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Abstract

Pain associated to mechanical and chemical irritation of the eye surface is mediated by trigeminal 

ganglia mechano- and polymodal nociceptor neurons while cold thermoreceptors detect wetness 

and reflexly maintain basal tear production and blinking rate. These neurons project into two 

regions of the trigeminal brain stem nuclear complex: ViVc, activated by changes in the moisture 

of the ocular surface and VcC1, mediating sensory-discriminative aspects of ocular pain and reflex 

blinking. ViVc ocular neurons project to brain regions that control lacrimation and spontaneous 

blinking and to the sensory thalamus. Secretion of the main lacrimal gland is regulated dominantly 

by autonomic parasympathetic nerves, reflexly activated by eye surface sensory nerves. These also 

evoke goblet cell secretion through unidentified efferent fibers. Neural pathways involved in the 

regulation of Meibonian gland secretion or mucins release have not been identified.

In dry eye disease, reduced tear secretion leads to inflammation and peripheral nerve damage. 

Inflammation causes sensitization of polymodal and mechano-nociceptor nerve endings and an 

abnormal increase in cold thermoreceptor activity, altogether evoking dryness sensations and pain. 

Long-term inflammation and nerve injury alter gene expression of ion channels and receptors at 

terminals and cell bodies of trigeminal ganglion and brainstem neurons, changing their 

excitability, connectivity and impulse firing. Perpetuation of molecular, structural and functional 

disturbances in ocular sensory pathways ultimately leads to dysestesias and neuropathic pain 

referred to the eye surface. Pain can be assessed with a variety of questionaires while the status of 

corneal nerves is evaluated with esthesiometry and with in vivo confocal microscopy.
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1. Introduction

The objective of the TFOS DEWS II Pain and Sensation Subcommittee was to highlight the 

neurobiological mechanisms that underpin discomfort accompanying dry eye disease 

(DED). In 2013, the TFOS International Workshop on Contact Lens Discomfort produced a 

report of its Subcommittee on Neurobiology [1] that included a detailed description of the 

morphological and immunocytochemical characteristics of ocular surface sensory 

innervation in experimental animals and in humans. It also covered the basic molecular, 

cellular and integrative mechanisms underlying the detection and processing of 

environmental and endogenous stimuli acting on the eye at various levels of the brain and 

spinal cord, which lead ultimately to conscious sensory experiences and behavioral and 

autonomic adaptive responses. This report has been updated here with new data on the 

genetic and molecular signature of corneal sensory neurons and their peripheral nerve 

branches, and recent information on the changes that take place in ocular surface sensory 

pathways as a result of the corneal and conjunctival disturbances during DED, including the 

cross talk between immune and neural elements. New experimental and clinical data on the 

psychophysical characteristics and possible neural mechanisms underlying conscious pain 

and discomfort sensations in DED are reported, discussing their similarities and differences 

with the various types of pain experienced in other human pathologies. Finally, the current 

report describes the methods available for the experimental and clinical exploration in 

humans of the neurobiological parameters involved in DED symptoms.

The use of the term ‘pain’ in eye care has been traditionally limited to a small number of 

pathological conditions, because conscious sensations originating at the ocular surface do 

not generally have a diagnostic interest. In fact, most of the prevalent sight-threatening eye 

diseases, like open angle glaucoma, cataract or retinal pathologies, occur and progress 

without pain [2]. Moderately unpleasant sensations accompany many common ocular 

surface diseases (allergic conjunctivitis, DED), but they have been described clinically, in 

most cases, with terms such as ‘dryness,’ ‘discomfort,’ and ‘itch,’ without making a direct, 

explicit association with pain sensations. Until a few decades ago, the term pain as a 

symptom of eye pathology was generally reserved for the sensations accompanying 

predominantly traumatic or infectious keratitis, iridocyclitis, angle closure glaucoma, and 

other entities [2]. This evolution of our understanding of ocular pain has parallels to pain in 

general, which was initially described by Celsus, a Roman scholar, as one of the signs 

(dolor) of inflammation, and has evolved ever since [3].

Reports of pain after photorefractive surgery procedures and the ‘discomfort’ experienced by 

contact lens wearers finally directed the attention of eye care practitioners and researchers 

toward the origin and mechanisms of the unpleasant, and sometimes overtly painful, 
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sensations arising from the ocular surface. This interest extended to ‘dryness’ sensations 

experienced by patients suffering DED and by patients experiencing severe ocular surface 

symptoms, but with minimal or no clinical signs on slit-lamp examination. The underlying 

neurobiological mechanisms producing these sensations appear to be consistent with those 

mediating ocular pain in other eye pathologies, and unpleasant dry eye sensations should be 

considered and studied as a specific form of eye pain occurring in this particular disease.

The International Association for the Study of Pain (IASP) defines pain as “an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, or 

described in terms of such damage” [4]. Various types of pain have been distinguished based 

on etiology, duration or clinical features.

Nociceptive pain is the pain that arises from actual or threatened damage to tissues and is 

due to the activation of nociceptors. Nociceptors are sensory receptors of the peripheral 

somatosensory nervous system that are capable of transducing and encoding potentially 

tissue-damaging noxious mechanical, thermal and chemical stimuli, thereby signaling the 

location, size, intensity and duration of tissue injury.

Neuropathic pain is defined by the IASP as pain caused by a lesion or disease of the 

somatosensory nervous system, in contrast with nociceptive pain produced by the normal 

function of nociceptors. Neuropathic pain is a clinical description, which requires a 

demonstrable lesion or a disease of the somatosensory nervous system that satisfies 

established neurological diagnostic criteria [4], and is also commonly referred to as 

pathological pain or pain without biological value. Neuropathic pain has been categorized 

etiologically (eg degenerative, traumatic, infectious, metabolic, and toxic) and anatomically 

(into peripheral vs central) because this class of pain is generated by a functional disturbance 

that may occur at different levels of the neuroaxis. The nature of the injury to peripheral 

sensory nerves (peripheral neuropathic pain) determines the development of ectopic activity 

and abnormal excitability of peripheral nerve terminals and nociceptive neurons of sensory 

ganglia. Altered gene expression triggered by peripheral axotomy, cell body damage and/or 

by local inflammation is a common feature of peripheral neuropathic pain [5]. The abnormal 

activity caused by peripheral neuronal injury may produce anatomical and functional 

changes in the distribution and efficacy of synaptic connections arriving from the periphery 

to the central nervous system, altering the excitability of second-order and higher-order 

projection neurons of the pain pathways. Excitability of central pain pathways is further 

enhanced by local activation of microglia and impairment of the inhibitory descending 

modulation arriving from higher CNS areas [6]. Central neuropathic pain also may be 

generated by malfunction of central somatosensory nervous system structures due to lesion 

or disease, for example trauma, stroke or genetic abnormality.

Acute nociceptive pain results from high intensity stimulation of nociceptors and usually 

persists as long as stimulus is applied. Inflammation develops in parallel to tissue injury or 

infection, reflecting the activation of the immune system. Inflammatory mediators modify 

the normal responsiveness of nociceptors (‘sensitization’) by decreasing their threshold for 

activation and/or increasing suprathreshold responses, often causing spontaneous discharges. 

Inflammatory pain has an adaptive role, offering a longer term protection during the healing 
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period. When pain persists past the normal time of healing, it becomes chronic or persistent 

pain [7]. The definition of chronic pain is not precise and may last less than one month, or 

more frequently, over six months. Among its salient characteristics are the absence of 

apparent biological value and the frequent tendency to become severe and intractable [4,7].

Itch is a complex unpleasant sensation, often present in the eye with many elements in 

common with pain, although its sensory quality and associated urge to scratch make it a 

distinct perceptual entity. Experimental evidence in the skin indicates that itch is evoked by 

activation of specific receptors on peripheral sensory fibers of sensory neurons (pruriceptive 

neurons) in the trigeminal and dorsal root ganglia (DRG) [8]. These sensory neurons are 

functionally distinct from nociceptors are often subdivided into chemically-sensitive and 

mechanically-sensitive itch neurons with characteristic cell and molecular signatures and 

separate functional sensory pathways. Peripheral itch-mediating pathways are segregated 

from those signaling acute pain, although the pathways interact at various levels of the CNS 

to finally evoke conscious sensations of either itch or pain [9]. In the skin, pruritus 

accompanies a large variety of chronic cutaneous and systemic diseases like xerosis (dry 

skin) [10], while ocular itch is often a pathognomonic sign of allergic conjunctivitis [11]. 

Finally, it is important to note that the above mechanisms do not necessarily occur 

exclusively, but may be present concurrently, and thus can be challenging to discern for 

clinicians.

2. Neurobiological features in normal/non dry eye disease

2.1. Peripheral afferent pathways for transduction of physical and chemical stimuli at the 
ocular surface

The eye and periocular tissues are potential sources of pain and itch resulting from 

pathological processes affecting directly or indirectly trigeminal sensory nerves. In DED, 

umpleasant dryness sensation, the most precocious and main symptom of the disease [12], 

implies activation of sensory nerves subserving nociception at the ocular surface and the 

subsequent sensory processing of this information.

The ocular surface and contiguous areas of the upper and lower eyelids are supplied by 

sensory fibers of the trigeminal nerve. Of these, the cornea is the most richly innervated of 

all ocular structures and the most densely innervated surface epithelium in the human body, 

while the conjunctiva and eyelid margins receive comparatively a less dense innervation.

2.1.1. Trigeminal ganglion

2.1.1.1. Nerve projections to the eye: Sensory neurons that supply the ocular surface have 

their cell bodies in the ophthalmic and maxillary regions of the trigeminal ganglion (TG) 

[13–16]. Estimates in mice, rats, cats and monkeys indicate that between 50 and 450 TG 

neurons supply the cornea and these constitute about 2% of all TG neurons [13,17–19]. 

Sensory nerves to the cornea and the anterior bulbar conjunctiva travel to the eye initially via 

the nasociliary branch of the ophthalmic nerve, and then via the long ciliary nerves and the 

communicating branch to the ciliary ganglion. The ciliary ganglion gives rise to the short 

ciliary nerves, which contain both sensory and autonomic fibers. The long and short ciliary 
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nerves pierce the sclera at the back of the eye and run forward to the anterior segment in the 

suprachoroidal space [20,21]. The ciliary nerves divide to form multiple branches that arrive 

at the corneal limbus at equidistant intervals around its circumference where they form the 

circumferentially arranged pericorneal plexus [22]. The sensory and autonomic nerve fibers 

supplying the cornea and limbal conjunctiva exit anteriorly from this plexus. The 

supratrochlear, supraorbital, infratrochlear, and lacrimal branches of the ophthalmic nerve as 

well as the infraorbital nerve branch of the maxillary nerve supply the innervation of the 

remaining bulbar conjunctiva, entire palpebral conjunctiva, and the skin covering the eyelid 

margins (Fig. 1) [20,23–25].

2.1.1.2. Molecular, genetic and electrophysiological diversity of TG ocular 
neurons: Few studies have investigated the membrane properties and ion channel currents of 

corneal TG neurons using intracellular, whole cell or calcium imaging recordings. These 

investigations have been performed in dissociated TG neurons [26–28] and in neurons of 

intact TGs isolated in vitro [29,30] or recorded in vivo in anesthetized mice [31]. In 

summary, the electrophysiological studies have demonstrated that corneal sensory neurons 

are either thinly myelinated (Aδ-type) or unmyelinated (C-type) and have heterogeneous 

passive and active membrane properties [2].

The heterogeneity of TG neurons innervating the ocular surface is also reflected in the 

variable expression of cellular markers for molecules with a relevant role in sensory 

transduction and signaling such as transient receptor potential (TRP) ion channels or 

neuropeptides. The unique transcriptional programs of the different classes of primary 

sensory neurons lead to differential expression of specific ion channels underlying stimulus 

transduction and encoding properties. These gene expression patterns also determine the 

central distribution at higher-order neurons of nerve terminals belonging to each sensory 

neuron lineage. In recent years, great progress has been made in combining transcriptome-

based neuron typing performed with single-cell RNA-sequencing, with the sensory 

phenotyping of DRG and TG neurons according to size, stimulus modality, and expression 

of neuropeptides, ion channels or protein receptors [32,33]. This allows sen sory neuron 

types to be classified into a larger number of subtypes with distinct transcriptional profiles, 

molecular markers and functional properties, some of which are associated with pathological 

signs [34]. Such approaches have not yet been applied to TG neurons innervating the ocular 

surface but would be expected to greatly expand the limited knowledge of the relationship 

between ocular sensory neurons and their contribution to sensations and autonomic 

responses in DED.

2.1.2. Sensory innervation of the cornea

2.1.2.1. Architecture of axons and terminals in the cornea: In animals, approximately 20–

30% of the axons supplying the cornea are thinly myelinated (Aδ) and the remainder are 

unmyelinated [35,36]. However, myelinated fibers lose their myelin sheath within about a 

millimeter of entering the corneal stroma [22,37]. Soon after entering the cornea, the nerve 

bundles branch and anastomose with neighboring bundles to form the stromal plexus 

concentrated in the anterior one-third of the stroma [38]. The most superficial layer of the 
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stromal nerve plexus, located immediately below the Bowman’s layer, is known as the 

subepithelial plexus [38].

The majority of axons entering the corneal stroma penetrate Bowman’s layer from the 

subepithelial plexus and terminate as unencapsulated nerve endings in the corneal epthelium 

[37]. However, a small population of axons terminates in the stroma [38], while others form 

close anatomical relationships with stromal keratocytes and macrophages [37,39]. The major 

innervation of the corneal epithelium originates from 200 to 500 fine stromal nerve bundles 

that penetrate Bowman’s layer for the most part in the peripheral and intermediate cornea 

[37,38]. In addition at its periphery, the epithelium receives inputs from nerves that enter 

directly from the pericorneal plexus [38]. On entering the epithelium, each stromal nerve 

bends at an acute angle and branches into multiple nerve fascicles that form the subbasal 

nerve fibers at the interface between Bowman’s layer and the basal epithelial cells. The 

composite nerve structure formed by the subbasal nerve fibers arising from each stromal 

nerve is termed an epithelial leash [40,41]. Individual subbasal nerve fibers run parallel to 

one another and to the ocular surface, for up to 6–8 mm [38]. Human sub-basal nerve fibers 

contain as many as 40 axons [42] that lose their Schwann cell envelope when they enter the 

epithelium [37].

Adjacent epithelial leashes anastomose with one another extensively forming a dense, mesh-

like subbasal nerve plexus. This plexus constitutes the densest layer of the human corneal 

innervation and is readily visualized by in vivo confocal microscopy and quantified in terms 

of nerve density [43,44]. This approach has allowed the effects of conditions such as DED, 

diabetes, keratoconus, herpetic infections, as well as normal aging on corneal innervation to 

be assessed (see Section 6.3.2). When viewed in its entirety, the subbasal nerve fibers in the 

human subbasal nerve plexus form a whorl-like pattern or “vortex” [38,43,45], whose center 

is located approximately 2–3 mm inferonasal to the corneal apex. Similar whorl-like patterns 

of subbasal nerve fibers are present in other, but not all, mammalian corneas, including mice 

and rats [46–48].

Each subbasal nerve fiber gives rise to numerous intra-epithelial terminals that are 

distributed throughout all layers of the corneal epithelium [38,40,48]. Some axons end with 

small boutons within the basal epithelium. Those that terminate more superficially in the 

epithelium arise perpendicularly from the subbasal nerves and project up to within a few 

micrometers of the surface of the epithelium, where their terminations can be described on 

the basis of their branching pattern as simple, ramifying or complex (Fig. 2) [48]. Simple 

terminals do not branch after leaving the subbasal nerves and end with a single, bulbar 

swelling in or just below the squamous cell layer of the epithelium. Ramifying terminals 

branch within or just below the squamous cell layer of the epithelium into a number (usually 

3–4) of horizontal fibers that run parallel to the surface for up to 100 μm. Each branch ends 

in a single bulbar swelling similar to those of simple terminals. The axons forming complex 

terminals start to branch within the wing cell layer of the cornea and form a cluster of highly 

branched fibers that have endings in both the wing and squamous cell layers. Each of the 

many branches in complex terminals has multiple bulbar endings that are often larger than 

those associated with the simple and ramifying terminals.

Belmonte et al. Page 7

Ocul Surf. Author manuscript; available in PMC 2017 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Epithelial nerve terminal arborizations are not static structures and undergo continuous 

structural remodeling [49]. This normally occurs in the healthy cornea due to the continuous 

shedding of corneal epithelium cells, a process that results in full renewal in a matter of 

days. When stromal and/or epithelial nerve branches are damaged by trauma or disease there 

is also regrowth of axons to repopulate the denervated tissues [50]. Corneal surgery 

(cataract, photorefractive correction, glaucoma) is unavoidably accompanied by nerve 

damage followed by a variable degree of regeneration, depending on the location and extent 

of the injury [51]. Nerve damage often accompanies metabolic diseases like diabetes and 

viral, parasitic or bacterial infections [52–54].

2.1.2.2. Molecular and functional characteristics of corneal sensory 
innervation: Electrophysiological recordings of single sensory nerve fibers innervating the 

cornea have revealed the existence of different functional types of ocular sensory neurons. 

These can be broadly classified as polymodal nociceptor neurons, cold thermoreceptor 

neurons and selective mechano-nociceptor neurons [55–57]. There is now significant 

evidence, at least in animals, supporting the notion that these three broad classes can be 

identified on the basis of their molecular phenotype and morphology [36,48,58]. Molecular 

heterogeneity has been described both at the level of the nerve terminals in the corneal 

epithelium and also in the soma of corneal sensory neurons in the TG.

2.1.2.2.1. Polymodal nociceptors: The majority of the sensory nerve fibers innervating the 

cornea are polymodal nociceptors. They are activated over a wide range of stimulus 

intensities that include near-noxious or noxious mechanical energy, heat, and chemical 

irritants. They are also sensitive to endogenous chemical mediators released by damaged 

corneal tissue and by resident and migrating inflammatory cells, or leaking from limbal 

blood vessels [59–62]. Polymodal nociceptors have a mechanical threshold slightly lower 

than pure mechano-nociceptors (described below) and produce a sustained discharge in 

response to maintained mechanical indentation of the cornea [55]. When stimulated with 

heat, they begin to fire at temperatures higher than 37 °C [61]. Acidic solutions of pH 5.0–

6.5 or gas jets containing CO2 (which forms carbonic acid at the corneal surface) also 

activate corneal polymodal nociceptors [59–61,63,64], as do other chemical agents known to 

excite polymodal nociceptors in other tissues (eg prostaglandins, bradykinin, capsaicin) [60–

62,65–67] (Fig. 2). Corneal polymodal nociceptors can be sensitized by repeated noxious 

heat stimuli and by inflammatory mediators [59–61], and this has been demonstrated to 

occur in animals with allergic keratoconjunctivitis [68]. In psychophysical studies, activation 

of corneal polymodal receptors with an acidic stimulus (0–80% CO2 in air) evokes stinging 

and burning pain sensations [64,66].

The TRP cation channel subfamily V member 1 (TRPV1) is important for sensory 

transduction in polymodal nociceptors and has been used extensively as a molecular marker 

for this cell class. It is activated by capsaicin, low pH (pH 6), noxious heat (>42 °C) [69–71] 

and hyperosmlarity [72]. TRPV1 knockout mice display altered responses to these stimuli 

and reduced thermal hypersensitivity in the context of inflammation [69]. Capsaicin 

activates polymodal nociceptors in the cornea [60,65,73] and upon application to the human 
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eye produces pain [74,75]. TRPV1 activation by heat, protons and inflammatory mediators 

enhances excitability of polymodal nociceptors [76].

In rat and guinea pig TG, substantial proportions (25–45%) of corneal afferent neurons 

express TRPV1 [58,77,78]. TRPV1 expressing corneal afferent neurons do not express 

Piezo2 (a putative marker for low-threshold mechanoreceptors [36], see below) and only 

~6% co-express TRP cation channel subfamily M member 8 (TRPM8) channels (a putative 

marker for cold thermoreceptor neurons, see below) [58]. It is possible that the population of 

neurons that co-express TRPV1 and TRPM8 represent a subpopulation of cold 

thermoreceptor neurons that display a paradoxical response to noxious heating [79]. TRPV1 

is also expressed in intra-epithelial nerve terminal endings in the corneal epithelium 

[58,77,78]. It should be noted that TRPV1 expression is not restricted to neural elements in 

the eye, but is also found in supporting cells throughout the different layers of the cornea 

[80]. It is not known if activation of TRPV1 in support cells contributes to corneal nerve 

activation.

Other transducer channels appear also to contribute to chemical sensitivity of corneal 

polymodal nociceptors. In a fraction of them, sensitivity to acidic stimulation remains after 

complete blockade of capsaicin-induced activation of TRPV1 channels with capsazepine 

[65,68]. This may be explained by the expression of acid-sensing ion channels (ASICs) as 

responses of corneal polymodal nociceptors to pH 6.6 solutions are abolished by ASIC 

blockers [27]. TRP cation channel subfamily A member 1 (TRPA1) is an extremely broadly 

tuned chemo-nocisensor channel [81,82]. TRPA1 is expressed in the TG and ocular 

instillation of a selective TRPA1 agonist produces neuronal activation of trigeminal 

brainstem neurons that is enhanced in an animal model for DED [83]. The contribution of 

TRPA1 activation to the enhanced excitability of polymodal nociceptors produced by 

inflammatory mediators seems to be more modest than for TRPV1 [68].

There is evidence that multiple subpopulations of corneal poly-modal nociceptors exist with 

different molecular phenotypes, nerve terminal morphologies and epithelial distribution 

within the cornea. In guinea pig corneal epithelium, TRPV1 expressing nerve terminals can 

be divided into 3 populations [58]. One population displays terminals with ramifying 

morphology in the squamous cell layer. These terminals do not contain calcitonin gene-

related peptide (CGRP), but they do express the glial cell line-derived neurotrophic factor 

family receptor alpha3 (GFRα3). The other two populations end with simple endings, one in 

the wing cell layers and the other in the subbasal plexus. Those nerves terminating in wing 

cell layers express both CGRP and GFRα3, whereas those terminating in the subbasal 

plexus express CGRP, but not GFRα3. Importantly, the molecular phenotype of these 

neurons is maintained both at the level of the nerve terminals in the epithelium and at their 

somas in the TG [58]. Whether this molecular heterogeneity in corneal polymodal 

nociceptors is reflected in differences in function has yet to be determined. The 

neuropeptides contained in some polymodal receptors (substance P and CGRP) contribute to 

the inflammatory response (‘neurogenic inflammation’) [84] and promote corneal epithelial 

maintenance and physiological renewal by activating cellular pathways that stimulate 

epithelial cell proliferation, migration, adhesion and differentiation [85–88]. Thus, 

peptidergic polymodal nociceptors are likely to have an important role in maintaining 
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corneal integrity. There is increasing evidence that GFRα3 signaling is involved in 

sensitization of peripheral sensory neurons and that the TRPV1 ion channel is involved in 

this process [89–92].

2.1.2.2.2. Cold thermoreceptors: The cold thermoreceptors represent 10–15% of the total 

population of corneal sensory neurons. At stable temperatures close to that of the ocular 

surface (34–35 °C), most corneal cold thermoreceptors fibres continuously generate action 

potentials and their activity is increased and decreased by moderate cooling and heating, 

respectively. [60,61,93–95], thus ressembling the canonical cold thermoreceptors reported in 

other body tissues. This population of cold thermoreceptors has been named high 

background, low threshold (HB-LT) corneal cold thermoreceptors [96]. HB-LT cold 

thermoreceptors change their activity at different static temperatures and are much more 

strongly modulated by dynamic changes in temperature [28,61]. With both cooling and 

heating, the magnitude of the change in action potential generation in HB-LT cold 

thermoreceptors is strongly dependent on the rate of change of temperature [94,95]. HB-LT 

cold thermoreceptors detect and encode very precisely the intensity of a temperature 

variation by their impulse frequency, responding to tem perature drops of 0.5 °C or less 

[61,96–98], explaining the perception of cooling produced by 1–2 °C reductions in 

temperature at the corneal surface [99]. (Fig. 2).

In addition to sensing changes in temperature, the HB-LT corneal cold thermoreceptors 

detect mild to moderate changes in osmolarity [61,67,97,100,101]. At constant temperature, 

increases in osmolarity accelerate action potential generation in these receptors. In mouse 

cornea, there was a significant increase in activity of cold thermoreceptors when osmolarity 

was raised from 310 mOsm/L (control) to values greater than 340 mOsm/L [67]. This 

modulation of nerve activity is observed when the solutions are made hyperosmotic by the 

addition of NaCl [67,97,102,103] or by the addition of mannitol or sucrose 

[97,101,103,104]. Thus it is the change in osmolarity rather than the change in ionic 

composition of the solution that modulates nerve activity, although an additional direct 

surface charge effect produced by a high sodium ion concentration cannot be excluded. The 

activity of HB-LT cold thermoreceptors is also inhibited by hypo-osmotic solutions [101]. 

This finding suggests that under basal conditions tear film osmolarity provides a stimulus to 

the cold thermoreceptors that contributes to maintaining their ongoing nerve activity 

[67,105].

TRPM8 is a cation channel that is activated by cooling and menthol and is important for 

cold sensation [98,106,107], including cold pain [108]. A recent report demonstrates that 

TRPM8 channels are also activated by increases in osmolarity from about 200 mOsmol/l 

[101]. Indeed the sensitivity of cells heterologously expressing TRPM8 to changes in 

osmolarity is very similar to that of corneal cold thermoreceptors in mouse cornea [101]. In 

TRPM8 knockout mice, nerve endings with high levels of ongoing nerve activity 

characteristic of HB-LT cold thermoreceptors were not detected in the cornea [98]. 

Furthermore, in wild-type mice, blockade of TRPM8 with BCTC (N-(4-

tertiarybutylphenyl)-4-(3-chloropyridin-2-yl) tetrahydropy-razine-1(2H)-carbox-amide – a 

TRPM8 antagonist) markedly reduced or silenced the ongoing activity of HB-LT cold 

thermoreceptors and inhibited their response to cooling [98]. Together these findings 
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indicate that TRPM8 channels transduce both cold and osmotic stimuli in corneal HB-LT 

cold thermoreceptors and generate a background depolarizing current that drives their 

ongoing nerve activity. This sub-population of cold thermoreceptors further exhibits a 

prominent expression of hyperpolarization-activated cyclic-nucleotide-modulated (HCN) 

channels, which modulates the depolarizing current thereby contributing to tune the regular 

spiking exhibited by HB-LT cold thermoreceptors [109].

Whilst most (around 70%) of corneal cold thermoreceptors belong to the HB-LT type, there 

is a subpopulation (30%) of cold sensitive corneal nerve fibers with very low ongoing 

activity at basal temperature, higher thermal threshold (requiring temperature drops >4 °C 

for activation) and weaker response to cooling [104,110] named low background, high 

threshold (LB-HT) cold thermoreceptors [110] (Fig. 2).

In the TG, approximately 10–20% of corneal afferent neurons express TRPM8 [36,48,58]. 

Isolated trigeminal neurons with the phenotype of cold thermoreceptors exhibit a wide range 

of thermal and menthol thresholds [111]. The differences in threshold of cold 

thermoreceptor neurons and peripheral terminals have been attributed to variable expression 

of TRPM8 and of cold-sensitive slowly inactivating K+ channels whose activity opposes 

cold-induced depolarization [111,112].

Morphologically, TRPM8 expressing nerve terminals in the corneal epithelium are almost 

exclusively of the complex type and have axon endings in both the wing and squamous cell 

layers of the epithelium [48]. A similar complex morphology has been demon strated for 

nerve terminals expressing green fluorescent protein in the corneal epithelium of TRPM8 

reporter mice [98], reinforcing the idea that endings with this morphology are associated 

with cold thermoreceptor neurons.

2.1.2.2.3. Mechano-nociceptors: In electrophysiological studies, about 20–30% of the 

peripheral axons innervating the cornea are selective mechano-nociceptors that respond only 

to mechanical forces at an order of magnitude close to that required to damage corneal 

epithelial cells [60,62]. The receptors of this class have conduction velocities in the Aδ-fiber 

range and fire one or a few nerve impulses in response to brief or sustained indentations of 

the corneal surface, and often when the stimulus is removed [60,62]. Thus, the mechano-

nociceptors are phasic sensory receptors that signal the presence of the stimulus and, to a 

very limited degree, its intensity and duration (Fig. 2). The threshold force required to 

activate corneal mechano-nociceptors is relatively low (about 0.6 mN) in comparison with 

the force that activates mechano-nociceptor fibers in the skin, but is higher than the 

threshold force required for activation of corneal polymodal nociceptors [55]. The corneal 

mechano-nociceptors are probably responsible for the immediate, sharp sensation of pain 

produced by touching or scratching of the corneal surface. Acute sensitization of corneal 

mechano-nociceptors when repeatedly stimulated is not obvious, although there is 

experimental evidence of a transient reduction of their mechanical threshold during allergic 

kerato-conjunctivitis [68].

Recently, expression of a newly identified mechanically sensitive ion channel, Piezo2, has 

been demonstrated in some DRG and TG sensory neurons [36,113–115]. To date, Piezo2 
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expression has not been demonstrated in intra-epithelial nerve terminals in the cornea. 

However, Piezo2 expression assessed with in situ hybridization is present in approximately 

30% of corneal sensory neurons in the TG [36,58]. Piezo2-expressing corneal sensory 

neurons do not express TRPV1, CGRP and/or TRPM8 and are thus unlikely to be corneal 

polymodal nociceptors or cold thermoreceptor neurons [36,58]. They are medium to large 

size neurons and express NF200 (a marker for myelinated neurons), which is consistent with 

their classification as being thinly myelinated Aδ fiber neurons. Thus Piezo2 appears to be a 

marker for the corneal mechano-nociceptor neurons.

Approximately 80% of corneal afferent neurons in the TG express TRPV1, TRPM8 or 

Piezo2 as seen by immuno-labelling and/or in situ hybridization [58]. There is functional 

evidence that TRA1 channels are also expressed by some TRPV1 expressing corneal 

polymodal nociceptor nerve fibers [110,116], but immunocytochemical identification in TG 

corneal neurons or nerve terminals is still lacking. The identity of the remaining 20% of 

corneal afferent neurons remains to be determined. It is possible that some members of the 

three functional subpopulations of corneal afferent neurons do not express their respective 

molecular marker under normal conditions, but switch on de novo expression in pathological 

conditions (such as inflammation). This would be consistent with the classification of so-

called ‘silent nociceptors’, which under normal conditions are not activated by any stimuli at 

all, but after inflammation, become sensitive to one or more stimulus types [117]. 

Alternatively, it is possible that unlabeled neurons represent another as yet undefined 

subpopulation of corneal afferent neurons, or even polymodal nociceptors that do not 

express TR-PV1.

2.1.2.3. Correspondence between functional properties of somata and terminals: The 

correspondence between the different functional characteristics of corneal nerve terminals 

and the electrophysiological prop erties of their cell bodies in the TG are still incompletely 

understood. A majority of Aδ-fiber neurons and virtually all C-fiber neurons supplying the 

cornea have long action potentials with an inflexion (hump) on their falling phase [29,30] 

and display partial or complete resistance to the voltage-gated Na+ (NaV) channel blocker 

tetrodotoxin (TTX), reflecting the expression of TTX-resistant NaV channels typical of 

corneal nociceptor neurons [118]. Additionally, neurons with these properties are 

depolarized by capsaicin, low pH, heat and mechanical stimuli, thus likely correspond to the 

polymodal nociceptor type (see Section 2.1.2.2.1). Another, distinct group of neurons exhibit 

a fast action potential without a hump, that is blocked by TTX, and respond phasically to 

mechanical stimulation, thus are likely mechano-nociceptors (see Section 2.1.2.2.3). Finally, 

a smaller number of neurons show a relatively fast action potential with either no or a very 

small shoulder on the falling phase, high input resistance and a tonic response to 

depolarizing pulses. They are depolarized by cold and menthol and are presumably cold 

thermoreceptor neurons [29,31,112] (see Section 2.1.2.2.2).

2.1.3. Sensory innervation of the conjunctiva and eyelid margin

2.1.3.1. Morphology of sensory axons and terminals of the conjunctiva and eyelid 
margin: Much less is known about the sensory innervation of the conjunctiva and eyelid 

margin than of the cornea. Conjunctival sensory neurons have small diameter myelinated 
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and unmyelinated axons with peripheral endings that are mostly unencapsulated (free 

endings) and often contain CGRP and/or substance P (markers of peptidergic sensory 

neurons) [23,119–125]. In the conjunctiva, the peptidergic free nerve endings are located 

mostly around blood vessels in the stroma, but can also be found to a lesser degree in the 

epithelium or around the acini of meibomian glands and lymph follicles [15,121–123,125]. 

The presence of non-peptidergic sensory neurons innervating the conjunctiva has not yet 

been described. There is a single report of complex corpuscular endings associated with 

myelinated axons in the conjunctiva [126]. They are mostly located around the limbal 

conjunctiva in humans and appear morphologically similar to Krause endings.

In the eyelid margin, the morphology of sensory nerve terminals is more diverse and 

includes abundant Meissner corpuscles, Merkel disc endings and dermal and intra-epithelial 

free nerve endings [120]. In addition, there are complex lanceolate, circular Ruffini, Merkel 

and free nerve endings around the eyelashes [120]. Many of these types of endings are 

specialized for the detection of very low intensity mechanical stimuli, thus explaining why 

mechanical threshold values in the lid border are similar or lower than in the cornea [127]. 

The molecular phenotype of sensory neurons that innervate the eyelid margin has not been 

examined.

2.1.3.2. Functional characteristics of the sensory innervation of the conjunctiva: Only 

one study has directly investigated the response characteristics of sensory nerves supplying 

the bulbar and palpebral conjunctiva [128]. In recordings from axons in the nasociliary 

nerves supplying the guinea pig conjunctiva, 53% were only activated by mechanical 

stimulation (mechano-sensory units), 41% percent were activated by mechanical stimuli, 

heating and application of irritant chemicals (polymodal units), and 5% were activated 

selectively by cooling (cold-sensitive units). So the response characteristics of conjunctival 

sensory nerves appear to be similar to those of the cornea. Indeed, in cats, the receptive 

fields of some corneal Aδ-fiber mechano-sensory and polymodal receptors extend into the 

episcleral tissue that includes the limbus and surrounding bulbar conjunctiva [60]. In the 

episcleral tissue of cats, there are also cold thermoreceptors [61]. Consistent with these 

findings, psychophysical studies in humans demonstrate that the conjunctiva is sensitive to 

mechanical, acidic and cooling stimuli [99,129,130].

Comparisons of corneal and conjunctival sensitivity to mechanical or acidic stimuli 

demonstrate that the conjunctiva is less sensitive to both stimuli [129,130]. As yet we are not 

aware of any reported differences between the response characteristics of sensory neurons 

supplying the bulbar and palpebral conjunctiva. In the human conjunctiva, application of low 

and moderate mechanical stimuli generated minimal irritation, but their intensity could be 

detected [99]. This finding is consistent with the conjunctiva containing low threshold 

mechanoreceptors that generate innocuous sensations. Stronger mechanical stimuli produced 

irritation and pain, but their intensity was less than for the same stimuli applied to the cornea 

[99]. Activation of conjunctival polymodal receptors with acidic stimulation evoked only 

irritation and pain [99]. In conjunctiva, unlike cornea, cooling stimuli produced purely cold 

sensations [99].
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No electrophysiological studies have reported the characteristics of sensory neurons 

supplying the eyelid margins.

2.1.4. Contribution of ocular sensory neurons to sensing eye wetness—The eye 

surface of terrestrial animals, including humans, is exposed to continuous oscillations in 

environmental humidity and temperature that may reach extreme values [131]. Under 

comfortable ambient conditions these changes remain unnoticed, yet they can still cause 

subtle changes to the tear film and the outermost corneal and conjunctival epithelium cells 

[132], and are potential stimuli for ocular surface nerve endings.

2.1.4.1. Cold thermoreceptors: Considerable evidence suggests an involvement of the two 

classes of cold thermoreceptors (HB-LT and LB-HT), both in regulating tear formation to 

maintain the adequate moistness of the ocular surface and in generating the sense of 

irritation produced acutely by excessive drying of the ocular surface [133]. The ability of 

cornea HB-LT cold thermoreceptors to detect relatively small changes in both temperature 

and osmolarity makes it likely that their primary role is to detect changes in the tear film 

produced by evaporation - the primary contributor to tear film thinning [134]. In humans, 

during a blink, the temperature at the surface of the cornea rises by 0.5–1.0 °C in less than a 

second and then the temperature declines at ~0.05 °C/s between blinks due primarily to 

evaporative cooling of the tears [135–138]. In guinea pig cornea, the activity of HB-LT cold 

thermoreceptors is reduced by about 50% when the temperature of the cornea is increased 

by 1 °C at a rate of ~0.2 °C/s [95]. During a blink, the rise in temperature at the surface of 

the cornea is much faster and it can be predicted that this would strongly inhibit the ongoing 

activity of cold thermoreceptors. During cycles of heating and cooling, the activity of cold 

thermoreceptors increases very rapidly when cooling starts [95]. In addition, the increase in 

tear film osmolarity produced by evaporation will increase the activity of cold 

thermoreceptors [67]. Therefore it can be predicted that the activity of HB-LT cold 

thermoreceptors will be strongly modulated by cyclical changes in the tear film produced by 

blinking.

In accord with their role in sensing changes in tear film, corneal HT-LT cold 

thermoreceptors are strongly activated by a drying stimulus that would both cool the ocular 

surface and increase tear film osmolarity [79,97,104,133], consistent with the hypothesis 

that cold thermoreceptors contribute to the reflex control of blinking and basal tear 

production [139]. In support of this hypothesis, both blinking and the basal level of tear 

production are reduced in TRPM8 knockout mice compared to wild type animals [98,101], 

while low concentrations of the TRPM8 agonist menthol increases tear production in wild 

type mice, but have no effect in TRPM8 knockout mice [140]. Menthol also stimulates tear 

production in guinea pigs [28]. Importantly, in these animal studies, the concentrations of 

menthol that stimulated tear production did not induce nocifensive behaviors (eye swiping 

and lid closure) that are associated with noxious chemical stimuli known to activate 

polymodal receptors. In humans studied at elevated ambient temperatures (~43 °C), a 

stimulus known to inhibit the activity of cold thermoreceptors in animals, basal tear 

formation is reduced [98]. Together these findings support a role for corneal HB-LT cold 

thermoreceptors in providing information about the dryness level of the eye surface and in 
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the reflex regulation of basal blinking and tear production. The possibility that dysfunction 

of corneal cold thermoreception contributes to the etiology of DED has been suggested 

[28,98,139], but remains to be demonstrated.

Selective activation of cold thermoreceptors also evokes conscious sensations in humans. In 

psychophysical experiments, cooling the corneal surface by 1–2 °C elicits a sense of 

cooling, whereas cooling the corneal surface by 4–5 °C elicits a sense of irritation [64,99]. 

Similarly, humans exposed to menthol vapor that increased its concentration in tears to ~5 

μM reported a sense of cooling, while those exposed to a higher level of menthol vapor that 

increased the concentration to ~40 μM reported irritation [28]. When tested in guinea pigs, 

concentrations of menthol up to 200 μM increased the activity of cold thermoreceptors, but 

did not activate polymodal receptors [28]. The finding that weak stimulation of cold 

thermoreceptors causes a sense of cooling while a stronger stimulation elicits a sense of 

irritation can potentially be explained by the recruitment of cold thermoreceptors with 

higher thermal thresholds (LB-HT cold thermoreceptors; see Section 2.1.2.4). This evidence 

suggests that the expected strong activation of cold thermoreceptors during excessive drying 

of the eye surface elicits the sense of irritation [139].

2.1.4.2. Polymodal and mechano-nociceptors: In intact eyes of anesthetized animals 

[60,61], spontaneous nerve impulse activity is absent or of very low frequency in 

conjunctival and corneal mechano-nociceptors and polymodal neurons, indicating that these 

cell types do not signal under resting conditions. Corneal polymodal receptors are 

insensitive to innocuous cooling, although they are activated by hyperosmotic solutions 

[61,67]. However, in comparison with cold thermoreceptors, the sensitivity of polymodal 

neurons to increases in osmolarity is much lower, with an activation threshold around 600 

mOsm/L [67]. Therefore, they are unlikely to be activated by this stimulus under normal 

conditions. Mechanical stress of the cornea surface produced by tear film breakup and 

dryness could potentially be detected by both the polymodal receptors and mechano-

nociceptors [141]. Also the marked increases in tear film osmolarity that are suggested to 

occur with tear film breakup [142] would be sufficient to activate polymodal receptors and 

thereby contribute to the ocular discomfort that is experienced with an acute, excessive 

drying of the ocular surface.

2.2. Interactions between primary sensory neurons and the immune system

The nervous and immune systems have been traditionally considered independent entities 

serving separate functions and with limited cross-talk. In general, the inflammatory response 

following tissue injury involves activation of mast cells and resident sentinel immune cells 

such as dendritic cells (DC) in the cornea and microglia in the CNS, as well as infiltration of 

the injury site by circulating immune cells (neutrophils, lymphocytes and macrophages). 

Together these immune cells neutralize infective pathogens and contribute to tissue repair. In 

response to tissue injury, the peripheral sensory neurons transduce and transmit information 

about tissue damage to evoke sensations and reflex responses. In addition, in the periphery, 

some sensory neurons release neuropeptides that interact with immune cells and other tissue 

elements to contribute to the induction and spread of inflammation (neurogenic 

inflammation) [57]. By contrast, recent evidence indicates significant and complex 
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interactions between the nervous and immune systems that extend both to peripheral and 

central nervous systems [143,144]. Neuro-immune crosstalk likely plays a significant role in 

ocular homeostasis following tissue damage and infection (see Section 5).

As a tissue in continuous contact with the outside world, the cornea has evolved as an 

immune privileged site in order to maintain transparency and preserve vision [145]. For that 

purpose, the local immune system is actively controlled through complex regulatory 

mechanisms to prevent inflammation, which is essential to protect tissues from infectious 

agents, but can result in corneal scarring and vision loss. Corneal immune privilege is based 

on several pillars, including lack of blood and lymphatic vessels, paucity of resident antigen 

presenting cells (APCs), low to minimal expression levels of major histocompatibility 

complexes (MHC) [146] and expression of neuropeptides and immunomodulatory factors. 

Recent research has demonstrated that sensory innervation contributes to maintaining the 

cornea’s immune privilege by suppressing adaptive immune responses, preventing blood- 

and lymph-angiogenesis, and the expression of pro-inflammatory cytokines, thereby 

maintaining immune tolerance [147]. In the cornea, a close physical co-location of resident 

bone marrow (BM)-derived cells with corneal nerves is well established [39,144,147–151]. 

Resident corneal macrophages have been shown to be in close contact with up to 10 separate 

axons in the subbasal plexus in the central cornea, and enwrap nerve bundles in the limbus 

and stroma [150].

Peptidergic polymodal nociceptor terminals of the cornea contain the sensory neuropeptides 

substance P and CGRP [19] that play a critical role in the induction of neurogenic 

inflammation following tissue injury [56]. This occurs because the peripheral axon terminals 

of the peptidergic nociceptors are highly branched and action potentials arising in one nerve 

terminal branch propagate both centrally to the brainstem and antidromically into all the 

other nerve terminal branches evoking the release of CGRP and substance P (the so called 

‘axon reflex’). These neuropeptides act locally on pericorneal blood vessels and resident and 

infiltrating immune cells, extending and amplifying the inflammatory reaction induced by 

tissue injury [152]. Both CGRP and substance P also contribute to the maintenance of 

corneal immune privilege; CGRP has immunosuppressive effects while substance P acts as a 

potent pro-inflammatory neuropeptide [153,154]. Mature and immature DCs express CGRP 

type 1 receptors [155], with signaling through these receptors decreasing HLA-DR (Human 

Leukocyte Antigen - antigen D Related) and co-stimulatory marker molecule expression. 

Thus, CGRP release inhibits antigen presentation [156] and decreases T cell proliferation in 

response to antigens [155]. Furthermore, CGRP has been shown to attract DCs towards 

peripheral nerves, where higher concentrations result in arrest of their movement [157]. 

Conversely, increased levels of substance P disable regulatory T cells, which normally 

suppress the activity of effector immune cells involved in immune responses [158]. These 

observations suggest a role for sensory neuropeptides in the maintenance of corneal 

immunoprivilege under normal circumstances. However, the roles of CGRP and substance P 

in the neuro-immune cross-talk at the ocular surface in DED are yet to be elucidated. Other 

neuropeptides (cholecystokinin, gastrin) have been also detected in the cornea and TG 

neurons [159]. However, their functional role remains enigmatic.
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Fractalkine (FKN, also known as chemokine (C-X3-C motif) lig-and 1 (CX3CL1) is a 

structurally unique chemotactic cytokine of the CX3C class and is produced by primary 

sensory neurons [160]. Unlike other non-selective cytokines, it binds only to its receptor 

CX3CR1, which is expressed by sensory ganglion satellite glial cells and leukocytes [161], 

and is a potent chemoattractant for immune cells [162,163]. There is extensive evidence to 

support a role for FKN/CX3CR1 signaling in the maintenance of homeostasis and that its 

disruption results in the induction of inflammation [164]. In the cornea, a role for FKN 

signaling in the recruitment of putative macrophages and MHC class II expressing DCs to 

the corneal epithelium has been demonstrated [165]. In addition, the dissociation of 

macrophages from nerves in the corneal stroma after injury has been shown to be in part 

CX3CR1 dependent [39]. Interestingly, while soluble FKN is not present in tears of healthy 

patients, it is up-regulated in patients with DED [166].

Finally, the crosstalk between neurons and immune cells contributes to the maintenance of 

peripheral nerve integrity and influences regeneration and degeneration processes. In 

humans, the increased numbers of resident and infiltrating immune cells in the cornea during 

infectious keratitis are highly correlated with reduced numbers of subbasal nerves in the 

central cornea, suggesting a causal relationship [148]. In contrast, activation of a T cell-

dependent inflammatory cascade, involving IL-17, neutrophils, platelets and vascular 

endothelial growth factor (VEGF)-A enhances corneal nerve regeneration [167]. Also, the 

cytokine erythropoietin (EPO) acting on the innate repair receptor (IRR) activates anti-

inflammatory and tissue repair pathways, favoring healing and tissue repair, and 

regeneration of injured peripheral sensory nerves [168].

Nerve growth factor (NGF) is essential for the development and maintenance of peripheral 

sensory neurons. Several cell types present in the cornea including epithelium, endothelium, 

keratocytes, and nerves express NGF and/or the NGF receptors TrkA and p75NTR. 

Likewise, NGF is also expressed by some of the various subsets of BM-derived cells 

reported in the cornea [151,169,170]. Another group of molecular regulators that potentially 

mediate crosstalk between the immune and nervous systems in the cornea are the “immune 

semaphorins” (i.e., Sema3A, 4A, 4D, 6D, and 7A). Unlike many conventional semaphorins 

that act as repulsive axon guidance factors, “immune semaphorins” regulate immune cell 

contacts and promote axon outgrowth [171,172]. For example, Sema7A acts as a 

neurotrophic factor in the cornea that can also influence inflammatory processes, while 

Sema3A is a negative regulator of innervation that counterbalances the positive 

neuromodulatory function of VEGF [173]. A more complete identification and functional 

characterization of the molecules that mediate neuro-immune crosstalk is likely to aid in 

defining the cellular processes that regulate the innervation of the ocular surface in normal 

tissue and loss of innervation in chronic inflammation.

Experimental evidence suggests that satellite glial cells in the TG release a variety of 

molecules that modulate TG neuron excitability under normal circumstances and increase 

excitability when they are persistently activated by noxious stimuli [174]. However, the role 

that satellite glial cells play in modifying the excitability of TG neurons that supply the 

ocular surface has not yet been investigated. At spinal levels, persistent activity of DRG 

neurons activates microglia in the dorsal horn that, in turn, modifies spinal neurons that 
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integrate noxious sensory information [5,175]. Activated microglia release pro-inflammatory 

cytokines and other factors that amplify synaptic transmission in the dorsal horn and thereby 

induce central sensitization. The potential role of microglia activation in DED associated 

discomfort and pain is discussed in Section 5.2.

In a healthy eye, bidirectional communication between nerves and the immune system forms 

a negative feedback loop that keeps both systems in check. Inflammation may disrupt neuro-

immune communication in DED, resulting in altered sensory nerve activity and the 

unpleasant sensations associated with this condition (see Section 5.1.1).

2.3. Central pathways and sensory processing

2.3.1. Trigeminal brain stem nuclear complex—TG neurons supplying the ocular 

surface and surrounding periocular tissues send branches centrally to terminate at multiple 

rostrocaudal levels of the trigeminal brain stem nuclear complex (TBNC) [176–180]. The 

TBNC is composed of the principal trigeminal nucleus (Vp) in the pons and the spinal 

trigeminal nucleus in the medulla that is further subdivided into subnucleus oralis (Vo), 

interpolaris (Vi) and caudalis (Vc), based on anatomical and functional properties. Second-

order neurons that respond to ocular surface stimuli are found at multiple levels of the 

TBNC, an organization that is unique to the trigeminal system and has no spinal equivalent 

[181]. The majority of ocular surface-responsive TG neurons terminate at two spatially 

discrete regions of the lower TBNC: the transition region between caudal Vi and Vc (ViVc 

transition) and at the Vc/upper cervical cord junction (VcC1 region); however, a smaller 

number of afferent fibers terminate in Vp and Vo [179,180]. TG neurons that supply the 

eyelids [16,182], lacrimal gland [183,184] and meibomian glands [177,185] display a 

similar terminal pattern in the TBNC. The significance of eye representation at multiple 

regions of the TBNC may reflect redundancy to preserve eye function or alternatively, may 

reflect cell groupings that serve different aspects of ocular function [186].

The role of CNS neurons in somatosensory function is predicted using neurophysiological 

methods and is based largely on: i) encoding properties to adequate stimuli, ii) effects of 

analgesic drugs and iii) efferent fiber projection targets. Based on these lines of inquiry, 

current evidence suggests that corneal neurons at the ViVc transition and VcC1 region (i.e., 

“ocular neurons”) serve different aspects of ocular function.

2.3.1.1. Ocular neurons at the ViVc transition: Ocular neurons recorded at the ViVc 

transition encode the intensity of mechanical, thermal and chemical stimulation of the ocular 

surface [100,187,188]. Ocular neurons at the ViVc transition neurons are excited by bright 

light [189] and are sensitive to changes in the moisture status of the ocular surface, a feature 

not seen by neurons in other TBNC regions [190]. The receptive field for most ViVc 

transition neurons includes the entire ocular surface. Many ViVc transition neurons also 

respond to innocuous and noxious stimulation of periorbital skin; however, nearly 50% of 

neurons at this region respond only to ocular surface stimulation [187,191]. Small diameter 

myelinated (Aδ fibers) and unmyelinated (C fibers) corneal nerve fibers terminate at the 

ViVc transition. Repetitive ocular surface stimulation often causes desensitization or fatigue 

of ViVc transition neurons, while systemic morphine administration enhances corneal-
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evoked responses in about 30% of recorded neurons, a feature that may contribute to opioid 

analgesia-induced ocular itch [192]. Ocular neurons at the ViVc transition project to brain 

regions that control lacrimation (superior salivatory nucleus) and eye blink (facial motor 

nucleus) as well as to the sensory thalamus [193,194]. Blockade of synaptic activity at the 

ViVc transition prevents reflex lacrimation due to bright light [195] and reduces eye blink 

behavior evoked by hypertonic saline [196]. Collectively, these properties suggest that ocular 

neurons at the ViVc transition play a significant role in maintaining ocular homeostasis and 

a lesser role in sensory-discriminative aspects of ocular pain.

2.3.1.2. Ocular neurons at the VcC1 region: Ocular neurons at the VcC1 region encode 

the intensity of mechanical, thermal and chemical stimulation of the ocular surface, and at 

similar thresholds as ViVc transition neurons [187,188]. VcC1 neurons often respond to 

multiple classes of chemical irritants [197,198]. However, there are significant differences in 

encoding properties for ocular neurons at these two regions. Unlike neurons at the ViVc 

transition, the receptive field for most VcC1 ocular neurons includes only a portion of the 

ocular surface and all neurons are activated by noxious stimulation of periorbital skin 

[187,188]. Many VcC1 neurons receive convergent input from the cornea and the dura, 

suggesting a role in headache [199,200]. Repetitive ocular surface stimulation sensitizes 

VcC1 neurons, while systemic morphine administration inhibits corneal-evoked responses of 

all VcC1 neurons in a dose-dependent manner [192]. Although VcC1 ocular neurons are 

also activated by bright light, synaptic blockade of this region does not alter light-evoked 

lacrimation [189]. The efferent projections of VcC1 ocular neurons include the facial motor 

nucleus, pontine parabrachial nucleus, sensory thalamus and hypothalamus 

[187,192,194,201]. (Fig. 3). Synaptic blockade of the VcC1 region causes a transient 

reduction in/of saline- or light-evoked eye blink [196]. Collectively, current data suggest that 

ocular neurons at the VcC1 region behave similar to nociceptive neurons found in dorsal 

horn of the spinal cord and likely are critical for sensory-discriminative aspects of ocular 

pain.

There are scattered reports of neurons at Vp and Vo regions responding to periocular 

stimulation [202–204]; however, their contribution to ocular function is not known. Damage 

to the lateral pons and medulla, as occurs in some stroke patients, can result in paroxysmal 

or “salt and pepper” sensations in the eye consistent with a role for the Vp/Vo region in 

ocular sensation [205].

2.3.1.3. TBNC intersubnuclear communication: Rostral and caudal regions of the TBNC 

are connected through a dense longitudinal fiber system [206–209]. Evidence that 

intersubnuclear pathways serve a “feed forward” facilitatory function has been reported in 

models for acute dental pain [210], headache [211] and evoked eye blinks [212]; however, a 

role in DED has not been determined. Intersubnuclear pathways also may contribute to 

opioid-induced modulation of ocular pain since localized injections of opioid receptor 

agonists into the VcC1 region markedly alters corneal-evoked responses of ocular neurons at 

the ViVc transition [194].

2.3.2. Representation of the eye at supraspinal brain levels—The representation 

of the ocular surface and periocular skin at higher levels of the neuroaxis has not been well 
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examined. Earlier mapping studies identified neurons with periorbital receptive fields in the 

most posterior and medial portions of the somatosensory thalamus [194,213], 

somatotopically appropriate for representation of the ophthalmic branch of the trigeminal 

nerve [214,215]. There are ocular neurons at the ViVc transition and VcC1 region with 

projections to the parabrachial area and the posterior thalamus, and not to the main sensory 

thalamic areas [187,192,216]. Since these areas have strong connections with the amygdala, 

insular cortex and other limbic brain areas, this suggests a role in affective and/or autonomic 

aspects of pain [217,218]. Interestingly, stimulation of insular cortex evokes tingling and 

pain sensations on the face and around the eye [219] whereas, in their original mapping 

study in 1937 using electrical stimulation of primary somatosensory cortex, Penfield and 

Boldrey [220] could not elicit ocular sensations. Neurons with a corneal or periorbital 

receptive field have been recorded in primary somatosensory cortex [221,222] and 

neuroimaging has identified an increase in signal in primary somatosensory cortex after 

painful bright light stimulation in humans [223]. These studies suggest that the eye is poorly 

represented at thalamic and cortical areas closely associated with sensory-discriminative 

aspects of pain, whereas strong connections to brain regions associated with affective and 

autonomic aspects of pain are found. A schematic representation of the ascending neural 

pathways associated to the eye at different levels of the neuroaxis is represented in Fig. 3 

(see also Fig. 6).

3. Neural regulation of tear production

The components of the tear film are produced by the main and accessory lacrimal glands, 

meibomian glands, goblet cells, stratified squamous epithelial cells and corneal epithelium. 

The neural regulation of secretion by each of these tissues is distinct.

The aqueous tear producing tissues receive a parasympathetic innervation that originates 

from the parasympathetic pterygopalatine or ciliary ganglia and a sympathetic innervation 

that originates from the superior cervical ganglia. In addition, most of these tissues receive a 

peptidergic sensory innervation from TG that potentially subserves an efferent function. In 

the sections below describing the innervation of specific glandular tissues, 

immunohistochemistry was used to define the parasympathetic, sympathetic and sensory 

nerve fibers. In most studies, immunoreactivity (IR) to the neuropeptide Vasoactive 

Intestinal Peptide (VIP) was used to identify parasympathetic nerve fibers, but these fibers 

were also localized by their IR for the enzyme acetyl-cholinesterase that inactivates released 

acetylcholine and the vesicular acetylcholine transporter. Sympathetic nerve fibers were 

identified by their IR for Neuropeptide Y (NPY), or for the enzymes Tyrosine Hydroxylase 

(TH) or Dopamine β-Hydroxylase (DBH) that are required for the synthesis of the 

sympathetic neurotransmitter norepinephrine. Peptidergic sensory nerve fibers were 

identified by their IR for the neuropeptides CGRP or Substance P.

3.1. Lacrimal gland

The lacrimal gland is the main producer of electrolytes, water, and protein in the tear film. 

The lacrimal gland synthesizes and secretes multiple proteins many of which are anti-

bacterial [224–229]. These proteins are stored in secretory granules in the acinar cells until 
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released by the appropriate stimuli. Only a small percentage of granules are released by 

exocytosis in response to a given stimulus, a mechanism of secretion known as merocrine 

[230]. Water and electrolytes are secreted by the coordinated activation of ion channels and 

pumps [231–233]. Electrolytes and water come from the blood supply and are transported 

across the basolateral membranes into the lacrimal gland cells and then across the apical 

membrane into the duct system. The ionic composition of the fluid produced by the acini is 

modified within the ducts [234]. The ducts also secrete proteins that are different from those 

produced by acinar cells [235].

Autonomic nerves regulate the secretory activity of the lacrimal gland. The activity of these 

efferent nerves is regulated by reflexes initiated by activation of sensory neurons supplying 

the ocular surface. As described in Section 2.1.4.1, recent evidence indicates that corneal 

cold thermoreceptors sense changes in the dryness of the ocular surface and elicit a reflex 

that contributes to the regulation of basal aqueous tear formation. The overflow tearing 

initiated by damaging or potentially damaging stimuli is elicited by activation of mechano- 

and polymodal nociceptor sensory nerves in the cornea and conjunctiva (Section 2.1.4.2).

While the lacrimal gland receives both a sympathetic and parasympathetic innervation, the 

latter is most extensive. VIP-IR nerve fibers (parasympathetic) are localized densely around 

the basal surfaces of the acini with rare appearance around ducts and blood vessels, and in 

the interstitial stroma and connective tissue [236–241]. Acetyl-cholinesterase- and vesicular 

acetylcholine transporter-IR nerve fibers are also localized around the ducts, acini and blood 

vessels, and in the interstitial stroma and interlobular tissue [239,242,243]. Thus the 

distribution of nerve fibers expressing these proteins is similar to those containing VIP 

[239].

Exogenous application of muscarinic receptor agonists to the lacrimal gland increases both 

protein and aqueous fluid (water and electrolyte) secretion from the lacrimal gland [244–

248]. In addition, there is consistent evidence that lesioning the pre- or post-ganglionic 

parasympathetic nerves to the lacrimal gland cause a marked reduction in lacrimal gland 

secretion [249,250]. A similar reduction in lacrimal gland secretion is produced by in vivo 
administration of muscarinic antagonists [251,252], demonstrating the importance of 

neurally released acetylcholine in mediating the actions of the parasympathetic nerves. 

Evidence indicates that acetylcholine mediates its effects in the lacrimal gland by activating 

M3 muscarinic receptors [253,254]. IR and gene expression for M3-muscarinic receptors 

were demonstrated in lacrimal acinar, myoepithelial and duct cells [255,256]. While these 

findings clearly support a role of muscarinic receptors in stimulating lacrimal secretion, 

prolonged application of the muscarinic agonist carbachol to lacrimal gland acinar cells in 
vitro results in a marked reduction in protein secretion [257,258]. This reduction, which may 

play a role in dysfunction of the lacrimal gland, is not accompanied by changes in 

membrane expression of M3 muscarinic receptors and has been attributed to down 

regulation of post receptor-signaling mediators and effectors [259]. In humans, the VIP 

receptor 1 was identified on the basolateral membrane of the acinar cells, whereas the VIP 

receptor 2 was localized to the myoepithelial cells. Application of VIP to isolated rabbit 

acinar cells or to the isolated porcine lacrimal gland increases protein secretion [237,260–

263]. When both muscarinic and adrenergic receptors were blocked, application of a VIP 
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receptor antagonist produced a small reduction in protein secretion evoked by electrical 

stimulation of the nerves supplying the isolated porcine lacrimal gland [261].

In general, the sympathetic innervation is located predominately around the vasculature. 

Nerve fibers with IR for NPY (sympathetic) are found around the arteries and arterioles and 

in the interstitial stroma between lacrimal gland acini [239]. Similarly nerve fibers with IR 

to TH or DBH are seen around the blood vessels and in the interlobular connective tissue 

and in the stroma between acini [239,241–243]. One study demonstrated more TH-IR nerve 

fibers than NPY-IR nerve fibers [239], which may indicate that the gland is innervated by 

more than one sub-population of postganglionic sympathetic neuron as has been described 

in salivary glands [264].

Sympathetic nerves can affect lacrimal gland secretion in two different ways. First they can 

alter blood flow, with vasodilation increasing electrolyte and water secretion, and with 

vasoconstriction decreasing them [265]. Second, sympathetic neurotransmitters can directly 

induce protein, electrolyte and water secretion [243,261,266,267]. Exogenous application of 

α1- or β-adrenergic receptor agonists increases lacrimal gland protein secretion [268,269]. 

In rat lacrimal gland, the stimulatory action of α1-adrenergic receptor agonists is mediated 

via α1D-adrenergic receptors [268]. Mouse lacrimal gland tissue showed IR for α1- and β1-

adrenergic receptors, with the acinar cells expressing both types of receptor. Within the 

acinar cells, IR for α1-adren-ergic receptors was present both at the cell surface and in the 

cytoplasm, whereas that for β1-adrenergic receptors was localized primarily to the cytoplasm 

[269]. In addition, IR for α1-adrenergic receptors is localized to the blood vessels and ducts 

in the mouse lacrimal gland [269]. The actions of exogenously applied NPY have only been 

investigated in porcine lacrimal gland where it also increases protein secretion [261]. 

Despite the findings that exogenous delivery of sympathomimetics stimulates protein 

secretion, the physiological role of the sympathetic innervation to the lacrimal gland has 

been questioned because its function was not altered in rabbits when innervation from the 

superior cervical ganglion was interrupted [270].

ATP, which is potentially released from both parasympathetic and sympathetic nerve 

terminals in lacrimal gland, can stimulate protein secretion via activation of P2X3- and 

P2X7-purinoceptors [271,272]. In addition, evidence suggests that there is a complex 

synergistic interaction between muscarinic and P2X7 receptors in stimulating protein 

secretion, and that activation of α1D-adrenergic receptors triggers the release of ATP from 

the acini [273,274].

The lacrimal gland is also innervated by CGRP-IR fibers (pepidergic, sensory) that are 

found predominantly around the lacrimal ducts, but are also associated with the arteries and 

arterioles in the lacrimal gland [236,239]. Substance P-IR nerve fibers have a similar 

distribution to the CGRP-IR nerve fibers, but the numbers of CGRP-IR fibers is higher 

[239]. Sensory dennervation of the rabbit lacrimal gland increases its protein secretion in 

response to exogenous application of the β-adrenergic receptor agonist isoproternenol or the 

muscarinic receptor agonist carbachol [270]. In addition, sensory dennervation results in a 

massive accumulation of vesicles within the lacrimal gland acini. Together these findings 

suggest that the sensory nerves play an efferent role in regulating lacrimal gland secretion.
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3.2. Accessory lacrimal glands

Like the main lacrimal gland, the accessory lacrimal glands contribute electrolytes, water 

and protein to tears. Very little is known about the neural control of accessory lacrimal 

glands, but it appears to be similar to the main lacrimal gland [275]. Electron microscopy 

studies have demonstrated the presence of non-myelinated axons containing vesicles close to 

cells in the secretory epithelium and intralobular ducts of the glands [276]. VIP-IR nerve 

fibers (parasympathetic) have a similar distribution within the accessory lacrimal glands 

[240]. Electron microscopy revealed a few axons with small and large dense cored vesicles 

indicative of sympathetic axons, but those with small clear vesicles and large dense core 

vesicles indicative that parasympathetic axons were much more prevalent [276]. Human 

accessory lacrimal glands express muscarinic receptors (M1 and M3), VIP receptors (1 and 

2) and adrenergic receptors (α1A, α2A, and β2) [275].

3.3. Meibomian gland

The meibomian gland produces meibum, which contains the major lipid components of 

tears. These lipids are synthesized by the meibocyte acinar cells and accumulate in these 

cells as they mature and migrate toward the center of the acinus. Secretion occurs when the 

cells rupture and release their contents into the lumen of the duct system (holocrine 

secretion). There appear to be no studies examining the role of nerves and their 

neurotransmitters in regulating the holocrine secretion of the meibomian gland. Studies 

have, however, noted the proximity of nerve fibers to the meibomian glands in a wide range 

of animal species including humans [125,185,240,277–283].

VIP-IR nerve fibers (parasympathetic) are present in the meibomian glands 

[240,277,280,284] and are mostly associated with the acini and central duct [123,183], but 

there is some debate surrounding their association with the meibomian gland vasculature 

[125,185,284,285]. Evidence exists to support the presence of VIP receptors 1 and 2 and 

muscarinic receptors M1, M2, M3, M4, and M5 within the meibomian gland acini, ducts, 

and basal epithelium [286–288]. In immortalized human meibomian gland cells, application 

of the muscarinic agonist carbachol or VIP increases cytoplasmic Ca2+ concentration and 

stimulates cell proliferation [288]. Application of VIP in combination with either 3-

isobutyl-1-methylxanthine or forskolin also causes a significant elevation in intracellular 

cAMP content [288].

DBH- and NPY-IR (sympathetic) nerve fibers are predominately associated with the 

vasculature and are found more sparsely in the meibomian gland acini 

[123,125,183,185,277,289]. Immunolabeling has demonstrated that NPY receptor 1 is 

localized to the nuclear membrane of the acinar cells and to the cell membrane of the 

meibomian gland duct and acinar cells in mice [287].

CGRP-IR nerve fibers (peptidergic, sensory) were localized mostly to the meibomian gland 

vasculature, but are also associated with the ducts where their density is highest close to the 

orifice [121,123,125,183,185,277]. Substance P-IR nerve fibers have a very sparse presence 

in the meibomian glands, but they are also associated with the acini, ducts and vasculature 
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[122,123,125,185,277,285]. The Substance P receptor (neurokinin 1 receptor) was also 

localized to the cell membrane of duct and acini cells in the mouse meibomian gland [287].

3.4. Conjunctival goblet cells

Conjunctival goblet cells secrete the gel forming mucin MUC5AC, electrolytes and water 

[290–292]. The secretory proteins including mucins are synthesized in the goblet cells and 

stored in secretory granules. Upon an appropriate stimulus, the secretory granules fuse with 

each other and with the apical membrane to simultaneously release most of the secretory 

granules in a given cell (apocrine secretion). Activation of sensory nerves supplying the rat 

cornea evokes goblet cell mucous secretion that is dependent on activation of nerves within 

the conjunctiva [293]. However the efferent nerve type(s) involved in mediating this reflex 

response remains to be established.

Not all goblet cell clusters appear to have nerve fibers near their basal membranes [124]. 

Where present, parasympathetic nerve fibers revealed by VIP-IR have been found at the 

epithelial-stroma junction and around the basolateral aspect of goblet cells in a variety of 

aminals [124,240,294]. IR for M1, M2 and M3 muscarinic receptors has been demonstrated 

in goblet cells from mice and humans, whereas rats only expressed M2 and M3 muscarinic 

receptors [294,295]. These receptors, as well as the VIP receptor 2, are located subjacent to 

the secretory granules within the goblet cells. Exogenous application of either VIP or the 

muscarinic receptor agonist carbachol stimulates goblet cell secretion, indicating the 

importance of the parasympathetic innervation [295,296].

DBH- and TH-IR (sympathetic) nerve fibers surround the goblet cells [124,294]. 

Immunolabelling studies indicate that goblet cells in humans express α1A- and β3-

adrenergic receptors, whereas in mice and rats β1- and β2- adrenergic receptors were 

demonstrated [294]. Conclusions regarding β1- and β2-adrenergic receptor expression in 

human goblet cells cannot be made, because suitable antibodies are currently not available. 

In rats, CGRP-IR nerve fibers (peptidergic sensory) are present in the conjunctiva, but were 

not found close to the goblet cells [124].

As described for the lacrimal gland, ATP is another potential signaling molecule that can be 

released from both parasympathetic and sympathetic nerve terminals, and by other cell 

types. This purine elicits mucin secretion from goblet cells in rabbit and human conjunctiva 

via activation of P2Y2 purinoceptors [297].

3.5. Conjunctival stratified squamous cells

Conjunctival stratified squamous cells produce the membrane-spanning mucins MUC1, 

MUC4, and MUC16 [298–300]. These cells also secrete electrolytes and water into the tear 

film [290]. The mucins are synthesized within the squamous cells and are then inserted into 

the apical membrane where the extracellular domain forms the glycocalyx that reaches into 

the tear film. The extracellular domains of MUC1, MUC4 and MUC16 can be released into 

the tear film by ectodomain shedding [301]. MUC4 can also be routed via an intra-cellular 

pathway where it is secreted as a small soluble mucin into the tear film [302]. Several non-

neural processes regulate the release of mucins from stratified squamous cells, but to date no 

regulatory role for nerves or neurotransmitters has been identified.
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In mice, VIP-IR (parasympathetic) nerve fibers are located at the basal surface of the 

stratified conjunctival squamous epithelial cells, whereas TH-IR (sympathetic) nerve fibers 

are located at the base of the epithelium [294]. By contrast, in humans, VIP-IR nerve fibers 

are located at the base of the epithelium and TH-IR nerve fibers are located at the basal 

surface of the squamous epithelial cells [294]. IR for α1A- and β3-adrenergic receptors was 

detected in squamous epithelial cells of human conjunctiva, whereas in mice IR for α1A-, 

β1- and β2-adrenergic receptors were detected in these cells [294]. In humans, M1, M2 and 

M3 muscarinic receptor subtypes were detected in epithelial cells, with a high expression of 

M2 and M3 receptors in the basal epithelial cell layer of the conjunctiva [294]. In mice and 

rats, M1 and M2 muscarinic receptors were detected in squamous epithelial cells [294,295].

As indicated above, both goblet cells and stratified conjunctival squamous epithelial cells 

secrete electrolyte and water into the aqueous tear layer. To date this secretion has only been 

studied in whole tissue segments of conjunctiva that contain both goblet cells and stratified 

squamous epithelial cells. However, as there are many more stratified squamous cells than 

goblet cells, it is likely that these studies have primarily measured electrolyte and water 

secretion from the squamous cells [290,303]. While there is no direct evidence that nerves 

regulate conjunctival epithelial fluid secretion, exogenous application of the α- and β-

adrenergic receptor agonist epinephrine stimulates the electrolyte secretory activity of the 

isolated rabbit conjunctiva [303,304]. This effect of epinephrine was attributed to stimulation 

of β2-adrenergic receptors and the elevation of intracellular cAMP (cyclic adenosine 

monophosphate) levels [304]. As it has a large surface area compared to the cornea, the 

conjunctiva can supply the pre-corneal, tear film.

3.6. Corneal epithelium

The corneal epithelium also secretes mucins, electrolytes and water into the tear film, but its 

contribution is limited. The autonomic nerve fibers innervating the corneal epithelium are 

predominantly sympathetic, but there is also a minor contribution of parasympathetic nerve 

fibers [305]. As indicated in Section 2.1.2, a significant proportion of polymodal nociceptor 

sensory nerve fibers of the cornea are peptidergic and release neuropeptides when activated 

by noxious stimuli [306]. Their influence on corneal epithelium tear fluid secretion is 

unknown.

As with the conjunctiva, epinephrine stimulates the electrolyte secretory activity of the 

corneal epithelium [307]. Furthermore, surgical removal of the superior cervical ganglion 

reduces corneal epithelial Cl− transport and increases sensitivity to epinephrine [307]. These 

findings clearly indicate a functional role for sympathetic nerves in regulation of corneal 

electrolyte secretion. As with the conjunctiva, the stimulatory effect of epinephrine on 

corneal electrolyte secretion is attributed to activation of β-adrenergic receptors and the 

elevation of intracellular cAMP levels [307].

4. Neural regulation of eye blinks

The neural pathways involved in reflex blinking are better known than for spontaneous 

blinks. The orbicularis oculi (OO) muscle acts to close the upper eyelid during the blink. 

Ocular surface activation of the OO arises in its sensory nerves, which project to the motor 
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neurons of facial nerve (Cranial nerve VII) through trigeminal sensory fibers [193,308]. 

There are at least two major circuits involved in the downward phase of blinking that are 

associated with a stimulus evoking reflex blinks. The short-latency (R1) response originates 

in the caudalis subdivision of the TBNC and is pre-programmed to produce increasing OO 

motoneuron activity with increasing stimulus amplitude that is relatively insensitive to 

sensory feedback. The long-latency circuit (R2) is slower and is sensitive to sensory 

feedback, including sensory neurons from the ocular surface. Unlike the R1 response, the R2 

response is not pre-programmed, but rather can modify the blink to fit the stimulus 

[309,310].

The reflex blink pathway has three basic components in its simplest form: (1) primary 

corneal afferents, (2) second order TBNC neurons, and (3) OO motoneurons (Fig. 4). 

Anatomical studies in rats show that the Vi/Vc transition region and the VcC1 region project 

to the facial motor nucleus [182,194] and that damage to the caudal trigeminal brainstem 

complex severely impairs the generation of cornea-evoked reflex blinks in humans [311]. 

The discharge pattern of Vi/Vc neurons appears to initiate blinking, sets blink amplitude and 

peak velocity of corneal reflex blinks, while neurons at the VcC1 region modify the activity 

of ViVc transition neurons and eye blinks [212,312]. (see Section 2.3.1).

The main downward force of the blink is generated by the sphincter-like OO, but there is an 

additional passive downward force generated by the spring-like qualities of the stretched 

tendons associated with the levator palpebrae (LP) muscle. Thus, the downward phase of the 

blink is very rapid and occurs immediately following a burst of OO motoneuron activity, 

during which LP motoneurons temporarily cease firing. For example, downward lid 

saccades may reach a velocity of 294° per sec, while the down phase of the blink can easily 

surpass that speed at 840° per sec. All of the other extraorbital muscles transiently co-

contract with the blink, with the exception of the superior oblique, so that the eye is drawn 

transiently upward during the blink [313].

The main upward force of the blink comes from the LP muscle, with some input from 

Müller’s muscle. Motoneurons of the facial nerve innervate the OO and show little or no 

tonic activity. Instead, these motoneurons are characterized by high frequency bursts of 

activity with the down phase of the blink. In contrast, LP motoneurons like most of the other 

extraocular muscles in the orbit are innervated by the oculomotor nerve (Cranial Nerve III) 

and exhibit tonic activity, which increases with upward gaze. Thus, the open eye condition is 

maintained by tonic activity of the LP, balanced by passive downward forces provided by the 

LP aponeurosis, the LP tendon and palpebral ligaments [314]. The up phase of the blink is 

slower than the downphase and is due to a burst exceeding the tonic activity of the LP. 

Müller’s muscle has a slight additive effect on the up phase, opening the eye wider with 

sympathetic nerve activation in, for example, a state of fear or surprise. When sympathetic 

innervation is affected, as in Horner’s syndrome, lack of input from the Müller’s muscle 

results in ptosis of the eyelid [313].

The ocular surface input for spontaneous blinking is less well understood than for réflex 

blinking. Many studies have shown increased spontaneous blinking when the ocular surface 

is stimulated [315–317]. Recently, Wu et al. showed a linear increase in blink rate with 
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increasing air flows applied on the ocular surface [318]. This stimulus enhances cold 

thermoreceptor activity, thus favoring the interpretation that spontaneous blinking is 

maintained, at least in part, by the continuous nerve impulse firing of corneal cold 

thermoreceptors (see section 2.1.4.1) [139]. Indeed, genetic silencing of cold 

thermoreceptors in mice or ocular instillation of a local anesthetic in humans, reduces blink 

rate [101,315,319]. Hence, these studies suggest that the afferent input from ocular surface 

sensory nerves, in particular cold thermoreceptors, contribute to maintain the spontaneous 

blink rate through modulation of the spontaneous blink generator. The association of dry eye 

condition with increased blinking is presumably due to an enhanced activity of ocular 

surface sensory nerve terminals evoked by the irritation provided by an unstable tear film 

[28,315,320–322]. Wearing contact lenses, which may stimulate the ocular surface, is also 

associated with an increased blink rate [323,324].

Central dopamine levels are also known to affect the spontaneous blink rate. For example, 

patients with schizophrenia exhibit a higher blink rate, while those with Parkinson’s Disease 

show a lower blink rate, most likely due to differences in dopamine levels in those 

conditions [325–327]. Cognitive state can also vary the blink rate [328–330]. Reading, 

working on computers, or other visual tasks requiring concentration are known to decrease 

blink frequency [316,321,324,331,332]. Thus, it is clear that a number of factors acting at 

various levels of the neuroaxis combine to affect the spontaneous blink rate.

Recently, Kaminer et al. [333] hypothesized that a spontaneous blink generator that acts to 

set the spontaneous blink rate was located in the spinal trigeminal complex. They found that 

both rats and humans exhibited a periodicity in the blink rate over time, with both species 

displaying a similar temporal organization in spontaneous blink pattern. They were able to 

show modulation of the blink rate in DED and by altering dopamine levels in the brain in a 

rat model. These data suggest an essential role for the spinal trigeminal complex, already 

known to play a part in reflex blinking, in determining the spontaneous blink pattern. Thus, 

spontaneous blink patterns are likely to be modified by multiple neural sources including 

corneal afferents, the secretion of dopamine by basal ganglia and cortical input that can be 

altered by mood or task.

Blinks also can occur in clusters or flurries [321,334], where relatively innocuous stimuli 

can evoke multiple blinks, termed blink oscillations, instead of a single reflex blink [335]. 

Blink oscillations are also common in Parkinson’s Disease [336], a condition characterized 

by loss of dopamine neurons in basal ganglia. In aging, the blink oscillations may occur due 

to a normal, age-related loss of dopamine neurons [335,337]. Blink ocillations also increase 

in blepharospasm that may be driven, in part, by dry eye symptoms and ocular surface 

irritation that enhance the activation of Aδ- and C-fiber sensory nerve inputs [337]. Peshori 

et al. hypothesized that the purpose of these blink oscillations is to improve the ocular 

surface tear film to compensate for increasing eye dryness with age [335].

5. Neurobiological changes in dry eye disease

It is well established that the sensory nerves of the ocular surface display structural and 

functional changes in DED and underlie the development of adverse symptoms that range in 
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intensity from mild discomfort and dryness to burning pain. In chronic DED, it is likely that 

multiple levels of the neuroaxis are involved resulting in aggravation of adverse symptoms 

as well as altered tissue trophism, regulation of tear production, blinking and reflex vascular 

responses.

5.1. Effects of eye surface dryness on peripheral sensory neurons

Reduced tear secretion leaves the corneal epithelium exposed to adverse environmental 

conditions. The osmolarity of the tear film increases while excessive evaporation causes 

rapid cooling of the ocular surface. Both of these events cause stress to the ocular mucosal 

epithelium, leading ultimately to local inflammation and a variable level of peripheral nerve 

damage (see TFOS DEWS II Pathophysiology report). In other tissues, it has been shown 

that local inflammation and nerve injury evoke profound short- and long-term genetic and 

molecular changes that modify the electrophysiological characteristics of the peripheral 

terminals, parent axons and cell bodies of the primary sensory neurons [338]. In the longer 

term, these changes lead to abnormal peripheral and central nerve terminal sprouting, 

aberrant impulse activity and alterations in the central synaptic transmission, resulting in 

dysregulated transmission and processing of pain signals leading to chronic pain [338]. 

While the mechanisms that lead to the abnormal sensations of discomfort and pain referred 

to the eye with chronic tear deficiency have not been precisely identified, it is likely that they 

involve similar mechanisms to those demonstrated for other chronic pain conditions.

5.1.1. Local inflammation—Inflammation plays a key role in the pathogenesis and 

chronicity of DED [339] and represents a major driving force in sensitization, damage and 

regeneration of the peripheral sensory neurons [338,340,341]. Persistent stress from 

desiccation stimulates the local release of a variety of chemical mediators from epithelial 

cells, keratocytes and resident or infiltrating immune cells (such as APCs, neutrophils, 

monocytes, mast cells and platelets). In DED, the lacrimal gland can also become inflamed 

and is another potential source of chemical mediators that contribute to the inflammatory 

environment at the ocular surface [342,343]. The chemical mediators released include 

eicosanoids [prostaglandins (PGs), leukotrienes (LTs), thromboxanes (TXs)], bradykinin 

(BK), 5-hydroxytryptamine (5-HT), histamine (HIS), purines [adenosine, adenosine 

triphosphate (ATP)], hydrogen ions (H+), nitric oxide (NO), platelet-activating factor (PAF), 

neurotrophins (eg. NGF, GDNF), endocannabinoids, proteases as well as pro-inflammatory 

cytokines such as interleukins (IL-2, IL-6, IL-8, IL-10, IL-17), macrophage inflammatory 

protein-1α, tumor necrosis factor (TNF)-α and granulocyte-macrophage colony stimulating 

factor (GM-CSF) [56,57,338,344–351]. Each of these chemical mediators potentially 

contributes to increasing activation of sensory nerve terminals, either by reducing their 

threshold for activation by sensory stimuli (sensitization) and/or by directly inducing or 

increasing their ongoing nerve activity.

The events triggered by proinflammatory agents are diverse and complex [347,352]. 

Activation of G protein coupled receptors (GPCR) located in the membrane of nociceptive 

terminals by the inflammatory agents is one of the general mechanisms for modulation of 

nociceptor’s excitability employed by numerous proinflamamtory substances. Activated 

GPCRs couple to specific G proteins that mediate the recruitment of one or multiple 
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signaling pathways (protein kinase C, phospholipase C (PLC), cAMP–protein-kinase-A, 

release of calcium from intracellular stores) [353,354]. Other chemical mediators, like 

growth factors act on tyrosine kinase receptors, which then activate a variety of intracellular 

signaling pathways (PLC, phosphoinositide 3-kinase (PI3K) and mitogen-activated protein 

kinase (MAPK)) [354]. The kinases activated by these signaling pathways in turn 

phosphorylate existing protein targets in the nociceptors. These include ion channels that 

contribute critically to the activation of sensory nerve endings by stimuli, such as 

transduction channels that convert the sensory stimulus into a membrane depolarization 

(receptor potential) and voltage-gated, ligand-gated and background (or leak) ion channels 

that regulate the resting membrane potential and action potential firing properties. In 

general, phosphorylation increases the function of protein targets such as TRPV1 [69] and 

leak (TREK) K+ channels [355] as well as NaV channels [356] by reducing their threshold 

for activation and/or by affecting their activation kinetics.

Excitation and sensitization are the main consequences of the interaction of proinflammatory 

mediators with their target membrane receptor protein in nociceptors. However, there is also 

a group of bioactive lipids mediators produced at sites of injury and inflammation that 

antagonize the effects of pain promoting (proalgesic) agents and modulate pain initiation. 

They include endogenous cannabinoids, a family of arachidonic acid derivatives of which 

anandamide and 2-arachidonoyl-sn-glycerol are best known [357]. These endogenous 

analgesic agents are produced during injury by hydrolysis of phospho-lipid precursors in cell 

membranes and they activate CB1 and CB2 cannabinoid receptors, a class of Gi/o-coupled 

GPCR. These in turn inhibit both TRPV1 sensitization and the activation of voltage-gated 

Ca2+ channels and ASICs [357], thus counteracting the inflammatory process to restore 

homeostasis in damaged tissues.

Acute sensitization of nociceptor terminals is the short-term consequence of the activation 

by proinflammatory agents of intracellular signaling cascades leading to augmented activity 

of ion channels mediating transduction and action potential firing. However, altered gene 

expression is another major cellular process that induces persistent nociceptor sensitization. 

It is initiated by the electrical and molecular signals sent from the periphery to the cell body 

as a result of sustained nociceptor stimulation [358]. As a result, there ensues an 

upregulation of proteins (receptors and signaling molecules, ion channels) that are 

transported back to nerve terminals, wherein they mediate the increased responsiveness to 

peripheral stimuli. Altered gene expression may include either induction of novel genes 

and/or upregulated expression of constitutively expressed genes. Typically, in nociceptors 

this includes increased expression of TRPV1 channels and various NaV channels [358]. 

Neurotrophins (eg NGF, GDNF) that are generated by tissue injury/inflammation are key 

retrograde messengers that induce changes in gene expression [89,359,360]. Recently, 

changes in expression of transcription regulating micro RNAs have been demonstrated in 

DRG and TG in response to peripheral inflammation, and it has been speculated that these 

contribute to modulating the expression of pro-and/or anti-nociceptive molecules in acute 

and chronic pain states [361,362].

Knowledge of the cellular and molecular inflammatory mechanisms activated by ocular 

dryness and the effects on corneo-conjunctival peripheral nociceptor terminals is incomplete 
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compared with other tissues like the skin. In experimental animals, acute appli cation of 

prostaglandin E2, bradykinin, or of a mixture of proinflammatory agents that contains both 

these substances together with 5-hy-droxytryptamine, histamine and substance P 

(‘inflammatory soup’), to the cornea produces enhanced spontaneous and stimulus-evoked 

nerve impulse activity in polymodal nociceptors [59,363]. Likewise, corneal inflammation 

induced experimentally by an ocular allergic challenge [68] or by exposure of the eye 

surface to UV radiation [116], elicits spontaneous firing and a reduction in mechanical 

threshold of corneal mechano-nociceptor fibers, while spontaneous firing and sensitivity to 

acidic stimulation is enhanced in polymodal nociceptors. This sensitization of polymodal 

receptors appears to involve TRPV1 channels as it was reversed by blockade of these ion 

channels [68]. Hence, the available experimental evidence suggests that in DED the 

interaction of mechano-nociceptors and polymodal nociceptors with pro-inflammatory 

substances released during dryness-evoked inflammation is likely to induce both an increase 

in ongoing nerve activity and an enhanced sensitivity to sensory stimuli [139]. In contrast, 

the activity of corneal cold thermoreceptors is reduced by exposure to ‘inflammatory soup’, 

an effect mediated via activation of Gq-coupled GPCR and a direct inhibitory action of the 

G-protein subunit Gαq on TRPM8 channels [364].

5.1.2. Nerve injury—The high density and the superficial location of the sensory nerve 

terminals between the epithelial cells at the surface of the cornea, makes them particularly 

vulnerable to injury by adverse environmental conditions (such as air pollution, low 

humidity), trauma (cataract and refractive surgery) and disease (pterygium, 

conjunctivochalasis, keratoconus) [365–367]. Also, in animals in which aqueous tear 

secretion or composition is disturbed experimentally, the density and architecture of 

subbasal nerve leashes and epithelial nerve terminals are greatly altered [28,103]. Likewise, 

in humans, confocal microscopy of corneal nerves in patients with aqueous tear deficiency 

of variable ethiology reveals changes in number, tortuosity, and branching pattern of 

subbasal plexus nerve fibers [368–372]. It is reasonable to assume that when the tear film 

covering the eye surface is thinned, the mechanical stress generated by blinking movements 

on superficial epithelium cells becomes abnormally high, injuring terminal nerve branches. 

This initiates a cycle of degeneration and regeneration leading to the altered architecture of 

corneal and conjunctival nerve fibers.

It is well established that damage to the peripheral nerve endings of nociceptive sensory 

neurons elicits profound changes in their spontaneous and stimulus-evoked firing pattern 

[341]. As with inflammation, these changes in nerve activity are the consequence of 

alterations in the activation threshold and kinetics of the transduction ion channels and 

voltage-gated ion channels in the axonal membrane, and a change in the expression and 

trafficking of these proteins. For example, altered expression of various transduction 

channels (such as TRPV1, TRPA1, and TRPM8) has been demonstrated in experimental 

models of nerve injury-induced pain [373]. Also, the density and distribution of NaV (eg 

NaV1.3, NaV1.6, and NaV1.9 channels) and voltage-gated calcium (CaV3) channels that are 

involved in the generation and propagation of action potentials can be markedly altered by 

nerve injury [374–376]. Moreover, the expression of voltage-activated K+ channels (KCNQ, 

Kv3, Kv7), hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and leak 

Belmonte et al. Page 30

Ocul Surf. Author manuscript; available in PMC 2017 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(TREK) K+ channels that are involved in setting the resting membrane potential and in 

regulating neuronal excitability can change markedly [6,376]. Together, these disturbances 

lead to increased responsiveness to natural stimulation and to the initiation of spontaneous 

action potentials at sites in the sensory neuron (in peripheral axon or soma) that do not 

normally generate impulses (ectopic activity). Altered ion channel expression in response to 

nerve injury also extends to the centrally projecting presynaptic terminals of the sensory 

neurons in the dorsal horn of the spinal cord. In this location increased expression of 

voltage-activated Ca2+ channels, in particularly the CaV3 channels that are responsible for 

the low-voltage-activated ‘T’-type current, has been shown to contribute to the generation of 

hyperalgesia [376].

It is worth noting that nerve damage also occurs in response to continued exposure to 

inflammatory agents and, conversely, acute nerve injury triggers an immediate local 

inflammatory reaction with macrophage infiltration in the surroundings of the injured and 

entrapped axons [341]. Therefore, the genetic, molecular and functional consequences of 

inflammation and injury overlap to produce increased activity of peripheral sensory nerve 

fibers and the generation of unpleasant and painful sensations. Typically, resolution of 

inflammation and repair of damaged axons would result in the reversal of effects in early 

stages of DED. However, sensory hypersensitivity can persist for prolonged periods of time, 

even after the original cause of the changes (eg infection, surgery, toxicity) has resolved and 

can worsen if damage to the nervous elements persists through chronic inflammation [5]. 

Although inflammation and changes to the innervation of the cornea indicative of nerve 

damage have been demonstrated in DED, the exact contribution of these changes to the 

generation of abnormal sensations referred to the ocular surface remains to be resolved.

5.1.3. Dryness-induced disturbances in the activity of peripheral ocular 
sensory fibers—The effects of a chronic deficiency in tear production on the behavior of 

the different classes of corneal sensory receptors have been studied in animals following 

lacrimal gland removal [28,100].

5.1.3.1. Cold thermoreceptors: In both rats and guinea pigs, prolonged reduction in tear 

production sensitizes HB-LT cold thermoreceptors, with both a shift in the cooling threshold 

to warmer values and an increased peak frequency of nerve activity evoked during cooling 

ramps [28,100]. In addition, in rats there is an increased likelihood that the cold 

thermoreceptors will respond to noxious heating than in sham-operated rats [377]. In guinea 

pigs, there is a gradual increase in the level of ongoing nerve activity of cold 

thermoreceptors and the sensitization of cold thermoreceptors induced by tear deficiency is 

associated with morphological changes to the corneal innervation, suggestive of nerve 

damage [28]. The hyperexcitability of cold thermoreceptors could partially explain the 

characteristic unpleasant dryness sensations reported by patients with DED (see Section 

2.1.4.2).

Electrophysiological investigation of corneal cold-sensitive neurons isolated from TGs of 

guinea pigs with deficient tears demonstrated no changes in the cold-induced inward current 

[28]. This finding suggests that sensitization is not attributable to increased expression of 

TRPM8 channels. Instead, there are increases in NaV channel currents and decreases in K+ 
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channel currents in corneal cold thermoreceptive neurons; changes that would increase 

neuron excitability by reducing the voltage threshold for action potential initiation. The 

underlying mechanism(s) that produce these changes are unknown.

5.1.3.2. Polymodal and mechano-nociceptors: Mechanical sensitivity of the cornea 

assessed behaviorally is increased by chronic tear deficiency in rats [378], but whether this 

change involves sensitization of polymodal receptors and/or mechano-nociceptors to 

mechanical stimuli is unknown. The effects of chronic tear deficiency on the activity of 

corneal polymodal receptors and mechano-nociceptors have been investigated in guinea pigs 

[28] and rats [377]. In guinea pigs, there was a transient increase in the spontaneous activity 

of both polymodal receptors and mechano-nociceptors that returned to normal 4 weeks 

following lacrimal gland removal. However, the mechanical threshold of both the polymodal 

receptors and mechanonociceptors was not changed by lacrimal gland removal. In contrast, 

the response of the polymodal receptors to acidic stimulation was increased, consistent with 

a moderate degree of sensitization [28]. The possibility that tear film deficiency sensitizes 

corneal polymodal receptors to hyperosmotic stimuli has not been explored. However, acute 

topical application of a combination of inflammatory mediators to the cornea increased the 

ongoing activity of polymodal receptors, but did not increase their sensitivity to 

hyperosmotic stimuli [67]. Electrophysiological investigation of retrogradely labelled 

capsaicin-sensitive corneal neurons (presumed polymodal receptors) isolated from TG of 

guinea pigs with deficient tears, revealed increases in NaV channel currents and decreases in 

some K+ channel currents [28]. These changes would increase the excitability of the 

polymodal receptors and explain their moderate degree of sensitization.

Fig. 5 summarizes the interactive influences of dryness and inflammation on the activity of 

ocular surface sensory receptors on sensation, blinking and tearing.

5.2. Central mechanisms of sensitization

The abnormal impulse activity generated by peripheral inflammation and/or nerve injury 

represents by itself an altered sensory message transmitted to higher relay stations in the 

CNS. It also has additional consequences on the excitability, synaptic efficacy and 

connection pattern of the presynaptic nerve terminals of sensory neurons in the dorsal horn 

and brainstem, modifying transmission of signals to second-order neurons.

Chronic pain and central sensitization often begin following an initial insult to peripheral 

nerves and once established, are maintained by even low levels of peripheral nerve activity 

[5,379]. The concept of an initial insult that sensitizes pain pathways in the brain often is 

referred to as “hyperalgesic priming” and is well established for other pain models [380–

382], but is poorly defined in animal models for DED. Although a wide variety of peripheral 

factors associated with ocular surface disease are capable of activating corneal sensory 

nerves [133,139,383], it is not known which factors or combinations of factors must be 

present and for how long, to induce central sensitization and chronic ocular pain in DED.

Central sensitization of spinal cord neurons is maintained by persistent activity in peripheral 

nerves together with changes in their activation and modulation by local circuit neurons and 

microglia, and altered descending controls from higher brain centers [5,175,379]. Nerve 
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injury or inflammation enhances the release of neurotransmitters, such as substance P and 

glutamate, from primary afferent fibers that bind to neurokinin and N-methyl-D-aspartate 

(NMDA) glutamate receptors on second-order neurons in the spinal dorsal horn, resulting in 

an increase neuronal excitability [338]. Sensitized spinal dorsal horn neurons project to 

higher brain centers and are necessary to engage thalamocortical and limbic pathways that 

underlie the discriminative and affective aspects of pain [384]. Considerable evidence 

suggests that second-order ocular neurons at the ViVc transition and VcC1 region behave, in 

many respects, as spinal dorsal horn neurons and are critical for the development of 

persistent ocular pain. In animal models for anterior uveitis [198] or photokeratitis [385], in 

which ocular inflammation is prominent, neurons at the VcC1 region, but not at the ViVc 

transition, develop hypersensitivity to ocular surface stimuli, while ocular neurons at both 

regions display increased convergent input from periocular skin, consistent with allodynia 

reported by some DED patients. Enlarged cutaneous receptive field areas of dorsal horn 

neurons after nerve injury or inflammation are thought to be due strictly to central brain 

mechanisms and to reflect spatial summation, a key component of central sensitization 

[386]. In a rat model for tear deficiency, ocular neurons at both the ViVc transition and 

VcC1 region display enhanced responsiveness to activation of ocular surface sensory 

neurons with hypertonic saline and enlarged convergent cutaneous receptive field areas 

[322]. The cellular and molecular mechanisms for hyperalgesia of ocular neurons at the 

ViVc transition and VcC1 region in models for DED are not known. Hypersensitivity of 

CNS neurons is thought to derive from a combination of increased excitatory synaptic drive 

and/or loss of inhibitory controls [5,338]. Central administration of a selective NMDA 

receptor antagonist reduces acute corneal-evoked activation of ocular neurons in both 

regions [387], while blockade of substance P receptors preferentially reduces activation of 

ocular neurons at the VcC1 region [388]. Local microinjection of the GABAA receptor 

agonist, muscimol, greatly reduces corneal-evoked neural activity at the ViVc transition and 

VcC1 region [208]. Even brief stimulation of sensory nerves at C fiber strength is sufficient 

to induce prolonged activation of microglia in spinal dorsal horn [389], however, similar 

studies have not assessed the role of microglia in animal models for ocular pain. 

Collectively, these studies suggest that second-order neurons at the ViVc transition and 

VcC1 region contribute to ocular-related hyperalgesia in addition to mediating more 

specialized aspects of ocular function such as lacrimation and eye blink. In future studies, it 

will be critical to determine how persistent tear reduction influences excitatory and 

inhibitory synaptic mechanisms of ocular neurons in the TBNC.

Central sensitization can develop in the setting of ongoing afferent nociceptive traffic that 

occurs with peripheral sensitization [390,391]. Anatomically, corneal nociceptors have their 

cell bodies in the TG and synapse in two main areas of the TBNC, the ViVc transition and 

the spinomedullary junction or the Vc/C1-2 region [100,392,393]. Dry-responsive neurons 

have been identified in the ViVc transition, and a subgroup of these neurons receive 

additional converging input from corneal afferents sensitive to other stimuli such as acidity, 

heat and noxious chemicals [100,190]. Cornea-responsive neurons at the Vi/Vc transition 

and at the VcC1 region receive both innocuous and noxious sensory information and display 

increased responsiveness in an animal model for tear deficient DED [322]. This suggests 

that central sensitization occurs at multiple levels of the TBNC in DED.
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On a molecular level, NMDA receptor activation may partially underlie the phenotypic 

changes seen in neurons during central sensitization. For example, NMDA receptor 

activation can lead to the progressive increase in the firing of second order neurons of the 

TBNC, even with sub-threshold noxious stimuli, clinically manifesting as hyperalgesia and 

allodynia [394]. In vitro, co-culture experiments have identified NMDA receptors as 

important in the communication between corneal epithelial cells and TG sensory neurons 

[395]. In a rat model for ocular nociception, NMDA receptors located on peripheral neurons 

or on postsynaptic neurons in the TBNC play a key role in transmission of nociceptive 

signals from the primary afferent neurons to central pain pathways [387].

Interactions between glial cells and neurons likely have an important role in the 

pathophysiology of chronic pain [396,397]. Preclinical studies have found that activated 

microglia and astrocytes mediate the generation and maintenance of several pain states [398] 

in a fashion modulated by specific genetic polymorphisms and circulating pro-inflammatory 

cytokines [399]. Glial activation in the brain as a consequence of stress (eg traumatic brain 

injury or systemic inflammatory responses) can induce the expression of pro-inflammatory 

cytokines that directly amplify spinal cord synaptic transmission and induce central 

sensitization to pain via signal amplification [397]. Peripheral and systemic inflammatory 

responses can also lead to microglial activation and depression via monoaminergic, 

glutamatergic and neurotrophic mechanisms [400].

5.3. Descending mechanisms

The activity in ascending excitatory nociceptive pathways is modulated by descending 

control pathways from higher brain centers that may exert facilitatory or inhibitory effects 

on spinal and trigeminal sensory input [384,401]. However, the role of descending control 

systems in DED is not known. Normally, interneurons within the central pain pathway 

release neurotransmitters including gamma amino butyric acid (GABA) and glycine, which 

are involved in the inhibition of nociceptive signaling [402]. However, after a noxious insult, 

the ensuing inflammatory cascade in the spinal cord may reduce the GABA-mediated 

inhibitory influence on the ascending pathway or even make the GABA inputs excitatory 

[5]. In a rat model for ocular nociception, application of muscimol, a GABA receptor 

agonist, inhibited corneal input to both ViVc transition and VcC1 neurons [208]. A loss of 

the inhibitory GABA-mediated chloride current may allow for an upregulation of ascending 

pain pathway signals and thus a chronic neuropathic pain state [403,404].

Quantitative sensory testing can assess abnormalities in the ascending and descending pain 

pathways. Chronic pain patients (not involving the eye) often display greater temporal 

summation following repetitive presentations of a noxious stimulus (“wind up”) [405,406] 

and reduced descending controls, or conditioned pain modulation, as compared to normal 

subjects [407].

5.4. Contribution of peripheral and central mechanisms to DED discomfort and pain

Peripheral and central neural mechanisms participate in the development of adverse 

symptoms of discomfort, dryness or burning pain in DED patients and their relief is the main 

reason for them to seek medical attention [404,408,409]. However, efforts to manage 
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symptoms in chronic moderate to severe DED by ocular treatments alone have been 

inadequate [410,411]. Peripherally mediated DED pain or discomfort symptoms are 

presumed to originate by noxious stimulation of sensory neurons supplying the ocular 

surface (see Section 2.1). In DED, an inadequate or unstable tear film is the likely cause of 

tear hyperosmolarity and local surface drying leading to damage of the ocular surface 

tissues, including nerve terminals. Indeed, tear breakup is associated with increased 

sensation [141,412] and repeated episodes of tear breakup have been shown to lead to DED-

like symptoms of ocular irritation [413]. Noxious stimulation arising from an inadequate tear 

film may also lead to inflammation which results in sensitization of the sensory terminals at 

the ocular surface (see Section 5.1), rendering previously non-noxious or low power stimuli 

able to evoke sensation [414]. If the underlying cause is not addressed and ameliorated, the 

increased activity of peripheral sensory neurons may lead to central sensitization. Although 

in most cases ocular surface pain has a proximate physical cause, it may be reported in the 

absence of tissue damage or any likely pathophysiological cause, but still should be accepted 

as pain [415]. Indeed, the weak correlation between signs and symptoms in DED [416–418] 

is consistent with the notion that sensitization of eye sensory pathways is triggered by events 

that may occur well before the patient enters the clinic. When peripheral nerve injury/

inflammation due to disturbances of ocular surface homeostasis generates functional and 

anatomical alterations at higher levels of eye pain pathways, central pain largely independent 

of the original cause may develop and persist without an obvious relationship with the 

peripheral nociceptive input. Instillation of a topical anesthetic at the surface of the eye has 

been suggested as a simple and immediate way to differentiate pain arising from activation 

of peripheral sensory nerve terminals from that arising at a more proximal site in the sensory 

neuron or in the CNS [419].

Fig. 6 summarizes the peripheral and central neural mechanisms involved in the generation 

of perceptual, autonomic and motor responses in DED.

Clinical identification of the neurological mechanisms underlying pain is important to define 

therapies. This is required to distinguish nociceptive from neuropathic pain, whose definition 

has been restricted to lesion or disease affecting the somatosensory system [420]. Precise 

identification of the neural mechanism underlying discomfort or pain reported by patients 

with a diagnosis of DED is often difficult with the exploration tools available today to 

evaluate the neurobiology of the ocular surface and the functional state of central neural 

pathways involved in eye pain (see TFOS DEWS II Diagnostic Methodology report).

6. Evaluation of ocular surface neurobiology

6.1. Patient-reported characteristics (surveys, questionnaires)

Numerous questionnaires have been developed for DED (see TFOS DEWS II Diagnostic 

Methodology and Epidemiology reports). Most of these DED questionnaires were developed 

from a clinical perspective, aiming to understand the symptoms associated with the 

condition and develop diagnostic tools based on symptoms. Using this approach, the 

discomfort category of DED symptoms has been characterized as ocular dryness, irritation, 

soreness, grittiness, scratchiness or achiness, but may also contain questions about burning 

and stinging. Many DED questionnaires also include questions on foreign body sensation 
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(feeling like ‘something is in the eye’) and light sensitivity [421–424]. Interestingly, dryness 

is not always queried in DED questionnaires [421]. It is also important to note that the words 

chosen as symptoms in these questionnaires depend heavily on language, which may take 

seemingly different meanings when translated. For example, “tired eyes” has been reported 

as the most common symptom of DED in Japan [425], but is included in only a few 

questionnaires in English [422,426].

Ocular pain and discomfort have also been measured by other questionnaires that were not 

specifically developed for DED. The National Eye Institute Visual Functioning 

Questionnaire (NEI VFQ-25) queries pain and discomfort around the eyes and vision-related 

quality of life, which is appropriate for the dry eye condition due to its effects on vision 

[427,428]. In one study, the ocular pain subscale of the NEI VFQ-25 was shown to be 

substantially lower (worse) for patients with DED than for eight other ophthalmic conditions 

[428]. The Eye Sensation Scale was developed to measure ocular pain, specifically to assess 

pain relief following corneal transplantation surgery [429]. Recently, a new questionnaire, 

the Ocular Pain Assessment Survey (OPAS), was validated to assess ocular pain in a variety 

of ocular conditions, from corneal ulcers to DED [430]. In addition to the eye, the OPAS 

queries the location of pain elsewhere in the body, supporting recent findings that DED 

symptoms closely align with non-ocular pain [409,431]. A grading system based on clinical 

judgement, to define the level of certainty that the pain in an individual is neuropathic in 

nature was proposed in 2008 by a Special Interest group of IASP [432] and revised recently 

[420]. This system distinguishes Possible, Probable and Definite Neuropathic Pain grades. 

An extension of these criteria to DED or other pain conditions in the eye has not been yet 

made, but may serve as a tool to distinguish definite ocular neuropathic pain from the 

discomfort and pain experienced in many eye pathologies.

6.2. Psychophysical characteristics

While corneal and conjunctival sensory function has been evaluated using 

electrophysiological recording in animals, this experimental approach cannot be used in 

humans. Consequently, the evaluation of subjective responses to controlled stimulation of 

the ocular surface has been applied to capture human ocular sensory information. The use of 

mechanical, chemical or thermal stimuli has been enabled by various aesthesiometer 

designs, including the Cochet Bonnet aesthesiometer and the gas jet aesthesiometer [433–

436].

Depending on the experimental or psychophysical paradigm and instrument used, different 

qualities of the sensitivity or sensation response can be determined. Measurement of 

detection thresholds is the most common method, allowing ease of comparison between 

conditions and analysis of change. Thresholds to mechanical, chemical and thermal stimuli 

have been measured using a variety of psychophysical techniques, including method of 

limits [437], method of constant stimuli [129] and staircasing techniques [438]. As with 

other sensory systems, which may show adaptation or sensitization, different psychophysical 

methods result in different threshold values. Discrepancies in threshold may also result from 

physiological variations in sensitivity, variations due to disease as well as method related 

Belmonte et al. Page 36

Ocul Surf. Author manuscript; available in PMC 2017 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variations including stimulus duration, distance of probe from the ocular surface and 

characteristics of the gas stimulus.

A number of investigators have also utilized subjective grading of suprathreshold stimuli in 

order to determine the relationship between the magnitude of the stimulus presented and its 

perceived intensity [63,64,317,435,439], and some have made observations of the quality 

and attributes of the evoked sensations [63,64,435,439–441]. Other suprathreshold 

approaches have included grading of just noticeable differences in sensation [442], threshold 

differences in sensation [443], matching detection thresholds to the discomfort experienced 

and grading the intensity or assigning a descriptor to suprathreshold stimuli. Sensations 

evoked can be evaluated quantitatively and qualitatively and compared with the receptor 

properties established in animal models [63], providing a clearer understanding of the 

processes involved in human ocular surface sensitivity.

Psychophysical studies have demonstrated that the eyelid margins are sensitive to 

mechanical stimuli [444–446], but responses to other types of stimuli have not been 

assessed. Careful assessment of the tactile sensitivity of the eyelid margins indicates that the 

occlusional surface has lower sensitivity than the marginal angle where the eyelid margin 

contacts the surface of the eye [445]. Studies also indicate that the tactile sensitivity of lower 

eyelid margin is higher than that of upper eyelid margin [445,446]. Interestingly, in healthy 

subjects the tactile sensitivity of the lower eyelid margin was positively correlated with tear 

osmolarity [446], however, neither eyelid sensitivity nor tear osmolarity correlated with 

symptoms of DED.

6.2.1. Ocular surface sensitivity and DED—Table 1 summarizes studies that have 

evaluated ocular surface sensitivity in various populations of DED subjects, and the 

associations between sensitivity and symptoms reported. While subject numbers are 

frequently low in individual studies, corneal sensitivity to a pure mechanical stimulus, such 

as the Cochet Bonnet instrument, is consistently reduced in DED [372,447–453]. Of the 

different subclasses of DED patients, those presumed as demonstrating aqueous deficient 

DED consistently present with reduced corneal sensitivity using the Cochet Bonnet 

instrument, and this has been attributed to the greater corneal epithelial disruption assessed 

by corneal staining [454]. In Sjögren syndrome, the decrement in corneal sensitivity to 

mechanical stimuli was similarly associated with the degree of corneal staining [455]. In a 

cohort with DED defined by clinical signs and symptoms, the degree of reduction in corneal 

mechanical sensitivity was associated with severity of clinical signs, including tear film 

signs [453].

Some studies, particularly those using a gas jet aesthesiometer with mechanical stimuli 

delivered either at eye temperature or at room temperature have shown an increased 

[371,456–458] or decreased [454,459,460] corneal sensitivity in DED. This apparent 

dichotomy could be related to the type of stimulus, where a gas jet aesthesiometer delivers a 

more complex stimulus than the pure mechanical stimulus of the Cochet Bonnet 

aesthesiometer; gas jet and contact aesthesiometers vary in stimulus composition and mode 

of stimulation and are therefore likely to assess different aspects of the neural response 

[461]. Aside from a mechanical stimulus, the gas jet stimulus may induce a cooling/
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evaporative/tear thinning effect that may stimulate cold thermoreceptors in addition to 

mechano-nociceptors and polymodal nociceptors, even with stimuli delivered at eye 

temperature. Given the likely relevance of corneal cold themoreceptors in DED, it is 

conceivable that augmented activity of these fibres in DED is associated with an increased 

corneal sensitivity to cooling stimuli.

An additional cause of the differences in corneal sensitivity among DED patients is that 

sensitivity may vary between DED subtypes or with disease severity. Recent studies have 

shown that patients exhibiting high DED symptom severity scores and neuropathic pain 

symptom inventory scores have lower mechanical thresholds and pain thresholds measured 

with a gas esthesiometer [458]. Also, in patients showing DED symptoms, touch sensitivity 

measured with the Cochet-Bonnet esthesiometer was not significantly altered, but the 

mechanical threshold required to evoke blinking and to report pain was lower than in 

asymptomatic subjects [462]. These observations suggest that in DED the reduction of 

corneal sensitivity, caused by damage to the sensory nerve endings, may be accompanied by 

central sensitization due to abnormal ongoing activity in injured corneal nerve fibers, 

trigeminal neurons and higher order neurons of the central ocular pain pathways leading to 

neuropathic pain symptoms. This mechanism may also underpin the report of eye discomfort 

symptoms in the presence of reduced corneal sensitivity to external stimuli. The relationship 

between corneal sensitivity in DED and disease severity is often confounded by a lack of 

knowledge of the time of disease onset [463]. For example, persistent ocular surface damage 

may ultimately cause central nervous system sensitization and the involvement of 

neuropathic mechanisms.

Corneal sensitivity has been discussed as a potential biomarker in DED [464]. One study has 

demonstrated an improvement in corneal sensitivity following cyclosporine therapy [450]. 

There are however concerns for the repeatability of corneal sensitivity measurements in 

DED over a three month period without intervention [453], although in normal subjects, 

good repeatability has been demonstrated [465].

6.2.2. Neuropathic pain—Neuropathic pain (neuralgia) is pain caused by damage or 

disease affecting the somatosensory nervous system and is often chronic in nature [467]. 

This pain can be associated with any part of the body including the eyes, but as it is not 

caused by the pathophysiology of DED (see TFOS DEWS II Pathophysiology report), it 

should not be diagnosed as DED (see TFOS DEWS II Diagnostic Methodology report). As 

commented above (Section 5.1.2) neuro-sensory dysfunction is a recognized feature of DED 

[404,468], but this aspect of the disease is not routinely evaluated or considered in clinical 

practice. DED-related neuro-sensory dysfunction may account for the lack of association 

between signs and symptoms and those DED patients who remain symptomatic despite 

adherence to therapy.

6.3. Objective metrics

6.3.1. Blink parameters—Blinking is commonly quantified by measuring the blink rate 

[315,320,321,323,329,331,469] or its reciprocal value, the inter-blink interval 

[318,324,333]. Neurologically, the blink rate is theoretically set by an endogenous 
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spontaneous blink generator located in the spinal trigeminal complex that is modulated by 

afferent input from the cornea, dopamine levels in the brain and cognitive state [333]. (see 

Section 4).

It is well established that stimulation of the ocular surface leads to an increased blink rate 

[315,318], whereas surface anesthesia leads to a decreased blink rate [319]. This observation 

has been used to explain the increased blink rate in DED, presumably caused by ocular 

surface irritation due to surface dryness or an unstable tear film [196,333]. Experimental 

evidence in animals has shown that chronic reduction of basal tearing produced by surgical 

removal of the main lacrimal gland increases background activity of corneal cold 

thermoreceptors [28]; conversely, basal blinking of TRPM8 null mice whose cold 

thermoreptor background activity is absent is very low [101]. These findings indicate that 

cold thermoreceptors contribute to the peripheral tonic drive maintaining basal blinking. 

Although corneal nerve terminals in DED patients are often reported to be less sensitive to 

external mechanical, thermal and chemical stimuli [455,459], this does not exclude the 

possibility that they display in parallel enhanced spontaneous firing (see Section 5.1.2). An 

increase in spontaneous activity may explain ongoing discomfort and an augmented basal 

blink rate in DED patients [28,196,333], while a low blink rate may be a causative factor in 

DED [470]. The Ocular Protection Index (OPI) is based on the idea that the blink rate can be 

too slow to compensate for more rapid tear breakup [471]. Thus, changes in the blink rate 

can be considered both a cause and an effect of DED.

Aside from blink rate, other blink parameters include the amplitude, duration and velocity of 

the upward and downward phases of the blink (see section 4). Regardless of whether the 

blinks are spon taneous, reflex or voluntary, all blinks show a similar pattern. The down 

phase is very rapid and the up phase is slower, with the maximum velocity of the down 

phase roughly double that of the up phase [314]. In a group of normal subjects, Evinger et 

al. [314] showed that the maximum velocity of the down and up phase show a linear 

relationship to blink amplitude, meaning that a fuller blink tends to be faster and vice versa. 

In addition, they found that the duration of most blinks changed little with blink amplitude.

However, some factors are known to alter blink duration. Wu et al. found that ocular surface 

stimulation by air tended to increase down phase blink duration and some subjects 

demonstrated cluster blinking [318]. This supports the hypothesis that ocular surface 

irritation can prolong blink duration and enhance blink excitability, perhaps for protective 

purposes [312]. However, concentration on a task descreased blink duration, presumably to 

minimize interruption of vision by the lid. In addition, an increased variability in the 

relationship between maximum blink velocity and amplitude for DED subjects has been 

reported, suggesting that individual subjects may respond differently [318].

Partial or low amplitude blinking is common and some studies have found that blink 

amplitude and blink rate decreased with concentration on a visual task [324,332]. 29% of 

blinks were partial or lower than 100% amplitude, but most (71%) covered the pupil, 

suggesting that blinks are necessary to wet the cornea over the pupil to provide a smooth tear 

film surface for good vision [317].
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Blinking can be affected by several factors other than ocular surface stimulation or 

spontaneous firing of ocular surface nerves. The effect of cognitive input on the blink rate is 

marked, especially during a visual task, when the blink rate can markedly slow 

[316,320,321,331,472]. Blink rate can be altered by task, lighting, time of day and time 

period of data collection. Given the large percentage of the population that works on 

computers, this is likely to be a major cause of the increasing incidence of ergonomic dry 

eye complaints. Engaging in conversation and daydreaming can also affect blink rate [328–

330], so that any clinical measure of blink rate should include information about task and 

lighting because blink rate varies so widely with mood and task. Time of day should also be 

included as blink rate is known to vary diurnally, presumably due to changing dopamine 

levels over the day [333]. Another aspect that affects measurement of the blink rate is the 

length of the time period of data collection. Kaminer et al. showed that shorter periods of 

data collection generated a higher blink rate than did longer periods, attributed to the 

increased probability of smaller inter-blink intervals when short periods of eye blink data 

were data collected [333].

6.3.2. In vivo confocal microscopy of corneal nerves and immune cells—With 

increased focus on corneal neurobiology in DED, there is an urgent need for the 

development of new biomarkers in this area. However, objective assessment of ocular 

surface neurobiology has been challenging for clinicians, given that corneal nerves cannot be 

visualized in detail by slit-lamp examination and that accurate functional tests are not widely 

available. Corneal in vivo confocal microscopy (IVCM), allows high-resolution in vivo 
visualization of sub-basal corneal nerves and immune cells at a cellular level, providing an 

image resolution closer to the one obtained with histochemical methods. In particular, the 

Heidelberg Retina Tomograph with the Rostock Cornea Module (HRT/RCM, Heidelberg 

Engineering, Heidelberg, Germany), is a laser-scanning IVCM that uses a 670 nm diode 

laser [473], that allows real-time imaging of the cornea, generating a 400 × 400 μm images 

and a lateral resolution of 1μm/pixel. Recent studies demonstrated that there are no 

significant differences in the mean nerve and immune cell densities in the central cornea 

between representative standard IVCM images and wide-field composite images, confirming 

that standard images can be used in clinical studies to accurately assess cellular structures 

[474]. IVCM allows detection of changes in the subbasal nerve plexus in patients with 

corneal neuropathy and corneal neuralgia from DED or other ocular and systemic 

conditions, which can be monitored for disease severity and response to treatment [475,476].

6.3.2.1. Corneal nerves: There are several published qualitative and quantitative IVCM 

studies of the central corneal nerve plexus in patients with DED that attempt to elucidate 

alterations in corneal innervation and their clinical significance [477,478]. These studies 

have demonstrated rather conflicting results regarding nerve density. Most studies have 

reported a decrease in nerve density in both Sjögren and non-Sjögren DED patients 

[452,460,474,479], correlating to decrease in corneal sensitivity [372,447,452,460,480]. In 

contrast Hoşal et al. [481] and Tuominen et al. [368] observed no change in subbasal nerve 

density in DED patients compared with controls, while Zhang et al. reported increased 

corneal nerve density in patients with Sjögren’s syndrome (Table 2) [482]. The latter study 

corresponds to studies showing hypersensitivity of the cornea [371,483]. The discrepancies 
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in findings related to changes in nerve density may be attributed to either different stages 

and severity of DED that induce different degeneration/regeneration patterns of nerves, 

levels of inflammation, or levels of corneal hyperalgesia and allodynia after repeated insults 

to corneal nerves. More consistency has been shown regarding other morphological nerve 

parameters, such as increased tortuosity, reflectivity and beading 

[368,369,460,480,482,484,485]. These changes are believed to arise from initial damage and 

subsequent regeneration of subbasal corneal nerves.

Correlation of nerve alterations by IVCM to clinical signs and symptoms has been shown in 

several studies. Benitez et al. found that subbasal nerve density and corneal sensation 

correlated with Schirmer’s test results [460]. Further, Zhang et al. demonstrated that beading 

of corneal nerves was inversely related to corneal damage assessed with Rose Bengal 

staining [484]. Moreover, Labbe et al. revealed that both subbasal nerve density and corneal 

sensitivity were negatively correlated with the severity of DED [372]. Finally, a recent 

randomized clinical trial demonstrated that only patients with near-normal corneal nerve 

density showed improvements in both symptoms and signs after one-month therapy with 

artificial tears or the topical steroid loteprednol, while patients with low corneal nerve 

density did not demonstrate changes in signs or symptoms, providing one possible 

explanation for the variability in therapeutic response [474].

Corneal nerve injury due to inflammatory processes, followed by altered excitability in 

regenerated nerves [475,476,486], may result in the development of hyperalgesia or 

allodynia in patients with DED. These findings potentially explain the variability of their 

response to therapy and the different effects of DED on subbasal nerve density observed in 

various IVCM studies. In these patients, the formation of microneuromas, abrupt swellings 

of injured nerve endings formed during regeneration, is caused by sprouting from endbulbs 

[368,371,404].

A new and highly promising use for IVCM is the clinically challenging differentiation 

between DED-induced discomfort and light sensitivity from corneal neuralgia or 

photoallodynia in patients with corneal neuropathy, given their similar symptomatic 

presentation and potential clinical overlap [404,408,409,468]. Particularly in patients with 

ocular pain, with notoriously poor correlation between clinical signs and symptoms 

[417,487,488], IVCM may allow the diagnosis of corneal neuropathy with quantifiable 

changes in corneal subbasal nerve metrics [475,476,486]. IVCM in patients with corneal 

neuropathy demonstrates the presence of microneuromas, increased beading and reflectivity, 

as well as a more profound loss of subbasal nerves [475,476]. In recent studies, the treatment 

of patients with corneal neuropathy-induced photoallodynia or neuralgia with autologous 

serum tears demonstrated restoration of nerve topography through nerve regeneration, 

correlating with decreased symptoms of photoallodynia and pain scores [475,476]. While 

IVCM does not distinguish causality from secondary effects, additional IVCM studies in 

more homogenous populations would shed light on the pathophysiology of corneal 

neuropathic disease and DED. IVCM also shows promise in monitoring the corneal 

neurogenerative response to treatment. Methods to automate quantitative IVCM meausures 

would greatly enhance research methodology and interpretion of results.
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6.3.2.2. Corneal immune cells: Recent studies show that inflammation plays a significant 

role in the development of DED [349]. One of the major participants of the immune system 

in DED are the APCs that induce T cell activation and thereby initiate an inflammatory 

cascade [489,490]. Among APCs, corneal DCs are involved in the development of DED 

[349,491,492]. To evaluate immune cell alterations in patients with DED, IVCM has 

recently been used to visualize DCs in the cornea. Results from these studies are consistent 

with immunohistochemical findings [493,494] showing that epithelial DCs are primarily 

located in close proximity to the subbasal nerve plexus [148].

Several IVCM studies have assessed the density and distribution of DCs and other immune 

cells in DED and demonstrated an increased density of DCs [371,477–480,495–500]. Lin et 

al. also showed that central and peripheral corneal DCs were significantly increased in both 

non-Sjögren and Sjögren syndrome DED, as compared to normal subjects [495]. Further, 

they showed putative activation of DCs as documented by the increased presence of 

dendrites on these cells. Similarly, increased density of purportedly mature DCs in DED 

patients with underlying systemic immune diseases has been reported [371,474]. Moreover, 

comparison between patients with presumed aqueous-deficient and evaporative DED 

showed that DC density is significantly higher in aqueous-deficient DED [474].

Alterations of epithelial DC density correlate with clinical signs and symptoms of DED 

[499,501]. Thus IVCM may serve as a useful supplementary assessment tool for clinical 

diagnosis of DED and for determining the need for anti-inflammatory therapy. Further, 

IVCM can be used serially to objectively assess the therapeutic success of an anti-

inflammatory therapy [499,501]. However, additional studies are required to validate utility 

of IVCM imaging of DC in clinical practice, including the development of analytical tools to 

automate and standardize image analysis. Evaluation of DCs could also be used for 

treatment stratification and measurement of therapeutic efficacy when used with clinical 

tests (see TFOS DEWS II Management report).

6.3.3. Biomarkers in tears—Biomarkers in tears can potentially be used as an indicator 

of the status of ocular surface innervation, DED severity or as a measure of disease 

progression or response to treatment.

6.3.3.1. Nerve growth factor: NGF and its receptors are upregulated following damage to 

the ocular surface or its innervation [502,503] and the levels return to normal following 

wound healing [504]. Tear levels of NGF are elevated immediately post-laser-assisted in situ 

keratomileusis (LASIK) and remain increased until at least 6 months post-surgery [505]. 

Table 3 shows the levels of NGF in tears are also elevated in non-Sjögren DED [506] and in 

contact lens related DED [507].

6.3.3.2. Substance P and calcitonin gene-related peptide: A substantial percentage of the 

sensory neurons supplying the ocular surface contain neuropeptides including substance P, 

CGRP and galanin [19,56,78,508]. These neuropeptides modulate epithelial and immune 

cell function in normal and damaged cornea [56], and play a role in local inflammation, 

wound healing and in the initiation and maintenance of pain (see Section 2.4) [509]. At the 
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ocular surface specifically, CGRP induces epithelial cell differentiation and substance P 

stimulates epithelial cell proliferation [86].

One study has shown that tear levels of CGRP are reduced in DED patients and that tear 

CGRP levels are inversely associated with DED severity, corneal fluorescein staining and 

Schirmer test results (shown in Table 3) [506]. Exogenously delivered CGRP facilitates 

corneal epithelium repair in vivo in animals and in vitro in cell culture models [510,511], 

which may be consistent with reduced tear levels and increased ocular surface damage in 

DED. There are no reported studies in humans that have evaluated the effects of exogenous 

CRGP on nerve morphology, corneal sensitivity or DED.

In contrast, the role of substance P in human DED is equivocal. As can be seen in Table 3, 

there are a small number of studies available with varying methodology and generally small 

sample sizes. No studies have determined relationships between tear levels of substance P 

and disease severity. The level of substance P in tears appears to be unchanged in both 

Sjögren and non-Sjögren DED [506], but it is reduced in patients with corneal 

hyperaesthesia [512], compared to those with normal corneal sensitivity [506,513,514].

One study has investigated the levels of VIP and NPY in tears of DED patients and found no 

differences in VIP levels, but reduced levels of NPY compared to those of subjects with 

normal eyes [506]. NPY is released from sympathetic nerves and it is not known whether the 

changes in tear NPY levels reflect changes in the lacrimal gland (or other glandular tissues 

contributing the tears) or arise as a consequence of ocular surface damage. NPY inhibits T 

cell type I-driven inflammatory responses [515]. The lack of change in VIP with DED may 

reflect the very limited innervation of the cornea by VIP expressing parasympathetic nerves 

[511].

There are other potential tear markers of inflammation and/or ocular surface demage that 

have not yet been assessed in DED. Tear levels of TNF-α, transforming growth factor (TGF-

β), VEGF and hepatocyte growth factor (HGF) are increased immediately after surface 

refractive surgery procedures and decline thereafter [519–521]. These bio-markers are all 

likely to be relevant in wound healing, and VEGF in particular may be relevant for corneal 

reinnervation as sequestration of this growth factor reduced recovery of subbasal fibers in a 

mouse model of corneal injury [522].

7. Future directions

Understanding the characteristics of adverse sensations associated with the ocular surface is 

important since symptom presentation is often the driving force behind treatment in DED 

[523]. Research to date has uncovered the complexity of peripheral and central neural 

mechanisms associated with ocular surface sensations and tissue homeostasis; however, a 

thorough understanding of this complexity in relation to DED is still not fully achieved. 

Application to the eye of the technological and conceptual advances to the understanding of 

pain made at the genetic, molecular, cellular and integrative level in other tissues pathologies 

could help to extend our knowledge of neural mechanisms underlying DED dysesthesias. 

Also development of adequate animal models aimed at reproducing this pathology and 
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analyzing experimentally integrative neural mechanisms will help to refine the present 

knowledge on how unpleasant sensations originate in DED. New instruments and procedures 

designed to quantify eye sensations and pain need to be developed both in experimental 

animals and in humans, to correlate experimental and clinical data and to obtain reliable, 

objective information on the psychophysical parameters of normal and pathological 

sensations.

A second area of research important in furthering the understanding of pain and sensation at 

the ocular surface is the definition and characterization of pain referred to the eye with a 

neuropathic origin. The lack of correlation between signs and symptoms of DED has made 

research and clinical practice challenging for many [417]. Differentiating DED-evoked 

nociceptive pain from peripheral and central neuropathic ocular pain is important in 

successful treatment of patients and in defining research approaches. The investigation of 

these questions using basic research technology will help to better understand the molecular 

and cellular modifications taking place in the peripheral and central ocular pain pathways in 

DED and how they develop, progress and eventually perpetuate. From a clinical perspective, 

neuropathic pain from a wide range of etiologies has been studied in large samples of 

patients collected in multinational pain research networks, and classified according to their 

intrinsic pain-related sensory symptoms and signs which were associated with 

pathophysiological mechanisms [420,524]. To extend this approach to neu ropathic pain 

associated to ocular sensory pathways could help to extend to eye pain the advances in 

diagnosis and therapy made for neuropathic pain affecting other body territories.

Neuropathic pain should not be diagnosed as DED (See section 6.2.2), but management 

when it manifests as dry eye symptoms, needs further research. For patients who report pain 

in multiple body parts as well as the eye, management of or referral for neuropathic pain 

interventions should be evoked such as neuropathic pain therapy [408,419], a diet rich in 

anti-oxidants [525,526], systemic pharmacological agents traditionally used to manage pain 

(such as anticonvulsants, tricyclic antidepressants, opioids) [486,527,528,530] topical 

analgesia [531], neuromodulators (such as diclofenac, gabapentin and pregabalin) [528,532–

540], GABAergics in late stage pain [529], and using stimulation therapies and 

psychological treatments (including exercise, acupuncture, “scrambler” or peripheral 

stimulation therapy, transcranial magnetic stimulation, transcranial direct current stimulation 

and cognitive behavior therapy) [541–543]. These have mostly not been investigated 

specifically for ocular neuropathic pain, but there is evidence of effectiveness in neuropathic 

pain and/or chronic pain syndromes, so further research is warranted.

8. Summary

The TFOS DEWS II Pain and Sensation Subcommittee report provides a perspective of 

DED focused on pain. Pain can be divided into nociceptive and neuropathic pain. 

Nociceptive pain occurs in response to actual or threatened damage to tissues. However, 

neuropathic pain occurs due to a lesion within the somatosensory nervous system and does 

not have biological value.
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Pain associated with DED is transmitted via the peripheral axons of TG neurons innervating 

the cornea and conjunctiva. They form a subepithelial nerve plexus in the stroma whose 

ascending branches penetrate Bowman’s layer and ramify extensively to terminate within 

the surface epithelium layers. Functionally, corneal sensory neurons can be classified as 

polymodal nociceptors, selective mechano-nociceptors or cold thermoreceptor neurons. 

Polymodal nociceptors are normally silent and respond to chemical, mechanical and thermal 

stimuli. They become sensitized by the inflammatory mediators released by ocular surface 

injury. TRPV1 channels are important for sensory transduction and sensitization of 

polymodal nociceptors. Mechano-nociceptors are normally silent at rest and respond only to 

mechanical forces through mechanosensitive ion channels such as piezo2. Most cold 

thermoreceptors discharge continuously at the normal eye surface temperature with an 

increase or decreasing the firing frequency upon cooling or warming, respectively. TRPM8 

is the main transduction channel for cooling or cold and is also sensitive to changes in 

osmolarity. Inter-blink tear evaporation causes discrete cooling of the ocular surface and tear 

osmolarity rises, thereby augmenting basal activity of cold thermoreceptors. This is 

consistent with the hypothesis that cold-sensitive fibers contribute to the reflex control of 

basal tear production and blinking (Figs. 5 and 6).

The TG neurons that supply the ocular surface project primarily into two spatially discrete 

regions within the TBNC: the transition region between caudal Vi and Vc (ViVc transition) 

and at the Vc/upper cervical cord junction (VcC1 region). Evidence suggests that the VcC1 

region plays a dominant role in sensory-discriminative aspects of ocular pain. ViVc 

transition and VcC1 neurons are excited by bright light while whereas only ViVc transition 

neurons are activated by changes in the moisture status of the ocular surface. Ocular neurons 

at the ViVc transition are more likely to project to brain regions that control lacrimation 

(superior salivatory nucleus) and eye blink (facial motor nucleus), while cornea-responsive 

neurons in both re gions project to the sensory thalamus. Thus, it is suggested that ocular 

neurons at the ViVc transition play a significant role in maintaining ocular surface 

homeostasis, while neurons at VcC1 may be more concerned with the expression of adverse 

symptoms (Fig. 6).

Autonomic sympathetic and parasympathetic nerves, whose activity is regulated by reflex 

influences from sensory neurons supplying the ocular surface, regulate the secretory activity 

of the main lacrimal gland. Parasympathetic innervation of the main lacrimal gland is 

extensive, while little is known about the neural control of accessory lacrimal glands. While 

nerves are present around the meibomian glands, there are no studies examining the role of 

sensory or autonomic nerves and their neurotransmitters in regulating the holocrine secretion 

of the meibomian gland. Activation of sensory nerves supplying the rat cornea evokes goblet 

cell mucous secretion; however efferent nerve type(s) involved in this reflex response remain 

to be established. Several non-neural processes regulate the release of mucins from stratified 

squamous cells, but to date no regulatory role for nerves or neurotransmitters has been 

identified.

In addition to regulation of tear production, ocular surface nerves mediating sensations 

contribute to blinking behavior. It has been suggested that spontaneous blinking is 

maintained, at least in part by the continuous nerve impulse firing of eye surface cold 
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thermoreceptors, an effect likely mediated by the connections of TG neurons with brainstem 

ViVc neurons which in turn project to the facial motoneurons (Cranial nerve VII). 

Nociceptive sensory input to neurons at the VcC1 region initiates reflex eye blinking and, 

through their projections to ViVc transition neurons, sets blink amplitude and peak velocity 

of corneal reflex blinks.

In DED, reduced tear secretion leaves the corneal epithelium exposed to adverse 

environmental conditions that may result in inflammation of the ocular surface and 

peripheral nerve damage. Inflammation may sensitize polymodal nociceptors and mechano-

nociceptors, while depressing cold thermoreceptor activity. However, in experimental 

models of DED, sensitization of nociceptor fibers is minor, whereas a prominent and 

abnormal increase in cold thermoreceptor nerve activity occurs that parallels the 

morphological changes in corneal innervation. In trigeminal brainstem, ocular surface-

responsive neurons at both ViVc and VcC1 regions display enhanced excitability.

Several questionnaires are available to assess pain and sensation associated with DED. 

These questionnaires vary widely in wording, symptom investigated, and scaling. In addition 

to questionnaires, aesthesiometry can be used to assess the functional status of the corneal 

nerves.

In vivo confocal microscopy allows for visualization of nerves and inflammatory cells in the 

corneal surface. DED is associated with morphological abnormalities in nerve terminals, 

such as increased tortuosity, reflectivity and beading, while changes in nerve density are not 

consistent. In addition, an increased density of inflammatory cells in DED has been 

reported. Tear components may also help to objectively assess DED. Nerve growth factor is 

increased in DED while CGRP is reduced. Substance P, neuropeptide Y and VIP appear to 

be unchanged.

Abbreviations

list
5-HT, 5-hydroxytryptamine

APC
antigen presenting cells

ASIC channels
acid-sensing ion channels

BCTC
(N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide

BGE
Belmonte’s gas aesthesiometer

BK
Bradkinin
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BM derived cells
Bone marrow derived cells

CaV3 channels
The subfamily of voltage-gated calcium channels that generate T-type calcium currents

CC
conjunctivochalasis

CGRP
calcitonin gene-related peptide

COBO
Cochet-Bonnet aesthesiometer

CX3C
a class of cytokine that includes Fractalkine

CX3CR1
a receptor for Fractalkine

DBH
Dopamine β-Hydroxylase

DC
Dendritic cell

DED
Dry eye disease

DRG
Dorsal root ganglion – dorsal root ganglia

EPO
Erythropoietin

FKN
Fractalkine (also known as chemokine (C-X3-C motif) ligand 1 (CX3CL1)

GABA
gamma amino butyric acid

GDNF
glial cell line-derived neurotrophic factor

GFRα3
glial cell line-derived neurotrophic factor family receptor alpha3

GPCR
G protein coupled receptors
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HB-LT cold thermoreceptors
high background, low threshold cold thermoreceptors

HIS
histamine

HLA-DR
Human Leukocyte Antigen - antigen D Related

HPC
hepatocyte growth factor

HRT/RCM
Heidelberg Retina Tomograph with the Rostock Cornea Module

IASP
The International Association for the Study of Pain

IR
immunoreactivity

IRR
innate repair receptor

IVCM
in vivo confocal microscopy

LASIK
laser-assisted in situ keratomileusis

LB-HT cold thermoreceptors
low background, high threshold cold thermoreceptors

LP
levator palpebrae

MAPK
mitogen-activated protein kinase

MGD
meibomian gland dysfunction

MHC
major histocompatibility complexes

NaV channels
voltage-gated Na+ channel

NEI VFQ-25
The National Eye Institute Visual Functioning Questionnaire
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NGF
Nerve growth factor – changes needs

NMDA
N-methyl-D-aspartate

NO
nitric oxide

NPY
Neuropeptide Y

OO
orbicularis oculi

OPAS
Ocular Pain Assessment Survey

OPI
Ocular Protection Index

OSDI
ocular surface disease index

PI3K
phosphoinositide 3-kinase

PLC
phospholipase C

PRK
photorefractive keratectomy

R1 blinking response
Short latency blinking response

R2 blinking response
Long latency blinking response

SS
Sjögren’s Syndrome

TBNC
trigeminal brain stem nuclear complex

TG
trigeminal ganglion

TGF-β
transforming growth factor-β
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TH
Tyrosine hydroxylase

TNF-α
tumor necrosis factor-α granulocyte-macrophage colony stimulating factor

TREK
A member of the two-pore-domain family of potassium channels

TRP channels
transient receptor potential channels

TRPA1 channels
transient receptor potential cation channel subfamily A member 1

TRPM8 channels
transient receptor potential cation channel subfamily M member 8

TRPV1 channels
transient receptor potential cation channel subfamily V member 1

TTX
tetrodotoxin

Vc
caudalis region of the spinal trigeminal nucleus

VcC1 region
the junction between the caudalis region of the spinal trigeminal nucleus and the upper 

cervical spinal cord

VEGF
vascular endothelial growth factor EPO – erythropoietin

Vi
interpolaris region of the spinal trigeminal nucleus

VIP
Vasoactive Intestinal Peptide

ViVc transition
the transition region between caudal interpolaris region and the caudalis region of the spinal 

trigeminal nucleus

Vo
subnucleus oralis region of the spinal trigeminal nucleus

Vp
principal trigeminal nucleus
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Fig. 1. 
Medial view of the orbit, showing the sensory and autonomic innervation of the eye. The 

lacrimal gland has been removed for clarity. The ophthalmic branch (OB) of the trigeminal 

ganglion (TG) gives the nasociliary nerve (NCN) that sends long (LCN) and short (SCN) 

ciliary nerves to the eye ball. Frontal (FN) and lacrimal (LN) nerves appear as cut in this 

picture. Sympathetic fibers from the superior cervical ganglion, travelling in the carotid 

plexus (CPX) and parasympathetic branches of the ciliary (CG) and the pterigopalatine 

ganglion (PPG) join the short the ciliary nerves. OMN: Oculomotor nerve. MXN: Maxillary 

nerve. Modified from Netter, F, Atlas of Human Anatomy, 2nd Edition. Icon Learning 

Systems, 1997.
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Fig. 2. 
Reconstruction of superficial nerve terminals in the mouse corneal epithelium showing 

examples of simple (1,black), ramifying (2, red) and complex (3, blue) nerve terminals and 

impulse activity recorded from the different functional types of corneal nerve terminals in 

response to their specific stimuli (Modified from Ivanusic et al., [48] Gallar et al. [61] and 

Belmonte et al. [59,60]).
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Fig. 3. 
Major ascending brain pathways for trigeminal sensory fibers that supply the eye. The cell 

somata of sensory fibers are found within the trigeminal ganglion and project centrally to 

terminate in two spatially discrete regions of the trigeminal brainstem complex, the 

trigeminal subnucleus interpolaris/caudalis transition region (ViVc) and the caudalis/upper 

cervical cord junction (VcC1). Second-order ocular neurons in ViVc and VcC1 project to 

brain regions that mediate eyeblink (facial motor nucleus, VII), lacrimation (superior 

salivatory nucleus, SSN), and cardiovascular reflexes (nucleus tractus solitarius, NTS). 

Projections to higher centers such as the periaqueductal gray (PAG), PBA (PB), lateral 

hypothalamus (LH), posterior hypothalamus (PH), and amygdala (Am) contribute to the 

affective and modulatory aspects of ocular pain, while projections to posterior thalamus 

(posterior nuclear group, Po; ventral posteromedial nucleus, VPM) and insular cortex (Ins) 

mediate sensory-discriminative aspects. Note that a small group of ocular responsive 

neurons also are found in the contralateral ViVc; the source of input to this group is not well 

defined. Primary afferent fibers are drawn in black, second-order projections in red and 

third-order projections in blue. (Reproduced from Stapleton et al. [1]). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 4. 
The corneal eye blink reflex is initiated by the free nerve endings in the cornea and involves 

the trigeminal nerve and ganglion (TG), the brainstem nuclei (VcC1: caudalis/upper cervical 

cord junction and ViVc: interpolaris/caudalis transition region), interneurons in the reticular 

formation (RF), motor neurons in the facial nucleus (VII) and nerve, and the orbicularis 

oculi. As the afferent information is distributed bilaterally to facial motor neurons by the 

reticular formation interneurons, the eye blink response is consensual, that is, both eye lids 

will close to stimulation of the cornea of either eye.
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Fig. 5. 
Schematic diagram summarizing how ocular inflammation of various etiologies or ocular 

surface dryness in DED, provoke variable increases (+) or decreases (−) of nerve impulse 

activity in polymodal- and mechano-nociceptors and in cold thermoreceptors of the high 

background, low threshold (HB-LT) and low background, high threshold (LB-HT) types. 

Together these changes evoke conscious sensations of different quality, as well as changes in 

tear flow and in spontaneous and reflex blinking.
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Fig. 6. 
Peripheral and central neural mechanisms involved in the sensory and autonomic responses 

evoked by eye surface dryness. The main types of ion channels involved in the transduction 

and coding of mechanical, thermal and chemical stimuli are represented in the inset.
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Table 1

Corneal sensitivity and symptoms report in DED.

Author(s)/Year Subjects Sensitivity (with ↑symptoms) Aesthesiometer Symptoms questionnaire

Xu et al. (1996) [447] SS (n = 15) + DED (n = 
44)

↓ COBO not stated

Versura et al. (2007) [448] SS (n = 66) + DED (n = 
59)

↓ COBO OSDI

Barboza et al. (2008) [449] SS (n = 17) ↓ COBO OSDI

Toker and Asfuroglu (2010) 
[450]

SS (n = 23) + DED (n = 
14)

↓cornea + conjunctiva COBO OSDI

Bourcier et al. (2005) [466] SS (n = 14) + DED (n = 
30)

↓* BGE burning, itching, stinging

Benitez-del-Castillo et al. 
(2007) [460]

SS (n = 11) + DED (n = 
10)

↓* BGE not stated

De Paiva and Pflugfelder 
(2004) [457]

DED (n = 20) ↑ modified BGE 11 items

Situ et al. (2008) [456] DED (n = 43) ↓* cornea + conjunctiva modified BGE 
(20 °C)

OSDI, SeSOD

Tuisku et al. (2008) [371] SS (n = 20) ↑* modified BGE OSDI

Labbe et al. (2012) [452] DED (n = 12) ↓ COBO not measured

Kim et al. (2012) [451] RA DE (n = 106) ↓ COBO OSDI

Labbe et al. (2013) [372] DED (n = 43) ↓ COBO OSDI

Nepp and Wirth (2015) 
[453]

DED (n = 46) ↓ COBO not measured

Rahman et al. (2015) [454] MGD (n = 11)
SS (n = 3)
DED (n = 7)
CC (n = 12)

↓ (DED only) COBO and Jet 
aesthesiometer 
(28 °C)

OSDI, VAS

Spierer et al. (2016) [458] DED (n = 129) ↑ modified BGE (23–
26 °C)

DEQ5, OSDI

Kaido et al. (2016) [462] DED (n = 21) No change in touch sensitivity
↑ pain sensitivity
↑ blink sensitivity

COBO 12 item questionnaire

Key: SS, Sjögren’s Syndrome; DED, dry eye disease; DGE, Belmonte’s gas aesthesiometer; COBO, Cochet-Bonnet aesthesiometer; MGD, 
meibomian gland dysfunction; OSDI, ocular surface disease index; CC, conjunctivochalasis.
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