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Abstract 

. A SU(3) X SU(2),x U(1) supersymmetri<: theory is constructed with a TeV sized extra 
dimension compactified on the orbifold 8 1 /(Zz x Z~). The compactification breaks super

symmetry leaving a set of zero modes which correspond precisely to the states of the 1 

Higgs doublet standard model. Supersymmetric Yukawa interactions are localized at orb

ifold fixed points. The top quark hypermultiplet radiatively triggers electroweak symmetry 

breaking, yielding a Higgs potential which is finite and exponentially insensitive to physics 
above the compactification scale. This potential depends ~n only a single free parameter, 

the compactification scale, yielding a Higgs mass prediction of 127 ± 8 GeV. The masses 

of the all superpartners, and the Kaluza-Klein excitations are also predicted. The lightest 

supersymmetric particle is a top squark of mass 197 ± 20 GeV. The top Kaluza-Klein tower 

leads to the p parameter having quadratic sensitivity to unknown physics in the ultraviolet. 



1 Introduction 

The standard model provides an economical description of particles and their interactions in 

terms of 18 free parameters. There are 9 parameters associated with the masses of the quarks 
and charged leptons, and 4 to describe the flavor mixing of the quarks. There are 3 independent 
gauge couplings, and the final 2 parameters are associated with the Higgs boson. One is the 
vacuum expectation value (VEV) of the Higgs field, which is accurately determined by the Fermi 
coupling constant, and the other is the mass of the Higgs boson, which is unknown, although 
precision electroweak data suggests it is less than 188 GeV ·at 95% confidence level [1). 

Despite the phenomenological success and mathematical consistency of the standard model, it 
does not provide a physical description of electroweak symmetry breaking (EWSB). The theory 
is believed to be an effective theory valid at all energies below some cutoff, A. Yet the mass 

. parameter of the Higgs field has radiative corrections that grow quadratically with A 

(1) 

The physics of EWSB is at or beyond the cutoff, and hence not adequately described by the low 
energy effective theory. 

In this paper we introduce a theory that does provide a full physical description of EWSB, 
in terms of new physics at a mass scale of 400 GeV. Our theory contains 17 free parameters, one 
fewer than the standard model, so that we are able to predict the mass of the Higgs boson. 

A key feature of most theories which go beyond the standard model is an enhanced symmetry 
structure. Symmetries are the key to constructing more predictive and elegant theories. Yet they 
are also a challenge, because nature does not possess these additional symmetries, so they must 
be broken and this often introduces great freedom. For example, grand unified theories provide 
a relation between the three gauge coupling constants, and yet breaking the grand unified gauge 
symmetry is the least attractive and constrained aspect of these theories. 

It is commonly believed that the most satisfactory way to construct a physical theory of 
EWSB is to extend spacetime symmetry to include supersymmetry [2]. In this case, the quadratic 
divergence in the Higgs boson mass parameter coming from a top quark radiative correction is 
cancelled by that coming from a scalar top. Including supersymmetry breaking at scale msusy, 
the resulting divergence is logarithmic 

m1 <X -m~usylnA, (2) 

so that EWSB may be triggered by physics all the way up to the cutoff [3]. The Higgs mass 
is reliably computed in the effective theory, and is not dominated by unknown physics at the 
cutoff. However, the economy of the theory has been sacrificed. An entirely new sector of the 

theory must be introduced, with the sole purpose of breaking supersymmetry to generate the 
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scale msusv. There are now many alternatives for this sector, and their relative merits are 
hotly debated, but the fact remains that such a new sector of the theory is inherent to the 

present formulation of supersymmetric theories. Indeed it was realized from an early stage that 
supersymmetry breaking could not occur in the standard model sector, but had to be somewhat 

remote from it [4], necessitating a mediation mechanism between the two sectors. 
The result of this mediation is to introduce a set of new parameters describing the strengths 

of the soft supersymmetry breaking interactions. These parameters themselves give rise to a host 
of new problems: why are the squarks nearly degenerate so as to avoid flavor-changing and CP 
violating problems? Why are there any light Higgs bosons in the theory? There is no obvious 
symmetry keeping them light. Why is the proton stable? This success of the standard model is 
lost when the theory is made supersymmetric - apparently the proton could decay via squark 
exchange. What distinguishes matter from Higgs? In the standard model this is clear: matter 
is fermionic while Higgs is bosonic. Supersymmetry provides no such clear separation, requiring 
an artificial distinction between the Higgs boson and the sneutrino. Studying solutions to these 
problems has been an active area of research for many years. 

Finally, one can ask how well supersymmetric theories account for the mass scale of the weak 
interactions, given that no superpartners have been discovered. The naturality of the proposed 
models is certainly not perfect: in gravity mediation only about 3% of parameter space gives 
acceptable theories, while in other schemes, such as gauge mediation, a similar amount of tuning 
is required to keep the charged slepton masses above the LEP2 limit. 

On the other hand, supersymmetric theories with a perturbative energy desert certainly have 
some very positive features. It is possible to construct a relatively complete framework with a 
successful, precise prediction of the weak mixing angle [4, 5], the correct order of magnitude for 
neutrino masses from the see-saw mechanism [6), and the correct order of magnitude for the dark 
matter abundance from the cosmological freezeout of the lightest supersymmetric particle (LSP) 
[7]. However, given the shortcomings discussed above, we are motivated to investigate a more 

economical theory of EWSB. 
Consider compact spatial dimensions, with a compactification scale R-1 of order an inverse 

TeV, in which standard model particles propagate [8]. In this case there are Kaluza-Klein (KK) 
towers for each particle propagating in this bulk. Imposing a symmetry on a compact space 
reduces the number of modes in the KK tower. This orbifold construction is crucial in obtaining 
chiral zero mode quarks, from a 5d theory which is vector-like [9]. Furthermore, assume that 
the underlying bulk theory is supersymmetric. For example, if the top quark propagates in the 
bulk there will be KK towers for both the top quark and the top squark. In such a situation one 
can study radiative corrections to the Higgs boson mass with contributions from the entire KK 

towers [10]. In the case that supersymmetry is unbroken, there is an exact cancellation between 
the top and stop KK towers. However, if supersymmetry is broken so that the masses of the 
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squark tower are shifted relative to the masses of the quark tower by an amount of order R-1
, 

the cancellation is no longer complete. Remarkably, the result is completely finite: 

mk ex- (~)
2

, (3) 

and therefore independent of the cutoff, A, of the theory. The introduction of an extra compact 
dimension at the TeV scale allows a new resolution of the Higgs mass divergence- one where 

the physics of EWSB is necessarily right at the weak scale itself [10]. Such Kaluza-Klein EWSB 
implies that the gauge couplings will become non.:perturbative not far above the TeV scale [11]

there is no perturbative energy desert - and fits well with the possibility that the fundamental · 
scale of gravity is in the multi-TeV domain [12]. What breaks supersymmetry, causing the mass 
shift between quark and squark KK towers? 

Once extra dimensions have been introduced at the Te V scale, a new possibility opens up for 
supersymmetry breaking [8, 13], that is not available in the conventional energy desert version of 
supersymmetry: the Scherk-Schwarz mechanism [14]. Modifying the periodic boundary condi
tion by using an R symmetry, the excluded modes are different for fermions and bosons, breaking 
supersymmetry. An explicit extension of the standard model which breaks supersymmetry via 
the Scherk-Schwarz mechanism has been proposed [15], illustrating some important advantages 
over conventional supersymmetric theories. For example, the J.l problem is solved, and super
symmetry breaking generates tree level Dirac masses for the gauginos and Higgsinos. However, 
a special choice of charges is necessary to keep the Higgs boson light at tree level. Below the 
compactification scale, R-1 ~ 25 TeV, a conventional, logarithmic radiative EWSB occurs, with 

a spectrum which is similar to gauge mediation. More generally, Scherk-Schwarz supersymmetry 
breaking offers the prospect of a predictive superpartner spectrum where radiative corrections 
are finite and dominated by the compactification scale [16]. This softness results because the su
persymmetry breaking involves the global structure of the modes, and is therefore non-local. At 

distances beneath the compactification scale supersymmetry breaking effects are exponentially 
damped; this is quite unlike the case of supersymmetry in 4d, where radiative EWSB can origi
nate from distances many orders of magnitude smaller than the weak scale. Given this exciting 
result, it is surprising that more explicit theories have not been constructed. 

In this paper we construct a theory by combining Kaluza-Klein EWSB with non-local super
symmetry breaking. We introduce a single compact dimension of radius R in which every particle 
of the standard model propagates. 1 The bulk of the 5d theory is supersymmetric, so the KK 

1 Most studies of extra dimensions at the Te V scale have considered the case that the Higgs bosons propagate 
in the bulk, while the quarks and leptons do not [17, 18, 19, 20]. This is surprising since the orbifold construction 
allows an elegant understanding of why the lightest bulk modes are chiral - a property which is crucial for matter 
but irrelevant for the Higgs. A possible reason for this is the power law running of couplings in 5d: with matter 
in the bulk the top Yukawa coupling grows more rapidly and the gauge couplings become non-perturbative before 

3 



towers have multiplets corresponding to two supersymmetries in 4d. Two orthogonal reflection 
symmetries are imposed on the circle. One removes half of the modes in the KK towers, so that 

the zero modes possess a single supersymmetry. This zero mode structure is chiral, as needed for 
the quarks and leptons, but gives an electroweak gauge anomaly from the Higgsino. However, the 
second reflection symmetry reduces the number of supersymmetries to zero, yielding zero modes 

with precisely the states of the 1 Higgs doublet standard model. Supersymmetry breaking by 

this second reflection can be viewed as a discrete version [21] of the Scherk-Schwarz mechanism. 
Imposing one reflection symmetry to break one supersymmetry and obtain chiral zero modes 

has been widely used in the literature; the novel feature of our theory is the imposition of two 
reflections to break both supersymmetries. The bulk is remarkably pristine, containing just four 
parameters: the three gauge couplings and the compactification scale R-1

, which sets the mass 
scale for the KK towers. Every standard model particle is massless, and all the superpartners of 
the standard model have mass R-1 • 

The physics of flavor occurs on branes not in the bulk. The reflection symmetries allow 
supersymmetric Yukawa interactions to be placed at their fixed points: for the up sector at the 

fixed point of one reflection, and for the down and charged lepton sectors at the fixed point of the 
second reflection. As the two reflection symmetries leave different supersymmetries unbroken, 
these Yukawa couplings involve the same Higgs doublet, even though the underlying theory is 
highly supersymmetric. These brane Yukawa interactions involve the usual 13 physical flavor 
parameters of the standard model. As in the case of conventional supersymmetry, there is no 
immediate progress in the understanding of flavor. Our theory is described in detail in section 2. 

The Higgs boson interacts with the entire KK top quark tower on the branes containing 
the top quark Yukawa coupling, and Kaluza-Klein EWSB is induced. However, there are no 
extra free parameters to describe the resulting Higgs potential. Thus, the Fermi constant is used 
to determine the compactification scale, and the Higgs boson mass is predicted. The one-loop 
calculation of the compactification scale and the Higgs boson mass is presented in section 3. In 
section 4 we show that the Higgs boson mass has very little sensitivity to unknown physics at 
short distances, although in the case of the compactification scale there is some sensitivity to the 
ultraviolet (UV). We also study the p parameter and find that it has quadratic sensitivity to the 
uv. 

Ignoring brane interactions, all superpartners are degenerate with mass R-1
. The large top 

Yukawa not only induces EWSB, but significantly modifies the spectrum of the top squarks, the 
neutralinos and the charginos. These masses are computed in section 5, where we show that the 

LSP is a top squark. The collider phenomenology of the superpartners is briefly discussed, and 

they unify. We insist that all standard model particles propagate in the bulk, and find that there is an energy 
interval in which the 5d theory is perturbative. Even with perturbative power law unification of gauge couplings, 
the prediction for the weak mixing angle is unreliable, as it is quadratically sensitive to the physics at the cutoff. 
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we note that our theory possesses an anomaly free U(1)R symmetry. Conclusions are drawn in 

section 6. 

2 The Theory and the Tree-level Spectrum 

We introduce a compact spatial dimension y, with a size of order an inverse TeV, and require 
that the 5d theory is supersymmetric. The standard model gauge bosons propagate in 5d and 
are contained in 5d vector supermultiplets (AM,A,>.',a). The 5d vector field AM contains the 
standard model gauge boson from its first 4 components, and a 4d scalar A5

• There are two 
gauginos, A and >.', reflecting the presence of two supersymmetries on reduction to 4d, and a 
real scalar a. It is often convenient to view the theory as a N = 1 4d theory; the 5d vector 
multiplet can be decomposed into a 4d vector supermultiplet V(AJ.L, A), and a chiral multiplet in 

the adjoint representation E(¢r:, '1/Jr:), where ¢r: =(a+ iA5)/-J2 and '1/Jr: = >.'. 
The standard model matter and Higgs fields also propagate in 5d, and are described by a set 

of hypermultiplets (\ll, ¢>, 4>')x, where W is a Dirac fermion, and 4>, ¢>' are two complex scalars. 
These each decompose into two 4d N = 1 chiral multiplets X( 4>x, '1/Jx) and xc( 4>x, '1/Jx ), where 
W = ('1/J, '1/Jct) and 4>' =¢ct. Conjugated objects have conjugate transformations under the gauge 
group, and X runs over three generations of matter, Q, U, D, L, E, and a single Higgs H. 

The 5d theory contains a SU(2)R symmetry under which (X,>.') and ( ¢>,¢>')are doublets, while 
all other fields are singlets. The two supersymmetries of the 4d theory are related by A H >.' 
and 4> t-t 4>' and play~ a crucial role in the construction of our theory. The 4d N = 1 language, 
which we use from now on, hides both the SU(2)R symmetry and the second supersymmetry. 
The N = 1 fields depend on y as a continuous parameter; on compactification this leads to KK 
towers of N = 1 fields. 

2.1 The S 1 /Z2 orbifold 

If the extra dimension is taken to be a circle, S1 , of radius R, then each field has modes e±iny/ R, 

n = 0, 1, 2, : .. , and the fermionic matter and Higgsino states are vectorial. To obtain chiral 
matter, we first consider restricting the space of the extra dimension to the orbifold S1 

/ Z2 • A Z2 

symmetry is introduced under which y --+ -y and all fields are either even or odd, having modes 

+: 
ny 

cos-
R 

. ny 
sm-

R 

(4) 

(5) 

respectively, so that only the even fields contain zero modes. Since AJ.L appears in the covariant 

derivative DJ.L the vector multiplet is even, V+. On the other hand Im ¢r: appears in D5
, and 
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therefore the chiral adjoint multiplet is odd, E_. The term in the superpotential X D5 xc ensures 

that X and xc have opposite Z2 charges. The conjugate label is arbitrary, and without loss 
of generality we may choose X+, X,: -the conjugate fields do not contain zero modes. These 
assignments are the same nomatter whether X is matter or Higgs - the orbifold only has one 

type of hypermultiplet and does not provide any distinction between matter and Higgs. The 
physical space of the orbifold is the interval 0 < y < 1r R, since once a field configuration is 

specified in this region, it is fixed everywhere on the circle. The end points of the interval are 

fixed points under the y --+ -y transformation. The orbifolding has therefore broken N = 2 to 
N = 1 supersymmetry, and 5d Lorentz to 4d Lorentz symmetry at the boundary. 

The symmetries of the bulk forbid interactions which break the flavor group U(3)5 acting on 

Q, U, D, L, E. In particular, bulk Yukawa interactions are forbidden by su persymmetry. How
ever, we can introduce interactions on the 4d subspaces of the orbifold fixed points, which we 
call brane interactions. Such interactions necessarily violate 5d Lorentz symmetry and N = 2 
supersymmetry. However, we insist that they preserve the same spacetime symmetries as the 

orbifold: Z2 , 4d Lorentz symmetry and N = 1 supersymmetry. Note that we started with two 
super,symmetries, and we could have the orbifold and brane interactions break different super
symmetries. This would give a theory with supersymmetry completely broken in a hard way, and 
hence we require that the Z2 orbifold and brane interactions leave one supersymmetry unbroken. 

The allowed brane superpotential depends on the hypercharge sign choice for the Higgs chiral 
multiplet, H, which contains the zero mode. One choice allows QU H, while the other allows 
(QDH +LEH)- we can get masses for the up sector, or for the down and charged lepton sectors, 
but not for both. 2 One can take various views on this problem: perhaps it is not a problem, but 
a useful zeroth-order approximation allowing an understanding of why mt >> mb, although the, 
anomalies of the zero modes need to be cancelled. Alternatively, one could introduce two Higgs 
hypermultiplets, so that both choices can be made. This will lead to an minimal supersymmetric 
standard model (MSSM)-like 4d theory at scales below 1/ R. In this case, the extra dimension 
has not addressed many of the issues familiar from the MSSM: supersymmetry breaking and 
mediation, the distinction between matter and Higgs and the origin of R parity. In this paper 
we explore a third alternative. 

We have seen that orbifolding with one Z2 breaks one supersymmetry and allows one type 

of Yukawa coupling. The freedom of choice of the charge of H turns out to be equivalent to the 
choice of which supersymmetry is kept unbroken by the orbifolding. We find that if we orbifold 

twice, using two Z2 s, both supersymmetries can be broken, and both types of Yukawa coupling 
are allowed. The Z2 s have different fixed points so that the two supersymmetries are broken at 

2 Brane interactions involving xc fields are also allowed by gauge invariance, but all components of xc vanish 

on the orbifold fixed points, and hence these interactions also vanish. R-parity violating interactions, such as 
LLE, are also allowed. 
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y=O 
A ----

y = 1rR 

Figure 1: S 1 j(Z2 x Z~) orbifold in the fifth dimension. 

different locations in the bulk, maintaining the softness of radiative corrections. 

2.2 The 8 1 /(Z2 x Z~) orbifold 

The S 1/(Z2 X Z~) orbifold is constructed from the circle by imposing two parities: z2: y-+ -y 

and Z~ : y'-+ -y', where y' = y- 1r R/2. These correspond to reflections about the axes A and 

A' in Figure 1. The modes of the circle are now assembled into 4 types rather than 2, according 

to their (Z2 , Z~) quantum numbers: 

(+,+): 
2ny 

(6) cos--
R 

(+, -): 
(2n + 1) y 

cos R (7) 

(-,+): 
. (2n + 1) y 

sm R . (8) 

(-,---"): 
. (2n + 2) y 

sm R (9) 

with n = 0, 1, 2, .... Any component field will have just one type of mode, according to its z2 X z~ 

assignment; only fields with ( +,+) assignment contain a zero mode. The modes are completely 

specified over the circle once they are given on the interval 0 < y < 1r R/2, which we choose to 
be the physical space. 

There are two ways to interpret the quantum numbers of the two discrete Z2 symmetries. 

One way is the following. The first Z2 , which is the reflection y-+ -y, leaves a supersymmetry 

7 



?/IM( +, +) 

/ ' ' ' ' ' 

~M(+,-) ~~(-,+) 
'',,, / 
?/~~( -, -) 

' 

' 
' ' 

' ' ' ' 

~~(-,-) 
/ 

?/~~(-,+) 

A~'(+,+) 

/ 
;\( +,-) 

' ' ' ' ' 

' ' 
' ' 

Figure 2: Quantum numbers of the matter, Higgs and gauge multiplets under the two orbifoldings 
y-+ -y and y'-+ -y'. 

S unbroken, and gives N = 1 multiplets with the usual Z2 orbifold quantum numbers discussed 
in the previous sub-section, such as X+ and X: .. Brane interactions, located at the fixed points 
at y = 0, rr R, should preserveS. For example, choosing H to have positive hypercharge allows 
the superpotential term QU H. When Z~ is introduced, the couplings of this interaction on the 
two branes at y = 0 and y = 1r R are constrained to be equal. 

How does Z~ act on these N = 1 multiplets? This action is identified with the R parity, Rp, 
of this S supersymmetry, i.e. with ()-+ -0. For any hypermultiplet, X can be chosen to be Rp 
even or odd - there are now two types of hypermultiplet, one in which the zero mode is a scalar, 
and the other where the zero mode is a fermion. Thus supersymmetric theories on the S 1 /(Z2 x 
Z~) orbifold provide an inherent distinction between Higgs and matter multiplets depending 

on whether their Z2 and Z~ quantum numbers are the same or different: H( +, + ), M( +,-). 
In variance of the interactions H D 5 He and M D5 Me, then, determines the quantum numbers 
for the conjugate multiplets He(-,-), Me(-,+). Covariance of the gauge derivatives D~' and 
D 5 determines the assignments for the vector and chiral adjoint .multiplets: V( +, + ), :E( -,-). 
Making the usual superfield expansions, H = ~H + O?f1H, etc, gives the quantum numbers for the 
components of the Higgs, matter and vector hypermultiplets shown in Figure 2. 

It is interesting to note that anomaly freedom of the low energy effective theory does not allow 
a single Higgs hypermultiplet with a circle reduced by a single Z2 orbifolding. Two Z2 orbifoldings 
are necessary to restore anomaly freedom. For matter hypermultiplets, however, fermionic zero 
modes remain after orbifolding with both Z2 s - anomalies cancel between multiplets as in the 

standard model. 

The second orbifold clearly breaks supersymmetry, since the components of an N = 1 super
field have different modes. The tree level spectrum is shown in Figure 3. The zero modes are 
in one-to-one correspondence with the particles of the standard model, and have KK excitations 
with masses 2n/ R. The superpartners of standard model particles, and the states obtained by 

an SU(2)R transformation on these superpartners, have KK towers of states of mass (2n + 1)/ R. 
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mass 'l/JM, </m, A~' <PM, 7/JH, A ¢M, 1/JII, 'l/JE 1/JM, ¢l!, ¢E 

6/R • • 
5/R • • 
4/R • • 
3/R • • 
2/R • • 
1/R • • 

0 

Figure 3: Tree-level KK mass spectrum of the matter, Higgs and gauge multiplets. 

Finally, the conjugate quarks, conjugate Higgs and ¢E have KK towers of mass (2n + 2)/ R. At 
an arbitrary point in the bulk, supersymmetry is also broken by the wavefunctions of the modes. 
At the orbifold fixed points at y = 0 and y = 7T R/2, the supersymmetry of the wavefunctions is 
restored, except for the zero mode. 

The second interpretatiop. of the (Z2 , Z~) quantum numbers results if we first orbifold the 
circle by Z~ about the axis A' of Figure 1. This produces the same orbifold discussed in the 

previous sub-section, S 1 I z~' with fixed points rotated by 7T /2 to y = ±7r R/2. The crucial point 
is that the supersymmetry left unbroken by this orbifolding, S', is not the supersymmetry S, 
which is preserved by first orbifolding by Z2 about axis A. The S' multiplets are easily identified 

by grouping together the Z~ = + and Z~ = - component fields of Figure 2: 

The S' chiral superfields are labelled by the left-handed fermions they contain, while the S' vector 
multiplets are labelled by the bosonic components. The zero modes lie in M', He' and V'. On 
comparing with the S multiplets 

one discovers that the transformation between S and S' is accomplished by the interchanges 

(<Px ++ ¢3/) and (A. ++ 1/JrJ, a discrete subgroup of the SU(2)R symmetry. This interchanging 
between S and S' multiplets is easily visualized from the multiplet arrangements of Figure 2. 
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The (Z2 , Z~) quantum numbers of both SandS' superfields are also easily read from this Figure, 
as they are always given by the quantum numbers of the boson. 

The brane interactions at the Z~ fixed points y = ±1r R/2 are ( Q' D' He'+ L' E' He'). Remark
ably, since He' contains the zero mode Higgs boson, these are precisely the interactions needed 
to give mass to down-type quarks and charged leptons. Why is there not a complete symmetry 

under the interchange Z2 H Z~ and S H S'? The interchange ( <Px H <P~) results in the zero 
mode Higgs boson lying in chiral multiplets of opposite hypercharge in the two cases, and this 

changes the form of the gauge-invariant brane interactions. 

In this second viewpoint, Z2 is identified as the R parity, R'p, of the supersymmetry S', with 

0' --+ -0'. Here 0' is the superspace coordinate for S',.for example: M' = <P~ + 0''1/JM· This 
identification of Z2 can be readily verified from the quantum numbers of Figure 2. 

The action of the discrete symmetries can be summarized by 

z2 : y--+ -y, (O'--+ -O'h, 

z~: y'--+ -y', (O--+ -Oh. (12) 

The superspace coordinates 0 and 0' are those of different orthogonal N = 1 supersymmetry 

subgroups -they are not the superspace coordinates of the full 5d theory. The first viewpoint 
uses the 0 transformation, while the second viewpoint uses the 0' ones. In the MSSM, R parity 

is imposed in an ad hoc fashion to avoid proton decay - it is not inherent to the formulation of 
the theory. In our theory, R parity becomes part of the orbifolding symmetry of (12), and is an 
unavoidable consequence of the basic formulation of the theory. It therefore comes as no surprise 
that, when the interactions of the low energy theory are derived, they are found to conserve 
baryon and lepton numbers at the renormalizable level.3 

Our theory may be formulated as a Scherk-Schwarz theory as follows. Start with a S 1 /Z2 

orbifold of radius R', as described in the previous sub-section. On imposing the condition 

<jJ(y + 21r R') = Rp <jJ(y), (13) 

on the modes of any component field </J, one discovers that the allowed modes are precisely those. 
of Eqs. (6 - 9), with R = 2R'. However, this formulation hides the symmetry between Z2 and 

Z~ symmetries, as it stresses the role of Z2 and Rp = Z2 Z~. 
To summarize: we have taken every particle of the standard model to propagate in a compact 

dimension of size R. In the case that the 5d theory is supersymmetric, and the compact space 

is the orbifold S 1 /(Z2 x Z~), the effective theory beneath the scale 1/ R is non-supersymmetric 
and chiral, having the gauge and multiplet structure of the standard model. The most general 

3 R-parity violating interactions could be introduced, if we allow the coupling constants to have the opposite 
signs on two branes y = 0 and rrR (y = ±rrR/2). 
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brane interactions, consistent with Z2 X Z~ and the supersymmetries preserved by each separate 

orbifold, up to cubic order, are 

~ (o(y) + o(y- 1rR)) I d20 (>.uQUH) 

+ ~ ( o(y- ~R) + o(y + ~R)) I d20' (>.nQ' D' He'+ >.EL' E' He')+ h.c. (14) 

Together these interactions break supersymmetry completely- but the locality of the operators 

results in the breaking being soft, even though the low energy 4d theory contains 7/JQ'l/Ju<PH + 
7/JQ'l/Jn¢"1. At scales below 1/ R, these give the Yukawa coupling matrices of the standard model 

proportional to the matrices >.u,D,E· Hence, the low energy effective theory is precisely the 

standard model, with the Higgs potential constrained to have the tree-level form: 

92 + g'2 4 

VH,O = 8 I<PHI ' (15) 

where g and g' are the standard model SU(2) and U(1) gauge couplings. The absence of any free 

parameters in the Higgs potential at tree-level is striking. In the next section we calculate the 

radiative contributions to the Higgs potential from interactions involving the large top Yukawa 

coupling. We find that the effects of virtual KK towers leads at one loop to finite corrections to 

the Higgs potential involving the single parameter R. The Higgs mass-squared is negative, the 
Fermi constant is used to determine R, and the physical mass of the Higgs boson is predicted. 

3 The Higgs Boson Mass and the Compactification Scale 

In the previous section, we have investigated the tree-level structure of the model and found that 

the matter content of the massless sector is precisely that of the standard model. In this section, 

we calculate the one-loop effective potential of the Higgs boson coming from KK towers of the 

quark hypermultiplets through the top Yukawa coupling. We find that the Higgs boson receives 

a negative mass-squared and EWSB is radiatively triggered. Furthermore, the effective potential 

is finite and depends only on the top Yukawa coupling Yt and the compactification radius R. 
Thus, demanding the VEV ofthe Higgs field to be 175 GeV, we can calculatethe value of the 

physical Higgs-boson mass and the compactification radius R, which determines the masses for 

the superpartners and the KK excitations. 

3.1 The Higgs mass squared 

Before computing the one-loop effective potential, we first calculate diagrammatically the mass

squared for the Higgs doublet by making a KK decomposition of the original 5d theory. The 
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interactions between the Higgs boson and the KK modes of the quark fields are read off by 
expanding the brane interaction given in Eq. (14). After eliminating the auxiliary F fields, the 

relevant terms are 

Sint = J d4
x [ ~ (~mc/>c,k11k 11f ¢Q~k</;U,l</JH + ~mc/>c,k11k 11f </;~:k</;Q,l</JH + h.c.) 

k,l-0 

~ (H "' c/>( F)2-+.t A. _.~.t A. Jl <P "'( F)2-+.t A. _.~.t A. ) - L.i 211k 11z 11m 'f'Q,k'f'Q,l'f'H'f'H + 211k 111 11m 'f'U,k'f'U,l'f'H'f'H 
k,l,m=O 

- •~• (~~t~f.PQ,k.Pu,I</'H + h.c.)], (16) 

where <PH is the zero-mode Higgs boson; </;M,k, '1/JM,k, <Pu,k and '1/JM,k (M = Q, U) represent the k
th KK modes of the component fields in the hypermultiplet M (see Figure 2). The dimensionless 

coupling ft is defined by ft - ( >..u )33/ ( 1r R?l2
; ryf, 11t and 11f are the values of the wavefunctions 

at y = 0 for the </;M,k, '1/JM,k and FM,k fields, respectively. 
The Higgs boson mass m<PH is generated at the one-loop level via loops of KK towers of the 

Q and U multiplets. There are three diagrams, as shown in Figure 4, giving the contributions 

Thus, substituting the KK masses and wavefunctions obtained in the previous section, 

{ 

nq,- nF- 1 'tk- 'tk-
n.p _ (-1 )Sko = n 'tk - ..j2 ' - •tk? 

(18) 

into Eq. (17), we obtain the one-loop induced Higgs boson mass-squared in the present model. 
Performing a Wick rotation to Euclidian momentum space PE, and changing to the variable 

x = PER, gives 

00 d4 
· 2 ""' f PE zNcft LJ (27r )4 

k,l=O 

(19) 

(20) 
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Figure 4: One-loop diagrams contributing to the mass squared of the Higgs boson. 

In this expression, we first sum over the tower of KK states and then perform the momentum 
integral. The resulting Higgs mass-squared is 

Ncft2 tX> 3 { 2 [rrx] 2 [rrx]} -
128

R2 lo dx x coth 2 - tanh 2 (21) 

21 ((3) Ncf'f 

64rr4 --m' (22) 

where (( x) is the Riemann's zeta function. We find that the radiative correction m~H is negative, 
so that EWSB is indeed triggered by loops involving the top KK towers. Furthermore, the result 
is finite and UV insensitive, since the momentum integral is exponentially cut off at PE f'J R-1 ; 

99.99% (99%) of the integral comes from the region PE :5 5/ R (PE :5 3/ R). This extreme 
softness arises because the geometrical separation between the two orbif0ld fixed points in the 
extra dimension acts as a point-splitting regularization. We can also rewrite Eq. (22) by using 
the 4d top Yukawa coupling Yt = ft/2312 as 

21 ((3) Ncy[ 
8rr4 fi2· (23) 

It is interesting to note that a similar calculation for the squark mass-squared gives a vanishing 

result, m~M = 0. 

3.2 The effective potential 

We would like to compute the Higgs potential with sufficient accuracy that the minimization 
leads to a determination of the compactification scale and the Higgs mass to better than 10%. 

Balancing the negative Higgs mass squared, given above, against the tree-level gauge quartic 
Higgs interaCtion of Eq. (15) is not sufficient. In fact, it is not even sufficient to include the quartic 

interaction obtained from integrating out the top KK tower, as can be seen from the following 
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simple argument. The only dimensionful parameter of our theory is R, so that this must set the 
scale of the effective potential. The contribution obtained by integrating out the top KK tower 

at one loop involves a factor of the top Yukawa coupling Yt for each external Higgs field. Hence 

the one-loop top KK tower contribution takes the form vt = f(x)/R\ where x = YtR2<Pk<Pn. 
Expanding f(x) =Ax+ Bx2 + Cx2 lnx + Dx3 + ... ,all the coefficients, A, B, C, ... arise at one 
loop and are expected to be comparable. Truncation at finite order is therefore unreliable. 

The one-loop, all-orders, effective potential from integrating out the top KK tower is 

(24) 

where H = I<Pnl and the trace is taken over all states of the top hypermultiplet of a given k, 
giving a factor 4Nc. Clearly we only need the field dependent eigenvalues of the boson and 

fermion mass matrices mBk and mFk· The top Yukawa coupling on the brane leads to a mixing 
of the tree level modes Eqs. (6 - 9) of the top states. For example, to leading order in (<!Jn) R, 
the effective theory below 2/ R contains mass matrices for the squarks of the form4 

-£mass= ( <Pb,o </J~:o) ( (~f + ~m; 
-2mtR. 

(25) 

However, this leading order matrix does not include exactly the effects of mixing· between these 
states and the heavier states. We find the exact tree-level eigenvalue conditions to be 

2 (7f R mFk) ( 1rYtRH)
2 

tan = ..:.........:::___---.:._ 
2 4 ' 

(26) 

and 

(27) 

giving eigenvalues 
2k + 1 

mBk(H) = R ± mt(H) (k = 0, 1,2, .. ·), (28) 

and 
2k 

mFk(H) = R ± mt(H) (k = 1,2,3·. ·). (29) 

The zero-th order degeneracy of each level is split by 2mt. At each mass eigenvalue there is a 
single Dirac fermion, or two complex scalars. There is also a single k = 0 fermion mode, the top 
quark, with mass 

2 (1fYtRH) mt(H) = 7f R arctan 
2 

. (30) 

4 Integrating out the tower of ¢'M k (k = 1, 2, · · ·) generates the term L,r;'=1 (fl/2)¢k.o¢M,o¢k¢H 
in the low-energy Lagrangian, which cancels infinities present in the bare Lagrangian Eq. (16), 

..:. "Lr:'=oUl /2)¢lt.o¢M,o¢k¢H· 
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As H varies from 0 to oo, mt(H) grows from 0 to a maximum value of 1/ R. This dep-endence 
of the top quark mass on the electroweak field is quite unlike the standard model. For small Yt 
it reduces to the standard model result mt = YtH, but, for the observed value of the top mass, 
the effect of mixings with the heavier KK modes is important. Increasing H leads to a larger 
splitting of each level, but there is no level crossing. These eigenvalues can be used in Eq. (24), 

with -oo < k < +oo, by choosing the positive sign in Eqs. (28, 29), and, using calculational 

techniques from Ref. (16], we find 

V. (H) = 6Nc ~ cos[(2k + 1 )rr R mt( H)]. 
t · rr6R4 f:'o (2k + 1)5 

(31) 

The denominator ensures that the higher terms in this series are rapidly suppressed. Taylor 

expanding around H = 0, the quadratic term in this potential reproduces the mass-squared of 
Eq. (23) obtained by diagrammatic calculation. 

The potential \It is a monotonically decreasing function of H, as shown in Figure 5. Runaway 
behaviour is prevented by the tree-level gauge potential VH,o of Eq. (15), so that the combined 
potential VH = VH,o+ \It has the minimum shown in Figure 5, given by the minimization condition 

1 (7r6
) ~ 1 R = 

18 
(Mzv):z ~ 341 GeV, (32) 

where v = (H). More precisely, the right-hand side should be multiplied by the factor ~-l/4 

where 
c _ . [ R ] ~ sin[(2k + 1)rrRmt] 
~ - Sill 7r ffit L..t (2k 1 )4 . 

·k=O + 
(33) 

Accidentally, the minimum occurs at a value of R such that R mt is very close to 1/2: sin[ 1r R mt] 

is unity to better than 1%, and the deviation of ~ from unity- only affects 1/ R at the level of 
about 1 GeV. 

In the last section we stressed that compactification of our 5d theory led to a low energy 
effective theory which was the standard model with the Higgs potential constrained to have 
the tree-level form of VH,O· In this section; we have discovered that EWSB in the low energy 
effective theory is quite unlike that of the standard model, because the relevant Higgs potential 
involves interactions to all orders in the Higgs field, not just the quadratic and quartic terms. 

For example, the Higgs VEV is not given by the familiar form v2 = -m~H/ A where A is the 
quartic coupling. If this were true we would find v 2 <X y; R-2 f(g 2 + g'2

). Minimization of the all 
orders potential has given a different dependence: 

4 1 L 
v = (g2 + g'2) R4 ' (34) 
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Figure 5: The Higgs potential V normalized by the compactification radius R, as a function of 

RH = Rl¢wl- Dashed, dot-dashed and solid lines represent Vt, VH = VH,o + Vt and VH with a 
gauge quadratic term, respectively. 

where L is the loop factor giving the relative size of tree and one-loop terms in the minimization 
condition L = 36/7r6 . The scale of the VEV is still set by R- 1 , and runaway is prevented by the 
non-zero value of the gauge couplings, but, because of the accident mentioned above, there is 
essentially no sensitivity to the uncertainty in the experimental value of the top quark mass. 

Given that R-1 is the only scale in the problem, why have the superpartners not yet been 
discovered? The origin of the difference between R-i and v = 175 GeV can be seen from Eq. (34). 
The weakness of the gauge couplings actually increase v above the compactification scale by 16%. 
However, the loop factor £1/4 increases R- 1 above v by a factor of2.3. The weak gauge bosons are 

lighter than the superpartners because EWSB is driven only at one loop. Nevertheless, because 
it is the fourth root of L that appears in v, the superpartner masses are not far above the weak 
boson masses. 

Expanding VH about the minimum gives the physical Higgs mass 

(35) 

where omitted terms in the expansion affect the Higgs mass by less than 1 Ge V, and we have 

used a MS top quark mass of 166 GeV in evaluating cos[1rRmt] ~ 0.06. An uncertainty of 5 

Ge V in the experimental value of the top quark mass translates into a 2 Ge V uncertainty on the 
Higgs boson mass. 
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3.3 Predictions and uncertainties 

A correction to the effective potential of the Higgs boson comes from one-loop radiative cor
rections from the KK tower of the SU(2) x U(1) gauge multiplets. Here we study only the 
contribution to the quadratic term in the potential [16] 

(36) 

The effect of including this quadratic term is shown in Figure 5. This increases R-1 by 3%. 
The remaining uncertainties are the electroweak corrections to the higher terms in the effective 

potential and the two-loop top contributions to the effective potential, which we estimate at 1% 
and 6% respectively. We have calculated the induced VEVs for the higher KK modes of the 
Higgs boson, and found these effects to be at the 1% level. Hence the compactification scale is 

1 
R = 352 ± 20 Ge V, (37) 

giving superpartner masses of~ 350 GeV and masses for the first KK excitations of~ 700 GeV. 
The physical Higgs boson mass is 

mH = 127 ± 8 ± 2 GeV. (38) 

In these predictions, the first uncertainty is a combined theoretical uncertainty from the effects 
discussed above, while the second uncertainty in mH follows from the experimental uncertainty 
of ±5 Ge V in the measured value of the top quark mass. 

-
In the above calculation we performed summations over an infinite tower of KK modes. 

However, as discussed in the next section, our theory becomes strongly coupled at energies of 
about 5/ R and must be cutoff in some way. Are we correct to use the exact mass eigenvalues 
of Eqs. (28, 29) rather than the eigenvalues of mass matrices involving just the lower modes? 
Equivalently: what is the sensitivity of our results to the details of the UV cutoff? One may worry 

that there is a large sensitivity as each term in the sum of Eq. (20) is separately quadratically 
divergent. The crucial point is that we require our cutoff to preserve supersymmetry. Since 
supersymmetry is broken non-locally at the scale R-1 , the cutoff must preserve the cancellations 

which occur in the naive KK summation. This is non trivial, since a quadratic divergence still 
appears if the sums in Eq. (20) are terminated at some finite value, even keeping an equal 
number of bosonic and fermionic states. Thus we assume that the infinite sum over the KK 
modes gives the correct regularization of the theory; deviations from this "KK regularization" 
must be extremely small. 

Finally, we note that in the above calculation it has been assumed that the KK towers of the 

quark multiplets have masse,s quantized precisely in units of 1/ R. In general, however, the KK 
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excitations receive wavefunction renormalizations due to brane interactions and their masses are 

renormalized. This can cause a shift of the compactification radius by as much as a few tens 
of percent, which thereby acquires some sensitivity to unknown UV physics. Remarkably, the 
Higgs mass prediction is much less sensitive to these wavefunction renormalizations, so that even 
in this case the tightness of Eq. (38) is maintained. This issue is discussed in the next section. 

4 Sensitivity to Physics above the Compactification Scale 

In the previous section we computed one-loop radiative corrections to the Higgs potential, yielding 
a prediction of both the Higgs boson mass and the compactification scale 1/ R, which determines 
the masses of the superpartners and .the KK excitations. The sum over KK modes softened 
the usual logarithmic divergence of supersymmetry to give a completely finite result, suggesting 
that the physics of EWSB is really governed by the energy scale 1/ R, and has little sensitivity 
to whatever physics occurs at much higher energies. In this section we· demonstrate that the 
compactification scale does have some sensitivity to physics in the UV, and we estimate this 
uncertainty. Remarkably, the· Higgs mass is much less sensitive to these effects, so that the 

precise prediction of Eq. (38) is still expected to hold. 

4.1 Constraints from precision electroweak data 

For many theories in which the standard model gauge interactions propagate in a fifth dimension, 
precision electroweak data place a bound on the radius of order R- 1 ,<: 3 TeV [19, 20]. These 
stringent bounds apply when matter or Higgs fields are located on a brane, and arise because the 
interactions of brane fields with the bulk gauge bosons violate momentum conservation in the 
extra dimension. For example, the kinetic term 8(y)QtegV Q introduces interactions between the 
zero mode quarks and the excited modes of the gauge bosons: q01JLA~q0 . This allows both the 
production of single gauge KK modes, A~, and the generation of four zero-mode fermion operators 
from their virtual exchange. Similar effects result for brane leptons, while the situation for the 
brane Higgs is particularly dangerous. The operator 8(y)HtegV H causes mass mixing between 
the W and Z zero modes and their excited modes, and also induces a VEV for the weak triplet 

scalar in the SU(2) chiral adjoint 'E [20]. All these effects are absent to leading order in our 
theory because both matter and Higgs propagate in the bulk. All interactions, apart from the 

Yukawa interactions, conserve momentum in the fifth dimension, so that the effects that could 
produce the stringent bounds do not occur. Non-zero mode states can only be pair produced, 

and, for states of mass 1/ R ~ 350 GeV, this will require further runs of the Tevatron and the 
LHC. 

At one loop, the top Yukawa interaction generates brane kinetic terms for Q3 , U3 and H. The 
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contribution from short distances ( < R) is expected to be supersymmetfic: 

Even though Q3, U3 and H propagate in the bulk with kinetic terms Q~e9v Q3, etc, the brane 
kinetic interactions violate momentum conservation in the y direction, leading to terms linear 

in KK modes. We define a dimensionless brane Z factor zx = Zx /(27r R), so that, in the 4d 
theory, the zero modes have kinetic terms with coefficient 1 + zx. For 1/ R in the region of 
350 GeV, experiments require lznl ;S 0.2. As we discuss below, zn is scale dependent - this 
bound applies at the scale 1/ R. Limits on z for the light quarks and leptons, from tree-level 
contributions of electroweak gauge bosons to precision electroweak observables, are also about 

0.2. The experimental constraints on ZQ3 and zu3 for the third generation quarks are much milder. 
We take this limit on the Higgs Z factor to imply that it is also reasonable for these quark Z 
factors to be less than 0.2. This is strengthened by the estimates provided below, suggesting 
values of ZQ3 and zu3 in the range of about 0.1. 

What are the effects of these Z factors on the results of the calculation of the previous 
section? The Z factor for the Higgs field does not affect the results at all. It is removed by going 
to canonical normalization before the calculation is begun, and affects only the relation between 
the 4d and 5d top coupling. 

To find the effect of the Z factors for Q3 or U3 we proceed as follows. We make a KK mode 
expansion and rescale the fields of the equivalent 4d theory to obtain canonical kinetic energy. 
We study the mq,ss matrices for the fermion and boson KK modes to linear order in ZQ,u, and 
find that the eigenvalue conditions have changed from Eqs. (26, 27) to 

.(40) 

and 

(41) 

which, to linear order in ZQ,u, reduces to Eqs. (26, 27) with the replacement 1/ R--+ (1 - z)/ R, 
where z = (zQ + zu )/2. With this replacement, Eqs. (28 - 35) all apply, so that it is (1 - z)/ R 
which is determined by the minimization of the Higgs potential to be 352 GeV. The numerical 
predictions for the top squark masses and Higgs are unaltered, while the other superpartner 
masses are 

1 
R ~ (1 + z)(352 ± 20) GeV. (42) 

For lzQ,ul < 0.2, the uncertainty on 1/ R from Z factors is 20%. The Higgs and top squark 
masses are affected only at quadratic order in ZQ,u, which is at the percent level. 
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4.2 Power law running 

In the 5d theory the gauge and Yukawa couplings display power law running behaviour. The 

Z factor for the vector field, and therefore for the gauge ~oupling, is linearly divergent. From 
the 4d viewpoint, the KK modes imply that the one-loop beta function coefficient at scale E is 

proportional to ER, the number of KK modes lighter than E. For the chiral fields Q3 , U3 and 
H, the 5d interaction is proportional to c5(y ), and this makes the Z factor for these fields more 
divergent. From the 4d KK viewpoint, this can be seen directly from the one-loop wavefunction 
diagram. Instead of having a sum over a single tower of KK modes in the loop, as in the gauge 
case, there is a double sum, as the KK modes can be different in each propagator. Thus in the 
4d language, the coefficient of the anomalous dimension at energy E is proportional to ( E R)2

• 

At scale 1/ R, g3 and Yt are comparable, but at larger energies the top coupling changes much 
more rapidly, and is the first coupling of the theory to become non-perturbative. Paying careful 
attention to the thresholds of the different species of particles, we find that the one-loop evolved 
top Yukawa coupling diverges at about 6/ R. Using conventional strong coupling arguments, the 
top Yukawa coupling becomes non-perturbative at scale M defined by 

411" 
Yt(M) ~ (M R)3/2. (43) 

Numerically, M c::: 5/ R ~ 1.7 TeV. At this scale, the 4d coupling Yt may not be increased 
relative to its value at scale 1/ R by more than 20% or so. From the 4d viewpoint the loss of 
perturbativity is largely due to the multiplicity of KK modes. 

The gauge couplings change very little over the interval1/ R to 5/ R, and are all perturbative 
at M. At energies larger than M, evolving at one loop, the gauge couplings become non
perturbative before unifying - there is no calculable approximate power law unification. In 
fact, the one-loop analysis already becomes unreliable at M, as higher loop diagrams involve the 

non-perturbative coupling Yt· 

4.3 Estimate of brane Z factors 

There are several reasons for studying the size of the brane Z factors: 

• The compactification scale has UV sensitivity only through the Z factors. 

• While the Higgs and top squark masses are remarkably insensitive to the Z factors, small 
changes are possible. 

• As the theory becomes non-perturbative at M, is it reasonable that zH(1/ R) ;S 0.2? 

• The degeneracy of many states at the scale 1/ R could be lifted by even quite small contri
butions to the brane Z factors. 
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We can consider two contributions to ZH - a boundary value at M, coming from the non
perturbative interactions above M, and a contribution that results from radiative corrections 

involving Yt from M to 1/ R. Here we give rough estimates of these contributions. 
Using a strong coupling analysis in higher dimensions [22], we estimate an upper bound for 

the boundary contribution of ZH ~ 37T' /(2M), giving ZH ~ 3/( 4M R) ~ 0.2. We do not know 
that such boundary terms are present; however, even if this bound is saturated, there is no 
conflict with experiment - the effects in precision electroweak data are at the level of current 

observations. Of course, although not expected, we cannot exclude large boundary Z factors for 
Q3 and u3 giving large shifts to the superpartner masses. 

In scaling from M to 1/ R, the coupling Yt changes by about 20%. Using the one-loop 
formulae for the Z factors, this scaling would generate ZH ~ 0.2. Again we find a contribution 
at an acceptable but interesting level. Since this contribution gets most support from near M, 
where the theory approaches strong coupling, it is not surprising that our two contributions are 
estimated to be comparable. We stress that we do not know whether such contributions will 
be present in nature. ·Both are dominated by the UV, and, for example, it could be that our 
5d theory is cut off at some scale below M by being incorporated into some other theory. Our 
analysis shows that large values of ZH are not expected- our calculation of the compactification 
scale is under control and has limited. sensitivity to the unknown UV physics, and the precise 

prediction of the Higgs mass is maintained; 
Light fermions, such as the electron, do not have significant brane Z factors generated by 

their Yukawa couplings. However, if our 5d theory is the low energy effective theory of some 
more fundamental theory, valid below some cutoff scale A, then the fundamental theory could 

lead to a value of the Z factor at A, given purely be dimensional analysis, of IZI ~ 1/ A. In this 
case the first superpartner will have a mass shifted to (1/ R)(1 ± 1/(27r RA)). This is a small effect 
- a 10 GeV shift for A = M - but represents an important lifting of the degeneracy. Brane 
kinetic terms for the gauge fields could similarly lift the degeneracy of the gauginos. 

4.4 The p parameter 

The p parameter has been measured to have the standard model value, with a limit on additional 
contributions !:lp < 0.003 at 95% confidence level, providing a powerful probe of new theories. 
Unfortunately the p parameter cannot be reliably computed in our theory. 

On first sight it appears that the dominant contribution to !:lp in our theory comes from the 
scalar states of the top quark hypermultiplets which have mass 1/ R in the absence of EWSB. By 
diagonalizing the 2 x 2 mass matrix of Eq. (25), we find that these states contribute p(l) ~ 0.012. 
If this were an accurate calculation of the dominant contribution to !:lp, our theory would be 
experimentally excluded. However, it is not a reliable result for several reasons. If the "exact" 
eigenvalues of 1/ R ± mt are used we find p(l) ~ 0.006. If we include the "3/ R" scalar states, by 
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diagonalizing the relevant 4 x 4 scalar mass matrices, we find p(l) + p(3) ~ 0.04 using "exact" 

eigenvalues. Similarly the fermion states at 2/ R and 4/ R are expected to contribute p<2) + p(4) ~ . 
0.02. These values are approximate as they are sensitive to the precise values used for the masses 
and mixings. We conclude that mixing between the lighter and heavier modes has an important 

effect on p. 

The sensitivity of p to higher modes is most dramatically seen by studying the contri
bution from the whole KK tower: a quadratic sensitivity to the UV emerges. We have al

ready seen that radiative corrections from the top Yukawa interaction generate the interaction 
o(y) f d40ZHHtegV H with ZH having a quadratic sensitivity to the cutoff due to the power law 
running of the top coupling. This Z factor induces a positive contribution, PE, from the VEV 
of the electroweak triplet in the ~ multiplet. We now find that the higher dimension operator 

o(y) f d40(e/M4 )(Hteuv H)2 is also generated withe having quadratic sensitivity to the cutoff. 
In the strong coupling limit, this boundary operator could lead to a contribution as large as 

IPM I ~ 0.05. Contributions to the p parameter are not reliably computed from the lowest lying 
KK mode. Our theory requires a cancellation between p(l) + p(2) + p(3) + p(4) and the other 

contributions to ~pat the level of one order of magnitude. 

5 Superpartner Spectrum and Collider Phenomenology 

What are the first states that will be encountered beyond those ofthe standard model? From 
Figure 3, we see that these are the superpartners, and their SU(2)R partners, which at tree level 
are all degenerate with mass 1/ R. Consider. the overall picture of the low energy effective theory 
beneath the TeV scale, after the states of mass 2/ R and above have been integrated out, so that 
only the standard model fields and the "1/ R" states remain. It is clear that this effective theory 
is very different from the MSSM, which contains 

• 2 Higgs doublets, and 

• a single set of superpartners. 

We stress that our effective theory below a Te V contains 

• the 1 Higgs doublet standard model, and 

• two superpartners for every standard model particle. 

Even though our full theory is supersymmetric, our effective theory is not. There is no energy 
scale in which a 4d N = 1 supersymmetric description is appropriate. Rather, the low energy 
theory reflects the underlying N = 2 supersymmetry coming from the fifth dimension, with a 

superpartner p and a conjugate superpartner pc for every standard model particle p 

(44) 

22 



R gauge V Higgs H matter M 

+2 he 

+1 .\ J,c - - c m,m 

0 AJL, Ac h m,mc 

-1 ,xc h 

Table 1: Continuous R charges for gauge, Higgs and matter components. Here, m represents 

q, u,d, l, e. 

In this section, we use a tilde to denote these superpartners: ij, u, d, l, e for the squarks and 
sleptons, h for the Higgsino, and g, w, z, ..:Y for the gauginos, which we collectively denote by 5.. 
The SU(2)wrotated states5 we call conjugate superpartners, thus <f>Q = ijc is a conjugate squark 
and '¢'£ of the SU(3) gauge multiplet is a conjugate gluino, gc. 

5.1 Spectrum 

In studying the mass matrices for these states, it is useful to notice that the theory possesses 
an accidental, continuous R symmetry. We choose it to be such that () ( ()') carries R charge + 1 
( -1). The resulting R charges are shown in Table 1, and are the same for all memb.ers of the KK 
tower. The standard model particles are neutral, while the superpartners and their conjugates 
have charges ±1. While the conjugate matter fields and conjugate gauge fields (i.e. the ~ scalar) 
are neutral, the conjugate Higgs field has charge +2. The absence of any A terms or Majorana 
gaugino masses can be traced to this R symmetry. The pattern of R charges is not symmetrical 
about zero for the matter and Higgs fields because we insist that the Higgs h is R neutral, so 
that the R symmetry is not spontaneously broken. 

The leading effect which lifts the degeneracy of these states is EWSB. Even though this occurs 
radiatively, vR ~ 0.4 is given by the 4th root of the loop factor L, and is not small. These effects 
are important only for the top squarks and their conjugates, and for neutralinos and charginos. 

There are four top-type scalars, but fortunately U(1)R x U(1)EM ensures the mass matrix 
splits into two 2 x 2 blocks. Since h C ij3 and iR = u1, the two stop scalars iL and iR have 
opposite R charges and cannot mix. Nevertheless, mixings can occur within the pair (h, i~) and 
the pair (iR,i']!} Each pair has the mass matrix given in Eq. (25). Taking the mixing with the 
heavier states into account, the eigenvalues are 

1 
m± = R ±mt. (45) 

5The only case where f5 and pc are not in the same SU(2)R doublet is the Higgsino. 
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Figure 6: The top-squark and chargino masses as a function of ZH. Solid, dashed lines represent 

h,R+,- and Xt.2,3 fields, respectively. ZH > 0.2 is disfavored by precision electroweak data. 

For R- 1 = 352 GeV, there. are two charged 2/3 colored scalars, h,R_, ofmass 186 GeV, and two, 

h,R+, of mass 518 GeV. The L, R subscript labels whether the state contains lL or lR. Each 
mass eigenstate has roughly comparable SU(2)L doublet and singlet components, and each has a 
large coupling to the top quark and the Higgsino. Including one-loop radiative corrections from 
the QCD gauge KK tower increases these masses by 6% for L to 197 GeV and 1% for l+ to 522 

GeV. Remarkably, the one-loop contribution proportional to the top coupling Yl vanishes. 
Introducing brane z factors for Q3 and u3, as in Eq. (39), the 2 X 2 m~ss matrix for the 

scalars (h, l~) becomes 

2 1-ZH ) ( t- ) - ffit'J'l L 

1-~;u [~ ' 
(46) 

to linear order in ZQ,U· The mass matrix for the scalars (lR, l~t) is obtained by the interchange 
ZQ f-7 zu. To leading order in ZQ,U and in mt the eigenvalues of this matrix are (1- z)/ R ± mt, 

where z = (zQ + zu)/2. Using Eq. (41), which includes mixings with all heavier scalar modes, 
one discovers that this result is exact in mt. As shown in section 3, minimization of the Higgs 
potential determines (1 - z)/ R = 352 GeV, so that the top squark masses are independent of 
the Z factors, to linear order, as shown in Figure 6. 

Although there are six charginos and six neutralinos, the mass matrices have a very simple 
form, largely determined by U(l)R and U(1)EM symmetries. Both charginos and neutralinos 
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have a 3 x 3 Dirac mass matrix, which splits intt> block diagonal form, giving chargino masses 

\1"2Mw) (he-) 1 -c- -+ 
1 -- + Rw w ' R. w 

(47) 

and neutralino masses 

(48) 

The minus signs in the (2,1) entries are extremely important. The pure gaugino states, xt 
and x?, are the lightest, with mass R-1 = 352 GeV. The mixed gauginojHiggsino states are 
increased in mass: xt,3 both have mass R-1 )1 + 2M(vR2 = 370 GeV, and x~,3 both have mass 

R-1 )1 +M1R2 = 364 GeV. 
These shifts are of order M(v j R and hence small. The brane wavefunction Z factor for the 

Higgs field does not correct the form of the x1 masses, but does induce corrections to the form 
of the X2,3 mass matrices, which, to linear order in ZH, become 

(49) 

for the charginos, and 

(50) 

for the neutralinos. The mass eigenvalues for the charginos are shown in Figure 6 as a function of 
ZH. The neutralino mass eigenvalues have a very similar behaviour, but with a smaller splitting 
at ZH = 0. The xt state has a mass R-1 ' and changes with ZH only because the extraction of 
R-1 from the Higgs VEV involves ZH. The order ZH terms in Eq. (49) cause a significant mass 

splitting between xt and xt' so that xt may well not be the lightest chargino. 
All the remaining superpartners, squarks, sleptons, gluinos and their conjugates, remain 

closely degenerate, with a mass of R-1 . Radiative corrections from the strong interaction lift 
the mass of the colored states by about 6 GeV compared to the non-colored ones. EWSB allows 
us to determine R-1 = 352 ± 20 Ge V, where the uncertainty is from our theoretical calculation. 
Brane Z factors can also affect R-1 as shown by the xt curve in Figure 6, for the case that the 
Z factors are generated purely from the 5d power law running of the top coupling. 

The supergravity multiplet in 5d contains the graviton GMN, the gravitino W M and a vec
tor field BM. The KK decomposition of this 5d multiplet leads to two 4d multiplets: the 

graviton multiplet (gJI-v( +, + ), 'I/J3;2( +,-), 'I/J~;2 ( -, + ), Bll-( -,-))and the radion multiplet ((g55 + 
iBs)( +, + ), 'I/J1;2( +,-), 'I/Jf;2( -, + ), gll-5( -,-)). The towers of KK modes have the usual spectrum 
with only the 4d graviton and the radion g55 having a zero mode, while the next lightest states 
are the fermionic ones at 1/ R. We assume that the radion acquires a mass by a mechanism that 
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stabilizes the size of the compact dimension; It has zero R charge and is unstable to decay to 
standard model particles. 

The two top scalars h- and ln- are lighter than all other superpartners by a significant 
amount, having masses 

mt_ = 197 ± 20 GeV. (51) 

This result is remarkably insensitive to brane Z factors, as shown in Figure 6. The top scalars 
remain at least 100 Ge V lighter than the lightest chargino or neutralino. In addition, the brane 
Z factors do not lift the degeneracy between h- and ln- to the leading order. Since the one-loop 

gauge correction and D-term contribution also do not lift it, the mass splitting between these 
two scalars would be, if any, very small. 

Although h- and in- have opposite U(l)n charges, the heavier may decay to the lighter, for 
example by h- --+ ik_ uu. This decay could be mediated by a flavor-changing gluino exchange, 
and the lifetime is very sensitive to the scalar mass differences and the size of the flavor changing 
coupling. Decays may also be induced by certain higher dimension operators. For the most 
plausible ranges of parameters the decay does not .occur inside a collider detector, unless the 

heavier scalar is stopped, but would be expected to occur cosmologically. We refer to these two 
scalars as the LSP and the next to LSP (NLSP). 

5.2 Collider. phenomenology 

For run II of the Fermilab collider the most promising signals of our theory are the standard 
model Higgs of mass at 127±8 GeV, and the LSP and NLSP top scalars of mass 197±20 GeV. 

The pair production cross section for these scalars at a center of mass energy of 2 Te V is 360 fb 
each [23]. This is significantly more than the rate for producing them via pair production of 
the gluinos and other squarks with mass of 350 GeV, followed by cascade decays to the LSPs. 
Once pair produced, these scalars will hadronize by picking up a u or d quark and becoming 
a fermionic meson T 0 = uL or r+ = JL, with almost equal probability. While the charged 
meson is expected to be slightly heavier than the neutral one, both will be sufficiently stable to 
traverse the entire detector. Hence the signals for scalar top pair production are events with one 
or two heavy stable particles with electric charge ±e.6 Furthermore, the anti-stop bound states, 
T0 = uL and r- = dL, can oscillate by exchanging isospin and charge with background material 
in the detector, causing intermittent highly ionizing tracks. These signals have been investigated 
in the context of gauge mediation models with stop NLSP [24]. The present experimental limit 
on such particles from Run Ib at the Tevatron collider is about 150 GeV from CDF [25]. 

. 
6 If R-parity violating interactions are introduced on the branes, the top scalars may decay into the standard 

model partjcles inside the detector. 
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For sufficiently low speed /3, the charged mesons r+ will stop inside the detector, and even
tually give a positron with very low momentum, presumably in the MeV range, by f3 decay to 

the neutral state. If T+ contains the NLSP, another possibility is that this NLSP decays to the 
LSP giving decay products with energies of order the scalar mass difference, for example in the 
GeV range. 

At the LHC the situation is more complicated since all the squarks, gluinos and their conju
gates will be pair produced. However, these will all cascade to the LSP or NLSP, so once again 

a crucial signal becomes the observation of events with one or two stable charged particles. The 
initial pair production reaction produces one particle with U(1)R charge +1, and one with -1. 

These cascade to eventually give h- or it_ and iR- or il_ respectively. Thus, unlike in the case. 
of direct scalar top production, events occur in which the stable charged particles have the same 
sign. 

If' the gluino is heavier than the squarks the decay chain is g ----t qij and ij ~ qx, where q and 
ij refer to any flavor except top, when the decay is not forbidden by phase space. For the case 
that the squarks are heavier than the gluino the decays are ij ----t qg and g ----t qqx. Recall that 
g and x are Dirac fermions, and ij refers to squarks and conjugate squarks. All X states that 
are kinematically open will be populated. The three charginos will all decay via x+ ----t bL. The 
neutralinos decay to ti_ if open, hut the lightest neutralino will decay via a virtual chargino: 
x0 ----t qqx+, x+ ----t bL. Hence all events resulting from pair production of the "1/ R" states 
contain two b quark jets. 

5.3 U(l)R symmetry 

In subsection 5.1, an accidental U(1)R symmetry, given in Table 1, played an important role to 
reveai the mass spectrum of the theory. Here we note that this U(1 )R is an anomaly-free symme
try. In the usual4d N = 1 theory, an anomaly free U(1)R symmetry requires the introduction of 
additional exotic states, beyond those of the MSSM, since the gauginos and the gravitino carry 
a U(1)R anomaly [26]. However, in the present model, there are conjugate gauginos and con
jugate gravitino, so that the U(1)R is automatically anomaly free; the quarks and leptons have 
zero charges and all the other fermionic states are vector-like. The U(1)R symmetry is a linear 
combination of the U(1) subgroup of the SU(2)R automorphism group of N = 2 supersymme
try algebra and a vector-like, non-R U(1) symmetry under which the Higgs fields transform as 
H(-1) and Hc(+1) (H'(-1) and Hc'(+1)) again demonstrating that U(1)R is anomaly free. 

The above remarkable property allows us to impose the R symmetry as an exact symmetry 
of the theory. Since neither EWSB (h) =f. 0 nor chiral condensation (qq) =f. 0 breaks this U(1)R 
symmetry, it may remain as an unbroken symmetry. Then, the LSP is absolutely stable since the 
R parity,.Rp or R'p, is a discrete subgroup of the U(1 )R symmetry, and some higher-dimensional 
operators are forbidden by the symmetry. 
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Anomaly freedom raises the interesting possibility that this U(l)R symmetry is a gauge 
symmetry. In the usual 4d N = 1 supergravity, a gauged R symmetry cannot remain at low 
energies since a non-vanishing Fayet-Iliopoulos D term of order the Planck scale is generated and 
breaks U(l)R at the Planck scale [27). This is true even in theN= 2 case [28). If the same is 
true of our theory, the low-energy consequence of the gauged U(l)R may only be the presence 
of a discrete gauge symmetry such as R parity. However, it is not completely clear whether the 

U(l )R symmetry is necessarily broken in the present theory, and if it remains unbroken at low 

energies we would have a massless U(l )R gauge boson which couples only to the superpartners 
and conjugate superpartners. 

6 Conclusions 

In this paper we have proposed an embedding of the standard model in a supersymmetric theory 
with an extra dimension compactified on the orbifold S1 /(Z2 x Z~)- a circle with two orthogonal 
reflection symmetries. All standard model particles propagate in the bulk, yet, because the 
compactification breaks supersymmetry, they are the only massless modes at tree level. The only 
interactions in the bulk are the 5d supersymmetric SU(3) x SU(2) x U(l) gauge interactions, 
which lead at low energies to the standard model gauge interactions and the tree-level Higgs 
potential (g2+g'2 )1</>HI 4 /8. The orbifold allows for two different types ofhypermultiplet, according 
to whether the zero mode is a scalar or a fermion. Thus the orbifold provides a distinction between 
the Higgs and lepton doublet superfields. 

The Yukawa couplings for up-type quarks appear as 4d supersymmetric interactions at the 
fixed points of the Z2 symmetry, while the Yukawa couplings for down-type quarks and charged 

leptons appear as 4d supersymmetric inte1actions at the fixed points of the Z~ symmetry. Because 
supersymmetry acts differently at these spatially separated locations, all Yukawa interactions in
volve just a single Higgs doublet, </>H. The top quark KK tower induces a one-loop effective 
potential for the Higgs which depends on the compactification scale. This potential contains a 

negative mass-squared, and is a monotonically decreasing function of !<PHI· It triggers EWSB, 
but runaway behaviour is prevented by the stabilizing effect of the tree-level gauge quartic in
teraction. Requiring the minimum to give the observed value for the Fermi coupling determines 
the compactification scale: R-1 = 352 ± 20 GeV, leading to a prediction for the Higgs mass of 

mH = 127 ± 8 GeV. It is remarkable that the Higgs potential does not have the standard model 
form, and the dependence of the top quark mass on the Higgs VEV is also non-standard. 

The nature of the orbifold automatically ensures that supersymmetry is broken and that the 
superpartners all have mass R-1 at tree level. There is no additional supersymmetry breaking 

sector or mediation mechanism, and hence no soft supersymmetry breaking parameters such as 
f-l, m 1; 2 , m 0 , A or B. There is no fine tuning between parameters for successful EWSB, as there 
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is only a single free parameter, R-1 • Because supersymmetry is broken non-locally by the global 

properties of the orbifold, all supersymmetry breaking effects are finite and reliably calculated in 

terms of physics at the compactification scale. Unlike 4d supersymmetric theories, which have 
a large logarithmic dependence on physics at high energies, supersymmetry breaking effects are 
exponentially shielded from physics above R-1 • 

There are three Dirac charginos of mass (352, 370, 370) GeV and three Dirac neutralinos of 

mass (352, 364, 364) GeV, where the splitting is induced by EWSB. The EWSB splittings are 
largest for the top squarks, with two having a mass of 197 ± 20 GeV and two having a mass 
of 522 GeV. All other superpartners have a mass close to R-1

, while all KK excitations of the 
standard model have a mass close to 2R-1 = 704 ± 40. The LSP is a top squark and is most 
likely stable. It will be copiously produced at future runs of the Tevatron collider. 

Sensitivity to physics at energies much above R-1 enters only through supersymmetric inter

actions at the orbifold fixed points. This gives an additional 20% uncertainty to all the masses 
given above, except for the masses of the top squarks and the Higgs boson, which are more rigidly 

tied to EWSB. Higher dimension operators also contribute to the p parameter, and must cancel 
contributions from the superpartners and KK excitations at the level of one order of magnitude. 

This UV sensitivity implies that p cannot be reliably computed. 
Our theory becomes non-perturbative at a scale of about 2 TeV, above which it becomes 

incorporated in some other higher dimensional theory. This might be a quasi-conformal field 
theory with an energy desert, or it could be that the fundamental scale of gravity is not far 
above 2 TeV [12]. 
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