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Non-paraxial propagation of ultrashort laser pulses 

in plasma channels 

E. Esarey and W.P. Leemans 

Center for Beam Physics 

Ernest Orlando Lawrence Berkeley National Laboratory 

University of California, Berkeley CA 94720 

Abstract 

The propagation characteristics of an ultrashort laser pulse in a preform~d. plasma 

channel are analyzed. The plasma channel is assumed to be parabolic and unperturbed 

by the laser pulse. Solutions to the wave equation beyond the paraxial approximation 

are derived that include finite pulse length effects and group velocity dispersion. When 

the laser pulse is mismatched within the channel, betatron oscillations arise in the laser 

pulse envelope. A finite pulse length leads to a spread in the laser wavenumber and 

consequently a spread in betatron wavenumber. This results in phase mixing and damping 

of the betatron oscillation. The damping distance characterizing the phase mixing of the 

betatron oscillation is derived, as is the dispersion distance characterizing the longitudinal 

spreading of the pulse. 
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I. Introduction 

Optical guiding of intense laser pulses in plasma channels [1] is beneficial to a variety 

of applications, including plasma-based accelerators [2], harmonics generation [3,4], x-ray 

lasers [5,6], and advanced laser-fusion schemes [7-9]. In vacuum a laser pulse will diffrac­

tively expand after a distance on the order of a Rayleigh length Zn = rrr5/ A., where r0 is 

the laser spot radius at focus, A. = 2rrclw is the laser wavelength, and w is the laser fre­

quency. High intensity requires a tight focus (small r0 ) and, hence, a small Raleigh length, 

e.g., Zn ~ 300 t-tm for ro = 10 t-tm and A.= 1 t-tm. A preformed plasma density channel can 

prevent pulse diffraction. Specifically, a plasma channel with a radially parabolic density 

profile of the form n( r) = n 0 + fl.nr 2 I r5 can guide a laser pulse of spot size r0 provided 

the channel depth fl.n satisfies fl.n = fl.nc, where fl.nc = 1lrrrer5 is the critical channel 

depth and.r~ = e2 lmec2 is the classical electron radius [10,11]. In practical units, 

(1) 

e.g., fl.n ~ 1018 cm-3 for A. = 10 t-tm. Plasma density channels have been created in the 

laboratory by a variety of methods: (i) Passing a long laser pulse through an optic to 

create a line focus in a gas, which ionizes and heats the gas, creating a radially expanding 

hydrodynamic shock [12-18], (ii) using a slow capillary discharge to control the plasma 

profile [19-21], and (iii) using the ponderomotive force of an intense, relativistically self­

guided laser pulse in a plasma, which creates a channel in its wake [22-31]. These methods 

have been used to guide short pulses, with intensities as high as 1016 WI cm2 , over distances 

on the order of 20Zn- 100ZR [12-24]. In all experiments published to date [], the laser 

pulses guided within the preformed plasma channels were in the regime a5 ~ 1 and PI Pc ~ 

1, where a5 = 7.2 x 10-19 A. 2 [t-tm]J[W lcm2
], I is the laser intensity, P[GW] = 21.5(a0 r0 1 A.)Z 

is the laser power, Pc[GW] = 17('Apl A.) 2 is the critical power for relativistic self-focusing, 

Ap = 2rrclwpo is the plasma wavelength, and Wpo = (4rrn0 e2 lme)112 is the electron plasma 

frequency. 

In this paper, the propagation of ultrashort pulses in long plasma channels is examined 

in the low intensity a5 ~ 1, low power PI Pc ~ 1 limits. Solutions to the linear wave 

equation are derived beyond the paraxial limit, i.e., finite pulse length and group velocity 
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dispersion effects are retained. A formalism is developed that allows the laser field profile 

to be calculated in three-dimensions to arbitrarily high order in the parameter >..I L. It is 

found that betatron oscillations in the laser pulse envelope, which occur when the pulse is 

not matched within the channel, damp due to phase mixing with a characteristic damping 

length given by Z f3 ~ ( 1r L I>.. )Z R = ( 1rr0 I>.. )2 L. In addition, the characteristic scale length 

for dispersive spreading of the laser pulse length within a channel is found to be given by 

ZD ~ (!9 Lir0 )
2 ZR, where /g = (1- /3;)- 112 and v9 = cj39 is the group velocity of the 

laser pulse within the channel, i.e., j39 ~ 1 - w;0 l2w2 
- 2c2 lw5r5, assuming 1 - /39 ~ 1, 

where Wpo = ( 47re2 n 0 lme)112 is the electron plasma frequency. These effects are important 

for ultrashort laser pulses, and high-power (2: 1 TW) sources of ultrashort(:::; 20 fs) pulses 

are readily available [32]. 

Solutions to the paraxial wave equatio~ describing the propagation of laser pulses in 

underdense ( w » Wpo) plasma channels have been analyzed in detail [1 J. Analysis of the 

paraxial wave equation with a parabolic density channel ofthe form n(r) =no+ !:1nr2 lr5 
indicates that the normalized spot size R = r 8 I r0 of a long, axially uniform laser beam 

evolves via [1 ,33] 

(2) 

where ZR = 7rr51 >.., !:1nc = 117rrer5 is the critical channel depth, and Pis the laser power, 

Pc ~ 17(>..;1 >.. 2 ) GW is the critical power for relativistic self-focusing [1,34-38]. Note that 

Pc ~ 19 TW for n 0 ~ 1018 cm-3 (>..p ~ 33 f-lm) and >.. = 1 f-lm. The first, second, and 

third terms on the right of Eq. (2) represent the effects of vacuum diffraction, relativistic 

focusing and channel focusing, respectively. In deriving Eq. (2), a Gaussian radial laser 

field profile was assumed, i.e., a normalized laser intensity profile of the form 

(3) 

where a= eAimec2 is the normalized vector potential. The parameter a0 is related to the 

laser power ~nd intensity I at the focal spot r8 = r0 by a5 = 7.2 x 10-19 >.. 2 [!-lm]l[W lcm2
] 

and P[GW] = 21.5( a5r5 I >.. 2 ), assuming linear polarization. Furthermore, the derivation 

of Eq. (2) assumes a long laser pulse L » >..P and neglects ponderomotive and wakefield 
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effects [1,10,11,33,35,37,38], i.e., the parabolic density profile is assumed to be unaffected 

by the laser pulse. Other channel profiles, e.g., square or hollow channels [39,40], are not 

considered in this paper. In the limits i::J.nl i::J.nc ~ 1 and PI Pc ~ 1, the usual solution 

for vacuum diffraction is recovered from Eq. (2), i.e., r8 = r 0 (1 + z2 IZk) 112 , assuming the 

initial conditions r 8 = ro and drsldz = 0 at z = 0. 

Equation (2) indicates that the condition for matched-beam propagation (propagation 

with a constant spot size r 8 = ro) is [1,33,38] 

(4) 

In the absence of a channel, guiding requires P = Pc, which is the condition of relativis­

tic self-guiding. As is discussed in detail in Refs. [1,11,33,36], relativistic self-guiding is 

subject to leading edge erosion and self-modulation instabilities, and is ineffective in pre­

venting the diffraction of short pulses, i.e., pulse lengths L ~ .\p. For low powers, P ~ Pc, 

matched beam propagation can be achieved by a channel with i::J.n = i::J.nc. Matched beam 

propagation requires, in addition to Eq. (4), that the beam be injected into the channel 

with a spot size r8 satisfying dr 8 1dz = 0 and r8 = ro at the channel entrance, where the z 

axis corresponds to the channel axis. 

In general, the beam will not be perfectly matched within the channel, i.e., the laser 

envelope will undergo betatron oscillations. The solution to Eq. (2) for the initial (z = 0) 

conditions drsldz = 0 and r8 = ri is [1,33] 

(5) 

where kf3 = (2IZR)(i::J.nl 6.nc) 112 is the betatron wavenumber and ri is the injected spot 

size. For P < Pc and i::J.n > 0, the spot size oscillates between r; = r~ and r; = (1 -

PI Pc)Ancr"'Q I i::J.nr~ with an oscillation period .\{3 = 27r I kf3 = 1r Z R(i::J.ncl i::J.n )112
. A matched 

beam wit4 r8 = ri = ro requires P = PM, where PM -:- Pc(1 - i::J.nl i::J.nc)· Notice that 

for ri = ro and k~z2 ~ 1, Eq. (5) reduces to r; lr5 = 1 + (1 - PI Pc - i::J.nj 6.nc)z2 I Zk. 

This indicates that beam will initially focus for P > PM or diffract for P < PM with an 

effective Rayleigh length of ZR(1- PIPe- i::J.nli::J.nc)- 112 . 

4 



Equations (2)-(5) are solutions to the paraxial wave equation describing the evolution 

of long laser beams. However, some effects of a finite pulse length L can be ascertained 

from Eqs. (2)-(5) in the limit P/Pc ~ 1. A finite pulse length will introduce a spread in 

laser wavenumbers k = ko + 8k, where ko is the central wavenumber and l8kl c::: 2/ L ~ ko. 

Notice that the condition for guiding a matched pulse with ri = r0 is b.n =bone, which is 

independent of wavenumber. For a slight mismatch, ri = r0 + 8r0 with 8r0 Jr0 ~ 1, the 

solution to Eq. (2) is r 8 c::: r0 + 8r0 cos k13z. Notice that the betatron wavenumber k13 = 

2/ZR = 4/kr6 depends on the k spectrum of the laser pulse. A spread ink will lead to a 

spread in k13, i.e., different frequencies will undergo betatron oscillations in the channel with 

different periods. This will lead to phase-mixing and damping of the betatron oscillations. 

Roughly, damping of the betatron oscillations will occur after a distance Z f3 given by 

8k13Zf3 c::: 1rj2, where 8k13 = k138kjk0 • This gives Z13 c::: (1rj8)k0 LZR. A more accurate 

estimate is given by averaging the betatron orbit 8r = 8ro cos k13z over the k spectrum. 

A laser pulse with an axial profile of the form a rv exp(-(z- ct)2 J L 2
] has a k spectrum 

f rv exp(-8k2 L2 /4). Hence, (8r) = J d8kf8r c::: 8ro-cos(kf3oz)exp(-k~0 z2 /k6L2 ), which 

implies Z13 = koL/kf3o = koLZRo/2, where ZRo = kor6/2. This result holds provided 

L < ZR. Damping of the betatron oscillations in the laser spot has been observed in 

nonlinear fluid simulations that model the experiments of Ref. (21]. 

The remainder of this paper is organized as follows. Section II presents an analysis 

of the linear wave equation including finite pulse length and group velocity dispersion 

effects. Solutions for a matched, finite length pulse within a channel, including second­

order dispersion, are derived in Sec. III. In Sec. IV, mismatched pulse propagation is 

analyzed, with (Sec. IV A) and without (Sec. IV B) the effects of dispersion. Nonlinear 

effects, in particular the hose-modulation instability, are discussed in Sec. V. Section VI 

presents a discussion of the results. Three Appendices are also included that discuss the 

plasma source term for the linear wave equation (Appendix A), the evolution of ultrashort 

laser pulses in the absence of a plasma channel (Appendix B), and generalization of the 

results to include high-order modes (Appendix C). 
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II. Analysis of Wave Equation 

The propagation of an ultrashort laser pulse in a preformed plasma channel will be 

considered. A parabolic density channel is assumed with an electron density profile of 

the form n( r) = n 0 + 6.nr2 
/ r~, where 6-n is the channel depth and r0 is the channel 

radius. Propagation is considered in the limits of low power P / Pc ~ 1 and low intensity 

a5 ~ 1, such that nonlinear effects (e.g., relativistic self-focusing) can be neglected and 

the density channel can be assumed unaffected by the laser pulse. It is convenient to use 

the normalized vector potential a = eA/mec2 with \7 ·a = 0. The linear wave equation 

for the transverse component ax of the laser field is 

(6) 

where k;(r) = k;0 (1 + 6.nr2 /nor5), kpo = Wpo/c, and w;0 = 47rnoe2 /me. Here, the source 

term Sx = k;(r )ax represents the normalized transverse plasma current to first order in 

!ax I· Derivation of the plasma source term, along with high order corrections, is discussed 

in Appendix A. 

In terms of the independent variables ( = z- f390 ct and z, the wave equation becomes 

(7) 

where {390 = v9o / c and v90 is the linear pulse group velocity, as is defined below. Intro­

ducing the slowly-vary field envelope a, where ax = O,exp(ikoz- iwot) + C.C., Wo is the 

central frequency of the pulse, ko is the central wavenumber, and c.c. denotes the complex 

conjugate, the wave equation becomes 

(8) 

where /3po = wofck0 and /3po/39o = 1 is assumed. 

For a short pulse of length L propagating in a plasma channel, the operators on 

the left side of the wave equation, Eq. (8), scale as follows: \7 ..L "' 1/ro, 8/B( "' 1/L, 

a I az rv 1 I z RO' and 1- f3;o rv w;o I w5 + 4/ k5r5' where z RO = kor~ /2 is the Rayleigh length. 

The last term on the left of Eq. (8), 82 I 8z2 ' is typically small and will be neglected in 
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the following analysis. This is valid provided (1) l82al8z2
1 ~ 2j82 al8(8zl, which implies 

L ~ 2ZRo, and (2) l82al8z2
1 ~ (1- ,a;0 )j82al8(2 1, which implies L 2 lr~ ~ (1 + k;0 r~l4). 

The 282 I 8( 8z and (1 - ,a;o )82 I 8(2 terms in Eq. (8) represent corrections to the paraxial 

wave equation that account for short pulse and group velocity dispersion effects. 

Equation (8) can be solved by taking a Fourier transform with respect to ( [41]. 

Neglecting the 82 I 8z2 term gives 

where 
1 joo ak = m= d( exp( -i8k()a( (). 

y27r -oo 
(10) 

Notice that Eq. (9) has the form of a paraxial wave equation. Hence, solutions for ak can 

readily be found. For example, the lowest-order Gaussian mode is given by 

(11) 

where the quantities bk(k, z), 8(k, z), a(k, z), and r8 (k, z), which represent the amplitude, 

phase shift, curvature, and spot size of the field in k space, respectively, satisfy 

(12a) 

(12b) 

(12c) 

(12d) 

where k = ko + ok, flnc = 111r'f'e'f'~ is the critical channel depth, and bko is the initial k 

spectrum of the laser pulse at z = 0. Note that for an initial Gaussian axial pulse profile 

of the form b0 = a0 exp(-e I L 2
), bko = a0 (LIV2) exp( -ok2 L 2 14). In deriving Eq. (12d), 

the central pulse frequency and wavenumber are assumed to satisfy 

(13) 

which implies 

,82 ,a-2 1 2 I 2 4 21 2 2 gO= pO = -Wpo Wo- C Wo'f'o. (14) 
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This is the correct group velocity for a Gaussian laser pulse propagating at the matched 

spot size r s = ro in a channel with D..n = D..nc, as demonstrated in Sec. III. Furthermore, 

note that in the limit of a long laser beam, Eqs. (12a)-(12d) reduce to the usual paraxial 

solutions when 6k = 0. 

Equation (12c) describes the evolution of the spot size r 8 (z) for agiven k = ko + 
6k mode of the laser field. For a given k, r 8 undergoes "betatron" oscillations in the 

density channel. For example, the solutions to Eqs. (12b )-(12d) with the initial (at z = 0) 

conditions a = 0, () = 0, Or8 / f)Z = 0 and r 8 = ri are given by 

1 
( 

2 2 ) ri rM . 
a=-- --- sm(k,sz), 

2 rL r[ 
(15a) 

r; = rd [ ( 1 + ~1 ) + ( 1 - ~1 ) cos( k ,B z)] , (15b) 

[ 
2 £k2 2 ] [ 2 ( ) ] rM v rM 2 z _1 rM z 

B = - - (1- ,8 0 ) -- -tan -tan -- , 
r5 4 g Z RM r[ Z RM 

(15c) 

where k,s = 2/ZRM is the betatron wavenumber, ZRM = krL/2 is the matched Rayleigh 

length, and r M = (r6 D..nc/ D..n )114 is the matched spot size (r M = ro for D..n = D..nc)· The 

normalized spot size r8 jr0 in the paraxial limit, i.e., obtained from Eq. (15b) with 6k = 0 

and D..n = D..nc, is plotted in Fig. 1 versus z/ZR for the matched case ri = r0 (solid curve), 

and two mismatched cases: ri = 1.5r0 (dashed curve) and ri = 0.5ro (dotted curve). 

The solution for the laser envelope is given by 

a(r, (, z) = ~ ;= d6k ro bko exp [i6k( +if)- (1- ia/:] , 
y27r -oo rs rs 

(16) 

where a(k, z), r8 (k, z), and B(k, z) are given by Eqs. (15a)-(15c), and bok is the Fourier 

transform of the initial ( z = 0) axial profile of the laser pulse bo ( (). Strictly speaking, 

bok should not contain a finite amplitude at 6k = -k0 [41], so as to avoid singularities 

that may arise in the integrand of Eq. (16). Note that a finite component at 6k = -ko 

( k = 0) corresponds to a contribution to the field envelope a that is spatially uniform 

in z. An axially uniform contribution to the field envelope is not physical for ~ realistic 

ultrashort laser pulse. Approximate solutions to Eq. (16) can be found by expanding the 

integrand for l8kl/k0 ~ 1 [41]. Solutions to Eqs. (11)-(12) and (16) for the case of vacuum 
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diffraction (~n = 0) are discussed in Appendix B. Generalization of Eqs. (11)-(16) to 

describe high-order Laguerre-Gaussian modes is discussed in Appendix C. 

Notice that the condition for a matched beam, r8 = ro for ~n = ~nc, is independent 

of wavenumber k, since ~nc is independent of k. The betatron wavenumber, however, 

does dependent on k, i.e., kp = 4/ kr~. Hence, for a short pulse, the spread in k implies 

a spread in kp which leads to phase mixing and a subsequent damping of the betatron 

oscillations. 
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III. Matched Pulse 

Since the condition for guiding a pulse with a constant radius r 8 = r0 for tln = llnc 

is independent of wavenumber, matched pulse solutions are possible. Consider a matched 

pulse with tln = llnc and r 8 = ro. Equations (12)-(15) imply bk = bko, a = 0, and 

() = -( 8k 2 l2k )(1- ,a;0 )z. Hence, 

(17) 

Here, the last term on the right, proportional to 8 k2 z I k, represents the effects of group 

velocity dispersion. For a Gaussian axial pulse profile, bko = a0 (LI .J2) exp( -8k2 L2 14) and 

l8kl"' 11 L ~ k0 • Hence, in the dispersion term the approximation 8k2 zlk ~ 8k2 zlko can 

be made (i.e., only second order dispersion effects are retained). Using this approximation, 

and assuming a Gaussian axial profile, the Fourier inverse transform of Eq. (17) is given 

by 

~ ( 2)-1/4 [ r
2 e (1- iryo) i -1 ] 

a= a0 1 + ry0 exp -,5 - L 2 ( 1 + 
775

) - 2 tan 7]o , (18) 

where 1]o = z I Z Do and 

(19) 

is the dispersion length, where .\0 = 21rclw0 • Dispersion causes a broadening of the pulse 

length, i.e., the effective pulse length is given by 

(20) 

The normalized pulse intensity is given by 

(21) 

The normalized intensity liW la5 versus (I L is plotted in Fig. 2 along the z axis (r = 0) 

for z = 0 (solid curve), z = Zvo (dashed curved), and z = 2Zvo (dotted curve). Notice 

that the axial pulse centroid, corresponding to the position of the peak intensity, is given 

by ( = 0. Hence, the group velocity of the pulse centroid Vgc is correctly given by v;cl c2 = 

,82 1 2 I 2 4 2 I 2 2 
9o = - wpo Wo- c Wo 1 o· 
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IV. Mismatched Pulse 

Consider the case of a pulse injected into a channel !::l.n = !::l.nc with a slightly mis­

matched radius, i.e., drs/dz = 0 and r8 = ro + 8ro at z = 0 with 8r5/r5 ~ 1. To leading 

order in 8ro/r0 , Eqs. (12) and (15) indicate 

8ro 
a~ -2- sin(k,az), 

. ro 

rs ~ ro [1 + 8~0 
cos(k,az)] , 

bk ~ bko [ 1-
8~0 

cos(k,az)] , 

8ro· . 8k 2 
2 () ~ ~ sm(k,az)-

2
k (1- (390 )z. 

Thus, to leading order in 8ro/ro, 

ak ~ bko [1- 8
ro (1 ~ 2r

2

) exp ( -ik,az)] exp [- r
2 

- i
8

k
2 (1- (3 2 

) z] . 
ro r5 r5 2k go 

(22a) 

(22b) 

(22c) 

(22d) 

(23} 

This can be written as ak = ako + 8ak, where ako is the matched fundamental (m = 0 and 

p = 0) mode and 8ak (the term proportional to 8r0 /r0 ) is the matched first order (m = 1 

and p = 0) Laguerre-Gaussian mode, as discussed in Appendix C. 

A. No Dispersion 

First consider the limit in which second order group velocity dispersion effects are 

neglected, i.e., the term proportional to 8k2 z/k is neglected in the exponent of Eq. (23). 

To evaluate Eq. (23), k,a is expanded to first order in l8kl/k0 , assuming 8k2 /k5 ~ 1, i.e., 

k,a ~ k,ao(1-8k/ko), where k,ao = 2/ZRo and ZRo = kor5/2. The Fourier inverse transform 

of Eq. (23), including terms in the exponent to first order in 8kjk0 , is given by a= a0 +8a, 

where 

(24) 

is the matched pulse solution in the absence of second-order group velocity dispersion, e.g., 

given by Eq. (18) in the limit ZiJ6 = 0. The perturbation to the pulse envelope due to the 

mismatch is given by 

8a = -
8

ro b0 ((I) (1 - 2~
2

) exp (- r~ - ik,aoz) , 
ro ro ro 

(25) 
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where (I = ( + k13oz I k0 • Here, b0 ( () is the initial axial field profile, which for a Gaussian is 

given by b0 (() = a0 exp( -(2 I L2
). The fundamental field a0 , Eq. (24), and the normalized 

perturbed field ih = 8al(8r0 lr0 ), given by Eq. (25), versus (/Land rlro are. shown in 

Figs. 3 (a) and (b), respectively, at z = 5rrZRo for a Gaussian axial profile with LIA.o = 5. 

In Fig. 3, note that the centroid of the perturbed field lags behind the fundamental by an 

amount 6.(1 L = -k130 zlkoL = -1. 

The centroid of the perturbed field 8a (given by (I = 0) is shifted behind that of 

the unperturbed field ao (given by ( = 0) by an amount 6.( = (-(I . -k130 zlk0 • This 

indicates that the group velocity Vgi = cf39 I associated with the centroid of the perturbed 

field is given by 

(26) 

which is less than that of the unperturbed field by an amount f39o - f39 I ~ 41 k6r5, where 

w~0 lw5 ~ 1 and c2 lwJr5 ~ 1 have been assumed. The perturbed field, Eq. (25), can be 

interpreted as a matched _first order (m = 1, p = 0) Laguerre-Gaussian mode in the absence 

of dispersion (see Appendix C). The effective axial wavenumber shift 8kz associated with a 

Laguerre-Gaussian mode is given by 8kzlko ~ -2(2m + p+ 1)c2lwJr5, which is agreement 

with the third term on the left of Eq. (14) for (m = 0, p = 0) and of Eq. (26) for (m = 1, 

p = 0). 

To analyze the behavior of the pulse radius, consider the local intensity-weighted 

mean-squared radius (r2 ) defined by 

(r2) = fo: drr31&,12 
fo drrl&,l2 

(27) 

To first order in 8r0 lr0 , the normalized pulse intensity is given by 1a12 fo + 8f with 

io = lao 12 = b5( () exp( -2r2 lr5) and 8i = ao8a* + aa8a, where the asterisk signifies the 

complex conjugate, i.e., 

8i = -2bo(()bo((I)bro (1- 2~
2

) exp (-
2~

2

)·cos(k{3oz). 
. ~ ~ ~ 

(28) 

Hence, to first order in 8ro I ro, 

(29) 
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which indicates that the perturbation does not alter the pulse power. Furthermore, 

2 r5 [ 8ro bo((I) l 
(r ) = 2 1 + 2-;:-;;- bo( () cos( k130 z) , (30) 

·which for a Gaussian axial profile, b0 ( () = a0 exp( -(2 / L 2
), gives 

(r2
) = r; [1 -f-2°~0 llRL((,z)], (31) 

where 

ML = exp (- ;;i- ;~) cos(kpoz) (32) 

is the normalized local intensity-weighted RMS betatron radius. Asymptotically, for a 

fixed ( and z ~ Z13, the betatron oscillation damps via exp( -z2 /Z$), where 

(33) 

is the betatron damping distance. Furthermore, note that there is a front-to-hack asym­

metry in the betatron oscillation, i.e., the magnitude of the betatron oscillation at the 

front of the pulse ( ( = L /2) is smaller than it is at the back of the pulse ( ( = - L /2). The 

normalized local RMS radius of the betatron oscillation llRL((, z), Eq. (32), is plotted in 

Figs. 4 (a) and (b) versus z/ZRo for the parameters ..\0 = 1 f.1m, L = 5 11m, and r0 = 10 11m 

(Z13 = 5nZRo and ZRo = 310 11m). Figure4 (a) shows llRL((,z) at the pulse center ( = 0 

(solid curve) and the front of the pulse ( = L (dashed curve); whereas Fig. 4 (b) shows 

llRL(z) at the pulse center ( = 0 (solid curve) and the back of the pulse ( = -L (dotted 

curve). Note that llRL(z) obtains a maximum of llRL = exp((2 /L2 ) at z/Z/3 = -(/L, 

e.g., a maximum of llRL = 2.82 at z = Z13 for ( = -L. The physical interpretation of 

Eqs. (27) and (30)-(32) for the local betatron radius becomes ambiguous when ( 2 ~ L 2 , 

since the pulse intensity becomes vanishingly small in these regions. 

It is also insightful to define the global intensity-weighted mean-squared radius for the 

entire pulse via 

(34) 

This quantity is of relevance to a diagnostic that measures the time-integrate~ pulse in­

tensity profile. For a Gaussian axial profile, 

1
00 

d( r= drrlal 2 = F L r5 a~, 
-oo Jo V 2 4 

(35) 
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which indicates that the total pulse energy is constant, and 

((r2
)) = r~ [1+28

r0 !1Ra(z)], 
2 ro 

(36) 

where 

l>.Ra . exp (- 2~J) cos(kp0 z) (37) 

is the normalized global intensity-weighted RMS betatron radius. Hence, for the entire . 

pulse, the betatron oscillation damps via exp( -z2 I2Z~). The normalized global RMS 

radius ofthe betatron oscillation f1Ra(z ), Eq. (37), is plotted in Figs. 4 (c) versus z IZRo for 

the parameters >.o = 1 J-Lm, L = 5 J-Lm, and ro = 10 J-Lm (Z13 = 57rZRo and ZRo = 310 J-Lm). 

B. Second Order Dispersion 

For th<=: case of an axial Gaussian profile, b0 ( () = a0 exp(- z 2 I L 2 
), the inverse Fourier 

transform to Eq. (23) can be obtained while retaining terms in the exponent to order 

8k2 I k5. Specifically, the approximations k13 ~ kf3o(1 - 8k I ko + 8k2 I k5) and 8k2 z I k ~ 

8k2 z I ko are made in the exponent of Eq. (23). This indicates a = iio + 8a, where ao is the 

matched pulse solution given by Eq. (18) and 

~ 8ro( 2r
2
)( 2)-1/4 8a = -a0 - 1--2- 1 +r11 

ro ro 

[ 
r

2 a (1- iryi) i -1 . l x exp ---- --tan 7]1- zk130 z 
r5 L 2 (1 + ryi) 2 ' 

(38) 

where (I = ( + k13oz/ko, 1]1 = ziZv1, and 

z _ koL2 12 f"o.J (1rLI>. 0 )
2 ZRo 

DI- (1- (3;0 + 2kf3olko) - (3 + k;0r514) 
(39) 

is the dispersion length for the perturbed field. Equation (38) can be interpreted as a 

matched first order (n = 1, p = 0) Laguerre-Gaussian mode, including the effects of second 

order dispersion (see Appendix C). Notice that the dispersion length for the perturbation 

Zv1 is shorter than that for the matched solution Zv0 , i.e., 

( 40) 
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This is a result of the reduced group velocity of the perturbation, f39 I < f39o, since, as 

before, oa is a first-order Laguerre-Gaussian mode. In particular, Eq. (39) can be written 

as ZDI ~ (k0 L2 /2)(1- f3;I)-I, where f39 I is given by Eq. (26). The effective axial pulse 

length associated with the perturbed field, Eq. (38), is 

(41) 

The intensity profile, to first order in Oro/ro, is given by given by 1&12 = io +of, where 

io = l&o 12 is the matched pulse solution given by Eq. (2l), and of= &0 o&* + a~oa, i.e., 

of~_ 2a6L or0 ( 1 - 2r
2

) exp [- 2r
2 _.f.__ (f] 

L I/2LI/2 ro r2 r2 L2 L2 eO ei 0 0 eO ei 

[k 
rtoe rti(f 1 -I . 1 -I ] x cos f30Z + - 2- - - 2- - - tan rto + - tan 1JI , 
Leo Lei 2 2 

(42) 

where 1]o = z/ZDo and 1JI = z/ZDI· 

The local intensity~weighted mean-squared radius, as defined by Eq. (27), is given by 

2) r6 { Oro ( (r ~- 1 + 2-f:l.RLI (,z) 
2 ro 

[k 
rto(

2 
T/I(f 1 -I 1 -I l } x cos 13oz + - 2-- - 2--- tan rto +-tan 7]I , 

Leo Lei 2 2 
(43) 

where 

(
Leo)I/

2 
[ (2 L2 (' z )

2
] 

l:!..RLI = L exp L2 - L2 L + z ' 
ei eO ei f3 

(44) 

is the normalized amplitude of the local RMS radius of the betatron oscillation, and Leo ( z) 

and Lei(z) are given by Eqs. (20) and (41), respectively. At the pulse center ( = 0, the 

betatron oscillation damps via exp( -z2 /Z$I), where 

(45) 

Notice that the damping distance is increased due to dispersion, z13 I = z130 (1+z2 /Z'bi)I/2. 

The normalized local RMS betatron amplitude f:l.RLI ( (, z ), Eq. ( 44 ), is plotted in Fig. 5 

versus z/ZRo at the pulse center ( = 0 (solid curve), as well as at the front ( = Leo(z) 

(dashed curve), and the back ( = -Leo(z) (dotted curve) of the pulse, for the parameters 
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.Ao = 1 pm, L = 5 pm, ro = 10 pm, and Ap = 15 pm (Z13 = 16ZRo, Zvo = 46ZRo, and 

Zv1 = 33ZR0 ). Again, there is a head-tail asymmetry. This asymmetry is complicated 

by the fact that the matched solution and the perturbed solution are characterized by 

different dispersion lengths, Z Do > Z D1· Asymptotically, for z2 ~ Zb0 , the local RMS 

amplitude i::l.RLI(z) damps to a finite value. Specifically, at the pulse center ( = 0, 

· ( z ) 112 ( z2 ) 
i::l.RL1(0) -t z:~ exp - :Ii1 

, (46) 

whereas at the front and back of the pulse ( = ±Leo(z), 

Zv1 Zv1 Zv1 
( ) 

1/2 [ ( ) 2] i::l.RLI(±Leo) -t Zvo exp 1- z/3 ± Zvo . (47) 

For the parameters of Fig. 5, i::l.RLI(O) -t 9.3 x 10-3 , i::l.RL1(Leo) -t 6.7 x 10-4, and 

i::l.RL1( -Leo) -t 0.33. As before, the physical interpretation of (r2 ) becomes ambiguous in 

the region e ~ L;0 , since the intensity in that region is vanishingly small. 

The global intensity-weighted mean-squared radius, as defined by Eq. (34), including 

the effects of second-order dispersion is given by 

2 r5 { 8ro ((r )) ~- 1 + 2-i::l.RGI(z) 
2 ro 

(48) 

where 

( 1 + z
2 
ZJw) -

1

/

4 

exp [- z
2 j2Z~ ] 

Z~ (1+z2 ZJwfz~) 
( 49) 

the normalized amplitude of the global RMS betatron oscillation and the relation ry1 - 'f/O = 

2zZRo/Z~ has been used. The normalized _global RMS betatron amplitude i::l.R01(z) is­

plotted in Fig. 6 for the parameters Z13 = 5nZRo (solid curve), Z13 10ZRo (dashed 

curve), and Z13 = 30ZRo (dotted curve). 

16 



V. Nonlinear Effects 

The above theory assumed a2 ~ 1 and P / Pc ~ 1, I.e., nonlinear effects were ne­

glected. At high intensity and/or power, nonlinear effects could play an important role 

in pulse propagation in channels. For example, intense laser pulses are subject to various 

instabilities. Two important instabilities are the self-modulation and the laser-hose insta­

bility [2,33,42-46]. In the short pulse regime, these instabilities will undergo exponential 

growth exp(Ne) with the number of e-foldings given by [2,46] 

(50) 

where P/Pc ~ k;r5aU32. Note that the number of e-foldings scales with power P, density 

no, and pulse length Las Ne rv (Pn5L 2
)

113
• In terms of the betatron damping length Z[j, 

the number of e-foldings at the end of the pulse 1(1 ~ L is given by 

(
p L 3 z )1/3 

Ne ~ 6.5 p AA2 Z 
c p {j 

(51) 

It is insightful to estimate how much growth of the hose-modulation instability one 

might expect after propagating a distance equal to a betatron damping distance z ~ Z[j. 

For a plasma density of n 0 == 1017 cm-3 and a laser pulse with A = 1 ~-tm and L = 5 ~-tm 

(a full width at half maximum intensity duration of 20 fs ), the number of e-foldings is 

Ne ~ 0.25 for P = 1 TW, and Ne ~ 0.54 for P = 10 TW. Hence, no appreciable growth of 

the irtstability is expected at this density. As another example, the density range for which 

the laser-hose instability will be amplified by less than a factor of 100 can be estimated. 

Requiring Ne < 4.6 after z = Z[j implies n 0 < 7.9 x 1018 cm-3 for P = 1 TW and 

n 0 < 2.5 x 1018 cm-3 for P = 10 TW. 

It is also important to note that the growth rate Eq. (50) for the hose-modulation 

instability was obtained from a paraxial theory, i.e., the cross derivative term 8 2 fo(oz in 

the wave equation for the slowly-varying amplitude Eq. (8) has been neglected. The effects 

of the dispersive term 8 2 fo(oz become very important for ultrashort pulses. This paper 

has addressed the effects of this term in the limits of low power and low intensity. Theories 

of laser-plasma instabilities that are valid for finite profile, ultrashort pulses that include 
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the effects of the dispersive term are currently lacking in the literature. Based on the results 

obtained in this paper, however, some dispersive effects on instabilities of ultrashort pulses 

can be estimated. When a matched, fundamental Gaussian pulse (characterized by the 

mode numbers m = 0 and p = 0 as discussed in Appendix C) goes unstable in a plasma 

channel, it will generated higher-order modes, e.g., the m 2: 1, p = 0 mode in the case 

of self-modulation or the m = 0, p 2: 1 mode in the case of the laser-hose. As noted in 

Appendix C, these modes propagate at different group velocities, 

(52) 

Hence, the excited modes will propagate out of the region of the fundamental pulse when 

the group velocity slippage distance becomes comparable to the pump pulse length, i.e., 

z~f39 ~ L, where ~(39 = (390 - (39 and (390 = f39 (m = O,p = 0). This occurs after a 

propagation distance 

z ~ koLZRo/(2m + p), (53) 

r.e., z "' Z13 for m "' 1 or p ,....., 1. Hence, the growth of the' hose-modulation instability 

will become significantly altered and/ or suppressed after a distance on the order of the 

betatron damping distance, z ~ Z f3. 
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VI. Discussion 

The propagation characteristics of an ultrashort laser pulse in a preformed plasma 

channel have been analyzed. The plasma channel is assumed to be parabolic with a density 

profile of the form n( r) = no + !:lnr2 
/ r5. The laser pulse was assumed to have P / Pc ~ 1 

and a5 ~ 1, such that nonlinear effects (e.g., relativistic self-focusing) could be neglected 

and the channel could be assumed unperturbed by the laser pulse. Solutions to the wave 

equation beyond the paraxial approximation were derived that include finite pulse length 

effects and group velocity dispersion. The laser field is given by az =a exp(ik0 z-iw0 t)+c.c, 

where the field envelope a(r, z, () evolves via Eq. (8). The field envelope is obtained by 

performing a single integral over 8k, a= (27r)-112 J~= d8kexp(i8k()ak, where ak is given 

by Eq. (11) along with the definitions in Eqs. (12a)-(12d). For completeness, the plasma 

source current is discussed in Appendix A, the evolution of ultrashort laser pulses in the 

absence of a density channel (!:ln = 0) is discussed in the Appendix B, and generalization 

of the results to include high-order modes is discussed in Appendix C . 

Since the condition for guiding a particular k = k0 + 8k mode with a constant spot 

size r8 = ro is given by !:ln = !:lnc = 1j?Trer5 and is independent of k, matched beam 

solutions exist wherein the entire pulse can propagate with a nonevolving radial profile, 

i.e., a normalized intensity profile 1a1 2 
rv a5 exp( -2r2 /r5). Group velocity dispersion effects 

were included in the matched beam solution to second order order in the parameter 8kjk0 • 

This results in spreading of the pulse length, i.e., 1a1 2 
rv a5(Lj Leo) exp( -2(2 / L;0 ), where L 

is the initial pulse length, Leo = L(1 + z2 /Zb0 )
112, and Zvo = 1;0 koL2 /2 is the dispersion 

length for a matched pulse. Here, 1;o = (1- /1;0 )-1 and v90 = c/390 is the group velocity of 

a matched pulse in a channel, i.e., 1;o = (wofwp?(l + 4/k;0 r5)-1
. In terms of the group 

velocity dispersion parameter /12 often quoted in fiber optics [4 7], Zvo = L 2 /2l,82lc2, where 

/32 = -v;2 dv9 jdw and v9 is the group velocity. For a plasma /32 ~ -(1- f1;0 )jw0 c. Since 

/12 < 0, the dispersion is anomalous. 

A pulse which is not properly matched into a channel undergoes betatron oscillations 

in its envelope. For example, if at the channel entrance r8 (z = 0) = r0 +8r0 and drs/ dz = 0 

with 8r0 /ro ~ 1, then the spot size associated with a given k = k0 + 8k mode undergoes 

betatron oscillations about the matched spot size r0 ofthe form r8 = r0 +8r0 cos kf3z, where 
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kf3 = 2IZn is the betatron wavenumber and Zn....:... kr512. A finite pulse length L leads to 

a spread in laser wavenumbers l8kl""' 11 Land, hence, a spread in betatron wavenumbers. 

This results in phase mixing and damping of the betatron oscillations. In particular, for 

a slight mismatch 8r51r5 ~ 1, the RMS radius of the pulse exhibits betatron oscillations 

of the form given by Eqs. (30)-(32) and (36)-(37). The global RMS betatron amplitude 

damps via exp( -z2 I2Z~), where Zf3 = (k0 L/2)Zno = (k0 r0 12? Lis the betatron damping 

distance. 

An alternative interpretation for the laser envelope betatron oscillations and their 

subsequent damping is the following. To lowest order in 8r0 I r0 , a mismatched laser pulse 

in a channel is a superposition of two matched modes: a fundamental Gaussian mode, ao, 
and a first-order, axisymmetric Laguerre-Gaussian mode, 8a, the amplitude of which is 

proportional to 8r0 I r0 • The relative axial wavenumber shift between the fundamental and 

higher-order mode is given by L::!.kz ~ -2(2m+p)lkor5 = -kf3o form= 1 andp = 0, i.e., a 

relative phase shift of/:).()= -k130 z. Hence, the first-order correction to the field envelope 

oscillates relative to the fundamental at the betatron wavenumber, i.e., via cos(kf3oz). 

Furthermore, the axial group velocity of the first-order mode /391 ;_, c(ko + l::!.kz)lwo is less 

than that of the fundamental f39o = ck0 lw0 by an amount /39o- /39 1 ~ -L::!.kzlko ~ kf3olko. 

The amplitude of the betatron oscillation, as defined by the intensity-weighted RMS 

radius of the pulse, is determined by the interference between the two modes, i.e., de­

pendent on the product a0 8a. As the first-order mode slips behind the fundamental, the 

relative contribution of the first-order mode to the spot size decreases at the front ( ( > 0) 

and increases at the back ( ( < 0) of the pulse. This results in an asymmetry in the beta­

tron oscillation, i.e., the apparent amplitude initially decreases at the front and increases 

at the back of the pulse. As the slippage continues, the two modes overlap less and less, 

resulting in an overall decrease in the betatron amplitude, i.e., damping. The character­

istic damping distance is determined by when the slippage distance L::!.Ls = (f39o - j39 I)z 

becomes comparable to the pulse length, i.e., l::!.L8 ~ L, which gives z ~ koLikf3o = Z13. 

In terms of the axial pulse profile b0 ((), the local RMS betatron amplitude is pr~portional 

to b0 ((I)Ib0 ((), where ( = z- f39oct and ( 1 = z- j391 ct. For Gaussian axial profiles, this 

gives the damping behavior indicated by Eqs. (30)-(32). 
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The effects of second order group velocity dispersion were also included in the analysis 

of mismatched propagation in a channel. It was found that the perturbed component of 

the radiation field, proportional to 8r0 lr0 , undergoes enhanced dispersive spreading that 

is characterized by the dispersion length Z n 1 = 1;1 k0 L2 12, where 1;1 c:: ( w0 I Wpo )2 (1 + 

12lk;0r5)-1. The decrease in the dispersion length is due to a decrease in the group 

velocity associated with the first-order mode of the perturbed field, i.e., 1;1 = (1- /3;1 )-1. 

Experimentally, for a long channel z > Zp, the high-order modes representing the 

envelope mismatched should be observed to emerge behind the fundamental Gaussian 

pulse. The first order mode will become "well-separated" from the fundamental when the 

slippage length exceeds the sum of the dispersively broadened pulse lengths, i.e., !:1L 8 > 

Leo+Le1, which gives ziZp > (Leo+Le1)1 L, where Leo,I = L(1+z1Zno,I) 112 and Zno,1 are 

the dispersion lengths. Since typically Zp < Z n 1 < Z no, the modes_ should become well­

separated for z > 2Z p. To correctly determine the temporal intensity profile emerging 

from a long channel, corrections of order 8r51r5 (or higher) need to be retained in the 

determination of the perturbed field 8a, which can be accomplished by retaining higher 

order terms in the expansion of Eqs. (11 )-(16). In addition, experimentally realizable 

channel profiles can be "leaky" and less apt to guide high-order modes [13,14,48]. This 

leakage of the higher-order modes constituting the envelope mismatch can lead to an 

enhanced damping of the betatron oscillation. 

The damping of betatron oscillations in the pulse envelope and the disp~rsive spreading 

of the pulse length are important for short pulses propagating in long channels. Consider 

a )..0 = 1 f-Lm laser with a matched spot radius of r0 = 10 f-Lm and a Gaussian axial 

profile with L = 5 f-lm, which corresponds to a full width at half maximum of the intensity 

profile of LFWHM = (2ln2)112 L = 5.9 f-Lm (20 fs). The plasma channel is parabolic, 

n = no + !:1nr2 lr5, with !:1n = f1nc = 1.1 x 1018 cm-3 and n0 = 4.9 x 1018 cm-3 

(>.p = 15 f-Lm). The matched Rayleigh length is ZRo = 1fToiAo = 310 f-lm and the betatron 

wavelength is Ap = 27r I k p = 1r Z Ro = 990 f-Lm. The betatron damping length is Z po c:: 

(7rLol>.o)ZRo =·57rZRo = 0.49 em, e.g., ·after z = 1 em (32ZRo) the global betatron 

amplitude would be damped by factor exp( -z2 I2Z~0 ) = 0.12. Hence, for a long channel, 

z 2 ~ Z~0 , a mismatched pulse would emerge at essentially the matched radius r0 • For these 
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parameters, the dispersion length for a matched pulse Z vo ~ ( 1r
2 L 2 I .A5 )(1 +1r

2r6 I .A;)-1 Z Ro 

is Zvo = 46ZRo = 1.4 em. Hence, after propagating a distance of z = 100ZRo = 3.1 em, 

the pulse length would spread to a length Leo = 2.4L = 12 f.Lm (a duration of of 4 7 fs ). 
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Appendix A: Plasma Source Term 

This appendix concerns corrections that may arise in the plasma source term S 1_ due 

to the effects of a finite normalized electrostatic potential cjJ = eif! /mec2
• In Coulomb 

gauge, \7 · a = 0, the normalized transverse wave equation is given by 

(Al) 

2 n a sj_ = kpo-!3 j_ +-a v j_c/J, 
no ct 

(A2) 

where n is the plasma density, n 0 is the ambient density along the channel axis, k;0 = 

47rn0 e2 /mec2
, f3 = v / c is the normalized plasma fluid velocity, and ( njn0 )/3 1_ is the nor­

malized transverse plasma current in the fluid approximation. Here, n and f3 are assumed 

to obey the relativistic cold fluid equations 

(ajact + f3 · \7) u = aajact + V'c/J- f3 x (\7 x a), (A3) 

anjact + \7 · (nf3) = 0, (A4) 

(A5) 

where u = //3, 1 = (1 - /32 )-112 , and ne(r) is the equilibrium plasma density, which is 

assumed to be a parabolic channel of the form ne = no + 6.nr2 /r6. 

Assuming a2 ~ 1, the perturbed fluid quantities 15n, 15/3, and /5c/J, to first order in JaJ, 

obey the equations 

a/5{3jact = aajact + V'c/J, 

a15njact + \7 · (nel5f3) = 0, 

Combining Eqs. (A6)-(A8) yields 

(a2 jact2 + k~) \72 /5c/J + (aajact + \715cjJ) · \lk~ = 0, 
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where k; = k;0 ne(r)/no = k~0 (1 + 6.nr2 /nod). Assuming a "' exp(ikoz- iwot) and 

8cP ,....., exp( ik0 z- iwot), it is straightforward to find the leading order contribution to 8{3 1_ 

and 8cP, i.e, 

8{3 1_ ~ a1_ + i\1 1_8cP/ ko, 

8cP ~ i(a1_ · \1 1_k;)jkg. 

Similarly, the leading order correction to the source term, Eq. (A2), is given by 

sj_ ~ k;aj_- iko (1- k;/k5) \1 l_8cP 

~ k;a1_ + \1 1_(a1_ · \1 l_k;)fk5 

(A10) 

(All) 

(A12) 

For a parabolic density channel, \1 1_k; ,....., k;0 6.nc/n0 r0 "'4/r~, where fl.nc = 1/1rrer5 is 

the critical channel depth. Hence, the correction to the source term 8S 1_ = S 1_ - k;a1_ 

scales as 

8S1_ ~ \1 1_(a1_ · \1 l_k;)/k5 

"'4aj_/k5r6 "'a1_/Zk0 , 

where Z RO = kor5 /2 is the Rayleigh length. 

(A13) 

The correction to the source term 8S 1_ can be neglected provided that it is small in 

comparison to the terms retained in the wave equation for the pulse envelope a, Eq. (8), 

which is written in terms of the independent variables ( = z- f390 ct and z. Since the term 

o2 ajoz2 ,....., ajZk0 was neglected in Eq. (8), so can the term 8S1_,....., ajZko be neglected. 

The conditions for validity of neglecting this term are discussed in paragraph following Eq. 

(8). Specifically, this requires (1) l82 ajoz2
1 ~ 2l82 aj8(8zl, which implies L ~ 2ZRo, and 

(2) l82 ajoz2 i ~ (1- f3;0 )lo2 ajo(2 i, which implies L 2 /r5 ~ (1 + k;0 r5/4). 
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Appendix B: Diffracting Pulses 

In this Appendix, the evolution of short laser pulses in uniform plasmas is analyzed. 

In the absence of a channel, the evolution of the Fourier transform of the pulse envelope 

ak is described by Eq. (9) with C::.n = 0, i.e., 

(Bl) 

where k = k0 + 8k and the {)2 j&z2 term has been neglected in the wave operator. The 

total transverse laser field is ax = aexp(ikoz- iwot) + c.c., where the laser field envelope 

is given by 

a(r, z, () = ~ Joo d8kexp(i8k()ak(r, z, k). 
Y 271" -oo 

(B2) 

Here, ( = z - .f39oct, where /3;0 = f3;c} = 1 - w;0 /w~ - 4c2 jw~r~, with the pulse central 

frequency and wavenumber satisfying w~/c2 - k5 = k;0 + 4/r5. As is shown below, v9o = 

cf390 is the group velocity of the pulse centroid at the focal point (z = 0). 

Since Eq. (Bl) has the form of a paraxial wave equation, solutions for ak can readily 

be found, e.g., the lowest-order Gaussian mode is given by 

(B3) 

where the quantities bk(k, z), O(k, z), a(k, z), and r8 (k, z), which represent the amplitude, 

phase shift, curvature, and spot size of the field in k space, respectively, satisfy Eqs. (12a)­

(12d). In the absence of a channel, C::.n = 0, Eqs. (12a)-(12d) can be solved to describe 

a diffracting field. In particular, for the initial (z ·= 0) conditions r8 = ro, dr 8 jdz = 0, 

a= 0, (} = 0, and bk = bko, the solutions to Eqs. (12a)-(12d) are 

bk = bkors/ro, 

rs = ro(l + a 2
)

112
, 

(}=a- tan- 1 a- (8k 2rV4)(1- /3:0 )a, 

(B4) 

(B5) 

(B6) 

(B7) 

where Z R = kr~ /2 is the Rayleigh length associated with the total wavenumber k = ko +8k, 

r0 is the minimum spot size at the focal point (assumed to be at z = 0), and bko is the 
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initial bk spectrum of the laser pulse at z = 0. Note that for an initial Gaussian axial pulse 

profile of the form bo = a0 exp( -e / L2
), bko = a0 (L/-/2) exp( -bk2 L2 /4). Furthermore, 

note that in the limit of a long laser beam, Eqs. (B4)-(B7) reduce to the usual paraxial 

solutions when bk = 0. 

It is convenient to write ak in the form 

(B8) 

where 

(B9) 

Since lbkl "' 1/ L ~ ko, the inverse Fourier transform to Eq. (B8) can be found by expand­

ing '1/Jk(ko + bk) about k0 , i.e., 

where 'ljJ = '1/Jk( bk 

Specifically, 

0), '1/J' = (d'!fJk/dbk)(bk = 0), and '1/J" 

1 2 r2 /r5 . 1 
'ljJ = --ln(l + a0 )- ( . ) + z(ao- tan- ao), 

2 1 +wo 

(B10) 

(Ell) 

(B12) 

(B13) 

where a 0 = z/ZRo and ZRo = kor5/2. Solutions for a(() can be found order by order in 

the parameter lbkl/ko"' 1/koL. 

A. Zeroth-Order Solution 

The zeroth-order (paraxial) solution is given by 

ao = bo(()exp('I/J) 

= bo(()~ exp [-(1- iao) r2

2 

+ i(ao- tan-1 ao)] , 
rso rso 

(B14) 
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where 'T'so -:- ro(l + a5) 112 = ro(l + z2 /Zk0 )
112 is the zeroth-order (paraxial) laser spot 

size. Furthermore, note that the effective axial wavenumber associated with the laser field 

is given by kz = k0 + o'lj;ifoz, where '1/Ji = Im('lj;), i.e., 

(B15) 

B. First-Order Solution 

To first order, ak = bko exp('l/J + 'lj;'8k). The inverse transform of this yields 

a= bo((- i'lj;')exp('lj;). (Bl6) 

For a Gaussian axial profile, b0 ( () = a0 exp( -CZ / L 2
), the normalized laser pulse intensity 

profile associated with the first order solution is 

(B17) 

plus corrections of order I2'1/J~ 2 /L2
1 rv l/k6L2 (second order in the parameter l8kl/ko). 

Here, '1/J~ and '1/J~ refer to the real and imaginary parts of '1/J', respectively, i.e., 

(Bl8) 

(B19) 

The local (L and global (a axial pulse centroids are defined by 

(B20) 

(B21) 

The local pulse centroid is given by (L = -'1/J~. The axial group velocity associated with 

the local centroid V£ is defined by d(L/dt = V£- v90 , i.e., 

(B22) 
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In general, the local centroid velocity V£ = VL(r, z) is a function of both rand z. However, 

V£ = v90 at z = 0 and r = 0. Hence, the value of v9o = cf39o given by (3;0 = 1- w;0 lw5 -

4c2 lw5r5 is the correct value of the group velocity of the local pulse centroid at the focal 

point to first order in 8 k I k0 • As the pulse diffracts the local centroid velocity slightly 

increases. Asymptotically, for ziZno ~ 1 and r = 0, V£ ~ v9o(1 + 2lk5r5) ~ 1- w;0 l2w5, 

which is the 1-D value. 

Inserting Eq. (B17) into Eq. (B21), the global centroid is given by (a~ aol2ko. The 

axial group velocity associated with the global centroid va, defined by d(aldt = va- v9o, 

is given by 

(B23) 

plus corrections of order (k5roL)- 2 or higher. Hence, for the entire pulse, the global 

centroid velocity va, Eq. (B23), is constant (independent of z) and slightly higher (v9 > 

v90 ) than the value of the local centroid velocity at the focal point V£(0, 0) = v90 . The 

velocities of the local and global pulse centroids given by Eqs. (B22) and (B23) have been 

confirmed by numerical solutions of the wave equation [41]. 

C. Second-Order Solution 

To second order, Ctk = bko exp( '1/J + '1/J'bk + 'ljJ"8k 2 12). The inverse transform of this can 

be readily obtained for a Gaussian axial profile, bko = (a0 LIV'i)exp(-8k2 L 2 14), i.e., 

h ( 2'1/J")-
1

/
2 

[ ((-i'I/J')21L
2
] 

a= ao 1- L2 exp '1/J- (1-2'1/J"IL2) . (B24) 

Note that the validity of the expansion given by Eq. (B10) implies that 12'1/J" I L21 « 1. 
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Appendix C: Higher-Order Modes 

In this Appendix, the results ofSec. II are generalized to include higher-order modes. 

In analogy with Eq. (9), consider the wave equation describing the evolution of the Fourier 

transform of the pulse envelope ak, 

where k = k0 + 8k, the fJ2joz 2 term has been neglected in the wave operator, and a 

parabolic density channel will be assumed k; = k;0 (1 + .6.nr2 /nor5). A general solution 

to Eq. ( C1) is a Laguerre-Gaussian mode, characterized by the mode numbers m and p, 

of the form 

ak = bksP/2 L~(s)exp [iB- (1- io:)s/2 + ip¢>], (C2) 

where s = 2r2 / r;, Lfn is the generalized Laguerre polynomial and <P is the polar angular 

coordinate (axisymmetric modes correspond to p = 0). By inserting Eq. (C2) into Eq. 

(C1), it can be shown that the functions bk(z), r8 (z), o:(z), and B(z) satisfy 

(C3) 

(C4) 

(C5) 

(C6) 

where k = ko + 8k, .6.nc = 1/1frer5 is the critical channel depth, and bko is the initial 8k 

spectrum of the laser pulse at z = 0. 

The quantities bk, o:, and r8 are independent of the mode numbers m and p and 

identical to the previous results, Eqs. (12a)-(12c). Hence, the condition for a matched 

pulse (rs = ro for .6.n = .6.nc) is the same for all modes. The quantity 8, however, does 

depend of m and p as well as on the choice of (390 .(f39of3po = 1). For consistency, the 

previous choice for f39o = cko/wo will be used, i.e., 1- (3;0 = w;0 /w5 + 4c2 /w5r5 ,·such that 

k;0 - k5(f3;0 - 1) = -4/r5. Note that this choice for f39o gives the correct axial group 

velocity for matched propagation (rs = r0 ) of the fundamental (m = p = 0) mode. For the 
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higher order modes, however, it can be shown that the axial group velocity of a matched 

mode is given by f3 9 , where 

(C7) 

The correct value for the axial group velocity is manifested in the value of the effective axial 

wavenumber shift (relative to the fundamental), f:}.kz ~ ao;az, evaluated in the paraxial 

limit (bk = 0) for a matched pulse (rs = ro), i.e., /39 ~ c(ko +f:}.kz)/wo ~ f39o(l +f:}.kz/ko), 

where f:}.kz ~ -2(2m + p )/ kor5. 

For propagation in a parabolic channel (f:}.n > 0), the solutions to Eqs. (C4)-(C6) 

with the initial (at z = 0) conditions a= 0, 0 = 0, 8r8 /8z = 0, and r 8 = ri are given by 

(C8) 

(C9) 

where kp = 2/ZRM is the betatron wavenumber, ZRM = kr'ti/2 is the matched Rayleigh 

length, and rM = (r6/:}.ncff:}.n) 114 is the matched spot size (rM = ro for /:}.n = /:}.nc)· For 

a matched pulse, r 8 = ri = rM, a= 0, and 0 =-(2m+ p)kpz/2- Dk2(l- f3;o)zj2k. 

For propagation in vacuum (!:}.~ = 0), the solution to Eqs. (C4)-(C6) for the initial 

(z = 0) conditions r 8 = ro, dr8 /dz = 0, a= 0, and 0 = 0 are given by 

a= z/ZR, 

rs = ro(l + a 2
)

112
, 

(Cll) 

(C12) 

(C13) 

where ZR = kr5/2 and r0 is the minimum spot size at the focal point (assumed to be at 

z = 0). 
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Figure Captions 

FIG. 1. Normalized spot size r8 lro in the paraxial limit (8k = 0), Eq. (15b), versus ziZR 

for ri = r0 (solid curve), ri = 1.5r0 (dashed curve), and ri = 0.5r0 (dotted curve), 

with 6.n = 6.nc. 

FIG. 2. Normalized intensity JaF I a5, Eq. (21 ), versus (I L along the axis (r = 0) for a 

matched pulse at z = 0 (solid curve), z = ZDo (dashed curve), and z = 2ZDo 

(dotted curve). 

FIG. 3. Surface plots of (a) fundamental field 0.0 , Eq. (24), and (b) normalized perturbed 

field a1 = 80.I(8r0 lr0 ), given by Eq. (25), versus CIL and rlro at z = 57rZRo for 

a Gaussian axial profile with Ll >..0 = 5. 

FIG. 4. Normalized local 6.RL((, z), Eq. (32), and global6.Ra(z), Eq. (37), RMS radius 

of the betatron oscillation versus ziZRo for Z13 = 57rZRo- (a) shows 6.RL at the 

center ( = 0 (solid curve) and the front ( = L (dashed curve) of the pulse; (b) 

shows 6.RL at the center ( = 0 (solid curve) and the back ( = -L (dotted curve) 

of the pulse; and (c) shows 6.Rc. 

FIG. 5. Normalized local RMS betatron amplitude 6.RL1 ((, z), Eq. (44), versus ziZRo at 

the center ( = 0 (solid curve), the front ( = Leo(z) (dashed curve), and the back 

( = -Leo(z) (dotted curve) of the pulse, for z/3 = 57rZRo, ZDo = 46ZRo, and 

ZD1 = 33ZRo· 

FIG. 6. Normalized global RMS betatron amplitude 6.R01(z), Eq. (49), versus ziZRo 

for the parameters Z13 = 57rZRo (solid curve), Z13 = lOZRo (dashed curve), and 

Z13 = 30ZRo (dotted curve). 
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