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a b s t r a c t

In this paper, the generalized SEIHRDP (susceptible–exposed–infective–hospitalized–recovered–death–
insusceptible) fractional-order epidemic model is established with individual migration. Firstly, the
global properties of the proposed system are studied. Particularly, the sensitivity of parameters to the
basic reproduction number are analyzed both theoretically and numerically. Secondly, according to
the real data in India and Brazil, it can all be concluded that the bilinear incidence rate has a better
description of COVID-19 transmission. Meanwhile, multi-peak situation is considered in China, and it is
shown that the proposed system can better predict the next peak. Finally, taking individual migration
between Los Angeles and New York as an example, the spread of COVID-19 between cities can be
effectively controlled by limiting individual movement, enhancing nucleic acid testing and reducing
individual contact.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

End of 2019 saw the outbreak of the dangerous infectious
isease COVID-19, which is brought on by a novel coronavirus.
lobal public health has been significantly impacted by the
3,837,395 diagnosed cases and the 590,702 death cases as of
uly 17, 2020 [1]. The quick rise in infection cases suggests that
OVID-19 has a much greater ability to spread than MERS-CoV
nd SARS coronaviruses [2,3]. A direction for taking the right
teps can be provided by a deeper comprehension and insight of
he epidemic tendencies. Numerous nations have implemented a
ariety of mitigating strategies to prevent the spread of COVID-19
ince 23 January, 2020. These strategies include home isolation,
erd immunity, limiting individual migration, and others.
Lack of information on the dynamic mechanism relating to

he severity of COVID-19 at the this early stage makes it ex-
remely difficult to limit the spread of COVID-19. However, using
mathematical model, strategies can be measured to serve as
benchmark for determining whether mitigation strategies are
dequate. During the modeling process, it is very important to
escribe how infectious diseases are transmitted between sus-
eptible and infected individuals. Numerous studies have shown
hat the incidence rate, which measures the infection capacity of a

∗ Corresponding author.
E-mail address: ygyu@bjtu.edu.cn (Y. Yu).
ttps://doi.org/10.1016/j.isatra.2022.12.006
019-0578/© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
single infected person per unit time, is a crucial tool for describing
this process, where susceptible individuals come into contact
with infected individuals and are then infected with such a pre-
determined probability [4–7]. Meanwhile, Korobeinikov et al. [8]
indicated that the stability of the endemic equilibrium point is
closely related to the concave of the incidence rate with respect
to the infected individuals. Therefore, many researchers estab-
lished the epidemic model of COVID-19 under various incidence
rates [9–11], for example, Peng et al. [9] constructed the SEIR
(E-exposed) epidemic model and they discovered that COVID-19’s
first appearance might be traced to the end of December 2019. A
SEIQRD (Q-diagnosed) model was taken into consideration by Xu
et al. [10], which has some basic guiding relevance for predicting
COVID-19.

Besides, individual migration has a crucial effect on the evolu-
tion of infectious diseases. With the convenience between cities,
individuals move more and more frequent and new infectious
diseases develop more rapidly regionally and globally [12]. Nu-
merous deterministic models with multiple patches have been
presented in attempt to better understand how individual migra-
tion affects the spread of infectious illnesses [13–15]. Contrary to
what was initially reported [16], COVID-19 is in fact spreading
from person to person through continuous interpersonal con-
tact [2]. Lu et al. [17] considered a fractional-order SEIHRD
(H-hospitalized) model with inter-city networks and they found

that COVID-19 could be reduced in low-risk areas, but increased

https://doi.org/10.1016/j.isatra.2022.12.006
https://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2022.12.006&domain=pdf
mailto:ygyu@bjtu.edu.cn
https://doi.org/10.1016/j.isatra.2022.12.006
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n high-risk areas by restricting communication between cities.
eanwhile, cross-infection among cities are considered, while

here is not consider for self-migration [17]. Therefore, it is of
reat practical significance to include individual migration in
ifferent cities or different countries with the modeling COVID-
9. Furthermore, the migration of susceptible, exposed, infected
ndividuals are studied in this paper.

It is worth noting that the time which patients waits for treat-
ent follows the power law distribution [18], which prompts the
se of the Caputo fractional-order derivative [19]. Angstmann
t al. [20] discovered how fractional operators naturally appear
n their model if the recovery time is a power law distribution
fter building a SIR epidemic model. Meanwhile, this offers a
hronic disease epidemic model in which long-term infected
eople have little chance of recovering. Based on this state-
ent, several authors have stated that the fractional-order model
lays an important role in the process of disease transmission.
han et al. [21] recounted how individuals, bats, unidentified
osts, and the source of the illness interacted, and considered
ow crucial the fractional-order system was in preventing the
pread of the infection. To predict the spread of COVID-19, Chen
t al. [22] developed a fractional-order epidemic model. Amjad
t al. [23] built a fractional-order COVID-19 model and calculated
he consequences of several mitigation and prevention strategies.

Motivated by the above discussion, a fractional-order SEIHRDP
pidemic model with individuals movement is established in this
aper to study COVID-19. Meanwhile, the number of hospital-
zations is the same as confirmed isolation in China, and but in
ther countries, these two are not equal, which the number of
onfirmed case is greater than that of hospitalized case. So in
rder to give a more generalized model, the purpose of this paper
s to describe hospitalized individuals in response to the spread
f COVID-19. The infectiousness of the incubation time is also
aken into consideration, as inspired by [24]. Then, the proposed
ystem’s dynamic behaviors are investigated, including the ex-
stence and uniqueness of the nonnegative solution, the global
symptotic stability of the disease-free equilibrium, and the uni-
orm persistence, all of which have theoretical implications for
uture COVID-19 intervention and prevention. Meanwhile, the ba-
ic reproduction number with and without individual migration
re compared, and it is found that adding individual migration
an effectively describe the spread of COVID-19. Furthermore, the
ensitivity of parameters to the basic reproduction number are
nalyzed both theoretically and numerically. Meanwhile, consid-
ring India and Brazil, results suggest that the bilinear incidence
ate may be more fitted than the saturation incidence rate for
timulating the spread of COVID-19. When individuals movement
s not considered, it can be found the proposed fractional-order
odel can better predict than the integer-order for multi peaks
f COVID-19 in China. Meanwhile, when individuals movement
s considered, the epidemic in the United States is analyzed and
ome mitigation measures are carried out to control the devel-
pment of COVID-19. An implication of the achieved results is
he possibility that the United States peaked on 24 November,
020 (integer-order system) and 1 January, 2021 (fractional-order
ystem), however, the number of infections shows an downward
rend after 17 July, 2020 as enhancing nucleic acid detection and
educing the contact rate. Meanwhile, considering measures to
imit migration between New York and Los Angeles, and enhance
ucleic acid detection and reduce exposure rates, it is evident that
here is an immediate increase in confirmed cases before a drop.

Based on the above analysis, a generalized fractional-order
EIHRDP epidemic model with individual migration is considered.
he main contributions of this study are as follows:

• A fractional-order epidemic model with self-migration is
considered, in which the infectivity of exposed individuals
and hospitalized individuals are also taken into account.
583
• The global properties of the proposed model are investi-
gated, including the existence and uniqueness of global pos-
itive solutions, the local and global stability of disease-free
equilibrium points, the persistence of disease transmission.

• The sensitivity of parameters to the basic reproduction num-
ber are analyzed both theoretically and numerically.

• Based on real data, the impact of the incidence rate on
modeling COVID-19 is studied in India and Brazil.

• Multiple peaks of COVID-19 transmission in China are ana-
lyzed by the proposed system.

• Individual movement in the spread of COVID-19 in the
United States is investigated and the peak are analyzed
based on mitigation measures, such as enhanced nucleic
acid testing, reduced of individual exposure, and control of
individual movement.

The rest of this paper is organized as follows. The SEIHRDP
fractional-order model with individual movement is developed
for COVID-19 in Section 2 and provides some preliminaries. Then
dynamic properties of the proposed system are examined in
Section 3. The theoretical results are shown using numerical sim-
ulations in Section 4. Finally, Section 5 provides the conclusions.

2. System description and preliminaries

Fractional-order operator have been determined to have a
wide range of uses in the modeling of many dynamic processes,
including those in engineering, biology, medicine, and others [25–
28]. In this part, some necessary preliminaries are introduced
before the fractional-order epidemic model is presented.

2.1. Preliminaries

Definition 2.1 ([29]). The Caputo fractional-order operator is
efined by

Dα
t g (t) =

dαg (t)
dtα

=
1

Γ (n − α)

∫ t

0

g (n)(s)
(t − s)α−n+1 ds, (n − 1 < α < n),

where g (n)(s) is the nth derivative of g(s) with respect to s.

Remark 2.1. If α = n, one has
C
0D

α
t g (t) = g (n)(t).

Lemma 2.1 ([30]). The Caputo nonlinear system is considered as
follows:
C
0D

α
t x(t) = g(x), (α ∈ (0, 1]),

with the initial condition x0. If all eigenvalues of J|x=x∗ =
∂g
∂x |x=x∗

atisfy |arg(λ)| > απ
2 , the equilibrium points x∗ are locally asymp-

totically stable.

Lemma 2.2 ([31]). Suppose X ⊂ R and the continuous operator
T (t) : X → X satisfies
(1) T (t) is point dissipative in X and compact for t ≥ 0.
2) there is a finite sequence M = {M1,M2, . . . ,Mk} of compact and
isolated invariant sets such that

(i) Mi ∩ Mj = ∅ for any i, j = 1, 2, . . . , k and i ̸= j;
(ii) Ω(∂X0) ≜ ∪x∈∂X0ω(x) ⊂ ∪

k
i=1Mi;

(iii) in the case of ∂X0, no a cycle is formed by any subset of M;
(iv) W s(Mi) ∩ X0

= ∅ for each i = 1, 2, . . . , k.
Then T (t) is uniformly persistent in X.
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.2. Graph theory

In this paper, a weighted graph ζ = (ϑ, ω, A) will be consid-
ered to model the spread of infectious diseases between cities,
where ϑ = {ϑ1, ϑ2, . . . , ϑn} denotes the node set and ϑi rep-
resents the ith city; ω ⊆ ϑ × ϑ is the edge set, and if there
is individual movement between any two cities, it means that
there is a edge between this two cities; matrixes M = [mij]1≤i,j≤n,
N = [nij]1≤i,j≤n, P = [pij]1≤i,j≤n and Q = [qij]1≤i,j≤n represent
he weighted adjacency matrix of susceptible, exposed, infected
nd recovered individual, respectively; mij, nij, pij and qij denote
he migrate rate of susceptible, exposed, infected and recovered
ndividual from city j to city i with aij ≥ 0 (i ̸= j) and aii = 0 (a =

, n, p or q), respectively. Furthermore, based on the directivity
f individual migration, the directed graph ζ is studied in this
aper.

.3. System description

Starting from 23 January, 2020, the Chinese government has
dopted a series of mitigation measures to effectively suppress
he spread of COVID-19, such as implementing strict home isola-
ion, restricting various traffic, strengthening nucleic acid testing,
stablishing shelter hospitals and so on. Meanwhile, other coun-
ries around the world have adopted different measures from
hina, such as social distancing and herd community strategy
y British, protecting sensitive compartment from infection by
taly, transferring of critically ill patients with military aircraft by
rance, etc. Therefore, it is important to establish a generalized
odel of individual migration to simultaneously quantify the im-
act of interruption of policies on virus transmission. Moreover,
ang et al. [32] proposed that the exposed individual is infec-
ious of COVID-19. Therefore, a fractional-order SEIHRDP epi-
emic model with individual migration is considered as follows:

C
0D

α
t Sk = Λk − β1kSkfk(Ik) − β2kSkgk(Ek) − ρkSk

+

n∑
j=1

(mkjSj − mjkSk),

C
0D

α
t Ek = β1kSkfk(Ik) + β2kSkgk(Ek) − ϵkEk

+

n∑
j=1

(nkjEj − njkEk),

C
0D

α
t Ik = ϵkEk − δkIk +

n∑
j=1

(pkjIj − pjkIk),

C
0D

α
t Hk= δkIk − (λk + κk)Hk,

C
0D

α
t Rk = λkHk +

n∑
j=1

(qkjRj − qjkRk),

C
0D

α
t Dk= κkHk,

C
0D

α
t Pk = ρkSk.

(1)

ith the initial condition

k(0) = Sk0 > 0, Ek(0) = Ek0 ≥ 0, Ik(0) = Ik0 ≥ 0, Hk(0) = Hk0 ≥ 0,

Rk(0) = Rk0 ≥ 0, Dk(0) = Dk0 ≥ 0, Pk(0) = Pk0 ≥ 0.

(2)

he specific explanation of system (1) are as follows:

• Susceptible Sk: the number of susceptible class within city k
at time t .

• Exposed Ek: the number of exposed class within city k at
time t (neither any clinical symptoms nor high infectivity).

• Infectious Ik: the number of infected class within city k at
time t (with overt symptoms).
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• Hospitalized Hk: the number of hospitalized class within city
k at time t .

• Recovered Rk: the number of recovered class within city k
at time t .

• Dead Dk: the number of dead class within city k at time t .
• Insusceptible Pk: the number of susceptible class who are

not exposed to the external community within city k at time
t .

eanwhile, the process of disease transmission are as follows:

• The susceptible individual Sk contacts with Ek and Ik, and
then is infected by β1kSkfk(Ik) + β2kSkgk(Ek), where βik (i =

1, 2) are the transmission coefficient, fk(Ik) and gk(Ek) are
generalized incidence rates.

• The parameter Λk is the inflow rate; λk, ϵk, δk and κk repre-
sent the recovery, incubation, diagnosis, mortality rate.

• The susceptible, exposed, infective and recovered individu-
als in city j move to city k with probability mkj, nkj, pkj and
qkj, respectively. The terms

∑n
j=1(mkjSj−mjkSk),

∑n
j=1(nkjEj−

njkEk),
∑n

j=1(pkjIj−pjkIk) and
∑n

j=1(qkjRj−qjkRk) represent the
movement of Sk, Ek Ik and Rk individual, where

∑n
j=1 akjWj

represents the individuals moving into k city from other
cities j (k ̸= j) and

∑n
j=1 ajkWj represents the individuals

leaving city k (W = S, E, I , R, respectively, a = m, n, p, q,
respectively).

• The movement of insusceptible and hospitalized individuals
is not considered in this paper.

Furthermore, Λk, βik (i = 1, 2), ρk and ϵk are positive constants;
functions δk(t), λk(t), κk(t), mkj(t), nkj(t), pkj(t) and qkj(t) satisfy
|δk(t)| ≤ M1k, |λk(t)| ≤ M2k, |κk(t)| ≤ M3k, |mkj(t)| ≤ M4k,
|nkj(t)| ≤ M5k, |pkj(t)| ≤ M6k and |qkj(t)| ≤ M7k for all t ≥ 0 and
k, j = 1, 2, . . . , n, where M1k, M2k, M3k, M4k, M5k, M6k and M7k are
positive constants. The transmission diagram of the generalized
SEIHRDP model (1) is shown in Fig. 1.

Before presenting the major findings, the following general-
ized incidence rate hypothesis is put forth:

(H) : (i) gk(Ek) and fk(Ik) satisfy the local Lipschitz condition and
gk(0) = 0, fk(0) = 0 for k = 1, 2, . . . , n;

(ii) fk(Ik) is strictly monotone increasing on Ik ∈ [0, ∞) and
gk(Ek) is strictly monotone increasing on
Ek ∈ [0, ∞) for all k = 1, 2, . . . , n;

(iii) fk(Ik) ≤ akIk for all Ik ≥ 0,
where ak = f ′

k (0) for all k = 1, 2, . . . , n;
(iv) gk(Ek) ≤ bkEk for all Ek ≥ 0,

where bk = g ′

k(0) for all k = 1, 2, . . . , n.

Remark 2.2. It should be noted that many current models can be
viewed as a special type of system (1) with the hypothesis (H),
such as gk(Ek) = bkEk, gk(Ek) =

bkEk
1+vkEk

, fk(Ik) = akIk, fk(Ik) =
akIk

1+ukIk
and others [33] with nonnegative constants ak, bk, uk and vk.

Remark 2.3. Compared with [34], the individual movement in
this paper can be described as follows:
(1) the self-migration of individuals is described in system (1),
which is caused by a self-chemotactic-like forcing [35]. However,
the cross-infection among cities is considered which is a travel
infectious [34].
(2) system (1) describes not only the migration of infected indi-
viduals, but also the movement of exposed and recovered indi-
viduals.
(3) M = [mij]1≤i,j≤n, N = [nij]1≤i,j≤n, P = [pij]1≤i,j≤n and
Q = [q ] are not irreducible in this paper, but irreducible
ij 1≤i,j≤n
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Fig. 1. The schematic diagram of SEIHRDP epidemic model with individual
igration (i, j = 1, 2, . . . , n).

in [34]. Then the influence of network structure on disease trans-
mission can be discussed in this paper, such as fully connected
network, ring network and centralized network. However, [34]
only consider fully connected network.
(4) the total population of each city is changed (without consid-
ering the decrease in population due to death) in system (1). But
in [34], the total population of each city remains constant.

3. System analysis

This study explores system (1)’s dynamic analysis. As can be
seen, the death class Dk and the insusceptible class Pk have no
effect on the susceptible class Sk, exposed class Ek, infected class
Ik, hospitalized class Hk, or recovered class Rk of systems (1).
Accordingly, the following system is discussed in the next section:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

α
t Sk = Λk − β1kSkfk(Ik) − β2kSkgk(Ek) − ρkSk

+

n∑
j=1

(mkjSj − mjkSk),

C
0D

α
t Ek = β1kSkfk(Ik) + β2kSkgk(Ek) − ϵkEk

+

n∑
j=1

(nkjEj − njkEk),

C
0D

α
t Ik = ϵkEk − δkIk +

n∑
j=1

(pkjIj − pjkIk),

C
0D

α
t Hk= δkIk − (λk + κk)Hk,

C
0D

α
t Rk = λkHk +

n∑
j=1

(qkjRj − qjkRk),

(3)

with the initial condition

Sk(0) = Sk0 > 0, Ek(0) = Ek0 ≥ 0, Ik(0) = Ik0 ≥ 0,

k(0) = Hk0 ≥ 0, Rk(0) = Rk0 ≥ 0, (k = 1, 2, . . . , n).
(4)

.1. Existence and uniqueness of the positive solution

The existence, uniqueness, and boundedness of the nonneg-
tive solution for system (3) should be taken into account prior
o the numerical process. Therefore, this subsection will be dis-
ussed these properties for system (3).
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Theorem 3.1. For any nonnegative initial condition (4), there are a
unique solution for system (3) and the region

Ω = {(S1, E1, I1,H1, R1, . . . , Sn, En, In,Hn, Rn) :

0 < Si ≤
Λ

ρ
, 0 ≤ Ei ≤

Λ

ρ
, 0 ≤ Ii ≤

Λ

ρ
,

0 ≤ Hi ≤
Λ

ρ
, 0 ≤ Ri ≤

Λ

ρ
, i = 1, 2, . . . , n}

is positively invariant for system (3), where Λ =
∑n

j=1 Λj and
ρ = min{ρ1, ρ2, . . . , ρn}.

Proof. Let consider the following function:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1k= Λk − β1kSkfk(Ik) − β2kSkgk(Ek) − ρkSk

+

n∑
j=1

(mkjSj − mjkSk),

f2k= β1kSkfk(Ik) + β2kSkgk(Ek) − ϵkEk +

n∑
j=1

(nkjEj − njkEk),

f3k= ϵkEk − δkIk +

n∑
j=1

(pkjIj − pjkIk),

f4k= δkIk − (λk + κk)Hk,

f5k= λkHk +

n∑
j=1

(qkjRj − qjkRk).

It is obvious that Fk = (f1k, f2k, f3k, f4k, f5k) satisfies the local
Lipschitz condition about (Sk, Ek, Ik,Hk, Rk), then system (3) has a
unique solution. Next, the nonnegative solution will be analyzed.
Consider the following auxiliary system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

α
t Sk = −β1kSkfk(Ik) − β2kSkgk(Ek) − ρkSk

+

n∑
j=1

(mkjS j − mjkSk),

C
0D

α
t Ek = β1kSkfk(Ik) + β2kSkgk(Ik) − ϵkEk

+

n∑
j=1

(nkjE j − njkEk),

C
0D

α
t Ik = ϵkEk − δkIk +

n∑
j=1

(pkjI j − pjkIk),

C
0D

α
t Hk= δkIk − (λk + κk)Hk,

C
0D

α
t Rk = λkHk +

n∑
j=1

(qkjRj − qjkRk),

Sk(0) = Ek(0) = Ik(0) = Hk(0) = Rk(0) = 0.

Through the comparison theorem, it is not difficult to find that
the following auxiliary system has a unique solution (0, 0, 0, 0, 0).
Then the following equation holds:

(Sk, Ek, Ik,Hk, Rk) > (0, 0, 0, 0, 0).

Next, adding all equations gives C
0D

α
t N ≤ Λ − ρN where N =

n
j=1(Sj + Ej + Ij + Hj + Rj + Dj), Λ =

∑n
j=1 Λj and ρ =

in{ρ1, ρ2, . . . , ρn}. Then

(t) ≤ (N(0) −
Λ

ρ
)Eα(−ρtα) +

Λ

ρ
.

Therefore, the region Ω is positively invariant for system (3). □

3.2. Local stability

The exploration of the existence and local stability of the
disease-free equilibrium point is the focus of this section.
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heorem 3.2. There are a unique disease-free equilibrium point
0

= (S∗

1 , 0, 0, 0, 0, . . . , S
∗
n , 0, 0, 0, 0) for system (3) where S∗

=

S∗

1 , . . . , S
∗
n ), S

∗
= A−1Λ, Λ = (Λ1, . . . , Λn) and

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1 +

n∑
j̸=1

mj1 −m12 · · · −m1n

−m21 ρ2 +

n∑
j̸=2

mj2 · · · −m2n

...
...

...
...

−mn1 −mn2 · · · ρ2 +

n∑
j̸=n

mjn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

roof. Obviously, E0 satisfies the following equation:

k − ρkS∗

k +

n∑
j=1

(mkjS∗

j − mjkS∗

k ) = 0,

then the above equation can be written as the following matrix
form:

AS∗
= Λ.

It can be found that the matrix A is strictly diagonally dominant,
nd then it follows from [36] that one has A−1

≥ 0. So according
to [37], there exists a unique solution S∗

= A−1Λ. Therefore,
there exists a unique disease-free equilibrium point E0 of system
(3). □

The predicted number of secondary cases, which a typical
infectious individual should create in a community that is to-
tally susceptible, is known as the basic reproduction number R0.
According to Watmough et al. [38], it can be determined that
an infectious disease can commonly infect the community if one
diseased individual can typically infect more than one susceptible
individual when R0 ≥ 1. On the other hand, if R0 < 1, each
infected individual produces less than one new infection, and
the infectious diseases cannot grow. Thus, it is very important to
describe the relationship between the basic reproduction number
and the spread of infectious diseases. Here, the basic reproduction
number R0 is stated as follows.

Theorem 3.3. Under hypothesis H, the basic reproduction number
R0 is

R0 = ρ(F11V−1
11 − F12V−1

11 V21V−1
22 ),

where matrixes F11 = diag(β21b1S1, . . . , β2nbnSn), F12
= diag(β11a1S1, . . . , β1nanSn), V21 = diag(−ϵ1, . . . ,−ϵn),

V11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϵ1 +

n∑
j̸=1

n1j −n12 · · · −n1n

−n21 ϵ2 +

n∑
j̸=2

n2j · · · −n2n

...
...

...
...

−nn1 −nn2 · · · ϵn +

n∑
nnj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

j̸=n
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and

V22 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1 +

n∑
j̸=1

p1j −p12 · · · −p1n

−p21 δ2 +

n∑
j̸=2

p2j · · · −p2n

...
...

...
...

−pn1 −pn2 · · · δn +

n∑
j̸=n

pnj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof. Let consider the following matrixes:

F0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β11S1f1(I1) + β21S1gk(E1)
...

β1nSnfn(In) + β2nSngn(En)
0
...

0
0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

V0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϵ1E1 −

n∑
j=1

(n1jEj − nj1E1)

...

ϵnEn −

n∑
j=n

(nnjEj − njnEn)

−ϵ1E1 + δ1I1 −

n∑
j=1

(p1jIj − pj1I1)

...

−ϵnEn + δnIn −

n∑
j=n

(pnjIj − pjnIn)

−δ1I1 + (λ1 + κ1)H1
...

−δ1In + (λn + κn)Hn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

et u = (E1, . . . , En, I1, . . . , In,H1, . . . ,Hn), then take the deriva-
ive of F0 and V0 for u at the disease-free equilibrium point E0,
espectively, we can see as follows:

=

( F11 F12 0
0 0 0
0 0 0

)
and V =

( V11 0 0
V21 V22 0
0 V32 V33

)
,

here F11 = diag(β21b1S∗

1 , . . . , β2nbnS∗
n ), F12 = diag(β11a1S∗

1 , . . . ,

1nanS∗
n ), V21 = diag(−ϵ1, . . . ,−ϵn), V33 = diag((λ1 + κ1), . . . ,

λn + κn)), V32 = diag (−δ1, . . . ,−δn),

11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϵ1 +

n∑
j̸=1

n1j −n12 · · · −n1n

−n21 ϵ2 +

n∑
j̸=2

n2j · · · −n2n

...
...

...
...

−nn1 −nn2 · · · ϵn +

n∑
nnj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

j̸=n
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nd

22 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1 +

n∑
j̸=1

p1j −p12 · · · −p1n

−p21 δ2 +

n∑
j̸=2

p2j · · · −p2n

...
...

...
...

−pn1 −pn2 · · · δn +

n∑
j̸=n

pnj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

hen according to [39], the basic reproduction number is as
ollows:

0 = ρ(FV−1) = ρ(F11V−1
11 − F12V−1

11 V21V−1
22 ),

here ρ(F11V−1
11 − F12V−1

11 V21V−1
22 ) is the spectral radius of the

atrix (F11V−1
11 − F12V−1

11 V21V−1
22 ). □

emark 3.1. According to [40], the epidemic size ςk = Sk(0)− S∗

k
f city k is defined as the number of individuals affected by the
nfectious disease, where Sk(0) is initial condition and S∗

k is the
isease-free equilibrium point of susceptible individuals within
ity k.

emark 3.2. When individual migration is not taken into consid-
ration, it can be calculated from [10] that the basic reproduction
umber Rk

0u of city k is

k
0u = S∗

k (
β2kbk

ϵk
+

β1kak
δk

).

Remark 3.3. When individual migration is taken into considera-
tion, Rk

0 of city k is

Rk
0 =

S∗

k

ϵk +
∑n

j̸=k nkj
(β2kbk +

β1kakϵk
δk +

∑n
j̸=k pkj

).

emark 3.4. It is easy to see that Rk
0 are not dependent on λk, κk

and mkj. Like [41], the other Λk, β1k, β2k, ρk, ϵk, nkj, pkj and δk are
alculated as follows:

Λk=
Λk

Rk
0

∂Rk
0

∂Λk
= 1, Aρk=

ρk

Rk
0

∂Rk
0

∂ρk
= −1,

β1k=
β1k

Rk
0

∂Rk
0

∂β1k
=

β1kakϵk
δk+

∑n
j̸=k pkj

β2kbk +
β1kakϵk

δk+
∑n

j̸=k pkj

,

Aβ2k=
β2k

Rk
0

∂Rk
0

∂β2k
=

β2kbk
β2kbk +

β1kakϵk
δk+

∑n
j̸=k pkj

,

Aδk=
δk

Rk
0

∂Rk
0

∂δk
= −

1

(δk +
∑n

j̸=k p
2
kj)(β2kbk +

β1kakϵk
δk+

∑n
j̸=k pkj

)
,

ϵk=
ϵk

Rk
0

∂Rk
0

∂ϵk
= −

1
ϵk +

∑n
j̸=k nkj

(β2kbk +
ϵk +

∑n
j̸=k nkj

δk +
∑n

j̸=k pkj
),

nkj=
nkj

Rk
0

∂Rk
0

∂nkj
= −1,

pkj=
pkj
Rk
0

∂Rk
0

∂pkj
= −

1

(δk +
∑n

j̸=k p
2
kj)(β2kbk +

β1kakϵk
δk+

∑n
j̸=k pkj

)
,
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where AΛk , Aρk , Aβ1k , Aβ2k , Aδk , Aϵk , Ankj and Apkj represent the
normalized sensitivity on Λk, ρk, β1k, β2k, δk, ϵk, nkj and pkj, re-
spectively. Through the above calculation found that the increase
on Λk, β1k and β2k leads to the increase on Rk

0, but the increase
on ρk, δk, ϵk, nkj and pkj leads to the decrease on Rk

0. In addition,
the movement of susceptible individuals has no impact of Rk

0, but
the movement of exposed and infected individuals is negatively
correlated with Rk

0, and the movement of exposed individuals is
more likely to influence the spread of the infectious disease with
|Ankj | > |Apkj |.

Theorem 3.4. Under hypothesis H, system (3) is locally asymptoti-
cally stable at the disease-free equilibrium point E0 if |arg(sF−V )| >
απ
2 .

Proof. The following Jacobian matrix at the disease-free equilib-
rium point E0 is considered:

JE0 =

( J11 ∗ 0
0 F − V 0
0 ∗ J33

)
,

where matrixes

J11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ρ1 −

n∑
j=1

mj1 m12 · · · m1n

m21 −ρ2 −

n∑
j=1

mj2 · · · m2n

.

.

.
.
.
.

.

.

.
.
.
.

mn1 mn2 · · · −ρn −

n∑
j=1

mjn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

J33 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−

n∑
j=1

qj1 q12 · · · q1n

q21 −

n∑
j=1

qj2 · · · q2n

...
...

...
...

qn1 qn2 · · · −

n∑
j=1

qjn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and V see Theorem 3.3. Then if all eigenvalues of the Jacobian
atrix JE0 satisfy |arg(si)| > απ

2 , E0 is locally asymptotically
stable and unstable if for some eigenvalues si, |arg(si)| ≤

απ
2 .

bviously, J11 and J33 are a nonsingular M-matrix, so J11 and J33
as all eigenvalues with negative real parts according to [42].
onsequently the local stability of E0 depends only on eigenvalues
f F −V . Thus, if all eigenvalues of F −V satisfy |arg(sF−V )| > απ

2 ,
ystem (3) is locally asymptotically stable. □

emark 3.5. If all the eigenvalues of F − V are negative, that is
arg(sF−V )| = π > απ

2 , system (3) is locally asymptotically stable.
Meanwhile, it is obvious that

|arg(sF−V )| = π ⇔ sF−V < 0 ⇔ ρ(FV−1) < 1 ⇔ R0 < 1.

It can be yielded that if R0 < 1, the disease-free equilibrium point
E0 is locally asymptotically stable of system (3).

3.3. Global asymptotic stability of the disease-free equilibrium

In this subsection, the global asymptotic stability of the
disease-free equilibrium point E0 is discussed firstly. Further-
more, the uniform persistence of system (3) is also considered.
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heorem 3.5. Under hypothesis (H) and |arg(sF−V )| > απ
2 , the

isease-free equilibrium point E0 is globally asymptotically stable of
system (3).

Proof. We use a method similar to the one used in [43]. Firstly,
the boundedness of the susceptible class will be analyzed. Accord-
ing to Theorem 3.1 and hypothesis (H), we know Sk, Ek and Ik
(k = 1, 2, . . . , n) are nonnegative, thus one has
C
0D

α
t Sk = Λk − β1kSkfk(Ik) − β2kSkgk(Ek) − ρkSk

+

n∑
j=1

(mkjSj − mjkSk)

≤ Λk − ρkSk +

n∑
j=1

(mkjSj − mjkSk).

(5)

Let S = (S1, . . . , Sn), S∗
= (S∗

1 , . . . , S
∗
n ), Λ = (Λ1, . . . , Λn) and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1 +

n∑
j̸=1

mj1 −m12 · · · −m1n

−m21 ρ2 +

n∑
j̸=2

mj2 · · · −m2n

...
...

...
...

−mn1 −mn2 · · · ρ2 +

n∑
j̸=n

mjn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

then Eq. (5) can be written in the following matrix:
C
0D

α
t S ≤ Λ − AS = AS∗

− AS,

so it is easy to see that the conclusion holds as follows:

S(t) ≤ (S0 − S∗)Eα(−Atα) + S∗.

Obviously, one has Sk ≤ S∗

k . Next, the global stability of Ek, Ik and
Hk will be discussed. Based on hypothesis (H), one has fk(Ik) ≤

akIk and gk(Ek) ≤ bkEk. Then the following auxiliary system is
considered:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C
0D

α
t Ek = β1kS∗

k akIk + β2kS∗

k bkEk − ϵkEk +

n∑
j=1

(nkjEj − njkEk),

C
0D

α
t Ik = ϵkEk − δkIk +

n∑
j=1

(pkjI j − pjkIk),

C
0D

α
t Hk = δkIk − (λk + κk)Hk.

(6)

It is easy to see that
C
0D

α
t W = (F − V )W , (7)

where W = (E, I,H), E = (E1, . . . , En), I = (I1, . . . , In), H =

H1, . . . ,Hn), F and V see Theorem 3.3. Thus, if |arg(sF−V )| > απ
2 ,

he above linear system (7) is locally asymptotically stable as well
s globally asymptotically stable, that is

lim
→∞

Ek = lim
t→∞

Ik = lim
t→∞

Hk = 0.

According to the comparison theory and the nonnegative solution
of Ek, Ik and Hk, one has

lim
t→∞

Ek = lim
t→∞

Ik = lim
t→∞

Hk = 0.

Based on the above analysis, when t → ∞, one has
CDαS = AS∗

− AS,
0 t

588
then one has

S(t) → S∗ (t → ∞).

So E0 is globally asymptotically stable if |arg(sF−V )| > απ
2 . □

Remark 3.6. Similar to Theorem 3.4, it can be concluded that
if R0 < 1, system (3) is globally asymptotically stable at the
disease-free equilibrium point E0.

Furthermore, the uniform persistence for system (3) is dis-
cussed in the following theorem.

Theorem 3.6. Under hypothesis (H) and R0 > 1, system (3) is
uniformly persist, implying there exists a positive constant δ such
that

lim inf
t→+∞

Sk ≥ δ, lim inf
t→+∞

Ek ≥ δ,

lim inf
t→+∞

Ik ≥ δ, lim inf
t→+∞

Hk ≥ δ, lim inf
t→+∞

Rk ≥ δ, 1 ≤ k ≤ n.

roof. Let consider the following space:

= X1 × X2 × · · · × Xn, X0
= X0

1 × X0
2 × · · · × X0

n,

∂X = ∂X1 × ∂X2 × · · · × ∂Xn,

where X0 represents the interior of X, ∂X denotes the boundary
of X and

Xk = {(Sk, Ek, Ik,Hk, Rk) : Sk > 0, Ek ≥ 0, Ik ≥ 0,Hk ≥ 0, Rk ≥ 0},

X0
k = {(Sk, Ek, Ik,Hk, Rk) : Sk > 0, Ek > 0, Ik > 0,Hk > 0, Rk > 0},

∂Xk = {(Sk, Ek, Ik,Hk, Rk) : Sk > 0, Ek = 0, Ik = 0,Hk = 0, Rk = 0}.
Meanwhile, let W (t) = (S1, E1, I1,H1, R1, . . . , Sn, En, In,Hn, Rn) be
the solution of system (3) with initial value W (0) = W0 ∈ X, then
W (t) ∈ X according to Theorem 3.1. For any t ≥ 0, a continuous
map F (t) : X → X is defined as follows:

F (t)W0 = W (t).

In the following, the uniformly persistent of the map F will be
analyzed based on Lemma 2.2. When t = 0, one has

F (0)W0 = W (0),

this is F (0) = I where I is the identity matrix. Meanwhile, it can
be deduced that the following equation holds:

F (t + s)W0 = W (t + s) = F (t)W (s) = F (t)F (s)W0,

implying F (0) = I . Additionally, it is easy to see that F (t) is C0-
semigroup on X, point dissipative and compact in X. Furthermore,
consider the following system:

C
0D

α
t Sk = Λk − ρkSk +

n∑
j=1

(mkjSj − mjkSk).

According to Theorem 3.4, S∗

k is asymptotically stable, which finds
that E0 in ∂X is a global attractor of F (t). Let

M = {M1},

where M1 = {E0
}. Because of ak = f ′

k (0) and bk = g ′

k(0), for all ϵ,
there exists ϵ that

f (ϵ) > (ak − ϵ)ϵ and g(ϵ) > (bk − ϵ)ϵ.

Let the stable set W s(E0) of a compact invariant set E0 defined by

W s(E0) = {Y0 ∈ X : ω(Y0) ̸= ∅, ω(Y0) ∈ E0
},

where ω(Y0) is ω-limit set through Y0. System (3) has a solution
(S , E , I ,H , R ) when W s(E0) ∩ X0

̸= ∅, implying S → 0,
k k k k k k
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k → 0, Ik → 0, Hk → 0, Rk → 0 (k = 1, 2, . . . , n) as t → ∞. So
there exists a constant τ > 0 such that Sk > S∗

k −ϵ, Ek > ϵ, Ik > ϵ,
Hk > ϵ and Rk > ϵ for t ≥ τ . Then according to the monotonicity
of fk(Ik) and gk(Ek), one has

f (Ik) > f (ϵ) > (ak − ϵ)ϵ and g(Ek) > g(ϵ) > (bk − ϵ)ϵ.

o the following auxiliary system is considered:

C
0D

α
t Ek = β1kS∗

k (ak − ϵ)ϵIk + β2kS∗

k (bk − ϵ)ϵEk − ϵkEk

+

n∑
j=1

(nkjEj − njkEk),

C
0D

α
t Ik = ϵkEk − δkIk +

n∑
j=1

(pkjIj − pjkIk),

C
0D

α
t Hk= δkIk − (λk + κk)Hk.

(8)

It is easy to see from system (8) that

C
0D

α
t W = (F − V )(ϵ, ϵ)W , (9)

where W = (E, I,H), E = (E1, . . . , En), I = (I1, . . . , In) and H =

H1, . . . ,Hn). Consider the basic reproduction number R0 > 1,
hen one has

(F11V−1
11 − F12V−1

11 V21V−1
22 )(ϵ, ϵ) > 1,

which results in a contradiction with Ek(t) → 0 (t → ∞). Hence
one has W s(E0) ∩ X0

= ∅, implying it is uniformly persistent
at the operator T (t), so system (3) is uniformly persistent if
R0 > 1. □

The existence of a positive equilibrium point is implied by the
system (3)’s ultimate boundedenss and uniform persistence. As a
result, we can derive the following theorem.

Theorem 3.7. Under hypothesis (H) and R0 > 1, there is at least
one endemic equilibrium E∗

= (S∗

1 , E
∗

1 , I
∗

1 ,H
∗

1 , R∗

1, . . . , S
∗
n , E

∗
n , I

∗
n ,

H∗
n , R

∗
n) of system (3) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λk − β1kS∗

k fk(I
∗

k ) − β2kS∗

k gk(E
∗

k ) − ρkS∗

k

+

n∑
j=1

(mkjS∗

j − mjkS∗

k ) = 0,

β1kS∗

k fk(I
∗

k ) + β2kS∗

k gk(E
∗

k ) − ϵkE∗

k +

n∑
j=1

(nkjE∗

j − njkE∗

k ) = 0,

ϵkE∗

k − δkI∗k +

n∑
j=1

(pkjI∗j − pjkI∗k ) = 0,

δkI∗k − (λk − κk)H∗

k = 0,

λkH∗

k +

n∑
j=1

(qkjR∗

j − qjkR∗

k) = 0.

4. Numerical simulation

From the previous description, it is clear that E0 is globally
asymptotically stable when R0 < 1 and conversely, system (3)
is persistent, which can offer theoretical evidence for further
COVID-19 prediction and control. Meanwhile, in order to analyze
COVID-19 in different cities, this section is divided into two
parts: no restrictions on individual migration and restrictions on
individual migration. Furthermore, consider the corresponding
 d
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integer-order model as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk
dt = Λk − β1kSkfk(Ik) − β2kSkgk(Ek) − ρkSk

+

n∑
j=1

(mkjSj − mjkSk),

dEk
dt = β1kSkfk(Ik) + β2kSkgk(Ek) − ϵkEk +

n∑
j=1

(nkjEj − njkEk),

dIk
dt = ϵkEk − δkIk +

n∑
j=1

(pkjIj − pjkIk),

dHk
dt = δkIk − (λk + κk)Hk,

dRk
dt = λkHk +

n∑
j=1

(qkjRj − qjkRk).

(10)

.1. Data source

The Johns Hopkins University Center for System Science and
ngineering provided the real data for this study [1]. Data on ac-
umulated and confirmed cases, recovered cases, and death cases
ere shared by the Johns Hopkins University on January 23, 2020.
ssuming that the confirmed individuals must be hospitalized,
ne has

ospitalized = Confirmed − Recovered − Death.

ence, we can get the real data of H(t), D(t) and R(t) for different
ity from 23 January to 17 July, 2020.

.2. The generalized incidence rate

As we know, Korobeinikov et al. [8] indicated that the stability
f the endemic equilibrium point for infectious diseases is closely
elated to the concave of the incidence rate with respect to the
nfected individuals. Therefore, it is of practical significance to
nderstand the role of different incidence rates in COVID-19. In
his section, according to hypothesis (H), the bilinear incidence
ate and the saturation incidence rate are discussed as follows:

k(Ik) = Ik, gk(Ek) = Ek.

fk(Ik) =
Ik

1 + ukIk
, gk(Ek) =

Ek
1 + vkEk

.

Meanwhile, as the public learns about COVID-19, the recovered
rate and the disease-related mortality are time-varying rather
than constant. Similar to [11], the best recovered rate λk and the
best disease-related mortality κk are selected from the following
equation:

κk =

⎧⎨⎩
p1

ep2(t−p3)+e−p2(t−p3)
,

p1e(p2(t−p3))2 ,

p1 + e(p2(t+p3)),

and λk =

{ q1
1+e−q2(t−q3)

,

q1 + e−q2(t+q3),
(11)

here qi and qi (i = 1, 2, 3) are parameters for κk and λk,
espectively. According to the real data reported by [2], the spread
f COVID-19 in India and Brazil began on 30 January and 26
ebruary, 2020, as the beginning of the outbreak of India and
razil in this paper, respectively. According to Matlab function
sqcurvefit [11], the parameter identification results with system
3) and system (10) are depicted in Tables 1 and 2, respectively.
eanwhile, based on Tables 1 and 2, the five days forecast of India
nd Brazil are shown in Tables 3, 4, Figs. 2, 3, 4, 5, which the
olid lines represent simulation results and circles represent real
ata. The results in Tables 1 and 2 show that the fractional-order
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Fig. 2. The number of cases in India (Integer-order with the bilinear incidence rate (left), Fractional-order with the bilinear incidence rate (right)).
Table 1
Parameter identification of India.
India Integer

(Bilinear)
Fractional
(Bilinear)

Integer
(Saturation)

Fractional
(Saturation)

Λ 0.3 0.6245 0.465 0.3
β1 0.3869 1.206 1.156 2.358
β2 0.5133 0.3079 0.3414 0.8
ϵ 0.0023 0.0555 0.0014 0.0692
ρ 0.0264 0.03 0.0188 0.0094

λ
p1

1 + e−p2(t−p3)
p1

1+e−p2(t−p3)

p1
1 + e−p2(t−p3)

p1
1 + e−p2(t−p3)

κ b1e−q2(t−q3)2 q1e−q2(t−q3)2 q1e−q2(t−q3)2 q1e−q2(t−q3)2

Table 2
Parameter identification of Brazil.
Brazil Integer

(Bilinear)
Fractional
(Bilinear)

Integer
(Saturation)

Fractional
(Saturation)

Λ 0.3 0.5 0.8802 0.5189
β1 1.839 1.082 0.2378 4.804
β2 0.3733 0.928 0.4397 0.3
ϵ 0.0303 0.7905 0.1076 0.9609
ρ 0.0211 0.0214 0.0216 0.0431
δ 0.99 0.2434 0.3975 5.609 × 10−5

λ
p1

1 + e−p2(t−p3)
p1

1+e−p2(t−p3)

p1
1 + e−p2(t−p3)

p1
1 + e−p2(t−p3)

κ
q1

eq2(t−q3)
q1

eq2(t−q3)

q1
eq2(t−q3)

q1
eq2(t−q3)

Table 3
Estimate the number of confirmed cases within five days in India (×105).
India 18 Jul 19 Jul 20 Jul 21 Jul 22 Jul

Real data 3.735 3.906 4.027 4.113 4.263
Integer
(bilinear incidence rate)

3.454 3.499 3.52 3.556 3.583

Fractional
(bilinear incidence rate)

3.781 3.869 3.936 4.002 4.079

Integer
(saturation incidence rate)

3.426 3.476 3.515 3.553 3.578

Fractional
(saturation incidence rate)

3.645 3.696 3.741 3.792 3.815

system (3) can accurately forecast the real data in the upcoming
week, with the real data of currently confirmed cases falling
between 95% and 105% of the projected values.

4.3. Restrict individual migration

When individual movement is not considered, the parameters
atisfy mkj = nkj = pkj = qkj = 0. Meanwhile, according
o Section 4.2, the bilinear incidence rate is considered in this
ection. Then based on system (1), the following auxiliary system
590
Table 4
Estimate the number of confirmed cases within five days in Brazil (×105).
Brazil 18 Jul 19 Jul 20 Jul 21 Jul 22 Jul

Real data 5.487 5.598 5.242 5.228 5.528
Integer
(bilinear incidence rate)

5.864 5.847 5.828 5.806 5.781

Fractional
(bilinear incidence rate)

5.502 5.49 5.475 5.458 5.438

Integer
(saturation incidence rate)

5.897 5.882 5.864 5.853 5.821

Fractional
(saturation incidence rate)

5.857 5.844 5.819 5.793 5.769

is considered:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

α
t S = Λ − β1SI − β2SE − ρS,

C
0D

α
t E = β1SI + β2SE − ϵE,

C
0D

α
t I = ϵE − δI,

C
0D

α
t H = δI − (λ + κ)H,

C
0D

α
t R = λH,

C
0D

α
t D = κH.

(12)

4.3.1. Sensitivity analysis of parameters in Rk
0u

When individual movement is not taken into consideration
in this section, Partial Rank Correlation Coefficients (PRCC) value
and Latin hypercube sampling (LHS) [44], which are one of the
Monte Carlo (MC) sampling methods established by Mckay in
1979 [45], can be used to account for the sensitivity of the pa-
rameter to the basic reproduction number. LHS has the advantage
of using fewer iterations than other random sampling techniques
and avoiding the clustering phenomenon of sampling [45]. In
order to determine which aspects of a certain intervention have
the greatest impact on how quickly a new infection spreads, it can
be seen from Remark 3.4 that the parameters of system (12) all
affect the basic reproduction number to varying degrees, thereby
affecting the spread of the infectious disease. We perform LHS
on the parameters that appear in Rk

0u. PRCC are calculated, and a
total of 1000 simulations per LHS run are carried out. A uniform
distribution is chose as the prior distribution when performing
parameter sampling. The parameters Λ, ρ, ϵ, β1, β2 and δ of
system (12) are set as input variables, and the basic reproduction
number Rk

0u as the output. The specific process is as follows:
(1) There are six parameters that affect the change of Rk

0u, which
are Λ, ρ, ϵ, β1, β2 and δ. Through LSH, [0, 1] is divided into 1000
simulations, and 6 × 1000 parameters are generated through
random selection on each interval by a uniform distribution.
(2) Calculate the basic reproduction number Rk

0u for each param-

eter.
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Fig. 3. The number of cases in India (Integer-order with the saturation incidence rate (left), Fractional-order with the saturation incidence rate (right)).
Fig. 4. The number of cases in Brazil (Integer-order with the bilinear incidence rate (left), Fractional-order with the bilinear incidence rate (right)).
Fig. 5. The number of cases in Brazil (Integer-order with the saturation incidence rate (left), Fractional-order with the saturation incidence rate (right)).
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3) PRCC is calculated by Matlab function partialcorr .
4) The PRCC’s influence on the basic reproduction number Rk

0u
an increase with increasing PRCC absolute value. However, it is
elieved that the parameter is not significant if the p value is
reater than 0.05.
Table 5 lists the PRCC values of the six parameters associated

ith Rk
0u and Fig. 6 shows the histogram of PRCC value. From

able 5 and Fig. 6, the following conclusion holds:
1) the parameters Λ, β1 and β2 have a positive influence on Rk

0u,
ut ρ, ϵ and δ have a negative influence, which is consistent with
emark 3.4;
2) the positive impact of birth rate Λ is the most obvious with
RCC(Λ) = 0.5868;
591
3) the positive impact of the transmission rate β2 for the exposed
population is more obvious than that of the infected population
with PRCC(β2) > PRCC(β1). That is, the greater the transmission
oefficient of the exposed population, the greater the value of the
asic reproduction number Rk

0u, and then the greater the number
f people infected with COVID-19. Therefore, it is more critical
o limit exposed individual. However, because exposed individual
oes not show any symptoms, identifying them is very difficult,
hich is a key reason for the spread of COVID-19;
4) the diagnosis rate δ has more greater negative impact on Rk

0u.
hat is to say, enhancing nucleic acid detection can effectively
educe Ri

0u, thereby reducing the number of infected people;
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Table 5
The PRCC values and p-value of the parameters with
respect to Rk

0u .

Input PRCC values p-value

Λ 0.5868 0
ρ −0.5363 0
ϵ −0.1368 0
β2 0.1035 3.5 × 10−6

β1 0.0847 1.448 × 10−4

δ −0.4362 0

(5) from the p-value, it can be found that the p-values of all
parameters are less than 0.05, so they all have a significant impact
on the basic reproduction number Rk

0u.
Therefore, based on the above analysis, it can be obtained

that controlling the influx of foreign population and enhancing
nucleic acid detection are the most effective measures to control
COVID-19. Meanwhile, home isolation can also control COVID-
19. Therefore, this evidence confirms the effectiveness of Chinese
government’s interruption policies, such as home isolation, prohi-
bition of the inflow of foreign population, and enhancing nucleic
acid detection, which may provide a good reference for the other
countries.

4.3.2. China’s second outbreak
From the analysis in Section 4.3.1, it can be found that en-

hancing the diagnosis rate and controlling the inflow of foreign
population can effectively control the spread of the epidemic.
For China, individual migration has been strictly restricted at
the beginning of COVID-19. Therefore, the impact of enhanced
diagnosis rate will be only considered in this section. Due to
the increase in public awareness and the development of detec-
tion technology, the time from onset to diagnosis is gradually
shortened. Additionally, despite the use of the nucleic acid test
method, the number of confirmed cases climbed significantly and
peaked in early February 2020 as a result of the use of the CT
diagnosis method. As a result, it is assumed that starting on 12
February, 2020, China’s diagnosis rate can reach and remain at
its highest level. However, the third COVID-19 wave has been
occurring in Beijing since the end of June 2020. Beijing has said
that starting on 17 June, 2020, nucleic acid could be more readily
detected. As a result, a new distribution, rather than the max level
dated June 17, now governs the diagnostic rate. Similar to [46],
the following piecewise function are described the diagnosed
period of two and three peaks:

1
δk

=

{
( 1
δ0

−
1
δe
)e−w1t +

1
δe

, t < t1,
1
δe

, t ≥ t1,
and

1
δk

=

⎧⎪⎨⎪⎩
( 1
δ0

−
1
δe
)e−w1t +

1
δe

, t < t1,
1
δe

, t1 ≤ t ≤ t2,
( 1
δe

−
1
δf
)e−w2(t−t2) +

1
δf

, t > t2,

(13)

here δ0, δe (δe > δ0), w1, w2 and δf are similar to [46], t1
s 13 February, 2020, t2 is 17 June, 2020. Meanwhile, similar
o [11], the best recovered rate λk and the best disease-related
ortality κk are selected from Eq. (11). Then system (12) and
ystem (10) are solved by predictor–correctors scheme and least
quares method [11] by the real data from 23 January to 17
uly, which 17 March, 2020 is considered as the beginning of
he emergency in Heilongjiang, Shanghai and Guangdong, and
7 June, 2020 are considered as the beginning of the emergency
n Beijing, respectively. From Figs. 7 and 8, the fractional-order
ystem (12) is found to fit the real data more accurately than the
nteger-order system (10) does and COVID-19 in Beijing, Shanghai
eaches its highest peak in a short time but there may be fourth
592
Fig. 6. The sensitivity analysis of Rk
0u .

wave peak, however, Heilongjiang and Guangdong are only two
peaks and the third wave of epidemic peaks will not occur in a
short time (current policies remain unchanged). Therefore, under
the condition of restricting the migration of individuals, the frac-
tional system (12) can better simulate the multi-peak problem
of COVID-19, and the strengthening of nucleic acid detection can
predict the new wave in advance, which provides a theoretical
basis for the control of the epidemic.

4.4. Individual migration

As of 17 July, 2020, the United States has a total of 3,647,715
confirmed cases, 139266 deaths and 1,107,204 recovery cases. It
is urgent to formulate reasonable and effective mitigation mea-
sures. Thus in this section, based on the sensitivity analysis of
parameter to Rk

0, the effect mitigation measures are provided to
control the development of COVID-19 in US.

4.4.1. Sensitivity analysis of parameters in Rk
0

Similar to Section 4.3.1, consider two cities to examine the
sensitivity of parameters to Rk

0 (k = 1, 2). Then when n = 2,
system (3) can be simplified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

α
t S1 = Λ1 − β11S1I1 − β21S1E1 − ρ1S1 + (m12S2 − m21S1),

C
0D

α
t E1 = β11S1I1 + β21S1E1 − ϵ1E1 + (n12E2 − n21E2),

C
0D

α
t I1 = ϵ1E1 − δ1I1 + (p12I2 − p21I1),

C
0D

α
t H1 = δ1I1 − (λ1 + κ1)H1,

C
0D

α
t R1 = λ1H1 + (q12R2 − q21R1),

C
0D

α
t S2 = Λ2 − β12S2I2 − β22S2E2 − ρ2S2 + (m21S1 − m12S2),

C
0D

α
t E2 = β12S1I2 + β22S2E2 − ϵ1E2 + (n21E1 − n12E1),

C
0D

α
t I2 = ϵ2E2 − δ2I2 + (p21I1 − p12I2),

C
0D

α
t H2 = δ2I2 − (λ2 + κ2)H2,

C
0D

α
t R2 = λ2H2 + (q21R1 − q12R2).

(14)

It can be found from Remark 3.4 that there exists 16 parameter
of the basic reproduction number Rk

0 (k = 1, 2), and then the
16 parameters are set as input variables, and Rk

0 as the output.
Similar to Section 4.3.1, Table 6 lists the PRCC values and Fig. 9
shows the histogram of PRCC value. According to Table 6 and
Fig. 9, it can be found that the following conclusion holds:
(1) the movement of susceptible individuals mkj (k, j = 1, 2) does
not affect Rk

0;
(2) the sensitivity of the parameter to Rk

0 (k = 1, 2) is same as

that of Section 4.2.1, except for n12, n21, p12 and p21;
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Fig. 7. The number of cases in Beijing and Shanghai.
Fig. 8. The number of cases in Guangdong and Heilongjiang.
Fig. 9. The sensitivity analysis of R1
0 (left) and R2

0 (right).
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3) considering the basic reproduction number R1
0 of city 1, the

-value of p21 is large than 0.05, which means that infected
ndividuals migrating from city 1 have a significant impact on
OVID-19 in city 1. But exposed and infected individuals migrat-
ng to city 1 have an impact on the spread of COVID-19 in city
, and the impact of the inflow of exposed individuals is more
ignificant because of |PRCC(n12)| > |PRCC(p12)|;
4) contrary to the situation in city 1, the p-value of and p12 is
arge than 0.05, which means that infected individuals migrating
rom city 2 have a significant impact on the spread of disease in
ity 2. But exposed and infected individuals migrating from city
have an impact on the spread of COVID-19 in city 2, and the

mpact of the inflow of exposed individuals is more significant
ecause of |PRCC(n21)| > |PRCC(p21)|.
593
Therefore, in order to alleviate the situation in severe areas
f COVID-19, migration of exposed individuals must be strictly
ontrolled.

.4.2. US outbreak
In this subsection, the overall spread of COVID-19 in the US

s considered first. Then system (10) and system (12) are solved
y least squares method [11]. However, beginning 17 May, 2020,
he number of confirmed individuals in the US had significantly
ncreased. Emergency situations may have changed government
egulations and people’s attitudes, which led to an increase in
he number of sick people. Therefore, it is assumed that the
mergency starts on 17 May, and the outbreak’s spread in the US
s then examined in two stages as follows:
1) 23 January–17 May, 2020;
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Fig. 10. The number of cases in US (without control (left), with control (right)).
f

Table 6
The PRCC values and p-value of the parameters with respect to R1

0 (left) and
R2
0 (right).

Input PRCC values p-value

Λ1 0.6513 0
ρ1 −0.5294 0
ϵ1 −0.0348 0.1194
β21 0.1983 0
β11 0.0564 0.0116
δ1 −0.1427 0
n12 −0.3584 0
n21 −0.0286 0.2005
p12 −0.1732 0
p21 −0.0062 0.7806

Input PRCC values p-value

Λ2 0.6496 0
ρ2 −0.5223 0
ϵ2 −0.0451 0.0435
β22 0.1896 0
β12 0.052 0.0153
δ2 −0.1691 0
n12 −0.0217 0.3318
n21 −0.2732 0
p12 −0.0048 0.8316
p21 −0.1355 0

(2) 17 May–17 July, 2020.
Therefore, parameter identification is provided in Table 7

ased on actual data from 23 January to 17 July 2020. From
ig. 10 and Table 8, it is clear that the fractional-order system
12) is capable of accurately forecasting the confirmed case for the
pcoming week. In the meantime, Table 8 shows that, regardless
f whether in the first stage or the second stage, the parameter
indings of the fractional-order system and integer-order fitting
re totally different.
Based on Remark 3.2, Rk

0u = 49.84 is very high. From the anal-
sis in Section 4.2, it can be found that enhancing the diagnosis
ate, reducing contact with infected people and controlling the
nflow of foreign population can effectively control the spread
f COVID-19. However, the United States is not currently doing
nything to limit the influx of foreign population, so it is only con-
idering enhancing nucleic acid testing and reducing contact with
nfected people to control COVID-19. Like [46], the diagnosed
eriod 1

δk
of US are as follows:

1
δ(t)

=

{
1
δe

t ≤ t3,
( 1
δ0

−
1
δe
)e−w(t−t3) +

1
δe

t > t3.
(15)

The meaning of each symbol is similar to that in Section 4.3.2
(Eq. (13)). t3 is 17 July, 2020, which mean increasing the diagnosis
rate δ(t) from 17 July, 2020. At the same time, the contact rate βi
(i = 1, 2) is limited by the number of hospitalizations like [46] as
follows:

βi(t) =

{
βi, logH(t) ≤ 1,

βi
logH(t) , logH(t) > 1. (16)

It can be seen from Fig. 10 that increasing the diagnosis rate δ(t)
and controlling the infection rate βi (i = 1, 2) can effectively
contain COVID-19. Therefore, enhanced nucleic acid testing and
594
limited contact with infected individuals are important to control
COVID-19.

4.4.3. US with individual migration
This subsection considers the impact of individual migration

on COVID-19. We need to preprocess the data to remove data that
are less than 0.5% of the current maximum number of confirmed
cases. Therefore, the real data after 3 April, 2020 are selected to
identify the parameters of system (14). Similar to the analysis
of Section 4.4.2, we consider 17 May, 2020 as the beginning of
the emergency, and the COVID-19 spread in New York and Los
Angeles into two phases:
(1) 3 April–17 May, 2020;
(2) 17 May-17 July, 2020.

Meanwhile, the recovered data of New York and Los Angeles
have not been collected by [1], and then we take hospitalized +

recovered individuals as a whole to conduct parameter identifica-
tion and short-term prediction according to [11]. It can be found
from Tables 9 and 10 and Fig. 11 that system (14) can better
predict COVID-19. Meanwhile, it can be seen from Fig. 11 that the
COVID-19 in New York has been peaked but not in Los Angles.

From the analysis of Section 4.4.1, we know that controlling
the infection rate, improving the diagnosis rate and controlling
the movement of exposed individuals have a significant effect on
the control of COVID-19 in US. Therefore, similar to Section 4.4.2,
the diagnosis rate δk and the migration rate nkj are utilized as
ollows:

1
δk(t)

=

{
1
δe

, t ≤ t3,
( 1
δ0

−
1
δe
)e−w(t−t3) +

1
δe

, t > t3,
and

nkj =

{
nkj, log(Hk) < 1,

nkj
log(Hk)

, log(Hk) ≥ 1.

(17)

Meanwhile, the infection rate controlled by the number of hos-
pitalizations is Eq. (16). From Fig. 12, we can seen the fractional-
order system (14) with control (Eqs. (16) and (17)) in Los Angles
can be control quickly but not in New York, which is still an open
question and will be discussed later.

5. Conclusion

Based on individual migration, a fractional-order SEIHRDP
model is proposed with the generalized incidence rate. Mean-
while, some results and effective mitigation measures is sug-
gested to control COVID-19 as follows:
(1) The local and global asymptotic stability of the disease-free
and endemic equilibrium points are investigated based on the
basic reproduction number R .
0
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Fig. 11. The number of cases in New York and Los Angeles with individual migration.
Fig. 12. The number of cases in New York and Los Angeles with control Eqs. (16) and (17).
Table 7
Parameter identification of US.
US Integer (first stage) Fractional (first stage) Integer (second stage) Fractional (second stage)

Λ 0.3 0.0935 0.3 0.4593
β1 1.056 1.217 4.999 2.641
β2 0.2969 0.4882 1.648 × 10−7 3.724 × 10−7

ϵ 0.1791 0.2876 0.0087 0.0077
ρ 0.0281 0.0497 0.0358 0.0272
δ 0.1243 0.2434 0.3975 0.205
λ p1 + e−p2(t+p3) p1 + e−p2(t+p3) p1 + e−p2(t+p3) p1 + e−p2(t+p3)

κ
q1

eq2(t−q3) + e−q2(t−q3)
q1

eq2(t−q3)+e−q2(t−q3)
q1 + e−q2(t+q3) q1 + e−q2(t+q3)
Table 8
Estimate the number of confirmed cases within five days
in US (×106).
Date Real data Fractional Integer

18 July 2.449 2.503 2.397
19 July 2.502 2.541 2.425
20 July 2.534 2.578 2.454
21 July 2.575 2.616 2.482
22 July 2.617 2.655 2.511

Table 9
Estimate the number of confirmed cases within five days in New York (×105).
New York 18 Jul 19 Jul 20 Jul 21 Jul 22 Jul

Real data 1.977 1.98 1.983 1.987 1.99
Integer 1.978 1.979 1.98 1.981 1.981
Fractional 1.985 1.986 1.987 1.988 1.989

(2) Based on the real data, it is found that the bilinear incidence

rate has a better description of COVID-19 transmission than the
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Table 10
Estimate the number of confirmed cases within five days in Los Angles (×105).
Los Angles 18 Jul 19 Jul 20 Jul 21 Jul 22 Jul

Real data 1.491 1.518 1.549 1.579 1.609
Integer 1.414 1.444 1.464 1.482 1.514
Fractional 1.494 1.517 1.547 1.579 1.608

saturation incidence rate. Therefore, the bilinear incidence rate is
applied in modeling COVID-19. Meanwhile, this is the first time
that looked at the impact of the incidence rate in the spread of
COVID-19 using real data.
(3) By applying the value of PRCC, the sensitivity of the parame-
ters to the basic reproduction number Rk

0 and Rk
0u are obtained,

which is consistent with Remark 3.4. Through the PRCC value,
the diagnosis rate, the migration rate and the movement of the
infected population are most sensitive to control COVID-19.
(4) Multiple peaks have been analyzed for COVID-19 and using
four cities in China to show that the fractional-order system (1)
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orks well. Moreover, by increasing the diagnosis rate, it can be
ound that the third wave of epidemic in Beijing has reached its
eak, but the arrival of the next wave of COVID-19 is not ruled
ut.
5) Analyzing the situation in the United States, it can be seen
hat system (12) has better predictability than system (10). Mean-
hile, by reducing the infection rate and increasing the diagnosis
ate, the peak of the epidemic in the US can be accelerated.
6) Results show that the fractional-order system can accurately
orecast the real data in the upcoming week when taking into
ccount individual migration between two cities. By limiting the
ovement of exposed individuals, raising the diagnosis rate, and

owering the infection rate, Los Angeles’ peaks can appear and
hen decline immediately.

Furthermore, this study makes several contributions to predict
ulti-peak of COVID-19 in China and suggestions on controlling
pidemic in the US by changing certain parameters. Nevertheless,
his research raises some issues that require more investigation,
ncluding how medical and other factors affect the spread of
nfectious diseases, how to properly administer vaccines, how
etwork topology affects disease transmission and so on.
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