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BRIGHTNESS, COHERENCE, AND PROPAGATION 
CHARACTERISTICS OF SYNCHROTRON RADIATION* 

Kwang-Je Kim 

Center for X-ray Optics 
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Abstract 

A formalism is presented by means of which the propagation and 

imaging characteristics of synchrotron ragiation can be studied, 

taking into account the effects of diffraction, electron beam emit-

tance, and the transverse and longitudinal extent of the source. An 

important quantity in this approach is the Wigner distribution of the 

electric fields, which can be interpreted as a phase-space distribu-

tion of photon fl~x. and thus can be identified with the brightness. 

When integrated over the angular variahles, the brightness becomes the 

intensity distribution in the spatial variables and when integrated 

over the spatial variables, it becomes the intensity distribution in 

angular variables. The brightness so defined transforms through a 

general optical medium in exactly the same way as in the case of a 

collection of geometric rays. Finally, the brightness of different 

electrons adds in a simple way. Optical characteristics of various 

synchrotron radiation sources - bending magnets, wigglers and undu-

lators, are analyzed using this formalism. 

*This work was supported by the U.S. Department of Energy under 
Contract No. DE-AC03-76SF00098. 
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I. Introduction 

Calculations in Gaussian optics, i.e., geometrical optics with a 

paraxial approximation, are greatly facilitated by working with the 

phase-space variables associated with each ray. The density distribu­

tion of the rays in phase space, called the brightness, is a useful 

quantity in describing the propagation properties of a collection of 

rays through an arbitrary optical medium. The brightness is also 

important as an invariant characterization of source strength, since 

the phase-space area is conserved under opt1cal transformation. 

The importance of the brightness has been widely recognized in 

connection with the planning and. design of neit-generation synchrotron 

radiation sources. However, the use of brightness in this context has 

been only qualitative. Thus, the source brightness~ of a synchrotron 

radiation device is sometimes calculated by means of the following 

approximate formula: 

. i:71 ~ - - 2- (effective source area), 
d fJ 

(1) 

where the quantity d2sryd2 ~. the angular distribution of the flux 

is to be computed from the well-known radiation formula [1], and the 

effective source area is to be obtained by 11 properly11 adding the con-

tributions from the electron beam size, diffraction effects and, depth 

of the field effects, etc. However, a rigorous basis upon which 

Eq. (1) could be based has been lacking so far. 
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In this paper, we introduce the brightness as a certain Fourier 

transform of a mutual coherence function of electric fields. The 

brightness so defined satisfies the same transformation properties as 

in Gaussian optics and is thus useful in studying the propagation 

properties of radiation through optical media, taking a full account 

of the diffraction effects. The formalism permits a quantitative cal­

cul~tion of the source brightness of a synchrotron radiation device. 

Section II reviews the properties of Gaussian optics, which serves 

as a model for later discussions. In Section III, the brightness in a 

general case is defined in terms of the electric fields, and its 

transformation properties are described. Section IV discusses the 

transverse coherence properties in terms of our generalized bright­

ness. A simple application of the formalism to the fundamental opti­

cal resonator mode appears in Section V. Section VI establishes an 

important theorem concerning synchrotron radiation due to a random 

collection of electrons. Section VII derives an approximate expres­

sion for the brightness of undulator radiation by approximating the 

brightness due to a single electron by the brightness due to a laser 

mode. Section VIII contains a more rigorous discussion of the source 

brightness of bending magnets, wigglers, and undulators. Finally, 

Section IX concludes the paper. 

Explicit derivations of formula are often neglected here. They 

will appear in a future publication. 

II. Gaussian Optics 

In this section, we review some well-known properties of Gaussian 

optics as an introduction to the brightness concept. 
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Consider the problem of finding the intensity distribution at the 

image plane of the optical system shown in Fig. (1). In Gaussian 

optics, only those rays that stay close to a reference trajectory, 

called the optical axis, are considered. The position along the opti­

cal axis will be specified by the z-coordinate. A ray passing through 

a plane transverse to the optical axis at z can be characterized by 

(x,b), where xis the position of the ray in the plane and b is the 

angle between the ray and the optical axis. Although x and 0 are two­

dimensional vectors, we shall suppress th~ vector notation whenever 

possible throughout this paper. In passing through an optical medium, 

a ray changes according to 

M = Mn . Mn- i • . • M1 

Here Mi is a 2 x 2 matrix which characterizes a component of the 

medium and which is given by 

Ml = ( 1 R.) 
0 1 for free space of length R. 

Mf = 1 
(-1/f ~) for a lense of focal length f 

(2) 

(3) 

( 4) 

( 5) 

The brightness~(x,b;z) is defined for each transverse plane at z 

by 

~(x,b;z)dxdb = number of rays in phase-space area dxdb. (6) 

c ... \ 

I ...... 
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Since the number of rays and the element dxd~ are conserved, one 

obtains 

Equation (7) gives the transformation properties of the brightness 

through an arbitrary optical medium. When slits are present, rays 

that hit the opaque parts should be removed. 

A'luminous object, or source, can be specified by a function 

S(x,~;z), defined by 

(7) 

S(x,6;z)dxd~dz = the number of rays generated by an (8) 
infinitesimal section dz into the phase 
space element dxd6. 

A ~ore convenient way to characte~ize the source is to provide the 

brightness~(x,6:0) referred to a transverse plane within the source 

at z = 0. It is easy to show that 

$(x,6;0) = j.dz S(x- z¢>,6;z) 

This will be referred to as the source brightness. 

The solution of the general optical problem illustrated in 

Fig. (1) proceeds as follows: compute the source brightness using 

Eq. (9). Find the matrix M corresponding to a particular optical 

medium and determine the brightness at the image plane by Eq. (7). 

Physically measurable quantities, such as the flux density d29ftd2x' 

and the angular distribution d29ftd2¢>, are obtained by integration 

as follows: 

(9) 
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(10) 

igr f 2 T. = !J(x,t>;z)d x 
d tl 

III. General Definition of Brightness 

The general discussion of brightness, taking into account 

diffraction effects, starts with the electric field E. Throughout 

this paper, we shall always consider a narrow bandwidth flw about a 

given frequency w. (In this sense, the brightness we discuss here is 

in fact the "spectral" brightness). Also, we shall limit our discus-

sian to a single polarization component because, in synchrotron radia-

tion, usually only the horizontal component is important. Effectively, 

therefore, the electric field is considered to be a scalar quantity. 

El~ctric fields and brightness.are always referred to a certain 

transverse plane. For notational simplicity, the z depedence will be 

suppressed whenever possible. Thus, the electric field will be repre-

sented by either E(x) or E(x;z). It is convenient to introduce the 

following Fourier transform pair: 

E(x) = ~~(~)eik~·x d2~ 

~(0) = ~ 2 ~E(x)e-iktJ·x ix 
(11) 

Here k = w/c = 2w/A, A being the radiation wavelength. As in Gaussian 

optics, we make the paraxial approximation ~2 << 1, so that 

C' 

\.. 
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The wave propagation in free space is then described by the Fresnel 

diffraction formula given by 

~2 
ik·£0- 2 } 

W ( tl; z+ t} = W( t1: z) e · 

J 
. k (( x-x I }2 + £) 

E(x;z+£) = ~! ix 1 E(x 1 ;z}e 
1 

\ 2£ .· 

( 12} 

(13) 

The brightness is defined as a bilinear function of the electric 

field as follows: 

~(x,tl) = const ~d2; <~(tl +f) W(tl- f)> e-ikx·; 

= co~st~iu <E*(x + *) E(x- *}> eikt>•u 
A . 

The angular brackets here indicate the ensemble average: they are 

necessary when the fields fluctuate randomly. The constant in 

Eq. (14) depends on whether the brightness is defined in terms of 

power or photon numbers, and need not be specified here. 

The brightness defined above is real but not positive definite. 

(14} 

Thus its interpretation is not as straightforward as in the case of 

·Gaussian optics. This is fundamentally due fo the wave nature of the 

radiation, which precludes a simultaneous determination of both posi­

tion and angle, much as in quantum mechanics. In fact, a phase-space 
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distribution which closely resembles Eq. (14) was first introduced by 

Wigner [2] some 50 years ago in connection with statistical quantum 

mechanics. Since then, the representation has been rediscovered and 

studied by several authors [3] in the context of optics. 

We shall now establish that the brightness defined here shares 

many properties of Gaussian optics. First, one obtains by integration 

that 

f 2 2 ~(x,~)d ~ ~ <IE(x)l > (15 a) 

J ~(x.~) d
2

x ~ < lg'(~) 12> (15b) 

The right-hand sides of above equations, which are positive definite, 

can clearly be identified as the fluxes, and thus Eq. (15) reduc~s to 

Eq., (10). 

The transformation property under free-space propagation is 

determined by the Fresnel formula, Eq. (13). Inserting this into 

Eq. (14), one finds 

( 16) 

To find the transformation th~ough a lense of focal length f, we note 

that the electric field transforms according to 

E ( ) E (x)e-ikx2/2f 
after x = before 

From Eq. (17) and Eq. (14), one obtains 

X 
~after (x,~) =~before (x,~ +f) 

(17) 

(18) 
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Both Eq. (16) and Eq. (18) are of the form of Eq. (7). Therefore, the 

transformation properties of the brightness defined here are the same 

as in Gaussian optics. The result can be generalized to the case of a 

continuous medium. 

When slits are present, diffraction effects could become important, 

and the transformation·properties are modified compared to the Gauss1an 

case •. 

IV. Transverse Coherence 

• The brightness as given by Eq. (14) is a Fourier transformation of ; 

the mutual coherence function defined at a transverse plane. Therefore 

brightness provides another convenient description of the properties of 

transverse coherence. As a matter of fact, the free-space transforma­

tion, Eq. (16), is equivalent to the well-known Zernike-Van-Cittert 

theorem [4]. 

Kondratenko and Skrinsky [5] have introduced the concept of the 

transversely coherent flux ~oh' as that part of the flux which is 

able to exhibit interference phenomena. Our definition of brightness 

can make their argument precise, as follows: Fig. (2) shows radiation 

generated by a partially coherent, extended source, propagating through 

two symmetrically located pinholes and forming an interference pattern 

on a screen. The coherent flux ~oh may be defined as the flux 

reaching the shaded area integrated over 6, the angle subtended by the 

pinholes. It then follows that 
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. J 2 * 9'"coh a: d tJ <~ (~)~(-IJ}> 

;, JiG I8B(x,O)e2ikx Gdx I 

A 2 
~ (2) £$(0,0) 

V. An Example: Fundamental Mode of Optical Resonator 

A simple example of our general discussion is provided by the 

fundamental mode of an optical resonator. Choosing Z=O to be the 

( 19) 

location of the waist, and using the known ·expression for the electric 

field [6], one finds that 

(20) 

where· 9""is the total flux and ar and or·· are related by 

(21) 

Notice that Eq •. (20) automatically sa~isfies Eq. (16). Computing the 

coherent flux !7:_ h' we find that the equality in Eq. (19) holds in co . 
this case, and thus 

(22) 

From Eq. (20) and (21), it then follows that 
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g-coh = g- (23) 

In other words, we found the intuitively reasonable result that the 

total flux is coherent for the fundamental mode. 

VI .. Synchrotron Radiation Due to Many Electrons and an Add it ion 

_, Theorem 

The electric field at Z=O associated with a fast-moving electron 

(MKS units) is .. 

~ J edt n x (n x a(t))eiw(t- n·r/c) 
). ). - (24) 

Here e:
0 

is the vacuum dielectric constant, n i~ the direction vector 

whose transverse component is (J and whose axial component is 

· · n =1-tJ2t2· z 
and r and ca are, respectively, the position and the velocity of the - -
electron trajectory. Inserting Eq. (24) into Eq. (14), we have now an 

explicit expression for the source brightness due to a single electron. 

This will be discussed further in later sections, but the purpose here 

is to discuss an important theorem for a random collection of elec-

trans, as found in an electron storage ring. 

The mot·ion of electrons in storage rinqs is very much analogous to 

the propagation of rays in Gaussian optics. Corresponding to the 

brightness, ·we introduce the phase..:.space distribution function f of 

electrons, which, at symmetric points around the ring, is of the form 
' . 
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. 
The produce crxcr~ is known as the emittance. Equation (25) gives 

the probability distribution of electrons in phase space (xe,~e). 

The theorem, which will be called the addition theorem, will be 

stated here without proof; let~ be the source brightness of the 

reference electron. The source brightness due to all electrons is 

then given by 

(25) 

(26) 

where Ne is the total number of electrons. The conditions necessary 

for Eq. (26) ~re'that different electrons are statistically independent 

and that the variation of the magnetic guide field across the electron 

·beam dimensions is negligible. Both of these are well-satisfied by 

the ·usual s~nchrotroh- radiation sources. 

VII. Approximation of Undulator Radiation by Laser Mode 

The expression for the source brightness of undulator radiation is 

somewhat involved, and it is\useful to approximate it by the laser 

mode discussed in Secti~n V. To identify crr and crr, with the undulator 

parameters, we fi.rst determine (Tr' from the undulator angular distri­

bution and write [7] 

crr' =.J"f= (27) 

( 
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where L is the length of the undulator, K is the deflection parameter, 

y is the electron energy/rest energy, n is the harmonic number, and N 

is the number of the undulator periods. From Eq. (21), one obtains 

(28) 

which is the diffraction-limited source size. The undulator brightness 

of a single electron is then approximated by Eq. (20), with cr•s given 

by Eq. (27) and Eq. {28). 

We now use the addition theorem to obtain the brightness corre­

sponding to a beam of electrons. The integral (26) in this case is a 

convolution of two Gaussian functions, and one obtains 

(29) 

In this and the following sections, we will restore the two-dimensional 

notation; x ~ x = (x,y) and~~~=(~,~), and 

(30) 

An expression for the undulator brightness was first derived by 

Krinsky [7] using an intuitive approach. His equation is similar to 
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Eq. (29), except that his crr is larger by a factor 2n, and his 

expression includes an additional term in crTx and crTy which ~epre­

sents the depth of field effects due to electron beam angular· diver-

gence. The latter term is implicit in the transformation property of 

the electron beam phase space, and thus should not appear in Eq. (30). 

The source strength of an undulator may be characterized by the 

peak brightness~(O,O). Reference [8] contains the brightness of 

various synchrotron radiation sources computed in this way. 

VIII .. Source Brightness of Synchrotron Radiation 

Let us now turn to a more rigorous derivation of the source 

brightness of synchrotron radiation due to a single electron based on 

Eq. (24) and Eq. (14). The electron trajectory is assumed to lie in 

the horizontal plane, and the coordinate system is explained in 

Fig. (3). 

Bending Magnets and Wigglers 

Using the same approximation that Schwinger [9] uses for his 

·derivation of the radiati_on from bending magnets, one finds that the 

source brightness is given by 

( 31) 

Here, i!7/dtJd'¥ is the well-known angular distribution of the flux, 

and ~(~) and Y(6) are the coordinates of the point on the trajectory 

where its slops coincides with tJ, as shown in Fig. (4). According to 

Eq. (31), photons are emitted incoherently in the tangential direction 

\.. 
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at each point of the trajectory. However, the formula breaks down and 

the diffraction effect becomes important when 

IY + z{t>) I and I X- x(tl) + ~z(tJ) I< p(~) 2 / 3 
p 

(32) 

where p is the instantaneous radius of the curvature. Equation (31) 

is analogous to, but simpler than, Green•s classical analysis [10], in 

which he incorporated the diffraction effect on the basis of an intui-

tive argument. 

Undulators 

Although the general expression for undulator brightness is rather 

complicated, one obtains the following approximate expression when 

. 1 (1-z) 

&n(!;•!) =&U(O,O) ~ L dz J d~ 
o -{1-z) 

where 

sin((J!•z + ~·) 2 /t- tJ!• 2) 
t 

The integral in Eq. (33) can be evaluated numerically [11], and the 

result is shown in Fig. (5) for a particular case where~ and ~are 

parallel. One notices that a Gaussian approximation will be poor. 

The non-Gaussian nature of the undulator brightness also manifests 

itself in the expression of the peak brightness: 

(33) 

(34) 



!7 ~{0,0) = -2-
A /2 

16 

(35) 

This is to be compared with the result of Section V, where we obtained 

~(0,0) =!T/(x2 t4) for a Gaussian mode. 

The implication of the non-Gaussian nature of the brightness 

distribution is being investigated. 

1X. Conclusions 

In this paper, we have presented a formalism which provides a 

rigorous theoretical basis for calculating optical properties of 

synchrotron radiation. The brightness defined here has the same 

transformation properties as in Gaussian optics, and it provides a 

convenient description of the coherence characteristics of synchrotron 

radiation. Furthermore, the addition theorem shows how the incoherent 

phase space of electrons and the coherent phase space of radiation can 

be added in a simple fashion. 
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Figure Captions 

Fig. 1. A general problem in optics. 

Fig. 2. An illustration of transverse coherence. 

Fig. 3. The coordinate system. 

Fig. 4. An illustration of Eq. (31). The radiation emitted at P is 

projected to the reference plane at Z=O to find the source 

coordinate. 

Fig. 5. The function~(x,tl)/~(0,0) when x and t1 are parallel. - -
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