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The dimensions that unfolded proteins, including intrinsically dis-
ordered proteins (IDPs), adopt in the absence of denaturant remain
controversial. We developed an analysis procedure for small-angle
X-ray scattering (SAXS) profiles and used it to demonstrate that
even relatively hydrophobic IDPs remain nearly as expanded in
water as they are in high denaturant concentrations. In contrast,
as demonstrated here, most fluorescence resonance energy trans-
fer (FRET) measurements have indicated that relatively hydropho-
bic IDPs contract significantly in the absence of denaturant. We use
two independent approaches to further explore this controversy.
First, using SAXS we show that fluorophores employed in FRET can
contribute to the observed discrepancy. Specifically, we find that
addition of Alexa-488 to a normally expanded IDP causes contrac-
tion by an additional 15%, a value in reasonable accord with the
contraction reported in FRET-based studies. Second, using our
simulations and analysis procedure to accurately extract both the
radius of gyration (Rg) and end-to-end distance (Ree) from SAXS
profiles, we tested the recent suggestion that FRET and SAXS re-
sults can be reconciled if the Rg and Ree are “uncoupled” (i.e., no
longer simply proportional), in contrast to the case for random
walk homopolymers. We find, however, that even for unfolded
proteins, these two measures of unfolded state dimensions remain
proportional. Together, these results suggest that improved anal-
ysis procedures and a correction for significant, fluorophore-driven
interactions are sufficient to reconcile prior SAXS and FRET studies,
thus providing a unified picture of the nature of unfolded poly-
peptide chains in the absence of denaturant.

protein folding | SAXS | IDP | Flory exponent | unfolded state

Protein disorder is an essential component of diverse cellular
processes (1–4). Unlike well-folded proteins, which populate

a well-defined functional state, unfolded and intrinsically disor-
dered proteins (IDPs) sample a broad ensemble of rapidly
interconverting conformations (3–8) with biases that are poorly
understood and difficult to measure. Of particular interest is the
extent to which IDPs contract under physiological conditions
(i.e., in the absence of denaturants). Such contraction would
have broad implications for our understanding of protein folding,
interactions, and stability as well as the action of denaturants.
Moreover, understanding the extent to which disordered ensem-
bles contract has profound implications for the development of
realistic folding simulations and the interpretation of small-angle
X-ray scattering (SAXS) and FRET measurements (9, 10).
Our understanding of the physiochemical principles that un-

derlie whether a polypeptide chain will fold, adopt a disordered
but nevertheless relatively compact ensemble, or behave as an
expanded, fully solvated, self-avoiding random walk (SARW) is
insufficient to explain existing data. Most of this understanding is
derived from studies of proteins unfolded by high concentrations
of denaturants such as urea and guanidine hydrochloride (Gdn).
Under these conditions the consensus is that proteins behave as
SARWs, with a Flory exponent (ν) of 0.60 in the relationship
Rg∝Nν (N= chain length). In contrast, consensus is lacking regarding
the behavior of IDPs at lower or no denaturant. Specifically, while

numerous FRET (11–25) and computational studies (11, 14, 18, 23,
26–29) have argued that the expanded, disordered ensemble de-
tected at high denaturant contracts significantly [typically 25–50%
upon transfer to low or no denaturant (ν < 0.5)] (11, 14, 18, 23,
26–28, 30–35), a similar number of SAXS studies report little or
no contraction under these same conditions (10, 36–41).
A variety of recent studies have attempted to reconcile this

discrepancy (Fig. 1A), which has profound implications in the
physics of protein folding. The application of more realistic simu-
lations and analytical models resulted in FRET-derived distances
having a smaller denaturant dependence (Fig. 1A, Bottom) (40,
42–44). In parallel, improved SAXS data and analysis, including
the use of the dimensionless Kratky plot to emphasize changes in ν
rather than Rg, (which is important, as the addition of fluo-
rophores near the ends of a chain will increase Rg due to their
mass), likewise provided evidence for a minor contraction below
2 M Gdn (Fig. 1A, Bottom) (45, 46). Nevertheless, significant
discrepancies persist in the absence of denaturant, even when the
same approaches are used to analyze the same protein under
identical conditions (Fig. 1, SI Appendix, Figs. S1 and S2, and
Movie S1). Recent studies have proposed that this discrepancy can
be eliminated by using a holistic analysis (42, 43), emphasizing a
decoupling between the normally fixed, proportional relation-
ship between Rg (determined from SAXS measurements) and
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Ree (determined from FRET measurements) without any
need to invoke a perturbation due to the presence of the
fluorophores (42).
To comprehensively compare the results of SAXS and FRET

studies, we collected published datasets for a variety of IDPs
(Fig. 1 C and D and SI Appendix, Table S3). When analyzed
using our simulations and molecular form factor (MFF), SAXS
studies consistently find ν > 0.53 (mean = 0.55), whereas ν de-
rived from FRET studies typically falls below 0.50 (mean = 0.46).
This 0.09 discrepancy is substantial, relative to the entire range
of ν, which varies only from 0.6 (for a SARW) through 0.5
(where intrachain interactions are equally favorable to solvent-
chain interactions) to 0.33 (for compaction into a sphere; it is
somewhat higher for nonspherical compact states). In general,
SAXS results suggest that the conformational ensembles of a
majority of unfolded proteins and IDPs with protein-like se-
quence composition are highly expanded (ν > 0.5) and water is a
good solvent, whereas FRET suggests otherwise (Fig. 1D).
The above and other results have led us and others to search

for factors that might contribute to the persistent discrepancy
between SAXS- and FRET-based views of IDP dimensions (9,
29, 39, 42, 43, 47–50). One alternative, herein denoted the

“heteropolymer-decoupling hypothesis,” posits that the hetero-
polymeric nature of proteins leads to variation in the relationship
between Rg and Ree, a relationship that is fixed (i.e., indepen-
dent of chain length) at a ratio of 6.3 for a homopolymer SARW.
Recent simulations suggest that this ratio may not be fixed for
unfolded proteins, which are more complex than homopolymers
(29, 39, 42, 43). This “decoupling” offers a possible explanation
for the discrepancy between SAXS (which is sensitive to Rg) and
FRET (which is sensitive to Ree). In contrast, a second hypoth-
esis, herein denoted the “fluorophore-interaction hypothesis,”
suggests that, in the absence of denaturant, the FRET fluorophores
interact with each other and/or the polypeptide chain, causing the
conformational ensemble of fluorophore-modified constructs to
contract more than they would in the absence of these fluorophores
(9, 45, 47, 50, 51).
Here we address both the decoupling and fluorophore-

interaction hypotheses. We used SAXS to characterize the ra-
dius of gyration of an IDP before and after the addition of a
commonly employed fluorophore. We find that such fluorophore
modification alters the conformational ensemble in the absence
of denaturant, decreasing its SAXS-measured dimensions by 10–
20%. When coupled with improved analysis procedures employing
realistic simulated ensembles for both SAXS and FRET, this
fluorophore-induced collapse is sufficient to bring results from
SAXS and FRET studies into agreement. In parallel, we present
SAXS measurements on polyethylene glycol (PEG), confirming
prior reports that the addition of fluorophores likewise causes the
contraction of this otherwise SARW polymer (9), a finding that was
recently questioned (42). Moreover, we show that SAXS can extract
Rg, ν, and Ree with accuracies above 97% when analyzed using a
new MFF developed for heteropolymers. These simulations are
accurate enough to reproduce scattering data without the need to
select only a subensemble of conformations, as commonly used in
other data fitting procedures. Finally, we demonstrate the extent
that one can use small deviations from ideality in SAXS data to
infer biases within the heteropolymer conformational ensemble.

Results
Fluorophore Labeling Induces Collapse. To directly test the fluorophore-
interaction hypothesis, we measured SAXS profiles of an unmodified
IDP and the same IDP site-specifically modified with one or two
copies of the commonly employed FRET fluorophore Alexa-488. We
chose this fluorophore because it is relatively small and hydrophilic,
thus rendering it less likely than most of the other FRET fluo-
rophores to form interactions that would alter the unfolded ensemble
(43). As our test protein, we used PNt, a well-behaved IDP com-
prising the amino terminal 334 residues of pertactin (52). To produce
mono- and dualfluorophore-modified PNt, we used a thiol-reactive
Alexa-488 to modify cysteine residues at either position 117 (PNtC-
Alexa488) or positions 29 and 117 (PNtCC-Alexa488). As controls,
we used the unmodified parent protein (PNt) and alkylation to pro-
duce constructs lacking fluorophores (PNtC-Alkd and PNtCC-Alkd).
The addition of Alexa-488 reduces the SAXS-measured di-

mensions of PNt both in the absence of Gdm and at intermediate
concentrations (Fig. 2A and SI Appendix, Table S1). Specifically,
upon transitioning from 4 to 0 M Gdn, Rg and ν decrease nearly
twice as much for the fluorophore-modified PNtCC-Alexa488 as
for either PNtCC-Alkd or PNt (Fig. 2B and SI Appendix, Table
S1). These data indicate that the presence of Alexa-488 leads to
contraction of the PNt conformational ensemble. Of note,
whereas 2 M Gdn is a good solvent (ν > 0.50) for the unlabeled
protein, fluorophore-labeling leads to measurable intramolecular
interactions even at this relatively high denaturant concentration
(Fig. 2B, Right). Consistent with a common origin for the effect,
the magnitude of this denaturant-dependent expansion is quali-
tatively similar to that observed by FRET for a variety of other
proteins (Fig. 1B) (42, 43). We also observed a fluorophore-
dependent decrease in average Rg and ν for the single-labeled
construct PNtC-Alexa488 (Fig. 2), indicating that, in addition to
presumptive fluorophore–fluorophore interactions, fluorophore–
protein interactions also contribute to the observed contraction.
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Fig. 1. Improved analysis procedures do not eliminate discrepancy between
SAXS- and FRET-derived measurements of IDP dimensions. (A) R17 SAXS and
FRET data (from ref. 43). (A, Top) Comparison of results obtained when FRET
data are fit assuming a Gaussian chain and SAXS data are fit using the
Guinier approximation. (A, Bottom) SAXS and FRET data fit using our MFF
analysis method and a similar approach (45). Black line is best fit hyperbolic
trend line; gray lines are 95% confidence intervals. (B) SAXS profiles for R17
(Left, data from Ref. 43) and N98 (Right, data from ref. 42) fit with the MFF are
significantly different from the expected behavior using values of ν taken from
similar analysis of FRET data. Solid lines denote the region used in the fitting
procedure; dashed lines represent extrapolation to higher values of q. Al-
though ∼500 points per scattering curve were fit (gray), most data shown
were binned for presentation purposes only (black points). The upturns or
kinks in the data at higher values of qRg are most likely due to errors in
buffer subtraction, which is more challenging at high q, low sample con-
centration, and/or reduced scattering contrast (e.g., at high denaturant, see
Materials and Methods). (C) Trends of hydrophobicity (Kyte–Doolittle) versus
ν in the absence of denaturant derived from SAXS by applying the MFF to
published data collected from foldable protein sequences (42, 45, 67–82).
Also shown are results from FRET studies calculated as in ref. 20 for pub-
lished data (20, 42). Red trend line for FRET data from ref. 20. Black trend
line is best fit to SAXS results shown. (C, Top) Histogram of hydrophobicity of
representative proteins in the PDB (dataset from ref. 45). (D) Cumulative
distributions of ν for the representative proteins from the PDB, inferred from
the trend lines shown in C.
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Of note, this contraction occurs despite steady-state fluores-
cence anisotropy values for PNtCC-Alexa488 of 0.11 and 0.08 in
0 and 2 M denaturant, respectively (SI Appendix, Table S2),
below the threshold typically considered as evidence of free ro-
tation of protein-attached fluorophores (42, 53). From these
results, we conclude that addition of even one of the smaller,
more hydrophilic fluorophores commonly employed for FRET
measurements can significantly reduce the dimensions of a dis-
ordered polypeptide chain (42, 43, 53), an observation that helps
reconcile the SAXS–FRET discrepancy.

The SAXS-Derived Dimensions of PEG Are Independent of Polymer
Concentration. In an earlier study we reported that addition of
Alexa-488/594 to PEG resulted in a denaturant-dependent change in
FRET (9), similar to that seen in unfolded proteins. No contraction
was observed, however, when the equivalent unlabeled polymer was
studied using small-angle neutron scattering. It has been proposed
that the high (3 mM) concentrations of PEG used in this scattering
study mask what would otherwise be a denaturant-dependent change
in Rg (42). To test this, we measured SAXS profiles over a range of
PEG and denaturant concentrations and found no evidence for a
significant change in the dimensions of this highly hydrophilic poly-
mer (Fig. 3). Likewise, under all conditions we observed a Flory
exponent of 0.60, further confirming that PEG behaves as a SARW
independent of denaturant concentration. Fluorophore effects, and
not chain contraction, thus remain the simplest interpretation of
the denaturant-dependent changes in FRET previously observed
for fluorophore-labeled variants of this polymer (9).

Testing the Heteropolymer-Decoupling Hypothesis. Taken together,
the above observations indicate that fluorophores added to an
IDP lead to significant contraction, contributing to the different
conclusions drawn from prior SAXS and FRET studies. These
observations, however, do not rule out the possibility that, as
previously argued (42), heteropolymer-decoupling (i.e., the re-
lationship between Ree and Rg deviating from the fixed pro-
portionality seen for homopolymers) could also contribute to the
SAXS–FRET discrepancy.
To investigate whether the conformational ensemble of a re-

alistic heteropolymer results in a significant nonproportionality
between Ree and Rg, we used Upside, our Cβ-level simulations
(54, 55), to simulate the scattering for unfolded ensembles of 50
protein of 250–650 residues randomly chosen from the Protein

Data Bank (PDB). In its simplest version, Upside represents the
polypeptide backbone with six atoms per residue (N, Cα, C, H,
O, and Cβ) and uses neighbor-dependent Ramachandran maps
derived from a coil library (56). Such models are able to re-
produce the Rg and NH residual dipolar couplings (RDCs) ob-
served in unfolded proteins; these two parameters are sensitive to
global and local properties of the backbone, respectively (57, 58).
To generate heteropolymer ensembles, we assigned each Cβ as
either hydrophobic or polar (H/P). Favorable interaction profiles
(shape shown in ref. 45, SI Appendix, Fig. S3A) are introduced
only between Cβ atoms of the hydrophobic residues and self-
avoidance is imposed on all atoms. For each of the 50 se-
quences, we employed 30 different Cβ interaction strengths. After
creating these 1,500 H/P ensembles of backbone conformations,
we added explicit side chains (59) and then calculated the scat-
tering profiles of the hydrated versions of the proteins (60).
For these 1,500 ensembles, we compared the true Rg, ν, and Ree

values calculated directly from the atomic coordinates with those
obtained by fitting the simulated scattering (with added realistic
random errors) using our original MFF designed for homopolymers
(45). As is true for homopolymers, we find that the values of Ree and
Rg seen in these simulations are proportional (i.e., remain coupled),
with a correlation coefficient of R2 = 0.99 (Fig. 4A). We next fit the
simulated scattering profiles to determine Rg

fit, νfit, and Ree
fit, with

the latter obtained using the relationship (Ree/Rg)
2 = G(ν), where

G(ν) was calibrated using our original homopolymer simulations (SI
Appendix, Fig. S1D). We found a mean absolute deviation of only
1.3 Å, 0.011, and 4.2 Å, respectively, representing a 3%, 2%, and
4% mean absolute error in Rg, ν, and Ree (SI Appendix, Fig. S3).
The largest deviations are observed for more compact structures; for
more extended conformations (ν > 0.54) the error is ∼2%. The
correlation Rg

fit and Ree
fit remained high, R2 > 0.99.

To further reduce the small error associated with the application
of our MFF derived from homopolymers to the scattering of het-
eropolymers, we generated a new molecular form factor, MFFhet,
using the H/P simulations described above and the same general
procedure as described in ref. 45. Application of this slightly mod-
ified MFFhet lowers errors in fitted Rg, ν, and Ree to 0.5 Å, 0.005,
and 2.7 Å, respectively, representing 1%, 1%, and 2% mean abso-
lute error (Fig. 4 B–D). These results demonstrate that our MFF-
based analysis procedure returns accurate values for Rg and Ree,
which remain proportional (i.e., coupled), even for heteropolymers.
We next considered whether our conclusions are sensitive to the

details of our model or energy function. To test this, we conducted
additional simulations using a more detailed version of the Upside
algorithm that is capable of de novo folding of proteins with <100
residues (54, 55). In this version, each of the 20 side chains is rep-
resented by a multiposition eccentric bead that allows for detailed
packing of the core. The energy function includes hydrogen bonds,
side chain–side chain and side chain–backbone interactions, amino
acid-dependent dihedral angle potentials, and a desolvation term.
Using this model, we generated 30 ensembles for each of six proteins
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(PNt and five other proteins randomly selected from the 50 described
above), using short simulations that sample only the unfolded state.
We obtained ensembles by running replica exchange simulations over
a temperature range from 280 to 320 K, as described previously (54,
55). Values of ν obtained from these ensembles ranged from 0.4 to
0.6, depending on the simulation temperature. Significantly, values of
Ree, Rg, and ν obtained directly from these more realistic ensembles
are in close agreement with values determined after fitting with our
MFFhet, with nearly the same accuracy as for the simpler H/P en-
sembles (Fig. 4 A–C, red points). Furthermore, the directly computed
values for Rg and Ree for the ensembles remain proportional, with a
correlation coefficient of R2 = 0.99. Hence our conclusion that Rg and
Ree remain coupled even for heteropolymers is robust to the details of
our simulations.

Measuring Deviations from Ideality in Heteropolymers. MFFhet ac-
curately captures the overall dimensions of disordered hetero-
polymers for protein-like H/P sequence patterns and can be used
in most instances. Nevertheless, small but measurable deviations
are observed for proteins in our test set with less well-mixed H/P
patterns (SI Appendix, Fig. S4). These differences can be seen in
the intramolecular distance distribution plot, where the slope at
separation distances ji − jj > N/2 can be different from the av-
erage slope, which defines the global ν value (Fig. 4D). We de-
fine change in slope as Δνend (Fig. 4D). Negative values of Δνend
correlate with a preponderance of hydrophobic residues at the
ends of the polypeptide sequence (Fig. 4D and SI Appendix, Fig.
S4C) and with deviations in G(ν) (SI Appendix, Fig. S4A) (R2 ∼ 0.84).
The SAXS profile is most sensitive to Δνend at low qRg (Fig. 4E).
To quantify the nonidealities in heteropolymers from the

SAXS data, we generated a more general, three-parameter form
factor, MFFgeneral(Rg, ν, Δνend) (Fig. 4 E and F and Movie S2).
To demonstrate its ability to yield useful information, we fit data
from PNt, PNtCC-Alexa488 and a circularized (disulfide-
bonded) PNtCC at 2 M Gdn (Fig. 4F). Δνend decreases from
∼0 for PNt to approximately −0.1 for PNtCC-Alexa488 and to
approximately −0.2 for circularized PNtCC, consistent with the
increase in interactions at the amino terminus of the chain. Less
drastic perturbations, such as less well-mixed H/P patterns, and
shorter amino acid sequences with a lower useful qRg range, may

require a higher signal-to-noise ratio to measure Δνend. Never-
theless, these data demonstrate the potential of SAXS to iden-
tify, for disordered polymers, sequence-dependent deviations
from homopolymer behavior (Fig. 4 E and F) while still accu-
rately measuring Rg and ν (Fig. 4 A–C).
In the infinite chain length limit, the Flory scaling exponent ν has

values of 0.33, 0.50, and 0.60, corresponding to globules, random
walks, and SARW, respectively. Nevertheless, we and others take a
pragmatic approach and allow ν to assume intermediate values; e.g.,
as obtained from the slope of the scaling plots of Rg versus chain
length, or Rij versus ji − jj (SI Appendix, Fig. S6). In support of this
approach, one observes upon increasing the intrachain interaction
strength, a decrease in both I(q) at high q and the slope in the
scaling plots for proteins of 100–1,000 residues (Fig. 4). Accordingly,
we believe that the use of ν values beyond the three canonical values
provides a legitimate and practical approach to compare solvent
quality for different-sized systems and classify whether water is a
good or poor solvent for finite length polymers.

Discussion
Whereas SAXS measurements point to water being a good sol-
vent (ν > 0.5) for unfolded polypeptides, FRET-based studies
typically report the opposite (ν < 0.5). We find here, however,
that a combination of improved analysis procedures and more careful
consideration of fluorophore–fluorophore and/or fluorophore-chain
interactions is sufficient to explain this discrepancy. These find-
ings lead to a unified picture in which the unfolded state of proteins
is a SARW at high denaturant and contracts only slightly (much less
so than previously been reported in the FRET literature) in the
absence of denaturant. Specifically, we find that labeling with
Alexa-488, a commonly used FRET fluorophore, can alter the
conformational ensemble of an IDP, decreasing Rg and ν even
when the fluorescence anisotropy is low, relative to accepted limits
for free fluorophore rotation (42, 53). In combination with prior
studies (9), similar conclusions can be inferred for PEG, a known
SARW. These findings, along with our prior result that disordered
chains undergo a mild expansion in denaturant (45) and improved
methods for extracting Rg values from FRET data (40, 42–44), now
provide a sufficient framework for resolving discrepancies between
SAXS and FRET on the dimensions of disordered proteins. The
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fundamental and significant conclusion of the resulting unified
picture is that, even in the absence of denaturant, water remains a
good solvent for most unfolded proteins.
Our findings of fluorophore-induced effects are consistent with

prior findings that the molecular dimensions inferred from FRET
can depend on the fluorophore pair used, with more hydrophobic
fluorophores leading to more contraction (43). MD simulations with
a Alexa-488/594 fluorophore pair, for example, resulted in a 10%
contraction of an IDP even in 1M urea (61). Likewise, a recent study
found that single-molecule FRET (smFRET) signals from both
DNA and PEG are dependent on solvent conditions under which
the dimensions of the chains were expected to be invariant (51). In
apparent disagreement with our data, however, Fuertes et al. (42)
conducted SAXS measurements on five IDPs with and without
Alexa-488/594 and concluded that, on average, the alterations seen
upon the addition of fluorophores were minimal. When considered
for each protein separately, however, the differences appear signifi-
cant, relative to the narrow range of possible values. Specifically, for
the five proteins characterized in that study, νunlabel − νlabel = 0.08,
0.03, 0.03, −0.02, and −0.04 (or 0.09, 0.06, 0.03, −0.02, and −0.08
when analyzed using our procedures; SI Appendix, Fig. S5). Although
Fuertes et al. (49) assert that only one protein (NLS), exhibits
fluorophore-induced contraction, in fact four of the five proteins they
tested had statistically significant fluorophore-induced changes in ν,
with more than half exhibiting a fluorophore-induced contraction
(42) of similar magnitude to the contraction we observed for
fluorophore-labeled PNt in water (45) (SI Appendix, Fig. S5). To-
gether, these data support a consistent picture of fluorophore-
induced perturbations, contributing to differences in the magnitude
and denaturant dependence of Rg inferred from SAXS and FRET.
The other factor that has been suggested to contribute to the

discrepancy between SAXS and FRET results is deviations from
the proportional relationship between Rg and Ree that may arise
when analyzing heteropolymers versus homopolymers (42). Un-
derlying this view is the observation that, if one reweights the en-
semble (i.e., calculates Rg using only a subset of conformations),
many possible values of Ree are consistent with any given Rg (and
vice versa). Rather than selecting a subensemble of conformations
to fit a couple of parameters, we have taken an alternative ap-
proach (45). We generate physically plausible ensembles at the
outset, create a MFF using these entire ensembles, and examine
whether it fits the data in its entirety. We find that our MFF ac-
curately matches the entire scattering profile (rather than just the
Rg), which provides strong support for our procedure. Since we can
calculate the values of Rg and Ree directly from the underlying
ensembles, we have a procedure to obtain these two parameters by
fitting the SAXS data with our MFF. We find that for realistic
denatured ensembles of foldable sequences, the simulated Rg and
Ree pairs as well as their counterparts determined from the scat-
tering profiles are proportional (R2 > 0.99). This leaves the dyes as
the source of the remaining discrepancy between SAXS and FRET.
The MFF we employ is imperfect in the sense that slightly

different ensembles can be fit using the same Rg and ν parameters.
But the error is very low for these two parameters relative to their
true values (Fig. 4 A–C). Inclusion of heteropolymer effects does
not alter this conclusion. From these results, we conclude that
SAXS is well suited to extract both Rg and Ree for disordered
heteropolymers, while circumventing potential artifacts due to
fluorophore interactions with polypeptide chains. This conclusion
does not negate the potential of FRET to measure dynamics,
binding, and conformational changes; it does, however, emphasize

that caution must be exercised when employing FRET to infer
quantitative distances in the original, unlabeled biomolecule.
Nearly a dozen IDP SAXS datasets reported here and pre-

viously (45) have been shown to fit well to our general MFF (SI
Appendix, Tables S1 and S3). This finding suggests that the in-
teractions that drive chain contraction are spread along protein
sequences. Water-soluble, well-folded protein sequences tend to
be well-mixed heteropolymers, with relatively small stretches of
consecutive hydrophobic residues (62). These well-mixed se-
quences tend to behave as homopolymers when measured by
global, low-resolution methods such as SAXS. Indeed, we have
demonstrated that, with sufficient data quality, poorly mixed
sequences can be identified by their deviation from our MFF
(Fig. 4 D–F). Larger deviations can occur for some IDPs, espe-
cially those with partial folding, unusual sequence patterning
(e.g., block copolymers) and/or under crowded conditions that
may serve specific functions (63, 64).
The unified picture presented here regarding SAXS and FRET

studies of the unfolded state in the absence of denaturant reinforces
the view that water is a good solvent for most unfolded polypeptides,
a property that should reduce misfolding and aggregation while si-
multaneously facilitating synthesis and transport. That most proteins
nevertheless readily fold in water suggests that the interactions that
drive folding are more stabilizing—i.e., overcome the ability of water
to solvate the unfolded state—than those that promote nonspecific
collapse. Indeed, the observation that, despite the minimal evidence
of significant unfolded-state contraction even in the complete ab-
sence of denaturant, some proteins remain stably folded in up to
6 M Gdn (41, 65) suggests that native interactions are far more
favorable than any nonspecific interactions associated with collapse.
Given, however, the highly specific nature of the interactions formed
in native proteins, their ability to overcome the solvation of the
unfolded chain is perhaps not surprising.

Materials and Methods
PNtCC and PNtC were expressed in Escherichia coli BL21(DE3)pLysS and pu-
rified from inclusion bodies as described previously (45, 52, 66), with the
following modifications. After inclusion-body solubilization, PNt constructs
were refolded in 50 mM Tris pH 7.2 with 50 mM β-mercaptoethanol (βME).
Before the final size exclusion chromatography step, 20 mM βME was added
to the protein stock solution.

Further information on protein alkylation and Alexa-488 labeling, as well
as steady-state anisotropy measurements, SAXS data analysis and simulations
can be found in SI Appendix.

Note Added in Proof. During review, a study was published that implicated
fluorophores in the strengthening of the binding affinity between two
IDPs (83).
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