2 0.247 – 0.428 6.38 2.70

Noting that the sample covariance matrix is 1
n Y′Y, we denote

�extra = 1
n VbS2

bVb
′ the covariance matrix of extra variation

lost when transforming back and forth from the PCA space.
Initially, we model YE (centered and scaled to match Y)

as multivariate normal, centered at m∗(θ )V ′ with covariance
matrix �E + �extra. However, because m∗(θ )V ′ is also multi-
variate normal, we can analytically integrate over m∗(θ ). Our
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FIG. 10. The (quark) jet transport coefficient q̂ from Bayesian
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function of the medium temperature, and (b) as function of quark
momentum. The solid and dashed lines indicate the median value for
MATTER and LBT, respectively.

final calibration model is thus

f (YE | θ ) ∼ N(μ∗(θ )V′
R, VR�∗(θ )V′

R + �E + �extra),

f (θ ) ∼ unif(θ ), (22)

where we assign a uniform prior on the design space for θ .
To sample the posterior distribution, we discard the first

3 × 104 samples (“burn-in”) of the Markov chain Monte Carlo
algorithm, for which the sampler has not yet reached equili-
bration, and then save the next 105 as draws from the posterior
distribution f (θ | YE ).

VII. CLOSURE TESTS

In order to validate the end-to-end analysis procedure, we
perform a set of closure tests. We “hold out” a design point
from the emulator training, as described in Sec. V C, and
instead use the model predictions at that design point to gen-
erate “pseudodata” equivalent to the experimentally measured
datasets. We then perform the Bayesian calibration procedure
using this pseudodata in place of the experimental measure-
ments, and compare the inferred parameters to the original
parameters of the design point.

Figure 4 shows an example of such a closure test for a
single design point, in which the inferred credible region for
q̂ is compared to the true value from the design point. We
repeat these closure tests for each design point, and statisti-
cally evaluate their consistency using a p value. The p value
is defined as the percentage of posterior samples that are
more compatible with the pseudodata than the truth, using
a χ2 taking into account the correlation in the uncertainties.
We generally find consistent performance, as can be seen as
an example in Fig. 5. The distribution deviates from a flat
distribution with a shift toward high p values, indicating that
the uncertainty obtained is conservative.

Furthermore, we examine the closure differentially in q̂
and θ . As described in Sec. V C, we observe consistency
except for occasional failure at the boundary of the parameter
space, which are found not to be near the extracted solutions.
The boundary points consist of those with p value very close
to 0. One caveat is that for the MATTER+LBT2 multistage
model, the closure appears to be inconsistent for large values
of q̂/T 3 � 5. This becomes relevant in the low momentum
region, and accordingly the results in that region should be
interpreted cautiously.

VIII. RESULTS

In this section we discuss the posterior distribution from
the Bayesian parameter extraction for the parametrizations in
Sec. III, and the corresponding values of q̂. We first discuss
the analysis using the MATTER and LBT models separately,
and then the analysis of the combined model of MATTER+LBT

with two different choices of q̂ parametrization.

A. Parameter extraction using MATTER and LBT separately

We first carry out Bayesian parameter extraction for MAT-
TER and LBT, using Eq. (12). Figure 6 shows the distribution
of inclusive hadron RAA for the three measured datasets, com-
pared to calculations based on LBT at the initial design points
prior to parameter extraction. The prior distribution of the
parameter space covers all experimental data and serves as
the training data for the GPE. The analogous distributions for
the other calculations discussed below look similar to Fig. 6
and will not be shown.

Figures 7 and 8 show the same data and the posterior
distributions for LBT and MATTER. The dashed lines indicate
median values, corresponding to the median parameters val-
ues given in Table I. The models describe the data moderately
well compared to the experimental uncertainties, but exhibit
systematic deviations at high pT in central Pb + Pb collisions
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FIG. 11. Posterior predictive distributions of MATTER+LBT1 compared to the same data as Fig. 6.

at
√

sNN = 5.02 TeV, and at all pT for semicentral collisions
in both

√
sNN = 2.76 and 5.02 TeV.

We compare MATTER results with the LHC data (Fig. 8)
only above pT ∼ 30 GeV/c because, when MATTER is applied
alone, after the first few splittings the parton virtuality may
drop below Q0 while its energy is still high. Such partons,
when modeled by MATTER, do not interact further with the
medium and therefore yield an inaccurate description of the
pT dependence of RAA. MATTER is therefore expected to work
well at high pT and to fail at low pT . However, experimental
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FIG. 12. Posterior distribution of the four-dimensional space for
MATTER+LBT1. Off-diagonal panels show correlations of posterior
distributions for RHIC+LHC (lower left, red) and LHC only (upper
right, blue).

data uncertainties are smaller at low pT than high pT , and the
low pT data therefore contribute with higher weights to the
calibration. This generates the deviations between MATTER

and data at high pT for the LHC data in (Fig. 8). The imple-
mentation in the Bayesian inference analysis of a confidence
measure for a model calculation in different regions of phase
space will be explored in a future study to address this issue.

Figure 9 shows the posterior distribution of the param-
eter space from this procedure, with the median value of
each parameter given in Table I. The diagonal panels show
one-dimensional projections onto each parameter; a clear dif-
ference can be seen between the MATTER and the LBT models.
The off-diagonal panels show two-dimensional projections for
MATTER (upper right) and LBT (lower left).

For MATTER, the extracted value of A is significant while
that of C peaks close to zero, indicating that the extracted
value of q̂ is due primarily to the first term in the braces in
Eq. (12). In contrast, LBT results in a more significant con-
tribution from the second term in Eq. (12). This is consistent
with the respective domains of applicability of the two mod-
els: parton splitting inside MATTER is driven by high virtuality
and is insensitive the thermal scale of the medium, while LBT

describes the scatterings between jet partons with a thermal
medium with an on-shell approximation. Note that the domain
of experimental data was restricted according to the expected
regime of validity of each model.

Figure 9 also shows the correlation between pairs of pa-
rameters in the off-diagonal panels. A marked anticorrelation
between parameters A and C is observed in the first column
of the third row, because both A and C contribute positively
to the overall normalization of q̂ in this parametrization. On
the other hand, a weaker correlation is seen between B and D,
which is also expected in this parametrization.

Figure 10 shows the 90% credible region (C.R.) for q̂,
determined from the posterior distributions in Fig. 9. The
dotted and solid lines show the median values for fixed quark
momentum and medium temperature in the upper and lower
panels, respectively, illustrating more differential information
than in Table I. This new constraint on q̂ is consistent within



uncertainties with the value determined previously by the JET
Collaboration [66], although the median value is smaller. This
is expected, since the semianalytical calculations used in the
JET Collaboration analysis did not include elastic scattering
processes, and some calculations considered only single gluon
emission for the inelastic process. The inclusion of multiple
gluon emission channels and elastic scattering in the both
MATTER and LBT reduces the extracted q̂ value relative to
these simpler approximations.

The extracted value of q̂/T 3 has only weak T dependence
for both the MATTER- and LBT-based analyses. Figure 10(b)
shows a slight decrease in q̂/T 3 at high jet pT for both MAT-
TER and LBT. The uncertainty is larger at low pT due to the
pT -range of RAA data considered in this work.

B. Parameter extraction using MATTER+LBT
combined: Five parameter

Figure 11 shows inclusive hadron RAA with posterior pa-
rameter distributions for the combined MATTER+LBT1 model
which incorporates the parametrization of q̂ in Eq. (12) and
the switching virtuality Q0, for a total of five parameters.
The bands show the posterior predictive distributions and the
dashed lines are results from using the median parameter val-
ues listed in Table I. Compared to the fits with MATTER or LBT

alone, there is no significant improvement when fitting with
the combined model. The level of agreement of the posterior
distributions is similar to that seen in Figs. 7 and 8, indicating
that the simple model of a virtuality scale Q0 for switching
between MATTER and LBT may not fully capture the virtuality
dependence of jet quenching.

Figure 12 shows the correlation of posterior parameter
distributions for the MATTER+LBT1 parametrization. Results
are shown separately for fits to the RHIC and LHC data, as
well as the combined parameter extraction to all six data sets.
Figure 12 shows the constraint on Q0, the virtuality scale at
which the calculation switches between MATTER and LBT.
The median value is 2.02 GeV, with 90% credible region
[1.25,2.72] GeV. It is evident that the RHIC data have sig-
nificantly less impact than the LHC data on the posterior
distributions in this analysis, because of the low relative sta-
tistical weight of the selected RHIC data (Sec. IV). Line 3 of
Table I gives the median values of the five parameters.

The value of Q0 in this analysis is taken to be the same
for RHIC and LHC data, though in practice the value of Q0

may be smaller at RHIC than at the LHC because of the
lower average QGP temperature. Exploration of this degree
of freedom requires consideration of additional experimental
data, however, and is beyond the scope of the current analysis.

Figure 13 shows the 90% C.R. of the extracted quark jet
q̂ from the MATTER+LBT1 parametrization, together with its
median value (dashed line). Also shown are the bands for
extraction from either MATTER and LBT taken from Fig. 10.
The value of q̂ determined using the multi-stage approach
is lower than those determined from fits to MATTER or LBT

separately. This is because MATTER is effective for jet energy
loss at high virtuality but is blind to parton evolution at low
virtuality, while the opposite is the case for LBT. Combining
the models for a multi-stage evolution approach leads to larger
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FIG. 13. 90% CR regions for the quark-jet transport coefficient q̂
using MATTER and LBT (Fig. 10) and MATTER+LBT1 (a) as function
of medium temperature, and (b) as function of quark energy. The
lines at the center of the bands indicate their median values. The data
points (black circles with vertical error bars) show the result from
the JET Collaboration [66]; dotted boxes indicate the range of that
analysis.

jet energy loss than found by applying only one of them
across the entire phase space. MATTER+LBT therefore requires
a smaller q̂ value than MATTER or LBT does to describe the
same jet quenching data.

C. Parameter extraction using MATTER+LBT
combined: Four parameter

Finally, we discuss results using the MATTER+LBT2
parametrization given in Eq. (13). Figure 14 shows the pos-
terior RAA distribution and the model calculation utilizing the
median values of the parameters. Qualitatively, the model
calculations describe the overall pT dependence of the data
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well although, as also seen in Figs. 7, 8, and 11, the posterior
distributions fall outside of the systematic uncertainty limits
of the data. This again indicates that introduction of a virtu-
ality scale Q0 for switching between MATTER and LBT may
not be sufficient to describe the virtuality dependence of jet
quenching.

Figure 15 shows the correlation of posterior parameter
distributions of MATTER+LBT2 using RHIC and LHC data
separately and combined. The posterior parameter distribu-
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FIG. 15. Posterior distribution of the four-dimensional space for
MATTER+LBT2. Off-diagonal panels show correlations of posterior
distributions for RHIC+LHC (lower left, red) and LHC only (upper
right, blue).

tions are significantly less constrained by the RHIC than LHC
data, similar to the case of MATTER+LBT1 (Fig. 12). The
median value of Q0 from combined RHIC and LHC data is
2.70 GeV, with 90% CR [1.84,3.41] GeV. While the median
value is larger than that determined using MATTER+LBT1, the
difference is not significant, as seen from the mutually com-
patible 90% confidence regions. This comparison provides an
estimate of the systematic uncertainty due to different model
parametrization. Line 4 of Table I gives the median values of
the four parameters.

Figure 16 shows q̂ as a function of medium tempera-
ture and quark momentum using MATTER+LBT2. Referring to
Eq. (13), q̂ has a larger value in the MATTER stage than in
the LBT stage, since both terms in {. . .} contribute to MATTER

but only the second term contributes to LBT. The contribution
from the first term depends on the virtuality of the parton Q,
which varies for different partons with the same momentum.
In order to estimate the q̂ value in Fig. 16 we use the average
value of Q, obtained from Eq. (1). Comparing with Fig. 13, we
also observe that the value of q̂ extracted from MATTER+LBT2
is larger than that from MATTER+LBT1.

IX. SUMMARY AND OUTLOOK

We have reported the application of state-of-the-art
Bayesian inference methodology to determine the QGP jet
transport coefficient q̂ from inclusive hadron suppression data
measured at RHIC and the LHC. Two jet energy loss mod-
els were utilized, MATTER and LBT. MATTER is applicable
to modeling the medium-modified splitting of highly virtual
partons, while LBT is applicable for the in-medium transport
of nearly on-shell partons. The models are first applied sep-
arately, and then combined to form a multistage evolution
approach. Two different parametrizations were used for the
functional dependence of q̂ on jet momentum or virtuality
scale and the medium temperature, based on the picture of
perturbative scattering between jets and a thermal medium.
A novel treatment of experimental uncertainties is employed,
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taking into account their covariance for the first time in the
determination of q̂.

Such model calculations are computationally expensive.
Gaussian process emulators are therefore employed to render
this process computationally efficient, trained at design points
selected starting with a Latin Hypercube in parameter space.
The resulting gain in computational efficiency enabled cali-
bration of the multidimensional parameter space.

The Bayesian inference process generates posterior param-
eter distributions for each model configuration. To constrain
the model parameters, we used 66 inclusive hadron RAA data-
points at two centralities for Au + Au collisions at

√
sNN =

200 GeV and Pb + Pb collisions at
√

sNN = 2.76 and 5.02
TeV. For both the MATTER-only and LBT-only configurations,

the extracted value of q̂/T 3 has only weak dependence on the
medium temperature T . The value of q̂ determined using these
approaches is consistent with a previous determination by the
JET Collaboration [66].

A multistage jet evolution approach, combining MATTER

and LBT, is applied here for the first time. The transition
between MATTER and LBT, based on parton virtuality, is con-
trolled by the virtuality parameter Q0 which separates the
virtuality-ordered-splitting dominating region and the time-
ordered-transport dominating region for jet quenching inside
a medium. The posterior distribution of q̂/T 3 from the com-
bined model (MATTER+LBT) is systematically lower than that
determined using MATTER or LBT alone, since the combined
model more accurately describes energy loss over the full vir-
tuality range, with similar pT -dependence. The two different
q̂ parametrizations give consistent results, although with dif-
ferences in the median extracted parameter values; the median
value of Q0 is 2.0 and 2.7 GeV, respectively.

The application of Bayesian inference in this analysis
represents a significant advance in quantitative understand-
ing of jet-medium interactions in the quark-gluon plasma.
However, the posterior distributions from this analysis do not
fully describe the magnitude and pT dependence of inclusive
hadron RAA measurements in the datasets considered. This
tension indicates that additional components in the modeling
of jet quenching are needed, for instance a more detailed
parametrization of the virtuality dependence of jet quenching
than the single switching scale Q0 used here.

Future work will also provide more detailed accounting
of experimental and theoretical uncertainties and their co-
variance and incorporate additional measurement channels,
in particular those involving coincidence observables and re-
constructed jets. While the q̂ parametrization employed in
this analysis is derived from the perturbative approach to
jet-medium scattering, nonperturbative effects may require
additional dependence of q̂ on jet energy and medium tem-
perature, and additional transport parameters may be required
to fully describe the jet measurements. In addition, aspects
of modeling the hydrodynamic medium that have not been
considered in this analysis will be explored. Other models
of the plasma, incorporating quasiparticle degrees of freedom
[140,141], will also be considered.
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