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ABSTRACT
The relational production model of problem solving, due to Vere, is used to
analyze plan inefficiency. The concept of plan variant is introduced and
precisely related to the triangle tables of Nilsson. The concept is used to
extend certain classes of inefficiencies. A method is described which

"tightens up” plans containing these inefficiencies, often producing optimal

ones.,




1, Iantroduction

A number of researchers have proposed techniques for automatic problem
solving [3, 5, 7]. In general, these methods are not guaranteed to produce
optimal solutions, i.e. plans with the fewest number of operations. In this
paper we deso:ibe a process of plan improvement which in many cases of

interest will convert a non—optimal plan to an optimal one.

Plan refinement is expected to have a number of uses. First it allows more
latitude to plan gemeration programs: they need not be overly concerned with
plan efficiency when that can be improved later. Second, it could be applied
to user—supplied plans in a man-machine interactive system. Finally, it could
be of value to learning systems by improving plans before generalization.
There is little point in generalizing anm inefficient plan when an efficient
one can be used instead. More importantly, by filtering out inessential
steps, plan refinement emphasizes what is truly significant. A side benefit
of the analysis is that it exposes the non-essential ordering in a linear
plan, supplying information that could be used to schedule operations in

parallel.
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To place our results in a general setting we use the relational production
model of problem domains introduced by Vere [6]. Although Vere is primarily
concerned with studies of generalization and inductive inference, the model
itself is applicable to many areas of investigation. However, we find it
convenient to make a slight modification: we use multisets in place of sets in
the represention of states and operators. This aids the analysis and allows a

simpler description of some operators.

2. Basic Definitions

As in Vere [6], a literal is an ordered list of terms (tq ty ... t))
where r > 1 and each term t; is either a constant or a variable. We will
regard t; as a relation name and write the literal in the form t1(tg,...uty).

A ground literal is ome in which all the terms are constants.

We represent a state of the problem domain by a multiset (or bag) of ground



literals. The operators are represented by relational productions, which have
the form @ - P where a and B are multisets of literals. The literals in a
are called preconditions while those in B are postconditions. An operation is
an operator plus a substitution that instantiates its pre— and post-
conditions to ground literals. An operation is applicable to a state if its
preconditions are contained in that state (a multiset S is contained in a
multiset T if for all x the number of occurrences of x in 8 is less than or
equal to the number of occurrences of x in T). If the operation is
applicable, it transforms the state into a new state obtained by subtracting
the preconditions and adding the postconditions. We will say an operator is
applicable to a state if it can be paired with some substitution to produce an
applicable operation. A problem domain may now be defined as a pair
consisting of an initial state and a finite set of operators. We say a state
is reachable if it can be obtained from the initial state by a finite sequence

of (applications of) operations.

In these definitions we differ from Vere by the use of multisets rather
than sets. The difference is reduced (but not eliminated) by the following
restriction. Let us say a multiset is getlike if it contains no duplicates. We
define a unitary problem domain to be one where every reachable state is
setlike. In the remainder of the paper, we will confine our attention to
unitary problem domains. It may seem that we have renounced sets, only to
reintroduce them. However, the requirement that the problem domain be unitary
imposes a strong condition on operators which is used in the subsequent
analysis and is conveniently stated in terms of multisets. Incidentally, the
use of multisets appears to avoid the difficulty with composition of operators
noted in [6].



EXAMPLE: Four Blocks World.

— description: The objects in the world are a table and four
equally sized cubic blocks labelled a, b, ¢ and d. The table
may support any number of blocks, while each block may support

at most one other block. We say a block is clear if it is not
supporting another block.

— initial state: on(a,b), ontable(b), ontable(c), ontable(d),
clear(a), clear(c), clear(d).

- operators:
1. clear(X),ontable(X),clear(Y) = clear(X),on(X,Y).
2. clear(X),on(X,Y),clear(Z) - clear(X),on(X,Z),clear(Y).
3. clear(X),on(X,Y) - clear(X),ontable(X),clear(Y).

The above is an example of a unitary problem domain. To see this, let us call
a state S8 in the four blocks world normal if it has the following three
properties:

1. S is setlike.

2. on(X,Y) and ontable(X) are mutually exclusive in S (i.e. there is
no substitution for X and Y such that both literals are
simultaneously contained in S).

3. on(X,Y) and clear(Y) are mutually exclusive in S.

Clearly, the initial state is normal. Let us verify that the first operator
preserves normality. The only literal added is on(X,Y). This cannot cause a
duplication since ontable(X) is a precondition, and that excludes on(X,Y). The
exclusion properties are also maintained since the literals excluded by
on(X,Y) are deleted by the operator. Similar arguments show that the second

and third operators preserve normality. Thus, all reachable states are

normal, and hence setlike.

Note that the second operator does not need an X # Z condition. Because we
are using multiset contaimnment of preconditions, clear(X) and clear(Z) must be
matched to differenmt occurrences of ground literals. Since the states are

setlike, this ensures that X and Z cannot be instantiated to the same thing.



3. Plan Variants

In this section we introduce a theoretical construct of importance to our
study of plan refinement. We require some preliminary definitions. Given a
specific problem domain, a plan is a list of operations (A1 cee An) such that
each Ai is applicable to the state obtained by starting with the initial state
and applying the preceeding operations in order. Plans are generally in the
service of goals. A goal is a multiset of literals. It may be thought of as a
kind of operator with preconditions but no postconditions. A plan achieves a
goal if the goal is applicable to the state obtained by starting with the
initial state and applying all the plan operations in order. Now suppose A and
B are operations in a plan, with A immediately preceeding B. We say A
transposes with B if the list obtained by interchanging the positions of A and
B is also a plan; we call such an interchange a transposition. Notice that a
transposition leaves the effect of a plan unaltered, since the net effect of A
followed by B is the same as B followed by A when both are applicable. We say
a plan P is a temporal variant of a plan Q if it is obtained from it by a
finite sequence of transpositions. Note that a plan is considered a temporal
variant of itself; a tenporfl variant is called proper if it differs from the
original.

For unitary problem domains there is an easily computed and
plan—independent criterion for transposability. Let us say an operation A
supplies a ground literal g if g is a postcondition but not a precondition of
A (in STRIPS terminology [3], g is an "add” condition). It gonsumes g if g
is a precondition but not a postcondition (in STRIPS terminology, a "delete”
condition). Then adjacent operations A and B in a plan transpose if and only
if A does not supply preconditions of B and B does not consume preconditions

of A,

There is a precise relationship between temporal variants and an augmented
version of the triangle tables of Nilsson (3], in unitary domains. Recall
that in the triangle table, if A and B are operations in a plan with A



preceeding B, then the cell below A and to the left of B contains the literals
(if any) that are supplied by A and survive through intervening operations to
become preconditions of B. We may extend the triangle table to a "square
table” where the cell above B and to the right of A contains any literals that
are postconditions of A and survive to be consumed by B. We will write A = B
if at least one of the two cells is non-empty. Since A = B only if A preceeds
B in the plan, the relation = does not have cycles. Let =* be the reflexive
transitive closure of =, Clearly «* is a partial ordering. We have the

following lemmas.

Lemma 1: If A immediately preceeds B, then A =* B & A does not
transpose with B.

Proof: =: Suppose A =* B. Then A =« B, If A supplies preconditions
of B, we are done. Otherwise, we must have B consumes postconditions
of A. These must also be preconditions of A, since otherwise A would
be supplying them. Therefore, A does not transpose with B.

¢: Suppose A does not transpose with B. Then either A supplies
preconditions of B, or B consumes preconditions of A. In the first
case we are done. In the second case, the preconditions of A that B
consumes must also be postconditions of A, since otherwise B's
preconditions would not be satisfied. Thus A = B and so A «<* B. =

Lemma 2: If A= B in a plan Q, then A = B in the plan Ql obtained
from Q by a transposition,.

Proof: The transposition cannot be of A with B since A « B. The
cases remaining are

1. The transposition does not move an operation into the segment
from A to B.

2. The transposition moves a single operation into the segment
from A to B.

By definition, the operations initially between A and B do not consume
the literals on which A = B depends. They also do not supply them,
since otherwise a reachable state would contain a duplicate. Thus case
1 does not affect A = B. In case 2, the operation moved in also does
not supply or consume the literals on which A =« B depends: if it
supplied such a literal, then a reachable state would contain a
duplicate, contrary to our assumption of a unitary domain., If it
consumed such a literal, them a precondition of B would be destroyed,
disrupting the plan, i.e. the purported transposition would be
invalid.

Lemma 3: If A «* B in a plan Q, then A =* B in the plan Q1 obtained
from Q by a transposition.

Proof: Immediate.



Lemma 4: If A=*B is false, then it remains false after a
transposition,

Proof: If a plan Ql is obtained by transposing C with D in a plan
Q, then interchanging D with C in Q1 is also a valid transposition.
Thus, the result follows from the previous lemma. =

Lemma 5: If A =*B is false, then it is false in every temporal
variant.

Proof: Immediate.

The following theorem relates square tables to temporal variants.

Theorem 6: If A and B are operations in a plan Q, then A =* B &
there is no temporal variant of Q in which A follows B

Proof: =: It suffices to show that if A « B then there is no
temporal variant in which A follows B. Suppose there is. Since a
temporal variant is obtained by a sequence of interchanges of adjacent
elements, A must "pass” B at some stage, i.e. A must transpose with
B. But this conflicts with A « B,

&: Suppose A «* B is false. We will show that there is then a
temporal variant such that A follows B and, moreover, the positions of
the operations originally to the left of A and to the right of B are
undisturbed. The proof is by induction on the distance between A and
B. Suppose first the distance is 1, i.e. A is adjacent to B. In this
case we may simply transpose A with B to achieve the desired result.
Suppose the distance is n, where n ) 1. Let C be an operation
intermediate to A and B, Then either A =* C is false, or C «* B is
false. The proof is similar in both cases. We will consider the case
where A =* C is false. Then the inductive hypothesis can be applied to
A and C to produce a temporal variant where A follows C, and where the
operations originally to the left of A and the right of C are
undisturbed. It follows that A is moved closer to B. Then lemma 5
allows us to apply the inductive hypothesis to A and B to give the
desired result.

The relation =* describes the ordering constraints within a plan that arise
from interactions among the operations. Plan graphs [2] were an earlier
attempt to characterize these. Plan graphs, however, (as defined in [21)
provided fewer opportunities for parallelism, and were less directly related
to triangle tables. The desire to obtain a precise relationship with triangle

tables suggested a formal approach, and led to the present work.



4. Inefficiencies
We now turn our attention to removable plan inefficiencies. First we will
define certain obvious kinds, called blatant inefficiencies. The concept of

temporal variant will then be used to extend each definition to a wider class,

We distinguish the following types of blatant inefficiency:
1. A state repeats during the execution of the plan.

2. A consecutive subsequence of operations in the plan is equivalent
to a single operation.

Notice that these are independent of the goal. Thus, it is possible to
exclude them dynamically from search paths in a planning system. In [1] a
system is described that induces metarules designed to avoid inefficiencies of
these types. However, the system does not deal with the other forms of

inefficiencies discussed below.

Methods exist to detect and remove direct occurrences of these
inefficiencies. Type 2 is somewhat expensive to treat, requiring O(mn2) for
the obvious algorithm, where n is the length of the plan and m is the number

of operators.

At this point we introduce "guilt by association.” Intuitively, if a plan
is inefficient then so are its temporal variants. This leads us to definme: a

plan has a disguised inefficiency of type i if it is a proper temporal variant
of a plan with a blatant inefficiency of type i.

A third type of inefficiemcy involves operations that do not contribute
either to the goal or subsequent operations. We say an operation is redundant
if it fails to supply literals which are either preconditions of subsequent
operations or are part of the goal. Redundant operations may be summarily
dismissed from a plan., Notice that when one redundant operation is removed,
an earlier operation that was supplying it may them become redundant in turn.

The concept of temporal variant is not useful in extending this class.

EXAMPLES: We will denote the operators in the Four Blocks World (dosctibéd



above) by move(X,table,Y), move(X,Y,Z) and move (X,Y,table), respectively. We
assume the same initial state. Imagine the goal is on(c,d) and on(d,b). Then

the plan

move(c,table,d), move(c,d,table), move(a,b,table), move(d,table,b),
move (c, table,d)

has a blatant inefficiency of type 1 (the initial state repeats after the

second operation), while its temporal variant

move(c,table,d), move(a,b,table), move (c,d,table), move(d,table,b),
move (c, table,d)

has a disguised inefficiency of type 1, but no blatant inefficiency. The plan
move(d, table,c), move(a,b,table), move(d,c,b), move(c,table,d)
has a disguised inefficiency of type 2 (there is a temporal variant where the
first and third operations become adjacent and reduce to move(d,table,b)).
Finally, the plan
move(a,b,table), move(b,table,a), move(d,table,b), move(c,table,d)

has an inefficiency of type 3 (the second operation is redundant).

S. Algorithm

We are now ready to outline the plan improvement algorithm:

First, inefficiencies of type 3 are repeatedly removed until none
remain. Next, the top level procedure removes inefficiencies of types
1 and 2, one at a time, until there are none left. The sub-procedure
for removing a single inefficiency of type 1 or 2 generates all
temporal variants until it finds onme with a blatant inefficiency. If
such is found, it is removed and the top level procedure continues
with this new plan. If nome is found, the subordinate procedure fails
and the current plan is returned as the output.

A program implementing the above algorithm has been writtem in PROLOG [4], a
language that provides facilities for non-determinism. Temporal variants are
generated by a non-deterministic algorithm which resembles an insertion sort

in which transposability is used to decide where an element can be inserted.
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6. Limitations

It should be pointed out that the foregoing results do not exclude the
possibility that a plan could be a permutation of another plan, and equivalent
to it, without being a temporal variant. For example, if the Four Blocks World
is augmented by imagining a hand that picks up the blocks and repositions

them, we might represent the operators as follows:
1. clear(X),ontable(X) = holding(X)
2. clear(X),on(X,Y) - holding(X),clear(Y)
3. holding(X) = clear(X),ontable(X)
4. holding(X),clear(Y) - clear(X),on(X,Y)

Any one of our previous sample plans could now be expressed by converting
every move operation to a pair of "pickup” and "putdown” operations. It is not
hard to see that the transformed plan has no proper temporal variants! This is
becaise a pickup operation will never transpose with a putdown operation (or
vice versa). In the new representation, what were formerly temporal variants
continue to be equivalent plans, but they now fall outside the scope of our
algorithm. Thus, facilitating transpositions can be an important issue in
representing problem domains. Another way around this would be to transpose

consecutive subsequences, rather than single operations. This is an area for
future study.

There is another reason why a plan output by our system may be less than
optimal. In certain domains, it may be possible to replace a comnsecutive
subsequence of operations by a shorter subsequence, even though no subsequence
can be replaced by a single operation (this appears not to be the case for the
blocks world). Of course, our algorithm could be extended to deal with this
case, but the computational cost would rapidly become infeasible. It may even
be the case in some domains that an improved plan can be obtained by first
replacing a subsequence by a longer subsequence, thereby facilitating other
substitutions which eventually lead to a shorter plan. We do not intend to

consider such combinatorially explosive schemes.
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7. Conclusions

Notwithstanding the limitations mentiomed, we have proposed an algorithm
for plan improvement which is relatively inexpensive, and which 1leads to
considerable improvement in practical situations. We have indicated the
applications of such a system. The analysis of plan structure contained herein
should also be of general importance in the study of plans. The advantages of
precise analysis in confirming relationships and indicating pitfalls suggest
that a judicious degree of formalization can be helpful for an understanding

of Artificial Intelligence systems.
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