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1: Introduction 
 
The Computational Crystallography Toolbox (cctbx, http://cctbx.sourceforge.net/) is the open-source 
component of the Phenix project (http://www.phenix-online.org/). Currently we are finalizing an initial 
version of the Phenix refinement procedures. The emphasis of this article is an introduction to the 
underlying open-source libraries for the handling of geometry restraints, molecular mask calculations, 
bulk-solvent correction, likelihood-based target functions for crystallographic refinement, and the relative 
scaling between these target functions and the geometry restraints. 
 
Some of the functionality covered in this newsletter is implemented in the new top-level mmtbx module 
("macro-molecular toolbox") of the cctbx project. Due to technical reasons the mmtbx source code is not 
currently hosted at the SourceForge site even though it is covered by the same open license as the rest of 
the cctbx project. However, the full mmtbx sources are included in the bundles available at the 
http://cci.lbl.gov/cctbx_build/ download site. For the future we are planning to move the mmtbx code to 
the SourceForge site. 
 
In order to interactively run the examples scripts shown below, the reader is highly encouraged to visit 
http://cci.lbl.gov/cctbx_build/ and to download one of the completely self-contained, self-extracting 
binary cctbx distributions (supported platforms include Linux, Mac OS X, Windows, IRIX, and Tru64 
Unix). On recent machines the installation requires significantly less than one minute of time. Even on the 
slowest machine available to us (SGI O2, R5000, 300MHz) a binary installation takes less than three 
minutes without requiring any manual intervention. A cctbx installation is non-intrusive and does not 
require system privileges. Traceless removal is as easy as running rm -rf or dragging a single folder to 
the Recycle Bin. Nobody will know you did it! 
 
All example scripts shown below were tested with cctbx build 2004_08_05_0113. 
 
2: from cctbx import geometry_restraints 
 
Commonly refinement programs support inclusion of prior chemical knowledge such as bond lengths and 
bond angles via geometry restraints. The cctbx implementation of six types of geometry restraints is 
located in the cctbx.geometry_restraints module. The restraint types available are: 
 

• bond  
• nonbonded repulsion  
• angle  
• dihedral (same as torsion)  
• chirality  
• planarity  

 
The cctbx.geometry_restraints module is designed as a uniform library to support both small-
molecule and macro-molecular refinement. In general the requirements for small-molecule and macro-
molecular refinement are quite different. For example, some macro-molecular refinement programs have 
limited or no support for symmetry bonds (i.e. bonds to atoms generated by symmetry), or bonds 
involving sites on special positions. This is not surprising because of the 27141 pdb*.ent files found at 
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ftp.rcsb.org on July 27, 2004, only 256 include LINK records defining symmetry bonds (out of a total 
of 7078 files with LINK records), and only 534 files include heavy atoms on special positions (out of a 
total of 2746 files with atoms on special positions; most are water molecules). This means a little less 
than 98% of all macro-molecular structures can be refined with a program that does not correctly handle 
symmetry bonds or special positions. 
 
In contrast, special positions and symmetry bonds are the norm in small-molecule crystallography, not the 
exception. The is particularly true for inorganic materials. In theory, a system that handles geometry 
restraints for the refinement of small molecules and inorganic materials will therefore immediately be 
able to handle all symmetry aspects of 100% of all macro-molecular structures. In practice however many 
small-molecule programs do not lend themselves to be used for macro-molecular work. This is due to 
fairly trivial nuisances such as unsuitable compiled-in limits on the number of atoms or bonds that can be 
processed, or more seriously, use of algorithms that scale with the square of the number of atoms and 
become prohibitively slow for large macro-molecular structures. Even more seriously, aspects that are 
crucial for the handling of macro-molecular structures may not be covered at all, such as nonbonded 
interactions, dihedral or chirality restraints. 
 
The cctbx.geometry_restraints module was designed under the "completeness and correctness first, 
optimize later" paradigm. The handling of all symmetry aspects of bonded and nonbonded pair 
interactions is as complete as one expects to find in a small-molecule application, but the algorithms and 
data structures are optimized for handling a large number of atoms. I.e. the macro-molecular field will 
benefit from the rigorous treatment of symmetry, and the small-molecule field will benefit from speed 
increases. Owing to the facilities provided by the modern programming languages used (Python and 
C++), compiled-in limits are a problem of the past. The memory for all data is dynamically allocated. 
 
2.1: cctbx.geometry_restraints.bond 
 
Given the Cartesian coordinates of two bonded sites, the ideal bond length, and a weight, we can run the 
following Python code: 
 

from cctbx import geometry_restraints 
bond = geometry_restraints.bond( 
  sites=[(1,2,3),(2,3,4)], 
  distance_ideal=2, 
  weight=10) 
print "distance_model:", bond.distance_model 
print "delta:", bond.delta 
print "residual:", bond.residual() 
print "gradients:", bond.gradients() 

 
Output: 
 

distance_model: 1.73205080757 
delta: 0.267949192431 
residual: 0.717967697245 
gradients: ((3.0940107675850306, 3.0940107675850306, 3.0940107675850306), 
(-3.0940107675850306, -3.0940107675850306, -3.0940107675850306)) 

 
The bond class performs all the basic computations required for gradient-driven refinement. The 
residual() is the contribution of this bond to the total "energy" of the geometry term of the target 
function and defined in the usual way (e.g. Hendrickson, 1985) as weight * bond.delta**2, where 
bond.delta is the difference bond.distance_ideal - bond.distance_model. 
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2.2: cctbx.geometry_restraints.bond_simple_proxy 
 
Of course, during structure refinement the coordinates are changed. Therefore we need a data structure, in 
new speak an object, with some type of reference to the bonded sites along with distance_ideal and 
weight. We call this object bond_simple_proxy and it works like this: 
 

from cctbx import geometry_restraints 
from cctbx.array_family import flex 
sites_cart = flex.vec3_double([ 
  (1,2,3), 
  (2,3,4), 
  (1,3,5)]) 
bond_proxy_1 = geometry_restraints.bond_simple_proxy( 
  i_seqs=[0,1], 
  distance_ideal=2, 
  weight=10) 
bond_proxy_2 = geometry_restraints.bond_simple_proxy( 
  i_seqs=[1,2], 
  distance_ideal=1.8, 
  weight=20) 
for bond_proxy in [bond_proxy_1, bond_proxy_2]: 
  bond = geometry_restraints.bond( 
    sites_cart=sites_cart, 
    proxy=bond_proxy) 
  print "sites:", bond.sites 
  print "residual:", bond.residual() 

 
Output: 
 

sites: ((1.0, 2.0, 3.0), (2.0, 3.0, 4.0)) 
residual: 0.717967697245 
sites: ((2.0, 3.0, 4.0), (1.0, 3.0, 5.0)) 
residual: 2.97662350914 

 
sites_cart is an array of Cartesian coordinates for three sites. The i_seq (Index into SEQuence of 
sites) are the references mentioned above; they are simply integer indices into the sites_cart array. A 
bond_simple_proxy is essentially a bond with one level of indirection. We can turn a 
bond_simple_proxy into a bond by providing the sites_cart array referenced to by the i_seq. Then 
we can use the methods of the bond object to obtain the desired information as shown before, for example 
the residual() as in this example or the gradients() as in the previous example. 
 
2.3: cctbx.geometry_restraints.shared_bond_simple_proxy 
 
In all likelihood we will have to handle a considerable number of bonds. Therefore the next data structure 
we need is an array of bond proxies. The previous example can be rewritten to use "shared" arrays with 
bond proxy objects as the elements: 
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bond_proxies = geometry_restraints.shared_bond_simple_proxy() 
bond_proxies.append(geometry_restraints.bond_simple_proxy( 
  i_seqs=[0,1], 
  distance_ideal=2, 
  weight=10)) 
bond_proxies.append(geometry_restraints.bond_simple_proxy( 
  i_seqs=[1,2], 
  distance_ideal=1.8, 
  weight=20)) 
for bond_proxy in bond_proxies: 
  bond = geometry_restraints.bond( 
    sites_cart=sites_cart, 
    proxy=bond_proxy) 

 
If the number of bonds is very large as in the case of macro-molecular structures, the Python for loop 
will become a performance bottleneck. Python is a dynamically typed language and therefore very 
convenient to use, but the convenience is payed for with a runtime penalty of one to two orders of 
magnitude. The remedy is to reimplement the Python loop in C++ and to do the vector operation at the 
speed of a compiled language. Using Boost.Python (http://www.boost.org/libs/python/doc/, see also 
Grosse-Kunstleve & Adams, 2003), it is easy to make the C++ function available in Python. In this way 
we can, for example, obtain all bond.delta values with a single call from Python to C++: 
 

bond_deltas = geometry_restraints.bond_deltas( 
  sites_cart=sites_cart, 
  proxies=bond_proxies) 
print list(bond_deltas) 

 
Output: 
 

[0.2679491924311227, 0.38578643762690501] 
 
The idea behind this approach is similar to the idea behind vector computers. Python is the slow but 
general scalar unit, C++ the fast but restricted vector unit. Filling the array of bond proxies is similar to 
loading the vector unit and the call from Python to C++ is the vector operation. More on the subject of 
combining Python and C++ can by found in the Newsletter No. 1 in this series (Grosse-Kunstleve & 
Adams, 2003). 
 
As an aside, the array of bond proxies is called a "shared" array because it may have multiple owners. The 
lifetime of shared arrays is controlled by a reference count. If the reference count goes to zero (because all 
owning references go out of scope or are deleted explicitly) the memory for the array is automatically 
deallocated. This is one of the fundamental mechanisms used by Python and C++ for making memory 
management simple (compared to FORTRAN) and at the same time safe (compared to C). 
 
3: Symmetry: Friend or Foe? 
 
The astute reader will have noticed that symmetry was not mentioned in the introduction to the bond, 
bond_simple_proxy, and shared_bond_simple_proxy objects. How does the symmetry come into 
play? The simple part of the two latter symbols is already a hint that there must be something more 
complex, and that is of course the symmetry. While symmetry is always nice to look at and therefore 
appears to be a friend, when it comes to writing algorithms for the handling of symmetry it quickly 
becomes apparent that symmetry is a pretty bad foe. Symmetry introduces singularities and each 
singularity requires special attention. For example, the 230 crystallographic space groups can be 
understood as 230 unique singularities, each of which has a different set of singular positions known as 
special positions. Needless to say, each singularity requires a name or number and therefore we have 
space group symbols and numbers, Wyckoff tables, Wyckoff letters, site symmetry symbols, etc., etc. As 
a rule of thumb, the source code required for handling a problem complete with symmetry is at least ten 

http://www.boost.org/libs/python/doc/
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times the amount of source code required for the "simple" case. The handling of symmetry pair 
interactions and pair interactions involving sites in special positions is, unfortunately, not an exception. 
 
We use the term pair interaction with reference to both bonded and nonbonded interactions. It comes as a 
little relief that the handling of bonded and nonbonded pair interactions is very similar. The main 
difference is the function used to compute the contributions to the total energy term for the geometry. In 
the case of bonded interactions it is the simple harmonic function weight * bond.delta**2, in the case 
of nonbonded interactions it is a more involved function of exponentials. However, up to the point of 
determining the distance_model required in both cases the algorithms are identical. 
 
3.1: cctbx.crystal.direct_space_asu.asu_mappings 
 
One important term we forgot to mention in the list of names and numbers required for the singularities 
introduced by symmetry is that of asymmetric unit. Before we can introduce symmetry pair interactions 
we have to get acquainted with the cctbx.crystal.direct_space_asu.asu_mappings class. The 
development of this class is based on the work published in the Newsletter No. 2 in this series (Grosse-
Kunstleve et al., 2003). The web pages at http://cci.lbl.gov/asu_gallery/ are available for viewing the 
shapes of the standard asymmetric units as defined in the International Tables for Crystallography, 
Volume A. These shapes play a fundamental role in all cctbx algorithms involving pair interactions. 
Pair interactions are commonly considered up to a certain cutoff distance, for example a maximum bond 
length when searching for bonds, or a maximum nonbonded distance when searching for nonbonded 
interactions. A fundamental consideration is that all pair interactions can be mapped by symmetry into the 
shape of the standard asymmetric unit expanded by a buffer region equivalent to the chosen cutoff 
distance. Let's dig out the simple quartz_structure introduced in the Newsletter No. 1 to see how this 
works in practice: 
 

from cctbx import xray 
from cctbx import crystal 
from cctbx.array_family import flex 
quartz_structure = xray.structure( 
  crystal_symmetry=crystal.symmetry( 
    unit_cell=(5.01,5.01,5.47,90,90,120), 
    space_group_symbol="P6222"), 
  scatterers=flex.xray_scatterer([ 
    xray.scatterer( 
      label="Si", 
      site=(1/2.,1/2.,1/3.), 
      u=0.2), 
    xray.scatterer( 
      label="O", 
      site=(0.197,-0.197,0.83333), 
      u=0)])) 
quartz_structure.show_summary().show_scatterers() 
asu_mappings = quartz_structure.asu_mappings(buffer_thickness=2) 
print "n_sites_in_asu_and_buffer:", asu_mappings.n_sites_in_asu_and_buffer() 

 
The second to last line is a high-level interface provided by the xray.structure class for performing the 
process mentioned in the previous paragraph. First, the standard asymmetric unit is determined via lookup 
in the "reference file" introduced in Newsletter No. 2 and, if necessary, a change-of-basis transformation 
from the reference setting of the space group symmetry to the given setting (in the example the given 
setting is already the reference setting). Next, the asymmetric unit is expanded by moving the facets 2 Å 
out to generate the buffer region. Finally the space group symmetry is applied to the sites in order to fill 
the asymmetric unit including the buffer region. The end result is an instance of the class 
cctbx.crystal.direct_space_asu.asu_mappings. The output of running the example is: 

http://cci.lbl.gov/asu_gallery/
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Number of scatterers: 2 
At special positions: 2 
Unit cell: (5.01, 5.01, 5.47, 90, 90, 120) 
Space group: P 62 2 2 (No. 180) 
Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso 
Si   Si     3 ( 0.5000  0.5000  0.3333) 1.00 0.2000 
O    O      6 ( 0.1970 -0.1970  0.8333) 1.00 0.0000 
n_sites_in_asu_and_buffer: 20 

 
To understand the workings of the asu_mappings object we start with the asu_mappings.mappings() 
array provided by the object. For each scatterer in our quartz_structure there is one entry in the 
mappings array: 
 

assert asu_mappings.mappings().size() == quartz_structure.scatterers().size() 
for mappings in asu_mappings.mappings(): 
  print type(mappings), len(mappings) 

 
Output: 
 

<type 'tuple'> 3 
<type 'tuple'> 17 

 
This tells us that each element of the asu_mappings.mappings() array is a standard Python tuple, i.e. a 
list-like sequence of Python objects. We also learn that the first tuple has 3 elements and the second tuple 
has 17 elements. Each element represents exactly one site in the asymmetric unit or the buffer region. The 
first element of each tuple is always for the site in the asymmetric unit; by definition there can only be 
one. All following elements of each tuple represent sites in the buffer region. I.e. in this case there are 2 
Si atoms in the 2 Å buffer region and 16 O atoms. To find out where they are we can use other facilities 
provided by the asu_mappings object. To keep the output short we concentrate on the 3 mappings for the 
Si atom: 
 

for mapping in asu_mappings.mappings()[0]: 
  print "i_sym_op:", mapping.i_sym_op() 
  print "unit_shifts:", mapping.unit_shifts() 
  print "symmetry operation:", asu_mappings.get_rt_mx(mapping) 
  print 

 
Output: 
 

i_sym_op: 2 
unit_shifts: (0, 0, -1) 
symmetry operation: y,-x+y,z-1/3 
 
i_sym_op: 0 
unit_shifts: (0, 0, 0) 
symmetry operation: x,y,z 
 
i_sym_op: 1 
unit_shifts: (1, 0, -1) 
symmetry operation: x-y+1,x,z-2/3 

 
Each mapping object stores the number of the symmetry operation and the unit shifts that were used to 
map the original site to the site in the asymmetric unit or the buffer region. To enforce consistency, a 
complete copy of the symmetry operations is stored inside the asu_mappings object. This is enables us to 
use asu_mappings.get_rt_mx(mapping) to compute the final symmetry operations giving the mapping 
object. ("rt_mx" stands for "rotation-translation matrix"). 
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3.2: cctbx.crystal.neighbors_fast_pair_generator 
 
We know that the silicon atoms in the quartz_structure are covalently connected to the oxygen atoms 
and that the Si-O bond distance is around 1.6 Å. This is how we find the bonds: 
 

pair_generator = crystal.neighbors_simple_pair_generator( 
  asu_mappings, 
  distance_cutoff=1.7) 
for pair in pair_generator: 
  print pair.i_seq, pair.j_seq, pair.j_sym, pair.dist_sq**.5 

 
Output: 
 

0 1 0 1.61598604691 
0 1 1 1.61598604691 
0 1 12 1.61598604691 
0 1 15 1.61598604691 
1 0 1 1.61598604691 

 
The pair_generator is a Python iterator that performs a simple-minded search with approximately 
N*N/2 iterations for all pair interactions within the given distance_cutoff of 1.7 Å, where N is the 
number of atoms. At each iteration we obtain a pair object with integer references into the 
asu_mappings.mappings() array as introduced in the previous section. The indices pair.i_seq and 
pair.j_seq are indices into the asu_mappings.mappings() array. The index pair.j_sym is an index 
into the asu_mappings.mappings()[pair.j_seq] tuple (see previous section). To avoid redundancies, 
only bonds that emanate from within the asymmetric unit are considered. Therefore we do not need a 
corresponding i_sym index; it is always 0. I.e. the three integer indices are sufficient to uniquely define a 
bond based on the asu_mappings object. 
 
Alternatively we could generate the same list of pairs with the "fast" pair generator: 
 

pair_generator = crystal.neighbors_fast_pair_generator( 
  asu_mappings, 
  distance_cutoff=1.7) 

 
This alternative pair generator is designed for structures with a large number of sites. The interfaces of the 
simple and the fast pair generators are identical, but internally the fast generator is much more complex. 
The asymmetric unit including the buffer region is subdivided into cubes with a vertex length equivalent 
to distance_cutoff. In the search for pair interactions involving a given pivot site, only the cube of the 
pivot site and the 26 surrounding cubes have to be considered. The average number of sites per cube is 
approximately independent of the size of the structure. For a large number of sites the search time will 
therefore scale approximately linearly with the number of cubes instead of quadratically with the number 
of sites. This leads to dramatic increases in speed. For example (Linux, Xeon 2.8GHz): 
 

number of atoms    time simple search    time fast search 
  3500 (gere)           1.6 seconds           0.1 
 59000 (groel)        377.4                   1.5 

 
In practice there is no good reason for using the simple version of the pair generator. The main reason for 
keeping it in the library is to support a regression test that validates the fast generator. 
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3.3: cctbx.crystal.pair_asu_table 
 
The cctbx.crystal.pair_asu_table is the center piece of the cctbx system for the handling of pair 
interactions involving symmetry. The internal process_pair member function of this C++ extension 
class is the heart of the center piece. It is responsible for generating symmetrically equivalent pair 
interactions and for the removal of redundant interactions. A full description of the algorithm 
implemented by the process_pair function is beyond the scope of this article even though the C++ 
source code comprises only 41 lines (see file cctbx/include/cctbx/crystal/pair_tables.h). 
However, the following example demonstrates the most important features: 
 

pair_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings) 
pair_asu_table.add_all_pairs(distance_cutoff=1.7) 

 
The pair_asu_table.add_all_pairs(distance_cutoff=1.7) statement uses the fast pair generator as 
described in the previous section. When the first pair is processed by the process_pair function, the site 
symmetries of the two sites involved are applied to generate all symmetrically equivalent pairs. For the 
simple quartz structure, this step will already generate all pairs and add them to the pair_asu_table 
object. The pairs subsequently produced by the pair generator are found by lookup in the internal table 
and no further processing is necessary. At this stage the pair_asu_table.table() object managed by 
the pair_asu_table object will hold the data: 
 

pair_asu_table.show() 
 
Output: 
 

i_seq: 0 
  j_seq: 1 
    j_syms: [0, 1, 12, 15] 
i_seq: 1 
  j_seq: 0 
    j_syms: [0, 1] 

 
pair_asu_table.table() is the most deeply nested data structure in the entire cctbx. In Python terms it 
is a list of dictionaries associating integers with lists of lists. If this appears overly complicated consider 
Einstein's famous quote: "Make everything as simple as possible, but not simpler." We are certain that 
pair_asu_table.table() is as simple as possible because each level of nesting represents a clear 
concept necessary to fully characterize symmetry pair interactions: 
 

• The outermost list holds one entry per atom. The i_seq index is implied.  

• Each entry is a dictionary. The keys are the j_seq indices.  

• The value corresponding to each j_seq index is a list of groups of j_sym indices.  

• The interactions defined by the j_sym indices in each group are symmetrically 
equivalent.  

 
Since the interactions are fully characterized it is now very simple to extract the interactions unique under 
symmetry. Since we are not concerned about the directionality of the pair interactions (i.e. A-B is the 
same as B-A) we only have to consider interactions with i_seq <= j_seq, and we only need the first 
element from each group of symmetrically equivalent interactions. This procedure is implemented as the 
extract_pair_sym_table method of pair_asu_table: 
 

pair_sym_table = pair_asu_table.extract_pair_sym_table() 
pair_sym_table.show() 
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Output: 
 

i_seq: 0 
  j_seq: 1 
    -y,x-y,z-1/3 
i_seq: 1 

 
This shows that the quartz structure has only one unique Si-O bond under symmetry. 
An important point to note is that pair_sym_table is, in contrast to pair_asu_table, independent of the 
asu_mappings object; hence the naming. pair_sym_table is therefore suitable for communicating 
connectivity between algorithms that may require different asu_mapping objects due to shifts in 
coordinates or modified distance cutoffs. Here is how we can re-generate a new pair_asu_table from a 
pair_sym_table: 
 

new_asu_mappings = quartz_structure.asu_mappings(buffer_thickness=5) 
new_pair_asu_table = crystal.pair_asu_table(asu_mappings=new_asu_mappings) 
new_pair_asu_table.add_pair_sym_table(sym_table=pair_sym_table) 
new_pair_asu_table.show() 

 
Output: 
 

i_seq: 0 
  j_seq: 1 
    j_syms: [0, 3, 55, 68] 
i_seq: 1 
  j_seq: 0 
    j_syms: [0, 8] 

 
In this case the j_syms have changed compared to the output of pair_asu_table.show() because the 
buffer region of new_pair_asu_table is larger compared to that of the initial pair_asu_table. 
The new iotbx.show_distances command provides an easy to use interface to the core functionality 
described in this section. This command reads files in the simple format introduced by the kriber 
program (http://www.crystal.mat.ethz.ch/Software/Kriber). For example: 
 

*quartz 
 
P 62 2 2 
 5.01 5.47 
Si   0.5000  0.5000  0.3333 
O    0.1970 -0.1970  0.8333 
--------------------------- 

 
The full command is: 
 

iotbx.show_distances quartz_structure --distance_cutoff=1.7 
 
Output: 
 

strudat tag: quartz 
 
Number of scatterers: 2 
At special positions: 2 
Unit cell: (5.01, 5.01, 5.47, 90, 90, 120) 
Space group: P 62 2 2 (No. 180) 
Label, Scattering, Multiplicity, Coordinates, Occupancy, Uiso 
Si   Si     3 ( 0.5000  0.5000  0.3333) 1.00 0.0000 
O    O      6 ( 0.1970 -0.1970  0.8333) 1.00 0.0000 
 

http://www.crystal.mat.ethz.ch/Software/Kriber
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Si(1):          pair count:   4  <<  0.5000,  0.5000,  0.3333>> 
  O(2):        1.6160             (  0.1970,  0.3940,  0.5000) 
  O(2):        1.6160 sym. equiv. (  0.3940,  0.1970,  0.1667) 
  O(2):        1.6160 sym. equiv. (  0.8030,  0.6060,  0.5000) 
  O(2):        1.6160 sym. equiv. (  0.6060,  0.8030,  0.1667) 
O(2):           pair count:   2  <<  0.1970, -0.1970,  0.8333>> 
  Si(1):       1.6160             (  0.0000, -0.5000,  0.6667) 
  Si(1):       1.6160 sym. equiv. (  0.5000,  0.0000,  1.0000) 
 
Pair counts: [4, 2] 

 
The implementation of this command can be found in the file 
 iotbx/iotbx/command_line/show_distances.py. 
 
3.4: Nonbonded exclusions 
 
In the refinement of macro-molecular structures it is common to use nonbonded pair interactions, e.g. 
Lennard-Jones potentials or empirical "repulsive force fields." For sites that are not bonded but are within 
a certain distance (typically around 7 Å) a corresponding nonbonded energy term is added to the total 
energy of the geometry. Experience shows that it is highly advantageous to exclude certain nonbonded 
interactions. Consider this simple molecular fragment: 
 

A-B-C 
    | 
  E-D 

 
The lines indicate bonded interactions. These are often referred to as "1-2" interactions. In our fragment 
we find 1-2 interactions between A-B, B-C, C-D, and D-E. The nonbonded interactions A-C, B-D, and C-
E are commonly referred to as 1-3 interactions, and the nonbonded interaction A-D is called a 1-4 
interaction. In general, 1-2 and 1-3 interactions are excluded from the nonbonded energy term, and 1-4 
interactions are attenuated. 
 
When setting up the nonbonded energy calculations we have to find the 1-3 and 1-4 interactions based on 
the pre-defined bonded (1-2) interactions. If space group symmetry is not involved this is very 
straightforward. However, if symmetry bonds are to be considered the situation becomes much more 
complex again. The algorithm required is known as "coordination sequence algorithm" and is commonly 
used in material science, in particular zeolite research (e.g. Brunner & Laves, 1971, Grosse-Kunstleve et 
al., 1996). See also the Atlas of Zeolite Framework Types available at http://www.iza-structure.org/). 
 
3.5: cctbx.crystal.coordination_sequence 
 
It is surprisingly easy to write a complete coordination sequence algorithm based on the pair_asu_table 
object discussed before. A simple_and_slow reference implementation can be found in the 
cctbx.crystal.coordination_sequences module. The complete function comprises just 36 lines of 
Python code. We can use this short function to easily compute the coordination sequences for the Si and 
O atoms in our quartz_structure: 
 

import cctbx.crystal.coordination_sequences 
term_table = crystal.coordination_sequences.simple_and_slow( 
  pair_asu_table=pair_asu_table, 
  max_shell=10) 
for terms in term_table: 
  print terms 

 

http://www.iza-structure.org/
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Output: 
 

[1, 4, 4, 12, 12, 36, 30, 84, 52, 124, 80] 
[1, 2, 6, 6, 18, 18, 51, 42, 103, 62, 156] 

 
The first list of terms is for the Si atom, the second for the O atom. The first term (in "shell" 0) is always 
1. The 1 Si is bonded to 4 O atoms (shell 1), which are bonded to 4 new Si atoms (shell 2). Following all 
the bonds from these Si atoms to the next O atoms leads to 12 new O atoms (shell 3), from there to 12 
new Si atoms (shell 4), etc. 
 
In the mathematics of coordination sequences (e.g. Grosse-Kunstleve et al., 1996) it is most natural to 
index the coordination shells in the way shown above. Unfortunately this is not directly compatible with 
the nomenclature of 1-2, 1-3, and 1-4 interactions used in the macro-molecular field. The interactions 
accounted for in shell 1 are the 1-2 interactions, shell 2 accounts for the 1-3 interactions, and shell 3 for 
the 1-4 interactions. 
 
To find the nonbonded exclusions we do have to do a little more work than just counting the number of 
interactions as is done by the simple_and_slow function. For each shell we have to keep a table of the 
interactions found. A much faster, optimized C++ implementation of the coordination sequence algorithm 
with interfaces for both simple counting and the generation of interaction tables is available in the file 
cctbx/include/cctbx/crystal/coordination_sequences.h. The Python interface to the simple and 
fast counting algorithm is very similar to that for the simple_and_slow interface: 
 

term_table = crystal.coordination_sequences.simple( 
  pair_asu_table=pair_asu_table, 
  max_shell=10) 
crystal.coordination_sequences.show_terms( 
  structure=quartz_structure, 
  term_table=term_table) 

 
Output: 
 

Si [1, 4, 4, 12, 12, 36, 30, 84, 52, 124, 80] 
O [1, 2, 6, 6, 18, 18, 51, 42, 103, 62, 156] 
TD10: 456.33 

 
Here we make use of the show_terms function which shows the scatterer labels along with each list of 
terms and also the TD10, a measure of the "topological density" commonly used in the zeolite field (see 
http://www.iza-structure.org/). 
 
The tabulation of the 1-3 and 1-4 interactions needed for the nonbonded exclusions is equally easy: 
 

shell_asu_tables = crystal.coordination_sequences.shell_asu_tables( 
  pair_asu_table=new_pair_asu_table, 
  max_shell=3) 
print shell_asu_tables 

 
Output: 
 

(<cctbx_crystal_ext.pair_asu_table object at 0x82a2bec>, 
 <cctbx_crystal_ext.pair_asu_table object at 0x82a2c34>, 
 <cctbx_crystal_ext.pair_asu_table object at 0x82a2c7c>) 

 
The result is a Python tuple with three pair_asu_table objects for the 1-2, 1-3, and 1-4 interactions. The 
first pair_asu_table in the tuple is simply a reference to the original pair_asu_table defining the 
bonds. Keeping the original table together with the derived tables simplifies subsequent algorithms. 

http://www.iza-structure.org/
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As an aside, the 36 lines of the simple_and_slow Python function have turned into 278 lines of C++ 
code in coordination_sequences.h. The size comparison is not quite fair because the C++ 
implementation works for both simple counting and tabulation of nonbonded exclusions, but a doubling 
or tripling of the lines of source code in the conversion from a Python reference implementation to the 
final C++ implementation is the norm. Unfortunately this is what we have to cope with until higher-level 
languages with smarter optimizers are a reality. 
 
4: Putting everything together: cctbx.geometry_restraints.manager 
 
The shell_asu_tables object of the previous section is the key data structure for the computation of the 
bond proxies and the nonbonded proxies. However, there is still much more to manage: we need to define 
the bond parameters (ideal distances and weights), nonbonded "energy types" and VdW (Van der Waals) 
distances, angle, dihedral, chirality and planarity restraints. Clearly we need a professional manager. It is 
implemented in the cctbx.geometry_restraints.manager module. The manager constructor acts as a 
tool for grouping all information required for the geometry restraints calculations: 
 

class manager: 
 
  def __init__(self, 
        crystal_symmetry=None, 
        site_symmetry_table=None, 
        bond_params_table=None, 
        shell_sym_tables=None, 
        nonbonded_params=None, 
        nonbonded_types=None, 
        nonbonded_distance_cutoff=5, 
        nonbonded_buffer=1, 
        angle_proxies=None, 
        dihedral_proxies=None, 
        chirality_proxies=None, 
        planarity_proxies=None): 

 
A self-contained, reasonably simple example (266 lines of Python) for setting up all data structures for the 
bonded and nonbonded calculations can be found in the file 
cctbx/cctbx/geometry_restraints/distance_least_squares.py. This script performs a distance 
least squares minimization of zeolite geometries. It was developed primarily as a regression test, but 
covers almost all the functionality of the pioneering DLS-76 program 
(http://www.crystal.mat.ethz.ch/Software/DLS76). The only major DLS-76 feature missing is the 
refinement of unit cell parameters. The new iotbx.distance_least_squares command provides a 
simple interface to the script. In our internal test we use this command to minimize the geometries of the 
complete Atlas of Zeolite Framework Types (152 structures) in less than 40 seconds (Linux, Xeon 
2.8GHz). This includes the automatic search for Si-Si bonds, the generation of oxygen atoms at the mid-
points of the Si-Si bonds, the generation of angle restraints which are parameterized as pseudo O-O and 
Si-Si bonds, the generation of nonbonded interactions, and a two-stage minimization, first without a 
repulsive force field and in the second pass with the repulsions turned on. The successful completion of 
these minimizations gives us a high confidence that our system for the refinement of bonded and 
nonbonded pair interactions is complete and free of errors. 
 
4.1: angle, dihedral, chirality, planarity restraints 
 
The angle, dihedral, chirality, and planarity restraints are currently implemented in the "simple" version 
only, without treatment of symmetry. For our purposes this is fully sufficient and it may even be 
sufficient in general because angle restraints for small-molecule crystallography are often parameterized 
as pseudo bonds (e.g. DLS-76, see previous section). The three other restraint types are not very common 
in small-molecule crystallography. However, our framework is very open and symmetry-aware restraint 
types could probably be added without disturbing the overall organization of the 

http://www.crystal.mat.ethz.ch/Software/DLS76
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cctbx.geometry_restraints module. To give an example we show how to work with angle restraints: 
 

from cctbx import geometry_restraints 
angle = geometry_restraints.angle( 
  sites=[(1,2,3),(2,3,4),(5,4,3)], 
  angle_ideal=120, 
  weight=1) 
print "angle_model:", angle.angle_model 
print "delta:", angle.delta 
print "residual:", angle.residual() 
print "gradients:", angle.gradients() 

 
Output: 
 

angle_model: 121.482154105 
delta: -1.48215410529 
residual: 2.19678079184 
gradients: ((-69.337848889979, 1.2765767806090013e-14, 69.337848889979028), 
            (63.034408081799093, -25.213763232719657, -113.4619345472384), 
            (6.3034408081799089, 25.213763232719643, 44.124085657259371)) 

 
Comparison with the first example for defining a bond restraint shows that the interfaces are very similar. 
Essentially we just need three sites instead of two, and we have to write angle everywhere instead of 
bond and distance. The higher level support for proxies, arrays of proxies and vector operations on these 
arrays is also very similar. The similarities extend to dihedral and chirality restraints where we need to 
specify four sites instead of two or three. Planarity restraints are slightly different because we have to 
deal with a variable number of sites and each site is associated with an individual weight: 
 

from cctbx import geometry_restraints 
from cctbx.array_family import flex 
sites_cart = flex.vec3_double([ 
  (-6.9, 1.3, -1.4), 
  (-4.9, -1.0, 0.1), 
  (-6.9, -0.6, -1.7), 
  (-4.8, 0.9, 0.5)]) 
weights = flex.double([1, 2, 3, 4]) 
planarity = geometry_restraints.planarity( 
  sites=sites_cart, 
  weights=weights) 
print "deltas:", list(planarity.deltas()) 
print "residual:", planarity.residual() 
print "gradients:", list(planarity.gradients()) 

 
We don't show the rather uninteresting output. The difference to the other restraint types is that we get an 
array of deltas instead of just one value. However the important residual() and gradient() functions 
fit into the common framework. 
 
5: Setting up restraints using the CCP4 Monomer Library 
 
The CCP4 (http://www.ccp4.ac.uk/) Monomer Library is a comprehensive database of protein, nuclear 
acid and hetero-compound geometries. We are grateful for CCP4 to give us permission to use this library. 
The new mmtbx top-level module of the cctbx project (see Newsletter No. 1 for information on the 
overall organization of the cctbx project) includes functions for reading the monomer library files as 
distributed by CCP4, and to generate the geometry proxies introduced above for a given PDB file 
(http://www.rcsb.org/). The end result is a cctbx.geometry_restraints.manager.manager instance 
that is completely independent of the Monomer Library, the PDB file, or any other file format. The 
manager object is then used in the same minimization procedure employed by the 
distance_least_squares.py script introduced before (the minimizer is implemented in 
cctbx.geometry_restraints.lbfgs). This complete separation of file formats and core computations 

http://www.ccp4.ac.uk/
http://www.rcsb.org/
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makes it possible to support any other library defining geometry restraints. E.g. for the future we are 
planning to add support for CNS (http://cns.csb.yale.edu/) topology and parameter files. 
 
Currently the code for working with the CCP4 Monomer Library resides in the 
mmtbx/mmtbx/stereochemisty directory. It is still being worked on in order to cleanly support PDB 
files with alternate conformations and it may be moved to a different place. We will describe the final 
result in the next newsletter. 
 
6: Bulk solvent correction and scaling 
 
It is well known that macromolecular crystals contain a large amount of disordered solvent reaching 
sometimes more than 70% of the unit cell volume. The scattering contribution of this solvent level 
becomes significant at low resolution starting from about 6.0 Å. There are several aspects where the 
appropriate modeling of low resolution data is of great importance: electron density map analysis 
(Urzhumtsev, 1991), crystallographic refinement (Kostrewa, 1997), precise calculation of electrostatic 
properties of molecules (Lecomte, 1999), and the translation search part of structure solution by the 
Molecular Replacement method (Fokine & Urzhumtsev, 2002a). Basically two bulk solvent models are 
currently in use by popular crystallographic packages: the exponential scaling model (Moews & 
Kretsinger, 1975; Tronrud, 1997) and the flat model (Phillips, 1980; Jiang & Brunger, 1994). The 
exponential scaling model is only justified for the very low-resolution data, lower than 15 Å (Podjarny & 
Urzhumtsev, 1997), and becomes incorrect at higher resolutions. The flat model is shown as physically 
more reasonable (Fokine & Urzhumtsev, 2002b) and being compared to all others models is demonstrated 
as more efficient in sense of both computations and quality of final result obtained (Jiang & Brunger, 
1994). 
 
Based on the arguments above, we implemented the flat bulk solvent model in the mmtbx.bulk_solvent 
module. The bulk solvent modeling and scaling procedure contains four main steps: molecule mask 
calculation, structure factors calculation from the mask, determination of solvent parameters ksol and 
Bsol, and determination of the overall anisotropic scale coefficient (Sheriff & Hendrickson, 1987). 
The algorithm for the mask calculation is realized as described by (Jiang & Brunger, 1994). The 
corresponding Python code looks like this: 
 

from mmtbx.bulk_solvent import bulk_solvent_models 
from mmtbx.masks import masks 
from iotbx import reflection_file_reader 
from iotbx import pdb 
pdb_file = "1F8T.pdb" 
hkl_file = "1F8T.hkl" 
xray_structure = pdb.as_xray_structure(pdb_file) 
refl = reflection_file_reader.any_reflection_file(file_name=hkl_file) 
refl_arrays = refl.as_miller_arrays(crystal_symmetry=xray_structure) 
f_obs = refl_arrays[0].resolution_filter(d_min=2.5) 
f_calc = f_obs.structure_factors_from_scatterers( 
  xray_structure=xray_structure).f_calc() 
mask_manager = masks.mask_utils( 
  structure=xray_structure, 
  mask_grid_step=f_obs.d_min()/4., 
  shell=5.0, 
  shrink=1.0, 
  rsolv=1.0) 
f_mask = mask_manager.sf_from_mask(f=f_obs) 
f_mask.set_info("Mask structure factors") 
f_mask.show_summary() 
print "Accessible surface fraction:", \ 
  mask_manager.accessible_surface_fraction() 
print "Contact surface fraction:", \ 
  mask_manager.contact_surface_fraction() 

 

http://cns.csb.yale.edu/
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Output: 
 

Miller array info: Mask structure factors 
Observation type: None 
Type of data: complex_double, size=15897 
Type of sigmas: None 
Number of Miller indices: 15897 
Anomalous flag: 0 
Unit cell: (72.24, 72.01, 86.99, 90, 90, 90) 
Space group: P 21 21 21 (No. 19) 
Accessible surface fraction: 0.330885416667 
Contact surface fraction: 0.45850308642 

 
The bulk solvent structure factors and parameters ksol and Bsol can be calculated by adding the following 
lines to the previous code: 
 

bulk_solvent_manager = bulk_solvent_models.bulk_solvent( 
  verbose=-1, 
  f_obs=f_obs, 
  f_calc=f_calc, 
  f_mask=f_mask, 
  aniso_scale_flag=0001, 
  bulk_solvent_correction_flag=0001) 
print "Flat model bulk solvent parameters: ", \ 
  bulk_solvent_manager.ksol_bsol() 
f_bulk = bulk_solvent_manager.f_bulk() 
f_bulk.set_info("Bulk solvent structure factors") 
f_bulk.show_summary() 

 
Output: 
 

Flat model bulk solvent parameters:  (0.31000000000000011, 38.0) 
Miller array info: Bulk solvent structure factors 
Observation type: None 
Type of data: complex_double, size=15897 
Type of sigmas: None 
Number of Miller indices: 15897 
Anomalous flag: 0 
Unit cell: (72.24, 72.01, 86.99, 90, 90, 90) 
Space group: P 21 21 21 (No. 19) 

 
All major refinement programs use minimizers to determine the bulk solvent parameters and the 
anisotropic scaling matrix. However there are a number of difficulties to this approach: 
 

1. The low-resolution diffraction data may not be of sufficient quality or 
completeness.  

2. The starting values for ksol and Bsol may be far from the correct values.  

3. The parameters ksol and Bsol are highly correlated. Therefore the minimizer may 
have difficulties finding a path to the global minimum.  

4. Optimizing a function of two exponentials is generally a difficult problem.  
 
These considerations have lead us to choose a more robust procedure. As was demonstrated by Fokine & 
Urzhumtsev (2002b), the values for ksol and Bsol are distributed around 0.35 eÅ-3 and 46 Å2, 
respectively. Therefore we decided to implement a grid search procedure for the determination of ksol 
and Bsol. The search is conducted in a physically meaningful range of values, [0,1] for ksol and [0,100] 
for Bsol. For each trial pair (ksol, Bsol) in the specified ranges we calculate the anisotropic scaling 
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coefficients using a gradient-driven minimizer. Finally we select the values ksol and Bsol based on the 
best outcome of the minimization. It should be emphasized that we use the whole resolution range of data. 
In contrast, Jiang & Brunger (1994) suggest a partitioning into low-resolution and high-resolution pools. 
This is the approach used by the CNS program (Brunger et al., 1998) to make the minimization procedure 
more stable. Our grid-search procedure is sufficiently robust to work without partitioning the data. 
Another new feature that distinguishes our implementation of the scaling procedure from previous 
implementations is the use of a maximum-likelihood function as the objective function in the 
minimization. Even though maximum-likelihood based refinement is now very common, all existing 
programs use a conventional least-squares target in the determination of the bulk solvent and scaling 
parameters, while maximum-likelihood functions are used to determine all other parameters. This 
inconsistency is eliminated in the mmtbx.bulk_solvent module. 
 
7: Relative scaling of crystallographic functional and restraints 
 
Crystallographic refinement usually considers the minimization of a sum of two functions. One function 
is responsible for fitting the model to the experimental data and the second function introduces restraints 
encoding a priori knowledge, for example the geometry restraints discussed before. The two functions are 
generally on a different scale and it is necessary to determine an appropriate relative scale factor in order 
to balance the contributions to the sum. For this purpose we have implemented the procedure proposed by 
(Adams et al., 1997) in the mmtbx.refinement.weight_xray_term module, which makes use of the new 
mmtbx.dynamics module. 
 
8: Crystallographic target functions 
 
The new mmtbx.refinement module implements two crystallographic target functions in addition to the 
conventional least-squares and correlation target functions provided by the cctbx.xray module. These 
are the full maximum-likelihood function of Lunin et al. (2002) and its quadratic approximation (Lunin & 
Urzhumtsev, 1999). The calculation of the distribution parameters for the target function, "alpha" and 
"beta", is implemented in two ways: 
 

• estimation by maximization of a likelihood function given a current model and 
observed intensities (Lunin & Skovoroda, 1995),  

• determination via an exact formula (see, for example, Afonine et al., 2003).  
 
In the future we will also implement the sigma-a algorithm and likelihood functions including 
experimental phase information. 
 
9: Integration of Clipper 
 
Thanks to generous support by Kevin Cowtan, the Clipper library 
(http://www.ysbl.york.ac.uk/~cowtan/clipper/clipper.html, see also Cowtan (2003) in Newsletter No. 2) is 
now integrated into the cctbx project and redistributed with the cctbx bundles posted at 
http://cci.lbl.gov/cctbx_build/ . The bundles with the build tag 2004_07_06_0816 are the first to include 
Clipper. Currently the Clipper libraries requiring fast Fourier transforms are not compiled in the cctbx 
build, but this is likely to change in the future. The supporting clipper_adaptbx adaptor toolbox in the 
cctbx tree provides a fully functional Python interface to the sigma-a calculations in Clipper. We will add 
other Python interfaces as the need arises. 
 

http://www.ysbl.york.ac.uk/~cowtan/clipper/clipper.html
http://cci.lbl.gov/cctbx_build/
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10: Efficient sampling of search spaces 
 
Indirectly Kevin Cowtan has left his mark in the cctbx project in another way. The newly added 
cctbx.crystal.close_packing module implements a hexagonal close packing sampling generator as 
suggested by Kevin for some time. Sampling space at the points of a hexagonal close packing instead of 
the points of a regular grid leads to significant speed increases in search procedures such as the molecular 
replacement translation search or the placement of molecular fragments in electron density maps. The 
cctbx.crystal.close_packing.hexagonal_sampling generator produces points to efficiently sample 
search spaces with various symmetries. Space group symmetry and Euclidean normalizer symmetry (also 
known as Cheshire symmetry) can be arbitrarily combined to define the symmetry of the search space. 
Depending on the settings, the resulting sampling points may cover three, two, one or zero dimensions. 
The symmetry is controlled at a high level via flags. The search-space symmetry operations including 
continuous allowed origin shifts are determined automatically. For example: 
 

from cctbx import crystal 
import cctbx.crystal.close_packing 
from cctbx import sgtbx 
crystal_symmetry = crystal.symmetry( 
  unit_cell="255.260  265.250  184.400  90.00  90.00", 
  space_group_symbol="P 21 21 2") 
for use_space_group_symmetry in [True, False]: 
  sampling_generator = crystal.close_packing.hexagonal_sampling( 
    crystal_symmetry=crystal_symmetry, 
    symmetry_flags=sgtbx.search_symmetry_flags( 
      use_space_group_symmetry=use_space_group_symmetry, 
      use_seminvariants=True, 
      use_normalizer_k2l=False, 
      use_normalizer_l2n=False), 
    point_distance=2) 
  print "number of sampling points:", sampling_generator.count_sites() 

 
Output: 
 

number of sampling points: 46332 
number of sampling points: 162240 

 
The whole procedure takes 0.14 seconds (Linux, Xeon 2.8GHz). See also the reference documentation for 
the classes cctbx::crystal::close_packing::hexagonal_sampling_generator and 
cctbx::sgtbx::search_symmetry_flags available at http://cctbx.sourceforge.net/ under 
"C++ interfaces." 
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