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School of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

People chose different strategies for performing tasks, and that
choice often plays a key role in performance. We investigate the
use and evolution of strategic behavior in the Kanfer-Ackerman
Air Traffic Controller® task, a fast-paced, dynamic task. We
present strategies in two dimensions for one aspect of the task,
examine how people use them and switch between them, and
how their use relates to final performance. We also discuss the
implications that the observed variety of strategic behavior has
for cognitive modeling.

Introduction

Problem-solving and learning in the real world often occur in
dynamic situations. The teacher speaks at her own pace while
the student understands her words, decides what’s important,
and takes notes. The apprentice watches the fire chief assess
the course of a burning factory and direct teams of fire-fighters.
The nine-year old learns to play a seemingly manic new video-
game in an afternoon.

Such domains have been studied in applied areas under
the names "naturalistic decision-making” (Klein et al., 1993),
"supervisory control” (Sheridan, 1987), and "highly-interative
tasks" (Bauer & John, 1995). On the other hand, cognitive
psychology has predominantly studied static environments,
where the world only changes in response to the actions of
a person, not of its own volition. However, the rich under-
standing of problem-solving and learning attained in static
environments provides cognitive modelers with a firm foun-
dation for making contributions to mechanistic models of how
human perception, cognition, and action interact with a dy-
namic outside world allowing real-time performance of a task
as well as learning to improve performance.

Prior to modeling, the characteristics of behavior in dy-
namic domains must be carefully laid out. Detailed perfor-
mance data over time can give insights into what mechanisms
are in play. As discussed in (Lee et al., 1995), the Kanfer-
Ackerman Air Traffic Controller®' (KA-ATC®) task is an ideal
vehicle for studying problem-solving and learning in a dy-
namic environment. As well as the task environment itself,
timestamped keystroke data from over 3500 participants are
available on a CD-ROM (Ackerman & Kanfer, 1994). These
data are the basis for learning models that use ditferent Al and
cognitive architectures.

"The Kanfer-Ackerman Air Traffic Controller Task program is
copyrighted software by Ruth Kanfer, Philip L. Ackerman, and Kim
A. Pearson, University of Minnesota
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Figure 1: Startup screen of the KA-ATC® task, reconstructed
from Study 2 on the Ackerman-Kanfer CD-ROM (1994), and
annotated to show the hold-levels, the runways, and areas
where information is given to the participants.

Ackerman analyzed these data with respect to
independently-measured performance on a battery of cogni-
tive, perceptual and psycho-motor tests in an effort to predict
performance on this and other tasks (e.g., Ackerman, 1988).
Lee et al. (1995) looked at aggregate data of performance
and identified two efficient strategies that gradually increase
with experience. In this paper, we look at the details of each
individual’s performance to identify several different strate-
gies and strategy shifts which a cognitive model must be able
to emulate if it wishes to reflect mechanisms employed by
humans.

The KA-ATC® Task

The KA-ATC® task is a dynamic task where participants are
presented with the start-up screen shown in Figure 1. Planes
in a hold-pattern in the upper left corner of the screen must
be moved down to runways in the lower-left corner before
they run out of fuel. The planes are moved between adjacent
hold-levels and from hold-level 1 to the runways using cursor-
movement and function keys. A complex set of rules constrain
which planes can land on which runways depending on the
wind direction, wind speed, and weather conditions.

Once a plane is assigned to a runway, it takes 15 seconds to
move across the runway before disappearing from the screen.
As time passes, the planes use up their fuel (indicated in the
FUEL column, in minutes until crash), the wind and weather
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(reprinted from Lee et al., 1995, with permission).

changes, and more planes queue up to be admitted to the hold-
pattern. Planes are accepted into an empty hold-row from the
queue by hitting the F1 key. Points are awarded for landing
planes; points are substracted for crashing planes, landing
planes with low fuel, and attempting to move planes to places
that violate the rules (e.g., to an already occupied hold-row or
to the wrong runway for the current weather conditions).

Anecdotally, in the first few minutes doing this task it feels
as though the system is driving you. There seems to be a lot to
pay attention to, many decisions to make, and time-pressure
as you see the fuel counting down to a crash. However, after
a few minutes, you gain control and seem to have time to plan
your actions. In fact, very soon you find that you are always
waiting while the plane moves slowly across the runway, so
you can land another plane on that runway. How does this
transition from system-driven performance to user-controlled
performance happen? How much does simple speed-up of
the psychomotor responses contribute, versus the learning of
more efficient strategies? How can someone learn more effi-
cient strategies while they are being driven by the system? To
begin to answer these questions, we look at the performance
of individuals on this task and then discuss the implications
of their performance for cognitive modeling.

Previous Analyses

Lee et al. (1995) examined the performance of participants
in Ackerman’s Study 2 on the KA-ATC® CD-ROM (1994,
reported in (Ackerman, 1988)). They looked at two different
aspects of performance: which hold-level the participants
used to bring planes in from the queue and how efficiently they
used the runways when wind-direction changes occurred. We
will look more closely at the first of these.

Lee et al. (1995) identified the "hold 1" strategy as the
percentage of planes brought directly from the queue into
hold level 1, bypassing levels 2 and 3 and saving 6 to 12
keystrokes, on average, to land each plane. Use of the hold-1
strategy increased over the first nine trials and then reached
asymptote (Figure 2). But the variance remained high, which
led Lee et al. to believe this to be an important source of
individual differences. Indeed, prior research in strategy use
in static tasks demonstrates that people use several different
strategies even in relatively simple tasks (e.g., Reder, 1982,
1988; Siegler, 1996). Looking at the individual data itself will

show us just how these individual differences are manifest in
KA-ATC® performance.

Detailed behavior in queue acceptance

People perform very differently in the KA-ATC® task, with
final scores ranging from 1860 to 4100. They improve sub-
stantially through the 18 trials from a mean of 176 to a mean
of 3351 (F = 1310, p=0.0001). In this section we examine
the different strategies they use that may produce these differ-
ences, and how they switch strategies throughout the trials.

Observed strategies

Looking at the individual performance data of accepting
planes from the queue into the hold-pattern, Figure 3 shows
timelines with seconds since the start of the trial (x-axis) and
the 12 hold-rows (y-axis). The three hold-levels are separated
by dotted horizontal lines. Each time a plane is brought in
from the queue, a dot appears on the timeline at the hold-row
in which the plane was accepted. We constructed timelines
for the first 18 trials of 58 participants® in Ackerman’s 1988
study to examine the different queue-acceptance strategies
which contribute to the aggregate strategy shift reported by
Lee et al. (1995). We have identified two dimensions of
queue-acceptance strategies: the level into which the planes
are brought (hereafter /evel), and the patterns of filling and
emptying the hold rows (hereafter parrern).

Strategies involvinglevels Inthe KA-ATCO task, there are 3
hold-levels with 4 hold-rows apiece. There are seven possible
combinations of hold-levels (i.e., seven level strategies): level
1-only, 2-only, 3-only, 1&2, 1&3, 2&3, and ALL levels. We
assigned each trial to a single-level category if more than 90%
of its dots were in that specific hold-level (e.g., 1-only). If a
trial could not be assigned to a single-level category, if 90%
of its dots were in two levels, it was assigned to a double-level
category (e.g., 1&2). Finally, if a trial could not meet any of
the previous criteria, it was assigned to the ALL category. For
analyses using quarter-trials (e.g., Table 1), we used the same
procedure and criteria at that smaller grainsize.

Strategies involving patterns We identified three pattern-
dimension strategies: stacked, sequential, and opportunis-
tic. Stacked indicates that the participant stacks up a series
of planes one right after the other. This is evidenced by
straight, almost vertical, lines of dots in the timelines, sepa-
rated by blank areas indicating that the participant is landing
the stacked-up planes (Figure 3, top). Sequential indicates that
the participant is attending to one plane at a time, bringingitin
to a particular hold-row and then landing it, bringing another
one in and then landing it. This is evidenced by horizontal
lines of dots (Figure 3, middle). Opportunistic indicates that
the participant manipulates several planes at a time, inter-
leaving acceptance from the queue and landing planes. This
allows him or her to take advantage of slack time (for exam-
ple, when the runways are busy) to bring new planes into the
hold pattern. This is evidenced by seemingly random dots in

%65 participants were involved in that study, but § did not com-
plete 18 10-minutes trials and 2 could not be reconstructed from the
KA-ATC® CD (Ackerman, 1994). This is the same data set used by
Lee et al. to produce the graph in figure 2. These trials involve only
fair weather; trials 19-27 add foul weather to the task.
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Figure 3: Strategies: stacked in level 2&3 (top), sequential in
level 1 (middle), opportunistic in level 1 (bottom).

the timelines (Figure 3, bottom) as the participant alternates
between accepting some planes and landing others.

To label the pattern strategies, we used a classifier based on
the OC-1 decision tree algorithm (Murthy et al., 1994). We
trained this classifier with a set of 424 hand-labelled trials from
another study (Ackerman & Kanfer, 1994) in which partici-
pants performed the task in the same conditions as (Ackerman,
1988). The inter-rater reliability between the two authors for
the hand-labelling was 85.7%.

To label a new trial, the classifier first tried to label the
full trial, and, if no strategy was identified, then tried to label
its two halves separately (the halves are measured from the
time the first plane is brought into the hold pattern, not from
the start of the trial). The process repeats to the level of
quarter trials. If no strategy was identified at that level, the
quarter trial was labelled non identifiable strategy (NIS). The
classifier used three sets of 50 trees (one set for whole trials,
one set for half-trials and one set for quarter trials). Each tree
has been trained on a random subset of the training set (using
the bagging method (Breiman, 1994)). At each level, the 50
trees voted, providing a confidence rate for the decision.

The agreement rate between the classifier and the authors’
consensus on the 424 hand-labelled trials was 88.4% at the
level of quarter trials. The average confidence rate was 90.5%
for the agreement cases, and 68% for the disagreement cases.
For confidence rates over 90%, the agreement was over 90%.

Distribution of the strategies

All of the strategies described above, in both level and pattern,
were observed in the participants’ performance (Table 1). Al-
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1 2 3] 1&2 | 1&3 [ 2&3 | All || Tot
NIS 4311227 | 68 121 29| 33 224
STA | 07|06 |15 85| 04| 125|121 | 363
SEQ | 64 |00 (00| 00| 00| 00 00 6.4
OPP | 227 |26 |06 | 88| 00| 0.l 0.1 || 349

[Tot | 34.1 | 43 [ 48] 241 ] 1.7 155 155 ] 100 |

Table 1: Distribution in percentage of the level and pattern
strategies at the quarter trial level for all the participants and
all the trials.

though these two dimensions could be orthogonal in theory,
in practice they are not. The stacked pattern is used predomi-
nantly with long stacks that stretch further than a single level;
91% of all stacks are in levels 1&2, 2&3 or ALL levels. The
sequential pattern is used exclusively in the bottom level (level
1). The opportunistic pattern is predominantly in the lower
levels; 90% in levels 1 or 1&2. In contrast, the quarter-trials
which do not fall into our identified pattern-strategies span all
possible level-strategies fairly evenly.

These strategy combinations "make sense" in terms of the
task environment. The keystroke-pattern for stacking planes
involves repeating a series of three quick keystrokes for each
plane brought in from the queue and no perception to make
sure that the row is empty (because they are all empty when
stacking begins). Thus, it is easy to get into a rhythm that
produces long stacks. The level 1-only sequential strategy
may result from the fact that the system places the cursor
back on the hold-row from which the last plane was assigned
to arunway. Since this row is necessarily empty, it only takes
two keystrokes to accept a plane, and since planes can only
be landed from level-1, the easiest sequential acceptance is
always at level-1. It is not as obvious why the opportunistic
pattern concentrates in the lower levels, but lower levels re-
quire fewer keystrokes to land the plane, so any participant
rationally optimizing his or her score would gravitate to the
bottom levels. Thus, all of the identifiable strategy combi-
nations observed seem to reflect bounded rationality, taking
advantage of the task environment to maximize score, while
minimizing resources like perception and motor-movement.

Strategies and performance

A 2-factor ANOVA, pattern by level, with score on the 18th
trial as the dependent variable, reveals a main effect of pat-
tern (p < 0.05), but not level (p = 0.34), nor an interaction
effect (p = 0.19). Bonferroni/Dunn post-hoc analysis reveals
that the opportunistic strategy is significantly better than the
other pattern strategies (p < 0.01), but stacked, sequential
and not-identifiable are not significantly different from each
other. Upon reflection, high scores are obtained by using both
runways as much as possible. This requires having planes
available to land on both the short and long runways. Sequen-
tial only has one plane available at a time, which may need
to wait for the long runway to be free. Stacked usaully has
several planes, of different types, available, except at the very
end of landing the stack. In contrast, opportunistic always
has several planes available and there is almost always a plane
suitable for the short runway.

The results also indicate that it is not simply the number of
keystrokes required to accept and land planes that accounts
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for the score. Since it takes, on average, 6 more keystrokes
to land a plane from level-2 than from level-1 and 12 more
keystrokes to land from level-3 than from level-1, we would
expect a difference of level. However, as can be seen in Fig-
ure 4, a poor choice of pattern-strategy (sequential), though
exclusively in level-1, scores poorly. Likewise, participants
using the stacked or no identifiable pattern-strategy in levels
142 score below those using opportunistic in the same levels.
This also provides a possible hint as to why the opportunistic
pattern tends to be in the lower levels. The participants using
this strategy have evolved to a very efficient pattern and have
placed it in the most efficient levels; perhaps they are consid-
ering other aspects of the task beyond minimizing keystrokes
and easy-to-find empty rows.

Strategy shifts

Although the variety of strategies observed in this simple task
is interesting in itself, the shift between strategies is even
more challenging for cognitive modeling. Concentrating on
the pattern-strategies, we observed that many people shift
strategies in the course of 18 trials.

Figure 5 summarizes the of pattern-strategies observed in
the 58 participants along the 18 trials. Twenty-seven partic-
ipants picked a constant identifiable strategy from the begin-
ning, 25 needed several trials before adopting a constant iden-
tifiable strategy, and 6 never adopted any constant identifiable
strategy. (Periods of no constant identifiable strategy (ncis)
are represented in Figure 5 if they occurred at the beginning or
the end of the 18 trials. If such a period appeared between two
identifiable strategies, we considered that part of a shift from
the previous strategy to the new one (see below).) Among
the 51 eventually adopting a constant identifiable strategy, 31
shifted pattern 1 time, 6 shifted 2 times, and 1 shifted 3 times®.

*This participant switched from sequential to opportunistic to a
period where opportunistic was interspersed at fairly regular inter-
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Figure 5: Evolution of the pattern-strategies for the 58 par-
ticipants between the first and the 18th trial. Number of
participants beginning in each pattern-strategy appears at the
left; number ending in each pattern-strategy appears at the
right. (The horizontal axis does not encode the shifting time,
which varies between the participants, but simply that a shift
occurred at some time during the 18 trials).

One participant returned to no constant identifiable strategy
after 3 shifts. As for the content of the shifts, of the 40 par-
ticipants who shifted at all, 25 shifted to the opportunistic
pattern by the 18th trial. Only two persons who used the op-
portunistic pattern shifted away from that pattern. Since the
opportunistic pattern is associated with the best score, again,
the participants seem rational in their approach to improving
their performance.

Types of strategy shifts We have identified two types of
pattern strategy shifts: gradual and abrupr. Shifts are gradual
when one strategy clearly appears in one portion of the time-
line, a different strategy clearly appears in a later portion of the
timeline, but there is no clear demarcation between the two.
On the other hand, shifts are called abrupt when the onset of
the new strategy can be pointed to as being at a particular trial
and time. Out of the 50 strategy shifts, 39 are gradual and

vals with long stacks, and back to pure opportunistic. Although
not strictly within our original definitions, this unusual pattern (opp
wistacks) appeared so regular in this participant’s timeline that we
encoded it as 3 pattern-strategy shifts.
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11 are abrupt. The implications of the existence of these two
kinds of shifts will be examined in the next section.

Strategy shifts and performance Prior research in devel-
opmental tasks (Siegler, 1996) indicates that the more strate-
gies children articulate about a task, the better they perform
on that task. Although there are too few participants in this
study to be confident, the analogous result (that the num-
ber of strategies used predicts end-performance) does not
seem to be the case. Figure 6 shows a slightly U-shaped
curve, and a 2-factor ANOVA (ending pattern-strategy by
number of pattern-strategies explored, with score in trial 18
as a dependent variable), indicates that the ending pattern-
strategy is highly significant (p<0.005) but the number of
pattern-strategies explored is not (p=0.18), nor is the interac-
tion (p=0.999). That is, if the participant ended up using the
opportunistic strategy, he or she performed well, no matter
how many other strategies were tried first.

Implications for cognitive modeling

The improvement in participants’ performance, the variety of
strategies observed, and the shifts between strategies, have
many implications for cognitive modeling and raise many
questions for future investigation.

Improved performance It is well documented that people
speed up when they perform any task repeatedly (e.g., Newell,
1981). This speed-up happens as a function of practice, and
may be attributed to simple speed-up of cognitive, perceptual
and motor actions, or to changes in strategy. The Ackerman
(1988) participants do both. For example, Figure 7 shows
how a participant’s stacking behavior got faster from trial 3
(46 planes brought in from the queue) to trial 17 (68 planes
brought in). Figure 8 shows an abrupt shift from stacking in
all-levels to opportunistic in level-1 in the middle of trial 13.

Any computational cognitive models of this task will need
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to produce both types of improvements. This is not to
say that cognitive architectures must have several different
architecturally-supported learning mechanisms, just that the
mechanisms they do have must work together to display these
different types of behavior. For instance, ACT-R (Ander-
son, 1993) has three different architecturally-supported learn-
ing mechanisms: strengthening of production and associative
links which produces simple speed-up, analogical reasoning
which can radically change strategy, and bringing new knowl-
edge from the outside world into declarative memory, which
could also radically change strategy. On the other hand, Soar
(Newell, 1990) has only one architecturally-supported learn-
ing mechanism but that mechanism can interact with different
knowledge to produce different learning behavior (Rosen-
bloom et al., 1993). Either solution is an acceptable path to
an architecture of cognition, as long as attention is paid to
producing the full range of human learning behavior.

Variety of strategies Although 28 combinations of pattern
and level strategies can theoretically appear, 71% of the ob-
served behavior falls into 6 pattern/level strategies: stacked in
levels 1&2, 2&3 and ALL, sequential in level-1, and oppor-
tunistic in levels 1 and 1&2. Thus, a cognitive architecture
which can model these six strategies will account for nearly
three-quarters of observed behavior.

Gradual vs. abrupt strategy shifts The existence of grad-
ual strategy-shifts implies than an architecture cannot have a
dominant all-or-nothing learning algorithm that functions at
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the strategy level; it cannot display dogmatic behavior with
respect to strategies. Rather, it must have mechanisms for tun-
ing existing strategies and experimenting with new ones. It
must be able to gain information about different strategies over
time to migrate to a new one. Also, once it has experimented
with, or been told, or otherwise discovered a new strategy, it
cannot thereafter always choose to use that strategy.

The existence of abrupt strategy changes puts other con-
straint on a cognitive architecture, Gradual changes point
towards tuning or experimentation mechanisms, but abrupt
changes in strategy (in the absence of changes in the task
environment) point towards reasoning mechanisms that do in-
deed discover that a new strategy is better (by some measure)
and replace the behavior associated with the old strategy.

Abrupt changes can happen between trials (6 changes) or
within trials (5 changes) and these have different implications
for acognitivearchitecture. Intra-trial abrupt strategy changes
imply that the reasoning processes are happening while the
task is being done, perhaps in some cognitive “slack time"”
(e.g., the 15 seconds while planes are moving across the run-
ways). Thus, cognitive resources must be able to be applied
both to the task-at-hand and to reasoning about the task. This
implies simultaneity of thought, or rapid task-switching, or
some other mechanism that can display such behavior.

Furthermore, our think-aloud protocols in other dynamic
tasks indicate that some people have an awareness of the slack
time itself, that they deliberately use that time to think about
better ways to do the task. Thus, a cognitive architecture may
need the capability to perceive and reason about time itself to
fully model human behavior in dynamic tasks.

Inter-trial abrupt strategy changes implies reasoning about
the task when not in the task environment. When strategy
changes happen after the 5-minute breaks between 30-minute
sessions, or on the first trial of the second day of a two-day
experiment, it is plausible that the participant has been think-
ing about the task. If so, a cognitive architecture must have
the capability to learn enough about the task, the display, the
dynamics, etc. to do this reasoning without the environment
in front of it. This may be evidence for the existence of some
type of mental simulation in these participants.

Conclusions

This study of strategy use for the KA-ATC® task shows the
importance of the strategy choice for the final performance
on the task: many participants (26) eventually picked the
pattern-strategy giving the best performance, but almost al-
ways (in 25 cases) after an exploratory phase involving the
use of other pattern-strategies, or no identifiable strategy at
all. We also believe that the great variety in strategy use puts
some constraints on a cognitive architecture used to model
this task.

As future work, we intend to determine whether if the
strategy shifts are related to specific events arriving during the
task (e.g., a plane crash). We also intend to explore further
how level strategies evolve, and how they are connected to
pattern strategies. Finally, we will examine how the strategies
evolve during the subsequent 9 trials of the study, and other
KA-ATC® studies, when bad weather conditions come into
play and force the participants to deal with many more rules
about landing planes.
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