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AbstratIn this paper, we present a fast algorithm whih evaluates a disreteLaplae transform withN points atM arbitrarily distributed points in C(N+M) work, where C depends only on the preision required. Our algorithmbreaks even with the diret alulation at N = M = 20, and ahieves aspeedup of 1000 with 10000 points. It is based on a geometri divide andonquer strategy, ombined with the manipulation of Laguerre expansions,via a dilation formula for Laguerre funtions.
1 IntrodutionMany situations in applied mathematis require the use of the Laplae trans-form f̂(t) = Z 10 e�tsf(s) ds(1)of a funtion f de�ned on R+ = (0;1). Pratially, one often evaluates f̂by applying a numerial quadrature rule to the integral (1). Thus pratialsituations usually require evaluation of the disrete Laplae transformf̂i = NXj=1 fj e�tisj ;(2)for i = 1; : : : ;M , where the oeÆients fj depend on the values f(sj) andthe weights of the quadrature formula and ti and sj are given positive realnumbers. A speial ase is the evaluation of polynomials, or more generallythe disrete Mellin transform.A diÆulty, however, is the high ost of evaluating (2) when N or M islarge; diret evaluation of (2) osts O(NM) work. In this paper, we present2



an algorithm for evaluating the disrete Laplae transform (2), within a user-spei�ed preision � relative to F = P jfjj, in O(M + N) arithmeti opera-tions, with a onstant in O(M +N) depending only on � and the interval inwhih all the points ti and sj lie. Our algorithm is based on ertain propertiesof Laguerre polynomials, and takes advantage of the multipliative onvolu-tion struture of the transform. It will speed up alulations in whih Mand N are large and the work is dominated by the arithmeti operationsneessary to evaluate the sums (2).Our algorithm generalizes to evaluate onvolutions with a �xed Laguerrefuntion. Sine any smooth rapidly deaying funtion on R+ has a rapidlyonverging Laguerre expansion, our algorithm thus generalizes to permit fastmultipliative onvolution on R+, with any suh kernel.A fast Laplae transform has also been developed by Rokhlin [2℄ using anapproximation-theoreti approah quite di�erent from the speial-funtion-theoreti approah presented here. We have not attempted to make a detailedomparison of the two algorithms. They are similar in some respets; both usea geometri subdivision of R+ but Rokhlin's algorithm is based on Chebyshevexpansions, while our algorithm uses speial funtions espeially suited to theLaplae transform.The struture of the paper is standard. x1 presents the speial fun-tion de�nitions and identities we will need, x2 explains the algorithm, andx3 presents the numerial results. x4 disusses onvolution with Laguerrefuntions and more general kernels, and x5 states our onlusions.
3



2 Formulas and speial funtionsThe Laguerre polynomials are disussed in [3℄. We shall de�ne them by theRodrigues formula Ln(t) = etn!Dn �tne�t� t 2 Rwhere D = d=dt, though they are most onveniently evaluated by the three-term reurrene(n+ 1)Ln+1(t)� (2n+ 1� t)Ln(t) + nLn�1(t) = 0:We will need only one identity involving Laguerre polynomials. This is thedilation formula whih expresses the ation of the group of dilations of R+on a given Laguerre polynomial. It reads [3℄Ln(ts) = nXk=0 n!k!(n� k)!tn�k(1� t)kLn�k(s)(3)From this identity, we an derive the main formula used in our fast Laplaetransform. We de�ne the Laguerre funtions byLn(t) = Ln(t)e�t:This is not the standard de�nition, but the appropriate one for our situation.These Laguerre funtions form a biorthonormal set with Laguerre polynomi-als rather than themselves forming an orthonormal set.We now require a dilation formula for Laguerre funtions. To derive suha formula, �x t and assume a Laguerre expansion of the formLn(ts) = 1Xk=0 gnk (t)Lk(s):4



Suh an expansion exists, sine Ln(ts) is a smooth funtion on R+ whih de-reases rapidly at1. The oeÆients are found by using the biorthogonalityrelation [3℄ Z 10 Lk(t)Lm(t)dt = Ækm:Indeed, multiply the de�nition of gnk (t) by Lm(s) and integrate term by termto get gnm(t) = Z 10 Ln(ts)Lm(s)ds = 1t Z 10 Ln(s)Lm(s=t)ds:Use the dilation formula for Laguerre polynomials and biorthogonality to getgnm(t) = 1t Z 10 Ln(s) mXk=0 m!k!(m� k)! �1t�m�k �1� 1t�k Lm�k(s)ds= 0 if m < n= 1t m!n!(m� n)! �1t�n �1� 1t�m�n if m � n:Thus we have a dilation formula for Laguerre funtions:Ln(ts) = 1Xk=0�1t�n+1 �1� 1t�k (n+ k)!n!k! Ln+k(s):(4)(This formula an be found in the textbook [1℄, on page 215. A quiker proofan be onstruted by using the generating funtion of Laguerre polynomi-als.) An important speial ase (n = 0) ise�ts = 1t 1Xk=0�1� 1t�k Lk(s):(5)Sine Lk(s) � e�s=2, the series (4) and (5) onverge geometrially fast in theregion j1� 1=tj � r < 1.We are now ready to derive the expansion whih forms the basis of ouralgorithm: Put t = xy and s = z in (5) to gete�xyz = 1Xk=0 1xy  1� 1xy!k Lk(z):(6) 5



Apply the binomial theorem in the form 1� 1xy!k = 2�k [(1 + 1=x)(1� 1=y) + (1 + 1=y)(1� 1=x)℄k= 2�k kXj=0 k!j!(k � j)!(1 + 1=x)k�j(1� 1=y)k�j(1 + 1=y)j(1� 1=x)j:Thus (6) beomes, after reversing the order of summation and shifting theindex k,e�xyz = 1xy 1Xj=0 1Xk=0 2�(j+k) (j + k)!j!k! (1+1=x)k(1�1=y)k(1+1=y)j(1�1=x)jLj+k(z):(7)This series separates the variables x, y and z in a way onvenient for thealgorithm.Finally, we will need to estimate the trunation error inurred by trun-ating (7) after say p2 terms. The error is Ep � Fp whereEp = 1xy 24 1Xj=p+1 1Xk=0+ 1Xk=p+1 1Xj=035 zk1zj2 (j + k)!j!k! Lj+k(z);z1 = (1 + 1=x)(1� 1=y)=2, z2 = (1 + 1=y)(1� 1=x)=2 andFp = 1xy 1Xj=p+1 1Xk=p+1 zk1zj2 (j + k)!j!k! Lj+k(z):We have split the error up like this so that the largest error term Ep anbe bounded by the dilation formula (4) for Laguerre funtions: we haveEp = 1xy 24 1Xj=p+1 zj2�j+11 Lj(�1z) + 1Xk=p+1 zk1�k+12 Lk(�2z)35(8)where z1 = 1� 1=�1 and z2 = 1� 1=�2. The uniform bound jLk(z)j � e�z=2and the formula for the tail of a geometri series give the error boundjEpj � �1xye��1z=2 ( z21�z1 )p+11� z21�z1 + �2xye��2z=2 ( z11�z2 )p+11� z11�z2 :6



Some algebra redues this expression tojEpj � e�xyz=(1+x�y+xy)  1� 21 + x� y + xy!p+1+e�xyz=(1�x+y+xy)  1� 21� x+ y + xy!p+1This bound is useful when z lies anywhere in (0;1) and x and y are restritedto lie near 1: If we take x and y in a geometri interval (1=q; q) with 1 � q <1+p52 , an easy alulation shows thatjEpj � 2e�z=q2(1+q2) " q � 1=q2� (q � 1=q)#p+1 :(9)Note that q � 1=q is just the length of the interval ontaining x and y.The other error term Fp annot be bounded by the dilation formula,beause the sums both run from p+1 to 1. We bound it rudely, assumingthat q is small, by using that (j+k)!=j!k! � 2j+k and that Lj+k(z) � e�z=2 �1. The resulting bound tremendously overestimates Fp, but it is sharp enoughfor our purposes. The formula for the partial sum of a geometri series impliesthat jFpj � 1xy (2z1)p+11� 2z1 (2z2)p+11� 2z2 :If x and y lie in the interval 1=q; q with 1 � q < p2, then Fp is bounded byjFpj � 2q2 (q2 � 1)2p+2(2� q2)2 :Note that the geometri onvergene fator q2� 1 = q(q� 1=q) is larger thanthe onvergene fator q�1=q in the error bound for Ep, but that it is raisedto a higher power 2p+ 2 rather than p + 1. It turns out that our bound forFp is omparable to our bound for Ep roughly when q = 1:23 and negligibleroughly when q = 1:13. Our numerial results use the value q = 1:125, andFp is indeed negligible.This ompletes the formulas and estimates we will need to derive the fastLaplae transform. 7



3 The fast Laplae transformWe now explain our algorithm for evaluating the disrete Laplae transformf̂i = NXj=1 fje�tisj ;(10)within an error bounded by �F = �P jfjj. We use the series (7) in a naturalway. Sine (7) onverges rapidly for x and y near 1, we sale ti and sj intogroups lying near 1. The saling fators then omprise z whih is allowedto lie anywhere. We begin by dividing the interval (0;1) in whih the\soures" s lie into geometri intervals of ratio q > 1. Suh an interval Bnis given by Bn = (q2n�1; q2n+1℄, for any integer n, and the geometri enterof Bn is sB = q2n. Thus s lies in Bn whenever 1=q � s=sB � q. The ratio qwill be hosen later, to balane work and error. Similarly, we ut the interval(0;1) in whih the \targets" ti lie into geometri intervals Cm with geometrienters tC and ratio q. (We take the same ratio for simpliity of exposition;learly one an take di�erent ratios for targets and soures.) Now eah souresj and target ti lies in a geometri interval, say B or C respetively. Considertargets ti lying in C. We want to evaluatef̂i = NXj=1 fje�tisj= XB Xsj2B fje�tisj= XB Xsj2B fje�(ti=tC)(sj=sB)tCsB :Here we have broken up the sum over j by summing over soures sj in eahbox B separately, and saled ti and sj to lie near 1.Consider all soures and targets lying in a �xed pair of boxes B and C,8



and apply (7):f̂i(B) = Xsj2B fje�(ti=tC)(sj=sB)tCsB= pXj=0 pXk=0 Xsj2B fj sBsj  1 + sB=sj2 !j  1� sBsj !k tCti�  1 + tC=ti2 !k �1� tCti �j (j + k)!j!k! Lj+k(tCsB) + Ep:Here we hoose p and q, depending only on �, so that Ep � �F where F =P jfjj. We have now separated the variables ti and sj in suh a way that afast algorithm is possible. It proeeds as follows.For eah nonempty soure interval B, we evaluate (p+ 1)2 oeÆientsAjk(B) = Xsj2B fj sBsj  1 + sB=sj2 !j  1� sBsj !kfor 0 � j; k � p. This osts O(p2) work for eah nonempty B, whih annotadd up to more than O(p2N). Note that p depends only on the user-spei�edtolerane �. Now the algorithm proeeds by running over nonempty targetintervals C. For eah C, we aumulate a series of the formpXj=0 pXk=0Bjk(C)tCt  1 + tC=t2 !k �1� tCt �j(11)to be evaluated at all targets t = ti lying in C. Here the oeÆients Bjk aregiven by Bjk(C) =XB Ajk(B)(j + k)!j!k! Lj+k(tCsB):Hene it osts at most O(p2jBjjCj) to form all oeÆients Bjk for all targetboxes C, where jBj and jCj are the total numbers of nonempty soure andtarget boxes respetively.The �nal step in the algorithm is to evaluate the appropriate series (11) ateah ti: this osts O(p2M) work. The omplete algorithm thus osts O(N +9



M) work to evaluate the disrete Laplae transform with an error less than�F ; the onstant in O(N +M) depends only on �. The overhead assoiatedwith forming the oeÆients is bounded by the number of soure box-targetbox interations, whih depends only on the maximum and minimum soureand target loations.An even further ost redution is e�eted by utting o� the interation:if t 2 C and s 2 B, then e�ts � e�tCsB=q2 :If tC = q2n and sB = q2m, thene�ts � e�q2(n+m�1)whih deays rapidly as n + m inreases. Thus target box Cn need onlyinterat with soure boxes Bm for whih n +m � 1 + (log log 1=�)=2 log q.
4 Numerial resultsFirst, we tested the algorithm on randomly generated points uniformly dis-tributed on the interval [0; 5℄, with weights fi random and uniformly dis-tributed on [0; 1℄. We took � = 10�6, q = 1:125 and p2 = 62 terms in theLaguerre series. The results are reported in Table 1; Tf is the time requiredfor the fast evaluation sheme, while Td is the diret evaluation time. Thefast algorithm beats diret evaluation onsistently for N = M � 20. WhenN = M = 10240, the fast algorithm is about a thousand times faster thandiret evaluation; thus the projeted break-even point is at N = M = 10.The olumn headed Ef reports the errors produed by the fast algorithm, asmeasured against the diret alulation.10



N = M Tf Td Ef20 .01 .01 4.1-940 .01 .02 4.4-880 .03 .06 8.5-8160 .04 .24 1.1-7320 .06 .96 6.7-8640 .10 3.78 6.5-81280 .16 15.36 6.6-82560 .29 61.70 7.7-85120 .52 248.32 7.4-810240 .99 1022.98 7.0-8Table 1: Evaluation of a disrete Laplae transform to auray 10�6, withpoints randomly generated on [0; 5℄.
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We also tested the algorithm on equispaed points on the interval [0; 10℄,to simulate the appliation of the algorithm to numerial integration with thetrapezoidal rule. The weights were randomly distributed on [0; 1℄, as before.The results are shown in Table 2. Again, the fast algorithm breaks even atN = M = 20 and ahieves a speedup of 1000 at N = M = 10240. The errorsare also onsiderably smaller than the error bound.N = M Tf Td Ef20 .01 .01 7.8-840 .02 .02 4.9-880 .03 .06 5.3-8160 .04 .26 6.9-8320 .07 .99 8.2-8640 .11 3.84 6.4-81280 .18 15.49 2.1-82560 .30 61.95 8.5-85120 .55 247.30 3.6-710240 1.04 993.28 3.6-7Table 2: Evaluation of a disrete Laplae transform to auray 10�6, withpoints equispaed on [0; 10℄.Finally, we tested the logarithmi dependene of the work estimate onthe user-spei�ed preision �. Aording to our estimates, the work requiredshould grow only logarithmially with �. Thus we doubled the number ofsigni�ant digits required, set � = 10�12, and used p2 = 132 terms in eahLaguerre series. Here the points were again equispaed on [0; 10℄. The re-sults are shown in Table 3. Clearly the time has very preisely doubled in12



omparison with Table 2.N = M Tf Td Ef20 .01 .01 4.2-1440 .04 .02 3.2-1480 .07 .07 5.9-14160 .09 .27 3.6-14320 .14 1.06 4.3-14640 .23 3.97 2.9-151280 .35 16.00 1.1-142560 .60 64.00 3.0-145120 1.07 247.81 1.4-1310240 2.00 1037.31 1.3-13Table 3: Evaluation of a disrete Laplae transform to auray 10�12, withpoints equispaed on [0; 10℄.
5 GeneralizationsOur algorithm generalizes immediately to evaluate the onvolution with a�xed Laguerre funtion, f̂i = NXj=1 fjLn(tisj):(The Laplae transform is the ase n = 0.) One simply uses the expansionderived in x2, Ln(ts) = 1Xk=0�1t�n+1 �1� 1t�k (n+ k)!n!k! Ln+k(s);13



in plae of (5) in the alulations following (5). The resulting formula,Ln(xyz) =  1xy!n+1 1Xj=0 1Xk=0 2�(j+k)(1 + 1=x)k(1� 1=y)k �� (1 + 1=y)j(1� 1=x)j (j + k + n)!j!k!n! Lj+k+n(z);implies a fast algorithm exatly similar to the fast Laplae transform.This observation makes an even further generalization possible. One oftenwants to evaluate multipliative onvolution sums of the formf̂i = NXj=1 fjK(tisj);(12)where K is a smooth funtion on R+ whih deays rapidly enough at 1.Suh a kernel has a rapidly onverging Laguerre expansionK(z) = 1Xn=0KnLn(z)whih approximates K arbitrarily well if enough terms are taken. Thusone an trunate the series after say P terms, and apply a fast Laguerretransform to eah term to get an algorithm whih evaluates (12) atM pointsin O(N +M) work, with a onstant depending only on the preision desired.
6 ConlusionsWe have presented a fast algorithm whih ahieves a thousandfold speedupover the diret alulation of the disrete Laplae transform when ten thou-sand points are used, but requires so little overhead that it is faster evenwhen 20 points are used. The onstant in the work estimate depends only onthe preision desired, and only logarithmially at that. Thus asking for twie14



as many orret digits only osts twie as muh. Suh an algorithm makesit possible to evaluate Laplae transforms numerially to far higher aurayin far less time.A generalization of the algorithm allows the appliation of any multiplia-tive onvolution operator on R+ with a smooth kernel, in optimal time.
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