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Abstract

Climate change affects biophysical processes related to the transmission of many infectious 

diseases, with potentially adverse consequences for the health of communities. While our 

knowledge of biophysical associations between meteorological factors and disease is steadily 

improving, our understanding of the social processes that shape adaptation to environmental 

perturbations lags behind. Using computational modeling methods, we explore the ways in which 

social cohesion can affect adaptation of disease prevention strategies when communities are 

exposed to different environmental scenarios that influence transmission pathways for diseases 

such as diarrhea. We developed an agent-based model in which household agents can choose 

between two behavioral strategies that offer different levels of protection against environmentally 

mediated disease transmission. One behavioral strategy is initially set as more protective, leading 

households to adopt it widely, but its efficacy is sensitive to variable weather conditions and 

stressors such as floods or droughts that modify the disease transmission system. The efficacy of 

the second strategy is initially moderate relative to the first and is insensitive to environmental 

changes. We examined how social cohesion (defined as average number of household social 

network connections) influences health outcomes when households attempt to identify an optimal 

strategy by copying the behaviors of socially connected neighbors who seem to have adapted 

successfully in the past. Our simulation experiments suggest that high-cohesion communities are 

able to rapidly disseminate the initially optimal behavioral strategy compared to low-cohesion 

communities. This rapid and pervasive change, however, decreases behavioral diversity; i.e., once 

a high cohesion community settles on a strategy, most or all households adopt that behavior. 
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Following environmental changes that reduce the efficacy of the initially optimal strategy, 

rendering it suboptimal relative to the alternative strategy, high-cohesion communities can fail to 

adapt. As a result, despite faring better early in the course of computational experiments, high-

cohesion communities may ultimately experience worse outcomes. In the face of uncertainty in 

predicting future environmental stressors due to climate change, strategies to improve effective 

adaptation to optimal disease prevention strategies should balance between intervention efforts that 

promote protective behaviors based on current scientific understanding and the need to guard 

against the crystallization of inflexible norms. Developing generalizable models allows us to 

integrate a wide range of theories multiple datasets pertaining to the relationship between social 

mechanisms and adaptation, which can provide further understanding of future climate change 

impacts. Models such as the one we present can generate hypotheses about the mechanisms that 

underlie the dynamics of adaptation events and suggest specific points of measurement to assess 

the impact of these mechanisms. They can be incorporated as modules within predictive 

simulations for specific socio-ecological contexts.

INTRODUCTION

Climate change influences many components of socio-ecological systems, with important 

consequences for infectious disease transmission. For example, variability in rainfall and 

temperature, and human responses to that variability, can affect transmission systems for 

diseases such as malaria, cholera, and dengue (Field, 2014; Hellberg, 2016). Social networks 

have been shown to influence collective action, emergence of behavioral norms, and 

responses to interventions (Adger, 2003; Pelling, 2005; Aldrich, 2015; Tsai, 2015; Valente, 

2017). To assess and respond to the impacts of climate change on disease, we need to 

identify how social cohesion is related to community adaptation. For instance, while highly 

cohesive communities often fare better during and after natural disasters (Klinenberg, 2002; 

Dynes, 2005), high levels of cohesion may also promote resistance to beneficial 

interventions (Aldrich, 2008; Villalonga-Olives, 2017). Epidemiologic studies have reached 

different conclusions about the impact of social cohesion on adaptations to prevent enteric 

disease. In a study of rural villages in Ecuador, high cohesion appeared to be associated with 

decreased risk of enteric disease, and this relationship was significantly mediated by use of 

improved water and sanitation (Zelner, 2012). In a similar study in India, cohesion was 

found to be negatively associated with latrine ownership, and positively associated with a 

general acceptance of open defecation (Shakya, 2014).

The relationship between climate change and disease outcomes is complex, and mediated 

both by biophysical processes, such as those governing pathogen fate and transport, as well 

as by social processes that determine patterns of exposure to hazards. Despite advances in 

mapping biophysical associations between meteorological conditions and disease (Altizer, 

2013; Levy, 2016; Kraay, 2018), efforts to understand social processes that may affect the 

adoption of protective behaviors in the face of changing transmission systems are largely 

absent from the epidemiologic literature.

Continuing our reference to enteric disease epidemiology as an example, some studies have 

examined how changing meteorological conditions can affect a variety of weather-sensitive 
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transmission pathways (Levy, 2016; Kraay, 2018; Julian, 2016) and consequently, the 

efficacy of transmission-related behaviors associated with those pathways. For example, an 

investigation in Ecuador found that use of safe water was most protective against enteric 

disease in connection with heavy rainfall, which can flush pathogens into water sources. 

Alternatively, adequate sanitation only appeared to be protective under dry conditions 

(Bhavnani, 2014). Similarly, work on enteric disease risk during and after an eight-week 

flood in Dhaka, Bangladesh, found that adequate sanitation was not beneficial during the 

event but became protective in the following six months (Hashizume, 2008).

Establishing the potential impact of climate change on disease outcomes in any given 

context thus requires identifying social processes that could affect the initial adoption of 

protective behaviors within communities, as well as their ability to detect and adapt to 

changes in the efficacy of those behaviors. Mechanistic modeling—which involves 

specifying the causal relationships thought to connect key factors associated with an 

outcome of interest—is well suited for studying such processes and evaluating the potential 

social impact of environmental perturbations. In particular, modeling methods that focus on 

mechanistic abstraction and targeted extension are widely applied to study complex social 

phenomena within the social sciences (Hedström, 1998). These can provide the foundation 

for forecasting the impact of climate change on disease patterns within specific socio-

ecological contexts.

This paper presents an initial model designed to explore these relationships in a manner that 

can easily be extended to examine a broad range of research and policy questions as 

circumstances require, with the goal of identifying and exploring generalizable dynamics 

and their mechanisms. Specifically, to explore the relationship between social cohesion and 

adaptation in the face of climate change, we developed an agent-based model that formalizes 

a straightforward process of social learning; household agents within low- and high-

cohesion communities attempt to identify optimal behavioral responses to changing 

environmental circumstances by copying the choices of seemingly more successful network 

neighbors. In particular, our model is designed to explore (1) the emergence of health-

enhancing norms from a background of behavioral variability; and (2) the ability of 

communities to adapt to environmental changes that affect the efficacy of protective 

behaviors.

METHODS

Model overview

The model is designed to run experiments in which household agents attempt to identify the 

optimal of two behavioral strategies that offer different levels of protection against exposure 

to pathogens from the environment. The first strategy (Strategy 1) is initially set as more 

protective, leading households to adopt it widely, but its efficacy is sensitive to 

environmental change such as increases in flooding and/or droughts. An example of this 

strategy might be a surface water source that in the absence of flooding or droughts contains 

low levels of contamination. The second strategy (Strategy 2) is initially moderately 

protective and is insensitive to environmental changes. An example of this strategy might be 
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a well water source that is further away and requires a substantial amount of time to reach. 

Environmental changes can influence the relative efficacy of Strategy 1.

Experiments consist of periodic environmental changes that impact the transmission system 

and therefore the risk of infection. We label as ‘environmental cycles’ the time periods 

between these environmental changes. The relative efficacy of different behavioral 

strategies, and thus the exposure potential of households, may vary from cycle to cycle.

Experiments begin with the generation of a network of households, representing either a 

low- or high-cohesion community. Over the course of an experiment, individuals may 

experience variable infection risk depending on their household’s potential for exposure to 

pathogen contamination. A household’s exposure potential represents the adoption of 

behaviors that activate, block, or mitigate one or more disease transmission pathways. As 

their occupants become infected, households can search for the optimal strategy by imitating 

the choices of network neighbors that seem to have adapted well in the past. The model 

records two types of primary outcomes: the number of households practicing each 

behavioral strategy at the end of environmental cycles, and the total number of infections 

that have occurred. These outcomes are used to compare the adaptation trajectories of low- 

and high-cohesion communities (described in the next section) and their effects on disease 

transmission.

Social network generation

Social networks within which the social learning procedure plays out are constructed based 

on full-population sociometric data collected from rural villages in northern coastal Ecuador 

as part of a long-term study on environmental change and diarrheal disease (“Ecologia, 

Desarrollo, Salud, y Sociedad” Project, hereafter EcoDeSS (Zelner, 2012; Bates, 2007; 

Trostle, 2008); for a map of the study region, see (Eisenberg, 2006). The remoteness of 

villages within this study area influences mobility patterns and other factors that affect social 

relationships and the structure of social networks. In particular, compared with easily 

accessible villages, remote villages tend to feature more cohesive social networks (Trostle, 

2008). We used EcoDeSS data from two low-cohesion (easily accessible) and two high-

cohesion (remote) villages with similar numbers of households to estimate values required 

for the network generation procedure (S1 Appendix).

The role of social cohesion and its relation to population health has been represented in a 

variety of ways in the epidemiologic literature (McNeill, 2006; Diez Roux, 2007). A review 

of social cohesion defines the term as a concept that captures a number of social structures 

within communities, specifically as perceived connectedness, solidarity, and shared 

resources that allow people to act together. The mechanisms by which this occurs is through 

the ability to enforce and/or reinforce group norms for positive health behaviors (McNeill, 

2006). While many social network, structure, and capital factors interweave to form the 

concept of social cohesion, in our implementation, social cohesion is represented in this 

model by the average number of network connections assigned to households (average 

degree). Importantly, this operationalization represents a proxy for a range of social 

connectivity measures, such as social capital.
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All communities feature 80 household agents, each occupied by 4 individuals. Network 

connections are distributed randomly according to the Watts-Strogatz small-world model 

(Watts, 1998), which can be parameterized to capture important structural characteristics of 

real-world networks (Humphries, 2008). Prior EcoDeSS Project research yielded an average 

degree of 6 for low-cohesion communities and 12 for high-cohesion communities (S1 

Appendix; Trostle et al 2008). These values produce small-world networks that approximate 

those empirically attested in low-cohesion and high-cohesion villages, respectively (Trostle, 

2008).

Infection and recovery mechanism

Experiments begin with a fully susceptible population; changes in the health status of 

individuals are determined through an SIS model of enteric pathogen exposure and 

transmission. This framework represents the processes by which individuals in a population 

become infected with a given pathogen and recover, at which point they are assumed to be 

susceptible to other enteric pathogens. Infection events are scheduled stochastically 

according to a simplified version of a previously published model of environmentally 

mediated enteric disease transmission (Eisenberg, 2007). In particular, we assume that the 

pathogen dynamics are quick compared to the transmission dynamics. Our model then 

simplifies such that the transmission rate term becomes the rate that infected individuals 

shed into the environment divided by the rate that pathogens died off in the environment (Li, 

2009), representing the average contamination level in the environment. The household 

infection hazard is therefore the average pathogen contamination caused by a household’s 

network; i.e., the rate of shedding divided by the pathogen die-off rate times the number of 

infected individuals with in a household’s network. Finally, the expected number of new 

cases is the product of three terms: 1) the infection hazard as defined above; 2) a behavioral 

strategy that modifies (i.e., protects against) the exposure of individuals in a household to the 

force of infection; and 3) the number of uninfected individuals in that household. The 

recovery event is scheduled as a stochastic exponential process where the mean time to 

recovery of infection is one over the mean event rate of the exponential process. Recovery 

events are determined by a recovery rate applied to all households. Parameter values 

governing the frequency of infection and recovery events were selected to approximate 

plausible infection trends based on EcoDeSS Project estimates for all-cause diarrhea (S1 

Appendix).

Social learning procedure

Over the course of an experiment, household agents can shift between two behavioral 

strategies (Strategies 1 and 2 as describe earlier in the Model Overview) that offer different 

levels of protection against exposure to pathogens in the environment. At the beginning of an 

experiment, a small proportion of households is assigned the initially optimal strategy 

(Strategy 1), while the remainder is assigned the initially suboptimal strategy (Strategy 2) 

(S1 Appendix). This preparatory step is intended to seed the development of health-

enhancing behavioral norms within the communities.

Household agents track the time intervals they experience between infections, which they 

use to make adaptation decisions (Fig 1); i.e., the longer the time interval the healthier the 
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household. Households additionally have access to the time intervals of infection for 

neighboring households that they share a social connection with (neighbors). These records 

of infection frequency represent the only source of information available to households for 

gauging the success of their past adaptations and comparing their performance to their 

neighbors. As a result, the social network determines who can influence whom within the 

network over the course of an experiment. Given an infection event, households proceed to 

adapt by randomly selecting from the strategies of network neighbors that have experienced 

longer mean intervals between infections than themselves. A mathematical formulation of 

this adaptation event is presented in Equation S1 of the Appendix. This social learning 

procedure is intended to model information sharing among the occupants of socially 

connected households and the emergence of potentially different patterns of influence within 

different types of networks.

Environmental change mechanism

Experiments are subdivided into multiple environmental cycles, which are conceptualized as 

periods of stability separated by environmental changes that impact some subset of disease 

transmission pathways and the efficacy of related behaviors. At the beginning of an 

experiment, we set the duration of these environmental cycles and the how the 

environmental changes that occur at the beginning of each cycle will impact the relative 

efficacy of the two behavioral strategies available to household agents (S1 Appendix). 

Environmental changes can impact the relative strategy efficacy in two ways. Minor 

environmental changes can change the efficacy of Strategy 1 (the environmentally sensitive 

strategy) but does not impact its optimality relative to Strategy 2 (the environmentally 

insensitive strategy). This environmental change can represent a variety of changes including 

changes in meteorological conditions such as rainfall and temperature. Major environmental 

changes represent the onset of extreme environmental events, such as regular floods or 

droughts. These types of changes will invert strategy optimality; i.e., Strategy 1 will go from 

suboptimal to optimal or vice-versa relative to Strategy 2.

The impacts of both major and minor environmental change on relative strategy efficacy are 

modeled by assigning an exposure modifier factor associated with the weather-sensitive 

strategy and will vary from cycle to cycle while exposure for the Strategy 2 remains constant 

for the duration of the experiment (Fig 2). The effects of Strategy 1 is a random number 

between 0.05 and 0.95 that is subtracted from 1 to obtain the initial protective value for the 

weather-sensitive strategy. The exposure modifier for the weather insensitive protective 

strategy (Strategy 2) is fixed at 1. These values are set in the model prior to the beginning of 

the first environmental cycle. With each subsequent environmental cycle, a new random 

number is drawn and either subtracted from 1 or, if a major environmental change is 

scheduled to occur, added to 1 to update the exposure modifier for the weather-sensitive 

strategy. Whether one is added or subtracted is predetermined at the beginning of the 

experiment, when strategy optimality is assigned (if an experiment features more than one 

major change, strategy optimality is inverted after each change). Accordingly, the higher the 

average value of the randomly generated numbers, the greater the difference in efficacy 

between the two strategies over the course of an experiment. This average value can be 

regulated through parameter settings, which we outline in the Appendix.
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The occurrence of major environmental changes, which inverts the strategy that is optimal, is 

scheduled according to a pre-described pattern of major and minor environmental changes 

that occur prior to each cycle. We parameterized the timing of this environmental change to 

provide flexibility for future experiments that will rely on empirical data specifying 

environmental change intervals. We define experiments specific to a set of defined 

environmental change intervals as ‘baseline’ and ‘punctuated’ scenarios. The baseline 

scenario features no major changes, so that the weather-sensitive strategy is optimal for the 

full duration of the experiment (i.e., the randomly generated numbers are always subtracted 

from 1 to obtain the exposure modifier for the weather-sensitive strategy). Under the 

punctuated scenario, in contrast, the weather-sensitive strategy is implemented as optimal 

during the first cycle but then becomes suboptimal once a major environmental change 

occurs (i.e., the randomly generated numbers are subtracted from 1 before the first cycle and 

added to 1 thereafter). Figure 2 is an example of a punctuated scenario, where after the first 

cycle Strategy 1 goes from suboptimal to optimal. Thereafter, each cycle begins with a 

minor environmental change.

It is possible to abstractly capture any environmental change scenario of interest by 

controlling the parameters governing: 1) the duration of cycles, 2) the shape of the 

distribution describing the average difference in strategy efficacy, and 3) the regime 

specifying whether and when strategy optimality is inverted. For example, a punctuated 

scenario parameterized with long cycles and large average difference in strategy efficacy 

could represent the following real-world scenario (relevant model settings are indicated in 

italics):

1. A large proportion of a community consumes untreated water from a relatively 

uncontaminated nearby river as their weather sensitive strategy. Alternative 

behavioral strategies (Strategy 2) might theoretically offer more protection, but 

they incur opportunity costs that substantially increase the overall exposure 

potential of households that practice them. For example, the time required to 

collect water from a less contaminated but more distant source could limit the 

amount of time available to clean living spaces, monitor the activities and 

hygiene of children, and obtain and safely prepare nutritious food. In terms of the 

model, these starting conditions are achieved by the end of the first 

environmental cycle by: 1) running the experiment with a large difference in 
strategy efficacy, which makes it easier for households to identity the optimal 

strategy (consumption of water from the nearby river); and 2) having a long cycle 
duration, which ensures that a large proportion of the community will converge 

on this strategy.

2. Floods at the site of the community and upstream locations begin regularly 

contaminating the river water (in accordance with the punctuated scenario, the 

optimal strategy becomes suboptimal prior to the start of the second cycle).

3. Households that collect water from the river begin experiencing infections more 

frequently (large difference in strategy efficacy). Their ability to adapt, however, 

will depend on whether alternative behavioral strategies are still sufficiently well 
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represented among their neighbors despite the extended period of stability prior 

to the onset of regular floods (long cycle duration)

Sensitivity analyses of all experimental parameters presented here are presented in the 

Appendix.

RESULTS

High cohesion can facilitate adaptation when transmission systems are relatively stable; 
i.e., there are no major environmental changes

In experiments comparing adaptation trajectories under the baseline environmental scenario, 

high-cohesion communities perform as well or better than low-cohesion communities; i.e., 

they converge to the optimal behavioral strategy more quickly. Under this scenario, the 

transmission system does not undergo substantial changes; the efficacy of the weather-

sensitive behavioral strategy may vary between environmental cycles but is always greater 

(i.e., more protective) than that of the alternative strategy. Both low- and high-cohesion 

communities successfully adapt to this scenario, with a majority of households eventually 

converging on the weather-sensitive behavioral strategy. This process generally occurs more 

rapidly within high-cohesion communities (Fig 3) because households observe more 

network neighbors on average, and therefore are better able to resolve differences in efficacy 

between the optimal and suboptimal strategies. In particular, high-cohesion communities 

tend to adapt more successfully early in the course of experiments, when the infection-

frequency records of households are still sparse. Differences are greater when environmental 

cycles are shorter.

The greater passive adaptation of high-cohesion communities early in the course of 

experiments can result in lower risk of infection (Fig 4). This is particularly evident in 

scenarios characterized by short environmental cycles and large average difference in 

strategy efficacy (Fig 4B), in which a significant gap in adaptive performance between 

communities tends to emerge already by the end of the first cycle (Fig 3B).

High cohesion can preclude adaptation following substantial changes to transmission 
systems

As discussed in connection with Fig 3, household agents within high-cohesion communities 

tend to adapt successfully early in the course of experiments because they have access to 

richer information to establish the optimality of the two behavioral strategies. While 

beneficial when transmission systems are relatively stable, this ability to rapidly identify and 

propagate the initially optimal strategy comes at the cost of reduced behavioral diversity, 

which can be detrimental in the long run. Under the punctuated scenario, for instance, which 

represents a scenario in which the weather-sensitive strategy is optimal during the first cycle 

but suboptimal thereafter, households should initially converge on the former strategy but 

then begin abandoning it during the second cycle. Low-cohesion communities adapt to the 

punctuated scenario in just this manner, while high-cohesion communities may fail to adapt 

following the first environmental cycle (Fig 5). This is because the more efficient process of 

adaptation within high-cohesion communities leads to the stable (initially suboptimal) 

strategy being represented in just a few households or even becoming extinct by the end of 
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the first environmental cycle. Subsequently, households within high-cohesion communities 

are unlikely or unable to switch to this strategy even after it becomes optimal, potentially 

resulting in worse health outcomes (Fig 6). In both the adaptation and infection plots, the 

differences between communities are most pronounced when environmental cycles are 

relatively long, leading to the emergence of particularly robust norms favoring the adoption 

of the weather-sensitive strategy within high-cohesion communities during the first cycle 

(Figs 5C–D, 6C–D).

DISCUSSION

Effective policy to address the impacts of climate change on disease must account for a 

range of dynamic variables that can yield profoundly different outcomes in different socio-

ecological contexts. Social processes play a major role in shaping aspects of population 

vulnerability, or the propensity of communities to experience harm as a result of climate 

change (Field, 2014). Vulnerability assessments often aggregate into quantitative indices the 

effects of diverse factors that may be associated with outcomes of interest (Birkmann, 2006; 

Klein, 2009; Tonmoy, 2014). While arguably resulting in estimates that are relatively easy to 

communicate and interpret (Birkman, 2006; Hammond, 1995), efforts to produce composite 

indices become problematic when empirically documented associations are excised from the 

broader socio-ecological systems which shape them and which in turn they contribute to 

shaping over time (Tonmoy, 2014; Barnett, 2008; Hinkel, 2011). In order to remedy this 

problem, it is important to identify and study mechanisms that could determine associations 

between specific factors and outcomes of interest across different socio-ecological systems 

rather than focusing exclusively or primarily on isolating such associations for an ever-

growing catalog of case studies. Our computational model represents an attempt to move 

toward this goal for associations between social cohesion and capacity to adapt to the 

impacts of climate change on environmentally mediated disease transmission.

Results from our model suggest that social cohesion may variously affect adaptation as 

environmental changes impact transmission systems over time. In our computational 

experiments, high levels of social cohesion can facilitate the development of behavioral 

norms that protect against exposure to pathogen contamination in the environment. If the 

disease transmission system is stable for extended periods of time, however, these norms can 

become so robust as to severely reduce or extinguish behavioral diversity. As a result, while 

high levels of social cohesion are associated with good adaptation and health outcomes 

under reliably stable environmental scenarios, they can preclude adaptation and lead to 

greater disease burdens when environmental changes substantially alter transmission 

systems.

Our findings concerning the context-dependent nature of associations between social 

cohesion and adaptation are consistent with results from recent attempts to model how the 

structure of social networks affects decision-making performance within groups facing 

complex tasks. These more general studies, which are partially inspired by longstanding 

debates within the social sciences (Gargiulo, 2000), are showing that decision-making 

performance may be highly contingent on the interaction between social network variables 

and task complexity (Lazer, 2007; Barkoczi, 2016). By assuming a simple mechanism of 
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information-sharing among the occupants of socially connected households and defining a 

limited set of parameters governing environmental change scenarios, we extended this line 

of inquiry to begin exploring how social cohesion may affect the relationship between 

climate change and disease transmission. The result is a flexible modeling framework that 

can be further extended to examine specific socio-ecological contexts, environmental change 

scenarios, and health outcomes as required to evaluate potential interventions and inform 

policy.

Along with insights from more general modeling efforts, our findings point to the 

importance of fostering normative plasticity for reducing vulnerability to the impacts of 

climate change on disease. Accordingly, policy and intervention efforts should endeavor to 

balance the conventional goal of promoting widespread adoption of protective behaviors 

based on current scientific understanding with the need to guard against the crystallization of 

inflexible norms. This is especially important given the high degree of uncertainty 

surrounding the impact of many plausible interventions to reduce the negative repercussions 

of climate change on health (Bouzid, 2013). Focusing on maximizing normative uptake and 

failing to disclose uncertainty can lead to maladaptation and mistrust as scientific knowledge 

and socio-ecological circumstances evolve. Efforts to identify effective ways to 

communicate scientific uncertainty and its implications and educate communities about the 

power of their social networks either to facilitate or hamper information, resource, and other 

types of flows should thus be prioritized to the same extent as attempts to forecast future 

climatic conditions and their impacts on disease transmission systems ever more accurately.

Limitations and Future Work

The central assumption of our model is that household agents adapt by imitating the choices 

of socially close households that seem to have performed well in the past (Fig 1). This 

mechanism drives the emergence of what may be considered ‘descriptive norms’, shaped by 

processes of social learning. Depending on the particular socio-ecological contexts and 

behaviors under consideration, however, ‘injunctive norms’, which are enforced more or less 

directly through sanctions, may also impact adaptation (Shakya, 2014; Cialdini, 1990). 

Extensions of the model designed to evaluate specific interventions and socio-ecological 

contexts could thus warrant implementing injunctive norms and mechanisms impacting 

decision-making other than social learning.

In the present implementation, information-sharing for the purposes of the social learning 

procedure is restricted to the network neighborhoods of individual household agents (i.e., all 

households to which a given household is directly connected) and remain static over time. 

Real-world social learning, however, may occur dynamically within different types of 

groups and reflect not only an amount of information transfer, but also quality and 

heterogeneity of information. As such, future work could explore how network analysis 

algorithms capable of capturing different types of social structures may result in different 

outcomes from the ones we presented in this manuscript. For example, groups identified 

through “community-detection” algorithms may reflect spheres of influence and 

information-sharing within communities extending beyond direct contacts (Shakya, 2014). 

Moreover, this work is an abstract representation of how social mechanisms (i.e., the extent 
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of information sharing between households) can change vulnerability of the broader 

community to diseases associated with climate change. Abstract models are not readily 

utilized for concrete intervention, and so, future work would seek to ground our findings in 

quantifiable measures, such as the effects of individual-household cost on chosen WaSH 

strategies. Such an addition would allow our model to estimate how, whether, and to what 

extent costs (either financial or health-specific) can also affect strategic adaptations to 

environmental perturbations over time. Moreover, this work highlights and demonstrates the 

importance of collecting social behavioral data as well. Additionally, future implementations 

of the model featuring more realistic transmission mechanisms should investigate the effects 

of asymptomatic infections, which can contribute to the hazards experienced by agents but 

have no effect on their adaptation decisions.
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HIGHLIGHTS

• Under stable environmental conditions, social cohesion can facilitate the 

development of behavioral norms that protect against exposure to pathogen 

contamination in the environment.

• In the face of environmental change, however, these norms can become so 

robust as to preclude successful adaptation to new optimal behavior strategies.

• Policy and intervention efforts should endeavor to balance the conventional 

goal of promoting widespread adoption of protective behaviors based on 

current scientific understanding with the need to guard against the 

crystallization of inflexible norms.

• Generalizable mechanistic models allows us to integrate a wide range of 

theories and multiple datasets pertaining to the relationship between social 

mechanisms and adaptation, which can provide further understanding of 

future impacts of climate change.
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Fig 1. Diagram of household-level adaptation procedure following an infection.
Immediately following an infection, the affected household agent identifies network 

neighbors that have experienced no infections or longer average intervals between 

infections, suggesting that they have adapted successfully in the past. The household then 

randomly adopts one of the two possible behavioral strategies within the model with 

probability corresponding to the proportion of these neighbors that are currently practicing 

it. Finally, if the selected strategy differs from the one it previously practiced, the household 

updates the exposure potential of its occupants.
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Fig 2. Progression of sample experiment showing impact of environmental changes.
Experiments are subdivided into multiple environmental cycles, which are periods of equal 

duration bounded by environmental changes. These changes impact the efficacy of the 

weather-sensitive behavioral strategy (dashed lines), where an exposure modifier less than 

one reduces exposure and an exposure modifier greater than one increases exposure. The 

weather-insensitive strategy (dotted line) is set to an exposure modifier of 1. Prior to the 

beginning of the first cycle, a random number between 0.05 and 0.95 is subtracted from 1 to 

obtain the exposure modifier for the weather-sensitive practice. Subsequently, a random 

number is drawn prior to each cycle to obtain a new exposure modifier for the weather-

sensitive strategy. If no major environmental changes are scheduled to occur, the random 

numbers continue to be subtracted from 1. A major environmental change will invert 

strategy optimality; e.g., if the weather-sensitive strategy was previously optimal, as in the 

scenario captured by the diagram, it will become suboptimal (exposure modifier > 1).
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Fig 3. Adaptation trends under the ‘baseline’ environmental scenario.
Proportion of households within low- and high-cohesion communities (grey and black, 

respectively) that engage in the weather-sensitive behavioral strategy under the baseline 

scenario, in which the weather-sensitive strategy is optimal during all cycles. A) 

environmental cycle duration: 180 days, average difference in strategy efficacy: 0.5; B) 

environmental cycle duration: 180 days, average difference in strategy efficacy: 0.9; C) 

environmental cycle duration: 730 days, average difference in strategy efficacy: 0.5; D) 

environmental cycle duration: 730 days, average difference in strategy efficacy: 0.9. 

Outcomes are averaged across 50 replicates and displayed with 95% bootstrap confidence 

intervals.
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Fig 4. Infection trends under the ‘baseline’ environmental scenario.
Cumulative incidence within low- and high-cohesion communities (grey and black, 

respectively) under the baseline scenario, in which the weather-sensitive strategy is optimal 

during all cycles. A) environmental cycle duration: 180 days, average difference in strategy 

efficacy: 0.5; B) environmental cycle duration: 180 days, average difference in strategy 

efficacy: 0.9; C) environmental cycle duration: 730 days, average difference in strategy 

efficacy: 0.5; D) environmental cycle duration: 730 days, average difference in strategy 

efficacy: 0.9. Outcomes are averaged across 50 replicates and displayed with 95% bootstrap 

confidence intervals.
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Fig 5. Adaptation trends under the ‘punctuated’ environmental scenario.
Proportion of households within low- and high-cohesion communities (grey and black, 

respectively) that engage in the weather-sensitive behavioral strategy under the punctuated 

scenario, in which the weather-sensitive strategy is optimal during the first cycle but 

suboptimal thereafter. A) environmental cycle duration: 180 days, average difference in 

strategy efficacy: 0.5; B) environmental cycle duration: 180 days, average difference in 

strategy efficacy: 0.9; C) environmental cycle duration: 730 days, average difference in 

strategy efficacy: 0.5; D) environmental cycle duration: 730 days, average difference in 

strategy efficacy: 0.9. Outcomes are averaged across 50 replicates and displayed with 95% 

bootstrap confidence intervals.
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Fig 6. Infection trends under the ‘punctuated’ environmental scenario.
Cumulative incidence within low- and high-cohesion communities (grey and black, 

respectively) under the punctuated scenario, in which the weather-sensitive strategy is 

optimal during the first cycle but suboptimal thereafter. A) environmental cycle duration: 

180 days, average difference in strategy efficacy: 0.5; B) environmental cycle duration: 180 

days, average difference in strategy efficacy: 0.9; C) environmental cycle duration: 730 days, 

average difference in strategy efficacy: 0.5; D) environmental cycle duration: 730 days, 

average difference in strategy efficacy: 0.9. Outcomes are averaged across 50 replicates and 

displayed with 95% bootstrap confidence intervals.
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