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We study the decoding transition for quantum error correcting codes with the help

of a mapping to random-bond Wegner spin models. Families of quantum low density

parity-check (LDPC) codes with a finite decoding threshold lead to both known models
(e.g., random bond Ising and random plaquette Z2 gauge models) as well as unexplored

earlier generally non-local disordered spin models with non-trivial phase diagrams. The

decoding transition corresponds to a transition from the ordered phase by proliferation
of “post-topological” extended defects which generalize the notion of domain walls to

non-local spin models. In recently discovered quantum LDPC code families with finite

rates the number of distinct classes of such extended defects is exponentially large,
corresponding to extensive ground state entropy of these codes. Here, the transition can

be driven by the entropy of the extended defects, a mechanism distinct from that in the

local spin models where the number of defect types (domain walls) is always finite.
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1 Introduction

Locality in space-time is a great organizing principle for a theoretical physicist who is trying

to come up with a model for some phenomenon. It works beautifully both in high energy

and in condensed matter physics. Depending on the details, the corresponding techniques

can be based on the derivative expansion, minimal gauge coupling, or local lattice Hamil-

tonians. Often enough, given a few more specific symmetries and natural constraints, and

considering only the most local models, one can derive a unique functional form of an effective

Hamiltonian.

On the other hand, having concentrated for so long on local models, we remain largely

unaware of the physics that may be lurking out there, beyond the familiar locality constraint.

Problem is, the space of possible non-local continuum or discrete models is vast. Without

this constraint, and given that most interactions in nature are indeed local, what property

can we use instead to select a non-trivial model?
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In this work we explore disordered spin models associated with maximum likelihood de-

coding for stabilizer quantum error correction codes[1, 2]. The construction is a generalization

of the map between various surface codes and two-dimensional spin models[3, 4, 5]. While

such an exact map exists for any stabilizer code, only spin models corresponding to quan-

tum low density parity-check (LDPC) codes[6, 7] have interaction terms that involve a limited

number of particles. It is in this case the approach is most useful as a way to choose physically

interesting non-trivial spin models.

Unlike the case of the classical error-correcting codes[8] where decoding can be done by

minimizing certain energy functional[9, 10], with a quantum stabilizer code large groups of

mutually-degenerate errors can not and need not be distinguished[1, 2]. To find the most

likely error, one has to decide between different equivalence classes; this boils down to mini-

mizing certain free energy functional depending on the relevant error model. We consider a

particularly simple error model where this functional can be readily interpreted as the free

energy for a disordered Ising spin model of a general form studied by Wegner[11] at some

temperature T ≡ β−1, with individual bonds flipped independently with probability p. The

original decoding problem lives on the Nishimori line[12, 13, 14, 10] of the phase diagram,

which generalizes the result for the surface codes[3]. The Hamiltonian of a spin model cor-

responding to a given stabilizer code is a sum of generalized Ising bonds, each given by a

generally non-local product of multiple Ising spin variables. In the special case of quantum

LDPC codes[6, 7], each such product involves only a few spin operators.

For an infinite code family where in the limit of large codes the decoding can be done

successfully with probability one, the corresponding spin models are non-trivial, meaning

that they definitely have an ordered “defect-free” phase at small T and p, and a distinct

disordered phase at large T and p. In addition, in the clean limit, p → 0, the spin models

associated with quantum codes have exact self-duality, in Wegner’s sense[11].

We show that the decoding transition corresponds to a transition from the ordered phase

by proliferation of post-topological extended defects which generalize the notion of domain

walls to non-local spin models. In the code families where the number of encoded qubits

k remains finite in the limit of large n, the transition occurs when the tension λ of one or

more of such defects vanish, akin to vanishing line tension of a domain wall in the 2D Ising

model. In quantum LDPC code families with finite rates[15, 16, 17, 18, 19] the number of

distinct classes of such extended defects is exponentially large, corresponding to extensive

ground state entropy of these codes. Here, the transition can happen even when all defects

have finite tensions λ ≥ λ0 > 0, driven by the entropy of the extended defects’ types. This

mechanism is distinct from that in the local spin models where the number of defect types

(domain walls) is always finite.

The paper is organized as follows. We first give an overview of the main results in Sec. 2,

namely, formulate all the theorems and briefly describe other results, concentrating on the

case of Calderbank-Shor-Steane (CSS) codes[20, 21]. Then, in Sec. 3, we give a detailed

review of the necessary background facts about quantum stabilizer codes and disordered spin

models. In Sec. 4 we describe how a spin model is constructed from a given code family, and

relate the possibility of successful maximum-likelihood (ML) decoding with probability one

to the existence of an ordered phase in the corresponding spin model. In Sec. 5 we discuss

the properties of the thermodynamical phase transition corresponding to the ML decoding
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threshold, introduce spin correlation functions which can characterize various phases, and

give several inequalities on the location of the transition. Finally, we give our conclusions in

Sec. 6.

2 Main results

We start by listing our main results. To simplify the definitions, here we concentrate on the

case of CSS codes; more general results are given later in the text along with the corresponding

proofs.

2.1 Definitions

A classical binary linear code[8] C with parameters [n, k, d] is a k-dimensional subspace of

the vector space Fn2 of all binary strings of length n. Code distance d is the minimal weight

(number of non-zero elements) of a non-zero string in the code. Rows of the binary generator

matrix G of the code C ≡ CG are formed by its k basis vectors. A linear code can also be

specified by the binary parity check matrix H, C = {c ∈ Fn2 |HcT = 0}. This implies that H

and G are mutually orthogonal, HGT = 0, and also

rankH + rankG = n. (1)

Parity check matrix is a generating matrix of the code C⊥ = CH dual to C. Respectively,

the matrix H is an exact dual to G, H ≡ G∗. Note that here and throughout this work we

assume that all linear algebra is done modulo 2, as appropriate for the vector space Fn2 .

Given a binary matrix Θ with dimensions Ns ×Nb, we define a generalized Wegner-type

[11] partition/correlation function with multi-spin bonds Rb ≡
∏
r S

Θr,b
r corresponding to the

columns of Θ and Ising spin variables Sr = ±1, r = 1, . . . , Ns:

Ze,m(Θ; {K}) ≡ 1

2Ng

∑
{Sr=±1}

Nb∏
b=1

Rmbb
exp (Kb(−1)ebRb)

2 coshβ
, (2)

where we assume the couplings to be positive (ferromagnetic), Kb ≡ βJb > 0, with β being

the inverse temperature, the length-Nb binary vectors e, m respectively specify the electric

and magnetic disorder, and Ng ≡ Ns − rank Θ is the count of linearly-dependent rows in Θ.

Note that the bond Rb includes a spin variable for every non-zero entry in the column b of

matrix Θ; it can be ferromagnetic or antiferromagnetic depending on the value of eb ∈ {0, 1}.
Such a general definition with the specific normalization and magnetic disorder is given for

convenience of defining probability distributions and correlation functions.

A quantum CSS code[20, 21] with parameters [[n, k, d]] can be specified in terms of two

n-column binary generator matrices GX , GZ with mutually orthogonal rows, GXGTZ = 0. Such

a code encodes k = n − rankGX − rankGZ qubits in a block of n qubits. A CSS code can

be thought of as a couple of binary codes, one correcting X-type errors and the other Z-type

errors. However, it turns out that any two errors e and e′ of, e.g., Z-type differing by a linear

combination of rows of GZ have exactly the same effect on the quantum code—such errors are

called mutually degenerate. The corresponding equivalence is denoted e ' e′. A detectable

Z-type error e = eZ has a non-zero syndrome sZ = GXeT . An undetectable and non-trivial

Z-type error has a zero syndrome and is not degenerate with an all-zero error; we will call
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such an error a (non-zero Z-type) codeword c = cZ . The distance d of a CSS code is the

minimal weight of a Z- or an X-type codeword.

For each error type, we introduce a partition function [cf. Eq. (2)]:

Z
(µ)
0 (e;β) ≡ Ze,0(Gµ; {Kb = β}), µ = X,Z. (3)

The normalization is such that for a model of independent X or Z errors with equal probability

p (probabilities of eb = 1 are independent of each other and equal to p), at the Nishimori line

[12, 13, 14, 10],

β = βp, e−2βp = p/(1− p), (4)

the partition function (3) equals to the total probability of a µ-type error equivalent to e. We

also define the partition function with an extended defect of additionally flipped bonds at the

support of the codeword c,

Z(µ)
c (e;β) ≡ Z(µ)

0 (e + c;β), (5)

as well as the partition function corresponding to all errors with the same syndrome s as

e ≡ es,

Z
(µ)
tot (s;β) ≡

∑
c

Z(µ)
c (es;β) = Zes,0(G∗µ̄; {Kb = β}), (6)

where the summation is over all 2k mutually non-degenerate µ-type codewords c, such that

Gµ̄cT = 0, and µ̄ = X if µ = Z and vice versa. The second form uses a matrix G∗µ̄ exactly dual

to Gµ̄, cf. Eq. (1). Note that Eq. (6) at β = βp gives the correctly normalized probability to

encounter the syndrome s,
∑

s Ztot(s;β) = 1. Here and below we omit the error-type index

µ to simplify the notations.

Syndrome-based decoding is a classical algorithm to recover the error equivalence class

from the measured syndrome. In maximum-likelihood (ML) decoding, one picks the codeword

c = cmax(e) corresponding to the largest contribution Zmax(s;β) ≡ Zcmax(e)(e;β) to the

partition function (6) at β = βp. Given some unknown error with the syndrome s, the

conditional probabilities of successful and of failed ML recovery are, respectively,

Psucc(s) =
Zmax(s;βp)

Ztot(s;βp)
, Pfail(s) = 1− Psucc(s). (7)

The corresponding average over errors can be written as a simple sum over allowed syndrome

vectors,

Psucc ≡
[
Zmax(se;βp)

Ztot(se;βp)

]
=
∑
s

Zmax(s;βp), (8)

where the square brackets [ · ] denote an average over the errors e. For a given infinite family

of CSS codes, asymptotically certain ML decoding at given p implies P
(X)
succ → 1 and P

(Z)
succ → 1

in the limit of large n. Generally, this may be possible with sufficiently small p < pc ≤ 1/2,

as well in the symmetric region p > 1− pc, while it may not be a sure thing in the remaining

interval pc ≤ p ≤ 1− pc. This defines the ML decoding transition.

Examples of code families with finite ML decoding threshold pc > 0 include “good” random

CSS codes[20] with finite relative distances δ ≡ d/n (here pc ≥ δ/2), and all limited-weight

quantum LDPC codes with power-law scaling of the distance[17], d ∝ nα, α > 0 (e.g., α = 1/2
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and finite lower bound on pc exists for hypergraph-product codes[15] obtained from ensembles

of good-distance binary LDPC codes[22]).

Notice that our definition of a code family is rather broad. In particular, a family could

be heterogeneous and include an infinite sequence of codes (a subfamily) which allows asymp-

totically certain recovery even above pc defined for the entire family.

In terms of the spin glass model (3), asymptotically certain ML decoding condition,

Psucc → 1 in Eq. (8), gives an ordered phase where in thermodynamical limit each likely

disorder configuration e corresponds to a unique defect configuration c = cmax(e):

Definition 1 A fixed-defect phase of the spin glass model (3) in the case of CSS codes

[Eq. (37) for general stabilizer codes] corresponding to an infinite family of QECCs has

[Zmax(se;β)/Ztot(se;β)]→ 1, n→∞. (9)

It is also useful to define a special case of such a phase where any likely disorder configuration

does not introduce any defects:

Definition 2 A defect-free phase of the spin glass model (3) in the case of CSS codes [Eq. (37)

for general stabilizer codes] corresponding to an infinite family of QECCs has

[Z0(e;β)/Ztot(se;β)]→ 1, n→∞. (10)

It is the defect-free phase (Def. 2) that actually corresponds to the region where decoding

is successful. In a fixed-defect phase other than defect-free, there must be a subset of likely

syndromes that correspond to failed decoding, cmax(e) 6' 0. This is possible since a point on

the (p, β) phase diagram away from the Nishimori line, see Eq. (4), corresponds to a decoder

which assumes incorrect disorder probability p′ such that β ≡ βp′ 6= βp.

2.2 Results: ordered phases

First, we check the consistency of our definitions with the general expectation for ML de-

coding. Namely, we show that defect-free phase is the only allowed ordered phase on the

Nishimori line:

Theorem 1 For an infinite family of quantum stabilizer codes successful decoding with

probability one implies that on the Nishimori line the corresponding spin model is in the defect-

free phase, i.e., in any likely configuration e of flipped bonds the largest Zc(e;βp) corresponds

to cmax(e) = 0.

Definitions 1 and 2 are formulated in terms of the average ratios of partition functions. As

an alternative, we introduce the free energy increment associated with adding an extended

defect c to a most likely configuration at the given disorder e with the syndrome s = Gµ̄eT ,

∆Fmax,µ
c (s;β) ≡ β−1 log

Z
(µ)
max(s;β)

Z
(µ)
cmax(e)+c(e;β)

, µ = X,Z. (11)

For the corresponding disorder average, we prove

Theorem 2 For an infinite family of disordered spin models (3) or (37), in a fixed-

defect phase the averaged over the disorder free energy increment for an additional defect

corresponding to a non-trivial codeword c 6' 0 diverges at large n, [∆Fmax
c (se;β)]→∞.
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In the defect-free phase, the relevant analogous quantity is the free energy increment with

respect to a given error e,

∆F (0,µ)
c (e;β) ≡ β−1 log

Z
(µ)
0 (e;β)

Z
(µ)
c (e;β)

. (12)

The corresponding average over disorder diverges in the defect-free phase where cmax(e) = 0

for every likely error configuration e. Then, the Theorem 1 leads to

Corollary 1 On the Nishimori line, the disorder-averaged free energy increment [∆F
(0)
c (e;βp)]

corresponding to any non-trivial codeword c 6' 0 diverges at large n for p < pc, where pc is

the error probability corresponding to the ML decoding transition on the Nishimori line.

We also introduce a tension

λc ≡
[∆Fmax

c ]

dc
, dc ≡ min

σ
wgt(c + σG), (13)

an analog of the domain wall line (surface) tension for the extended defects, and prove

Theorem 3 For disordered spin models (3) or (37) corresponding to an infinite family

of quantum codes with asymptotic rate R = k/n, in a fixed-defect phase, the defect tension λ

averaged over all non-trivial defect classes at large n satisfy the inequality βλ ≥ R ln 2.

2.3 Results: order parameter

The spin models corresponding to families of quantum codes include the analogs of regular

Ising model (e.g., regular Ising model on square lattice for the toric codes) as well as various

gauge models, see Example 6. In general, there is no local order parameter that can be used

for an alternative definition of the ordered phase. In addition, while an analog of Wilson

loop operator can be readily constructed for these models and has the usual low- and high-

temperature asymptotics, it remains an open question whether it can be used to distinguish

between specific disordered phases.

However, we constructed a set of non-local indicator spin correlation functions which must

all be asymptotically equal to one in the defect-free phase, while some of them change sign in

the presence of extended defects. Using these, and the standard inequalities from the gauge

theory of spin glasses, we prove the following bound on the location of the defect-free phase

(this is a generalization of Nishimori’s result[13, 12] on possibly reentrant phase diagram for

Ising models):

Theorem 4 Defect-free phase cannot exist at any β for p exceeding that at the decoding

transition, p > pc.

2.4 Results: phase transition

For zero-R codes, the only mechanism of a continuous transition is for λc to vanish for some

set of codewords c. On the other hand, for finite-rate codes, Theorem 3 implies that there is

also a possibility that at the transition point the tension remains finite, λc ≥ λmin > 0, for

every codeword c. This corresponds to a transition driven by the entropy of extended defects.

While generically the transition in models with multi-spin couplings is of the first order,

it is continuous along the Nishimori line since the corresponding internal energy is known

exactly and is a continuous function of p. Moreover, the heat capacity remains finite at the
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transition point along the Nishimori line since the same inequality as for regular spin glasses

applies[13, 14, 12, 10],

[C(p;βp] ≤ Nb

β2
p

cosh2 βp
, (14)

where Nb = 2n for the model (37), and Nb = n for the models (3) corresponding to a half

of a CSS code each. Thus, as in the usual spin models, we expect that the transition point

p = pc at the Nishimori line is a multicritical point where several phases come together (or

possibly an end point of a discrete or continuous set of such points corresponding to different

subfamilies in a heterogeneous code family).

Spin models corresponding to non-CSS zero-rate families of stabilizer codes are self-dual.

The same is true for CSS codes where the two generator matrices GX , GZ can be mapped

to each other, e.g., by column permutations, as is the case for the toric codes and, more

generally, for the hypergraph-product (HP) codes[15], see Eq. (19). For many such models,

the transition point at the Nishimori line can be obtained to a high numerical accuracy using

the strong-disorder self-duality conjecture[23, 24, 25, 26, 27, 28]

H2(pc) = 1/2, (15)

where H2(p) ≡ −p log2 p − (1 − p) log2(1 − p) is the binary entropy function. While strictly

speaking, there is no exact self-duality in the presence of disorder[29], we have confirmed

numerically that this expression is also valid, at least approximately, for several models con-

structed here, e.g., models with bond structure as in Example 4.

However, for code families with finite rate, the decoding transition is expected to be below

the Shannon limit

R ≤ 1−H2(p). (16)

Thus, Eq. (15) would be violated for R ≥ 1/2. On general grounds, we actually expect it to

fail for any code family with a finite rate, R > 0.

3 Background

3.1 Stabilizer codes

An n-qubit quantum code[30, 1, 2, 31] is a subspace of the n-qubit Hilbert space H⊗n2 . The

idea is to choose a subspace such that a likely error shifts any state from the code to a

linearly-independent subspace, to be detected with a suitable set of measurements. Any

error, an operator acting on H⊗n2 , can be expanded as a linear combination of the elements

of the n-qubit Pauli group Pn formed by tensor products of single-qubit Pauli operators X,

Y , Z and the identity operator I: Pn = im{I,X, Y, Z}⊗n, where m = 0, 1, 2, 3. A weight of

a Pauli operator is the number of non-trivial terms in the tensor product.

An n-qubit quantum stabilizer code Q [[n, k, d]] is a 2k-dimensional subspace of H⊗n2 , a

common +1 eigenspace of all operators in the code’s stabilizer, an Abelian group S ⊂ Pn

such that −1 6∈ S . The stabilizer is typically specified in terms of its generators, S =

〈S1, . . . , Sn−k〉. Any operator proportional to an element of the stabilizer S acts trivially on

the code and can be ignored. A non-trivial error proportional to a Pauli operator E 6∈ S is

detectable iff it anticommutes with at least one stabilizer generator Si; such an error takes a

vector from the code, |ψ〉 ∈ Q, to the state E |ψ〉 from an orthogonal subspace EQ where the
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corresponding eigenvalue (−1)si is negative. Measuring all n− k generators Si produces the

binary syndrome vector s ≡ {s1, . . . , sn−k}. Two errors (Pauli operators) that differ by an

element of the stabilizer and a phase, E2 = E1Se
iφ, S ∈ S , are called mutually degenerate;

they have the same syndrome and act identically on the code.

Operators commuting with the stabilizer act within the code; they have zero syndrome. A

non-trivial undetectable error E is proportional to a Pauli operator which commutes with the

stabilizer but is not a part of the stabilizer. These are the operators that damage quantum

information; minimal weight of such an operator is the distance d of the stabilizer code. A

quantum or classical code of distance d can detect any error of weight up to d−1, and correct

up to bd/2c.
A Pauli operator E ≡ im

′
XvZu, where v,u ∈ {0, 1}⊗n and Xv = Xv1

1 Xv2
2 . . . Xvn

n ,

Zu = Zu1
1 Zu2

2 . . . Zunn , can be mapped, up to a phase, to a binary vector e ≡ (v,u). A

product of two Pauli operators corresponds to a sum (mod 2) of the corresponding vectors.

Two Pauli operators commute if and only if the trace inner product of the corresponding

binary vectors is zero, e1 ? e2 ≡ u1 · v2 + v1 · u2 = 0 mod 2. With this map, generators of a

stabilizer group are mapped to rows of the binary generator matrix

G = (GX , GZ), (17)

with the condition that the trace inner product of any two rows vanishes [2]. This commuta-

tivity condition can be also written as GXG
T
Z +GZG

T
X = 0.

For a more narrow set of CSS codes stabilizer generators can be chosen so that they contain

products of only Xi or Zi single-qubit Pauli operators. The corresponding generator matrix

has the form

G = diag(GX ,GZ), (18)

where the commutativity condition simplifies to GXGTZ = 0 mod 2. The number of encoded

qubits is k = n− rankG; for CSS codes this simplifies to k = n− rankGX − rankGZ .

Two errors are mutually degenerate iff the corresponding binary vectors differ by a linear

combination of rows of G, e′ = e + αG. It is convenient to define the conjugate matrix

G̃ ≡ (GZ , GX) so that G?GT ≡ GG̃T = 0. Then, the syndrome of an error e ≡ (v,u) can be

written as the product with the conjugate matrix, s = G̃eT . A vector with zero syndrome is

orthogonal to rows of G̃; we will call any such vector which is not a linear combination of rows

of G a non-zero codeword c 6' 0. Two codewords that differ by a linear combination of rows

of G are equivalent, c1 ' c2; corresponding Pauli operators are mutually degenerate. Non-

equivalent codewords represent different cosets of the degeneracy group in the binary code

with the check matrix G̃. For an [[n, k, d]] code, any non-zero codeword has weight wgt(c) ≥ d,

and there are exactly 2k independent codewords which can be chosen to correspond to 2k

operators X̄i, Z̄i, i = 1, . . . , k (with the usual commutation relations) acting on the logical

qubits.

3.2 LDPC codes

A binary low density parity-check (LDPC) code is a linear code with sparse parity check

matrix[32, 33, 34, 35]. These have fast and efficient (capacity-approaching) decoders. Over

the last ten years classical LDPC codes have become a significant component of industrial

standards for satellite communications, Wi-Fi, and gigabit ethernet, to name a few. Quantum
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LDPC codes[6, 7] are just stabilizer codes[1, 2], but with stabilizer generators which involve

only a few qubits each compared to the number of qubits used in the code. Such codes are most

often degenerate: some errors have trivial effect and do not require any correction. Compared

to general quantum codes, with a quantum LDPC code, each quantum measurement involves

fewer qubits, measurements can be done in parallel, and also the classical processing could

potentially be enormously simplified.

One apparent disadvantage of quantum LDPC codes is that, until recently[19], there has

been no known families of such codes that have finite relative distance δ ≡ d/n for large n.

This is in contrast to regular quantum codes where the existence of “good” codes with finite

asymptotic rates R ≡ k/n and finite δ has been proved[20, 36]. With such latter codes, and

within a model where errors happen independently on different qubits with probability p, for

p < δ/2 all errors can be corrected with probability one. On the other hand, many quantum

LDPC code families have a power-law scaling of the distance with n, d ∝ nα, with α ≤ 1/2.

Examples include code families in Refs. [15, 16, 17, 18]; a single-qubit-encoding code family

suggested in Ref. [37] has the distance scaling as d ∝ (n log n)1/2.

We proved that an infinite quantum LDPC code family with sublinear power-law distance

scaling has a finite error correction threshold, including the fault-tolerant case where the

measured syndromes may have errors, as long as each stabilizer generator involves a limited

number of qubits, and each qubit is involved in a limited number of stabilizer generators[38].

This makes quantum LDPC codes the only code family where finite rate is known to co-

exist with finite fault-tolerant error-correction threshold, potentially leading to substantial

reduction of the overhead for scalable quantum computation[39].

Note that the quantum LDPC codes in Ref. [19] have finite rates and finite relative dis-

tances, at the price of stabilizer generator weight scaling like a power-law, w ∝ nγ , γ ≤ 1/2;

it is not known whether a fault-tolerant error-correction protocol exists for such codes.

An example of a large code family containing some quantum LDPC codes is the hypergraph-

product (HP) codes [15] generalizing the toric code. Such a code can be constructed from

two binary matrices, H1 (dimensions r1 × n1) and H2 (dimensions r2 × n2), as a CSS code

with the generator matrices [16]

GX = (E2 ⊗H1,H2 ⊗ E1), GZ = (HT2 ⊗ Ẽ1, Ẽ2 ⊗HT1 ). (19)

Here each matrix is composed of two blocks constructed as Kronecker products (denoted

with “⊗”), and E1, Ẽ1, E2, Ẽ2 are unit matrices of dimensions given by r1, n1, r2 and

n2, respectively. Let us denote the parameters of classical codes using Hi, HTi as parity

check matrices, C⊥Hi = [ni, ki, di], C⊥HTi = [ñi, k̃i, d̃i], i = 1, 2, with the convention[15] that

the distance d = ∞ if the corresponding k = 0. Then the parameters of the HP code

are n = n2r1 + n1r2, k = k1k̃2 + k̃1k2, while the distance d satisfies[15] a lower bound

d ≥ min(d1, d2, d̃1, d̃2) and two upper bounds: if k̃2 > 0, then d ≤ d1; if k̃1 > 0, then d ≤ d2.

Particularly simple is the case when both binary codes are cyclic, with the property that

all cyclic shifts of a code vector also belongs to the code[8]. A parity check matrix of such a

code can be chosen circulant, with the first row [c0, c1, . . . , cn−1] corresponding to the check

polynomial h(x) ≡ c0 + c1x+ . . .+ cn−1x
n−1, which is a factor of xn−1. Then, we can choose

both circulant matrices H1 and H2 in Eq. (19) square ni × ni, which gives a CSS code with

the parameters [[2n1n2, 2k1k2,min(d1, d2)]]. In particular, the toric codes[40, 3] are obtained
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when the circulant matrices H1, H2 are generated by the polynomial h(x) = 1+x, with ki = 1

and di = ni, i = 1, 2.

3.3 Ising model

The conventional Ising model is given by the two-body Hamiltonian

Ĥ ≡ Ĥ({S}) = −
∑
〈ij〉

JijSiSj − h
∑
i

Si, (20)

where Ising spin variables Si = ±1 are placed on the sites of a lattice (e.g., square lattice

in 2D), the summation in the first term is done over all nearest neighbor site pairs, while

the “magnetic” field h in the second term multiplies the sum of all spins in the system. The

model is ferromagnetic if all couplings are positive, Jij > 0. At h = 0, the Hamiltonian has

the exact symmetry Si → −Si. The probability of a spin configuration {S} is given by the

Boltzmann distribution at the inverse temperature β ≥ 0,

Pβ({S}) = Z−1
β e−βĤ({S}), (21)

where the normalization constant defines the partition function

Zβ ≡
∑
{S}

e−βĤ({S}). (22)

For a given lattice, let us define a binary matrix Θ with columns corresponding to each term

in the Hamiltonian (20), namely, columns with non-zero entries at rows i and j corresponding

to bonds with couplings Kb ≡ βJij , and columns with a single non-zero entry at each row i

with the bond couplings Kb = βh. Then, the general partition function (2) with e = m = 0

matches the partition function (22), up to an overall factor analytic as a function of β. The

partition function (22) plays a role of the generating function for thermal averages with

the probability distribution (21). Namely, these averages can be expressed as logarithmic

derivatives of the partition function (22): e.g., the average energy 〈Ĥ〉 = −∂β lnZβ , or the

average spin magnetization M ≡ N−1
∑
i〈Si〉 = −(βN)−1∂h lnZβ . Ferromagnetic phase

at h = 0 corresponds to a non-zero two-spin correlation function 〈SiSj〉 > 0 at infinite

separations, |ri − rj | → ∞, which is equivalent to a finite limit limh→+0M > 0, where the

thermodynamical limit must be taken first, followed by the limit over the magnetic field

h→ 0, with h > 0.

The dependence on the order of limits implies a non-analyticity as a function of parameters,

which is not trivial. Indeed, the magnetization M , partition function, and other thermal

averages are analytic as a function of β for any finite system. The existence of a ferromagnetic

phase for sufficiently low temperatures (large β) has been proved by Peierls for the case of

the Ising model in two dimensions[41]. The existence of a well-defined thermodynamical limit

for the spin correlation functions 〈SiSj〉 has been rigorously established by Griffiths[42] for

general two-body ferromagnetic Ising model. The proof has been later extended[43] to most

general ferromagnetic Ising model with the partition function Z0,0(Θ; {Kb}) [see Eq. (2)],

with the result that a well-defined non-negative thermodynamical limit exists for a product

of an arbitrary subset A of all spins 〈SA〉 ≡ 〈
∏
i∈A Si〉. Note that there is no guarantee that

such an average be non-zero.
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In particular[11], the correlation function necessarily vanishes in any finite system, 〈SA〉 =

0, if the corresponding product of spin variables cannot be expressed as a product of bonds

Rb [see Eq. (2)] entering the Hamiltonian. Thus, e.g., in a two-body Ising model with the

Hamiltonian (20), at h = 0 the average of a product of any odd number of distinct spin

variables vanishes. A decomposition of a spin correlation function in terms of a product of

Rb corresponds to a pattern of magnetic charges m in Eq. (2). Similarly, in a general non-

ferromagnetic Ising model, a pattern of negative bond couplings can be specified by the vector

of electric charges e in Eq. (2).

Another result for the general model (2) is the exact duality transformation[11],

2(Ng−Ns)/2 Ze,m(Θ, {K})∏
b

√
(tanhKb)2 + 1

= (−1)e·m 2(N∗g−N
∗
s )/2 Zm,e(Θ∗, {K∗})∏

b

√
(tanhK∗b )2 + 1

, (23)

where bonds in the r.h.s. are defined by the columns of a N∗s ×Nb binary matrix Θ∗ exactly

dual to Θ, see Eqs. (1) and (2). The dual model has the same number of bonds, N∗b = Nb,

N∗s spins, and its ground state degeneracy parameter N∗g = N∗s − rank Θ∗. Notice that the

magnetic and electric charges are interchanged under duality; also coupling parameters of

mutually dual bonds are related by tanhKb = exp(−2K∗b ), as first obtained by Kramers and

Wannier[44].

In the case of an Ising model on an L×L square lattice with periodic boundary conditions

(N = L2), at h = 0 the number of bonds is Nb = 2L2, whereas rank Θ = L2 − 1. This

corresponds to L2−1 constraints on products of bond operators around plaquettes, plus k = 2

constraints on products around the two topologically non-trivial loops. These constraints give

the rows of the dual matrix Θ∗, see Eq. (23); the condition (1) requires rank Θ∗ = L2 + 1.

Respectively, the summation in the dual model involves L2 “regular” spins corresponding to

the plaquettes of the original lattice, and two additional degrees of freedom affecting signs

of dual bonds along two topologically non-trivial loops. These variables correspond to an

additional summation over periodic/antiperiodic boundary conditions[45]. In terms of the

associated toric code[3], the two strings corresponds to two non-trivial codewords c 6' 0.

The additional terms are exponentially suppressed below the ferromagnetic transition

temperature where domain walls have finite line tension. Here, in a large system, these terms

can be omitted, which makes the dual and the original partition functions identical. We will

call such a duality which has a potential of becoming exact self-duality in the thermodynamical

limit a “self-duality modulo logical operators.”

We note in passing that the binary matrices Θ and Θ∗ defining the mutually dual partition

functions in Eq. (23) can be also thought of as the generating matrices of the two dual binary

codes [Eq. (1)], with some additional linearly dependent rows. In fact, Wegner’s duality has

been long known in the coding theory as the MacWilliams identities between weight generating

polynomials of dual codes[46, 8].

We should also mention that physics of disordered spin models is remarkably rich. Such

models may have one or several spin glass phases characterized by many near-degenerate free

energy minima separated by large barriers[47], leading to exponentially-diverging equilibration

times. In addition, exponentially rare disorder-free regions produce Griffiths singularities in
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specific heat and other thermodynamical functions near the temperature corresponding to

the transition in a clean system[42]. These issues, however, are far beyond the scope of the

present work.

4 Statistical mechanics of decoding.

4.1 Maximum likelihood decoding

Let us consider one of the simplest error models, where the bit flip and phase flip errors

happen independently and with equal probability p. The corresponding transformation of the

single-qubit density matrix can be written as

ρ 7→ pIρ+ pxXρX + pyY ρY + pzZρZ , (24)

where pI = (1− p)2, px = pz = p(1− p), py = p2. After relabeling the axes (y ↔ z) this can

be interpreted in terms of the amplitude/phase damping model with some constraint on the

decoherence times T1, T2. Our goal, however, is not to consider the most general case, but to

construct a simple statistical mechanical model.

For the uncorrelated errors described by the completely-positive trace-preserving map (24),

the probability of an error described by the binary vector e = (v,u) (see Sec. 3) is

P (e) =

Nb∏
i=1

pei(1− p)1−ei = pw(1− p)Nb−w, (25)

where Nb = 2n and w ≡ wgt(e) = wgt(v) + wgt(u) is the regular binary weight. Now, with a

stabilizer code, all degenerate errors have the same effect and cannot be distinguished. Thus,

one considers the net probability of an error having the same effect as e,

P0(e) =
1

2Ng

∑
σ

pw(1− p)Nb−w, w ≡ wgt(e + σG), (26)

where the generator matrix G (see Eq. (17)) has dimensions Ns × Nb and non-zero Ng ≡
Ns−rankG allows G to have some linearly-dependent rows, cf. Eq. (2). The errors in Eq. (26)

are exactly degenerate with e but they are not all the errors having the same syndrome as

e. It is thus convenient to introduce the probability of an error equivalent to e shifted by a

codeword c,

Pc(e) ≡ P0(e + c), (27)

and the total probability of an error with the syndrome s ≡ G̃eT ,

Ptot(s) =
∑
c

Pc(e), (28)

where e is any vector that gives the syndrome s, and the summation is done over all 22k

inequivalent codewords, length Nb zero-syndrome vectors, G̃cT = 0, whose pairwise sums are

linearly independent from the rows of G, see Sec. 3. When combined with the summation over

the degeneracy vectors generated by the rows of G, see Eqs. (26) and (27), the summation in

Eq. (28) can be rewritten as that over all zero-syndrome vectors,

Ptot(s) =
∑

x:G̃xT=0

pw(1− p)Nb−w, w ≡ wgt(e + x). (29)
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The probability (29) is normalized properly, so that the summation over all allowed syndrome

vectors gives 1, ∑
s

Ptot(s) = 1. (30)

When decoding is done, only the measured syndrome s is known. For maximum likelihood

(ML) decoding, the inferred error vector corresponds to the most likely configuration given

the syndrome. To find it, we can start with some error configuration e ≡ es corresponding

to the syndrome s, and find a codeword c = cmax(e) such that the corresponding equivalence

class e + c has the largest probability,

Pcmax(e)(e) = Pmax(s) ≡ max
c
Pc(e). (31)

Unlike the codeword cmax(e) which depends on the choice of e, the maximum probability

Pmax(s) depends only on the syndrome s ≡ G̃eT . The conditional probabilities of successful

and of failed recovery given some unknown error with the syndrome s become

Psucc(s) =
Pmax(s)

Ptot(s)
, Pfail(s) ≡ 1− Psucc(s). (32)

The net probability of successful recovery averaged over all errors can be written as

Psucc ≡ [Psucc(se)] =
∑
s

Pmax(s). (33)

Here and in the following [f(e)] ≡
∑

e P (e)f(e) denotes the averaging over the errors with

the probability (25). The result in the r.h.s. was obtained by partial summation over all errors

with the same syndrome, cf. the syndrome probability (28).

Asymptotically successful recovery with probability one for an infinite family of QECCs

implies that in the limit of large n, Psucc → 1 while Pfail → 0. Alternatively, in this limit Eqs.

(32) and (33) give [
Pmax(se)

Ptot(se)

]
→ 1. (34)

Comparing Eqs. (30) and (33), we see that asymptotically, for each error that is likely to

happen, the sum (28) is dominated by a single term with c = cmax(e). We can state this

formally as

Lemma 1 For an infinite family of quantum codes, successful decoding with probability one

implies that asymptotically at large n, the ratio

r(e) ≡ Pmax(se)

Ptot(se)
=

Pmax(e)∑
c Pc(se)

→ 1.

for any error configuration e likely to happen.

Proof. Note that r(e) < 1. Indeed, the summation in the denominator is over all c, one of

them equals cmax(e) while the remaining terms are positive. Now, let us choose an arbitrarily

small ε > 0 and separate the errors into “good” where 1−r(e) < ε and “bad” where 1−r(e) ≥
ε. Use the following Bayesian expansion for the successful decoding probability:

Psucc = (1− Pbad) [r(e)]good+ Pbad [r(e)]bad, (35)
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where the averaging in each term is limited to a particular type of errors as indicated. The

first term can be bounded from above by 1−Pbad, while the second one by Pbad(1− ε), which

gives

Psucc ≤ 1− εPbad. (36)

Since Pfail = 1− Psucc → 0 at large n, the probability Pbad can be made arbitrarily small by

choosing large enough n. �.

4.2 Random bond spin model

Given the well-established parallel between Wegner’s models and binary codes[9, 10], it is

straightforward to come up with a spin model matching the probabilities defined in the pre-

vious section. We use the binary error e to introduce the bond disorder using Jb = (−1)eb ,

and consider Wegner’s partition function (2) with Θ = G,

Z0(e;β) ≡ Ze,0(G, {Kb = β}). (37)

The normalization is such that the probability in Eq. (26) is recovered on the Nishimori

line (4),

P0(e) = Z0(e;βp), e−2βp = p/(1− p). (38)

To shorten the notations, we will omit the inverse temperature β whenever it is not likely to

cause a confusion, Z0(e) ≡ Z0(e;β), and use P0(e) at the Nishimori line, β = βp.

We also define the partition function with an extended defect of flipped bonds at the

support of the codeword c, Zc(e;β) ≡ Z0(e+c;β) [cf. Eq. (27)], the corresponding maximum

Zmax(s;β) ≡ Zcmax(e;β) [the maximum is reached at cmax ≡ cmax(e;β) which may differ from

that in Eq. (31) depending on the temperature], as well as an analog of Ptot(s) [Eq. (28)],

Ztot(s;β) = Ze,0(G̃∗, {Kb = β}), (39)

where the binary matrix G̃∗ is exactly dual to G̃, namely G̃∗G̃T = 0 and rank G̃+rank G̃∗ = Nb

[cf. Eq. (1)], and we used the fact that G̃∗ is a generating matrix for all vectors x in Eq. (29).

Except for disorder, the partition function (39) is related to Eq. (37) by Wegner’s duality

transformation (23). The conjugation in Eq. (39) just rearranges the order of bonds and there-

fore leaves the partition/correlation function invariant, except for corresponding permutation

of bond-specific variables: coupling parameters Kb and electric and magnetic charges,

Ze,m(G̃∗, {K}) = Zẽ,m̃(G∗, {K̃}). (40)

For a CSS code with the generator matrix in the form (18) the partition function (37)

splits into a product of those for two non-interacting models corresponding to matrices GX
and GZ , see Eq. (3). In addition, two models defined by GX and GZ are dual to each other

modulo logical operators. We can find the ground state degeneracies 2N
µ
g , µ = X,Z, of the

corresponding models from Nµ
g = Nµ

s − rankGµ, where Nµ
s , µ = X,Z defines the number of

rows in the matrix Gµ. For hypergraph-product codes in Eq. (19) the ground state degeneracy

is given by[16] NX
g = k̃1k̃2 and NZ

g = k1k2.

In the following examples we list symmetry properties of spin models related to some

particular families of CSS codes:
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Fig. 1. Left and Center: two basis ground states of the spin model in Example 3, with black

squares corresponding to flipped spins. An arbitrary ground state of this spin model is a linear
combination of these two. Right: a domain wall between two such ground states. Green squares

show the pattern of vertical and horizontal bonds involving interactions of two or three spins,

respectively. A column of “unhappy” bonds forming the domain wall is shown with red.

Example 1 HP codes in Eq. (19) are CSS codes. In the special case H1 = HT2 , the matrices

GX and GZ can be mapped to each other by permutations of rows and columns; the two spin

models (3) are identical. In the absence of disorder both models are self-dual, modulo logical

operators.

Example 2 Suppose matrices H1 and H2 in Eq. (19) are square and circulant, corresponding

to two cyclic codes with generally different check polynomials h1(x) and h2(x). Then the

matrices GX and GZ can be mapped to each other by permutations of rows and columns, and

thus in the absence of disorder the corresponding spin models (3) are self-dual modulo logical

operators. This map is generally different from that in the previous example. This case has

a nice layout on square lattice with periodic boundary conditions, with the horizontal and

vertical bonds Rb in Eq. (2) formed according to the pattern of coefficients in the polynomials

h1(x) and h2(x). In particular, with h1(x) = h2(x) = 1 + x, the hypergraph-product code is a

toric code, while Eq. (3) gives two mutually decoupled Ising models.

Example 3 Debierre and Turban [48] suggested a model that corresponds to a CSS code in

the previous example with the check polynomials h1(x) = 1 +x and h2(x) = 1 +x+ . . .+xl−1

for some positive integer l. The two binary codes have k1 = 1 (codewords are all-one or all-

zero vectors), and, with n2 divisible by l, k2 = l − 1 (2l−1 codewords given by the repetitions

of all length-l even-weight vectors). With l = 3, each of the two equivalent spin models (3)

have four ground states in a pattern of stripes given by the repetitions of the vectors [1, 1, 0],

[0, 1, 1], [1, 0, 1] or [0, 0, 0]. A boundary between two distinct ground states produce a pattern

of “unhappy” bonds that corresponds to an extended defect c in Eq. (28), see Fig. 1, Right.

Example 4 Spin models corresponding to quantum hypergraph-product codes [[98s2, 6s, 4s]],

s = 1, 2, . . .. The model is constructed from 7s × 7s circulant matrices Hi corresponding to

hi(x) = 1 + x + x3, i = 1, 2. A ground state of such a model is a linear combination of the

nine basis states with the unit cell in Fig. 2, Left. Fig. 2, Right: a boundary between two

ground states.

4.3 Ordered state

The ferromagnetic phase in the usual Ising model (20) can be characterized by the order

parameter, average single-spin magnetization M , see Sec. 3.3. This is not necessarily the

case for more general models with the partition function (37). There may be no global
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Fig. 2. Left: nine ground states of the spin model corresponding to the GX matrix of the HP

code (19) generated by circulant matrices Hi corresponding to h1(x) = h2(x) = 1 + x+ x3, where

n1 = n2 = 21 (they both must be factors of 7), see Example 4. An arbitrary ground state of the
spin model is a linear combination of these nine states. Right: a domain wall formed between

two such ground states. Green squares on white background show the patterns of horizontal and

vertical bonds, each involves three spins. A column of “unhappy” bonds forming the extended
defect is shown with red.

S → −S symmetry. Moreover, if the generator matrix G is a full-row-rank matrix, the

partition function (37) does not have any such symmetry.

Instead, we define an ordered phase as an analog of the region of parameters where asymp-

totically certain decoding is possible. We note that an analog of Lemma 1 applies to any

ordered phase: for any error e likely to happen, the partition function Ztot(se;β) is going to

be dominated by a single defect configuration, cmax(e). In the defect-free phase, see Def. 2,

cmax(e) = 0, while in a more general fixed-defect phase, Def. 1, one may have a non-trivial

defect cmax(e) 6' 0.

4.4 No fixed-defect phase on the Nishimori line

On the Nishimori line, the definition of a fixed-defect phase matches that of a region with

asymptotically certain successful decoding, see Eq. (34). The latter region terminates at the

decoding transition at the single-bit error probability p = pc. On the other hand, the proof

of the lower bound on the decoding threshold from Ref. [38] actually establishes the existence

of a zero-defect phase on the Nishimori line, for small enough p. With both phases present,

one would expect an additional transition between these phases at some p < pc. According

to Theorem 1, this is not the case: there is no fixed-defect phase along the Nishimori line.

Proof. [Proof of Theorem 1] Below the decoding transition, p < pc, according to Lemma

1, the probability Ptot(s) to obtain each likely syndrome is dominated by a single disorder

configuration e0(s). This is also the configuration most likely to happen, as opposed to any

other inequivalent configuration corresponding to the same syndrome. �.

In comparison, for β 6= βp, the disorder probability distribution P0(e) is different from the

partition function Z0(e;β). In general, the dominant contribution to Ztot(se;β) may come

from some other defect configuration cmax(e;β) 6' 0.

In practical terms, when designing a decoding algorithm, we can concentrate on the portion

of the free energy corresponding to Z0(e;βp) and ignore the possibility of any non-trivial

defects without affecting the decoding probability in the limit of large n.



A.A. Kovalev and L.P. Pryadko 841

4.5 Free energy of a defect

In a fixed-defect phase: Let us introduce the free energy cost of flipping the bonds correspond-

ing to all non-zero bits of the codeword c on top of the flipped bond pattern in the most likely

configuration cmax(e) corresponding to an error e with the syndrome s = G̃eT ,

∆Fmax
c (s;β) ≡ β−1 log

Zmax(s)

Zcmax(e)+c(e)
. (41)

Theorem 2 states that this quantity must diverge in any ordered phase.

Proof. [Proof of Theorem 2] In the fixed-defect phase each syndrome s likely to happen

must be characterized by a unique configuration of defects, with the other configurations

strongly suppressed. Version of Lemma 1 appropriate for this phase (see Def. 1) implies that

∆Fmax
c (s;β) → ∞ asymptotically at large n. The corresponding disorder average must also

diverge at large n. �.

If we introduce the minimum weight dc of a bit string in the degeneracy class of c, dc ≡
minσ wgt(c + σG), we can formulate the following bounds

Lemma 2 For any error e which gives the syndrome s, any codeword c, and any temperature

β−1, 0 ≤ ∆Fmax
c (s;β) ≤ 2dc.

Proof. The lower bound follows trivially from the fact that Zmax(s) is the largest of Zc(e).

To prove the upper bound, use the Gibbs-Bogoliubov inequality in the form:

β−1 log
Z0(e′)

Zc(e′)
≤ 〈Ec+e′ − Ee′〉 =

∑
b:cb 6'0

2〈(−1)e
′
bRb〉, (42)

where e′ ≡ e + cmax(e) is the same-syndrome disorder configuration such that the maximum

is reached at c = 0, Ee ≡
∑
b(−1)ebRb is the energy of a spin configuration, see Eq. (2), and

the averaging is done over all spin configurations contributing to Z0(e′;β). Each term in the

r.h.s. of Eq. (42) is uniformly bounded from above, 2(−1)ebRb ≤ 2; this gives ∆Fmax
c (e;β) ≤

2 wgt c. Minimizing over the vectors degenerate with c gives the stated result. �.

Note that at zero temperature and in the absence of disorder, e = 0, the upper bound in

Lemma 2 is saturated. We conjecture that a similar asymptotic scaling, with some finite

λc ≡
[∆Fmax

c (se;β)]

dc
, (43)

should be valid for the free energy increments averaged over disorder, with the defect tension

λc analogous to the domain wall tension in the 2D Ising model. In the fixed-defect phase,

where ∆Fc is expected to diverge, we thus expect the tensions (43) to be non-zero, λc > 0.

In the defect-free phase: In such a phase, the total partition function (39) is entirely

dominated by that without any extended defects, see Eq. (37). Instead of Eq. (41), it is

convenient to consider the free energy increment for flipping the bonds corresponding to the

codeword c starting with a given defect configuration e,

∆F (0)
c (e;β) ≡ β−1 log

Z0(e;β)

Zc(e;β)
. (44)
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Similar to the upper bound in Lemma 2, we can state

∆F (0)
c (e;β) ≤ 2dc; (45)

however, the corresponding lower bound might be violated for some disorder configurations

e where cmax(e) 6' 0. In the defect-free phase, the total probability of such configurations,

Pdefect, as well as the configurations where F
(0)
c (e;β) remains bounded, Pfinite, should be

vanishingly small at large n, Pdefect + Pfinite → 0. The corresponding bounds can be readily

formulated by analogy with Lemma 1. As a result, while in general the increments in Eqs. (41)

and (44) have both the initial and the final states different and cannot be easily compared, in

the defect-free phase the corresponding averages should coincide asymptotically at n → ∞.

In particular, this implies [∆F
(0)
c (e;β)]→∞ at large n in the defect-free phase.

On the Nishimori line: According to Theorem 1, the only ordered phase at the Nishimori

line is the defect-free phase. This immediately gives Corollary 1.

On the Nishimori line, it is convenient to consider the free energy ∆Fc(s;β) of a defect c

averaged over the errors e with the same syndrome, s = G̃eT ,

∆Fc(s;β) ≡
[
∆F (0)

c (e;β)
]
s
, (46)

where the average is extended over all non-equivalent codewords c,

[f(e)]s ≡
∑
c

P0(e + c)

Ptot(s)
f(e + c). (47)

For the average (46), we prove the following version of Lemma 2:

Lemma 3 At the Nishimori line, for every allowed syndrome s and every codeword c, the

free energy averaged over the errors with the same syndrome satisfies 0 ≤ ∆Fc(s;βp) ≤ 2dc.

Proof. The upper bound is trivial since it applies for every term in the average, see Eq. (45).

The lower bound follows from the Gibbs inequality. Explicitly, introduce two normalized

distribution functions of codewords b: fb ≡ P0(e′)/Ptot(s), gb ≡ Pc(e′)/Ptot(s), where e′ ≡
e + b; then, using the map (38) on the Nishimori line,

β∆Fc(s;βp) =
∑
b

fb log
fb
gb
≥
∑
b

fb

(
1− gb

fb

)
= 0,

where the summation is done over all non-equivalent codewords b and we used log(x) ≥
1− 1/x. �.

Note that this Lemma gives an alternative proof of Theorem 1.

4.6 No need for self-averaging

Conditions of Theorem 2 guarantee that the disordered system is not in a spin glass phase. A

self-averaging for the partition functions Zc(e;β) would immediately imply the statement of

the theorem. Note however, that (i) in the presence of disorder self-averaging is not expected

for the partition function even in the simplest case of the disordered Ising model on square

lattice as fluctuations could be exponentially large, and (ii) spin models corresponding to
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general families of quantum codes, whether LDPC or not, are expected to involve highly non-

local interactions. Thus, without additional conditions, one cannot guarantee self-averaging

even for the free energy.

However, we did not rely on self-averaging in any of the proofs. In particular, results in

this section apply to spin models corresponding to finite-rate quantum hypergraph-product

and related codes[15, 16] that can be obtained from random binary LDPC codes:

Example 5 This is a special case of the model in Example 1. Consider a random binary

matrix H with h non-zero entries per row and v per column, with h < v, e.g., see Ref. [32].

The rate of the corresponding binary code C⊥H with parameters [nc, kc, dc] is limited, Rc ≡
kc/nc ≥ 1 − h/v. With high probability at large nc, the classical code will have the relative

distance in excess of δc ≡ δc(h, v) > 0 given in Ref. [32]. Such an [nc, kc, dc] code produces

a quantum HP code (19) with H1 = HT2 = H, which is a quantum LDPC code with the

asymptotic rate k/n ≥ (v − h)2/(h2 + v2) and the distance scaling as d/
√
n = δcv/

√
h2 + v2.

Such a code has a decoding transition at a finite p, see Ref. [38]. Our present results indicate

that each of the corresponding spin models (3) has non-local bonds involving up to v spins,

exponentially large number of mutually inequivalent extended defects, and an ordered state

where such defects do not appear. In addition, as already stated in Example 1, each of the

two models is self-dual modulo logical operators.

5 Phase transitions

5.1 Transition to a disordered phase

Transition mechanism: An ordered phase (whether fixed-defect or defect-free) of the model (39)

is characterized by a unique defect pattern cmax(e) for every likely configuration of flipped

bonds e. In the case of a code family where k remains fixed, for the stability of such a phase

it is sufficient that non-trivial defects c 6' 0 have divergent free energies, as in Theorem 2.

On the other hand, defects can proliferate if at least one of the free energies ∆Fmax
c remains

bounded in the asymptotic n→∞ limit.

The situation is different in the case of a code family with divergent k, e.g., with fixed

rate R ≡ k/n, as in Example 5. Here, the number of different defects, 22k − 1, diverges

exponentially at large n; in an ordered phase the free energies of individual defects must

be large enough to suppress this divergence. This implies, in particular, that for a typical

defect the tension (43) must exceed certain limit. The statement of Theorem 3 concerns the

corresponding average tension,

λ ≡ (22k − 1)−1
∑
c6'0

λc. (48)

Proof. [Proof of Theorem 3] Let us start with a version of Lemma 1 for the fixed-defect

phase (see Def. 1): for any likely disorder configuration e,

∑
c6'0

Zc+cmax(e)(e;β)

Zmax(se;β)
→ 0, (49)

asymptotically at n → ∞. Note that we cannot just average this expression term-by-term,

since unlikely errors could potentially dominate the sum which involves an exponentially
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large number of terms. Instead, we fix some ε > 0 and first consider the average of Eq. (49)

only over the “good” errors where the sum does not exceed ε. Using the standard inequality

exp〈f〉 ≤ 〈exp f〉, we obtain the following expression involving the averages of the free energies

(41) over “good” errors only:∑
c 6'0

exp (−β[∆Fmax
c (se;β)]good) ≤ ε. (50)

Rewriting this sum in terms of an average over non-trivial defects which we denote as 〈 · 〉c6'0,

and using the same inequality, we get

(22k − 1) exp
(
−β 〈[∆Fmax

c (se;β)]good〉c6'0
)
≤ ε. (51)

It is convenient to introduce an analog of the tension (43) for finite ε,

λ(ε)
c ≡

[∆Fmax
c ]good

dc
, (52)

along with the corresponding average λ(ε) over all non-trivial defects c 6' 0, defined as in

Eq. (48). According to Lemma 2, each of the tensions satisfy 0 ≤ λ
(ε)
c ≤ 2, which means the

same bounds for the defects-average, 0 ≤ λ(ε) ≤ 2. With the help of the trivial upper bound

dc ≤ Nb = 2n, Eq. (51) gives

(22k − 1) exp(−2nβλ
(ε)

) ≤ ε, (53)

which implies for large n, k

βλ
(ε) ≥ k

n
log 2 = R log 2. (54)

We can now introduce the full average tension λ which involves both “good” and “bad”

errors by writing a Bayesian expansion similar to Eq. (35). The key observation leading to

the statement of the Theorem is that the contribution of “bad” errors disappears in the large-

n limit since for each error configuration the tension is limited, while the total probability of

“bad” errors Pbad → 0. �.

As a consequence, for any code family with a finite rate R, we expect one of the two

possibilities at the transition to a disordered phase: (i) Transition driven by proliferation of

some (e.g., finite) subset of the defects whose tensions λc vanish at the transition, with the

average in Theorem 3 still finite; and (ii) Transition driven by the entropy of some macroscopic

number of the defects, in which case tensions of all defects remain bounded at the transition,

λc ≥ λ0 > 0. In the case (i), one gets to a phase with “limited disorder” where only some of

all possible defects c may happen with non-zero probability at large n.

Continuity of the transition: At the Nishimori line, the average energy is known exactly[12,

13, 10], it is a continuous function of parameters. This guarantees the continuity of the

decoding transition. The same conclusion can be drawn from the bound (14) on the heat

capacity along the Nishimori line—the derivation is identical to the standard case[13, 14, 12,

10].

On the other hand, away from the Nishimori line, the transition from an ordered to a

disordered phase can be (and often is) discontinuous. In particular, mean field analysis using
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the TAP equations (named for Thouless, Anderson, and Palmer, see Ref. [49]) generically

gives a discontinuous transition for local magnetization whenever the bonds Rb couple more

than two spins.

Self-duality in the absence of disorder: In the absence of errors, we can use Wegner’s

duality (23) to relate the partition functions of the models with the generator matrices G

and G∗, that is, Eqs. (37) and (39), since the matrices G∗ and G̃∗ differ by an inessential

permutation of columns (bonds). Assuming the transition is unique, whether continuous or

not, it must happen at the self-dual point, sinh(2βs.d.) = 1. Here Eq. (23) gives Ztot(0;βs.d.) =

2kZ0(0;βs.d.), or, equivalently,

∑
c6'0

e−βs.d.∆F
(0)
c (0;βs.d.) = 2k − 1. (55)

This equation is exact since no disorder is involved. The summation over c here includes 22k−1

terms, and the result is independent of the distance of the code. For a finite-R code family,

argument similar to that in the proof of Theorem 3 gives a lower bound βs.d.λs.d. ≥ (R/2) ln 2,

which is smaller by half of the corresponding bound deep inside an ordered phase.

Location of the multicritical point: In many types of local spin glasses on self-dual lattices

the transition from the ordered phase on the Nishimori line happens at a multicritical point

whose location to a very good accuracy has been predicted by the strong-disorder self-duality

conjecture[23, 24, 25, 26, 27, 28]. In case of the Ising spin glasses, the corresponding critical

probability pc ≈ 0.110 satisfies Eq. 15. The derivation of this expression[23] uses explicitly

only the probability distribution of allowed energy values for a single bond. Our limited

simulations indicate that for several quasi-local models (see Example (2)) with finite k the

multicritical point is indeed located at pc ≈ 0.11, also very close to the Gilbert-Varshamov

existence bound for zero-rate codes. However, for code families with finite rates k/n, see

Example 5, the threshold probability must be below the Shannon limit (16), which means the

self-duality conjecture must be strongly violated for R > 1/2.

5.2 Transition between defect-free and fixed-defect phases

Theorem 1 states that on the Nishimori line below the decoding transition the spin model

(37) is in the defect-free phase. If a distinct fixed-defect phase exists somewhere on the phase

diagram, there is a possibility for a transition between these phases.

More generally, defect-free phase is a special case of an ordered fixed-defect phase. One can

imagine a transitions between two such phases. However, at least in the case of a temperature-

driven transition, the spin model (37) must become disordered at the transition point. Indeed,

for a transition to happen at T = T0(p), at least for some of the likely disorder configura-

tions, for T < T0(p), Zc1
(e;β) must dominate, while for T > T0(p), some of errors e will be

dominated by Zc2(e;β) with c2 6' c1. This implies that at the actual transition point some

codewords must become degenerate with non-zero probability, which would violate the condi-

tion in Def. 1. Once the system becomes disordered at some p, one would generically expect

it to remain disordered at larger p. By this reason, we expect that non-trivial fixed-defect

phases are not common.
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5.3 Absence of a local order parameter

In Sec. 4.2 we gave Examples of spin models which do not have any gauge-like symmetries.

However, the same approach can be also used to construct non-local spin models which have

“local” gauge symmetries and at the same time highly non-trivial phase diagrams.

The following example is a generalization of the mutually dual three-dimensional Ising

model and a random plaquette Z2 gauge model:

Example 6 Consider a CSS code (18) with the generators:

GX = (E1 ⊗G, R⊗ E2) , (56)

GZ =

(
RT ⊗ Ẽ2, Ẽ1 ⊗GT
E1 ⊗ G̃, 0

)
, (57)

where R is a square circulant matrix corresponding to the polynomial h(x) = 1 + x and

G ≡ (GX , GZ) is the generator matrix (17) of an arbitrary quantum code. This construction

follows the hypergraph-product code construction (19), and the unit matrices E1, Ẽ1, E2, Ẽ2

are chosen accordingly. The additional block involving the conjugate matrix G̃ = (GZ , GX)

differentiates this construction from the hypergraph-product code construction. This code de-

fines two non-interacting, mutually dual spin models (3). In particular, when G corresponds

to a toric code, we recover a three dimensional Ising model for µ = X, and a three dimensional

random plaquette Z2 gauge model for µ = Z.

A spin model with a local gauge symmetry cannot have a local order parameter[11]. Thus,

one cannot hope to construct a local order parameter that would describe the transition from

a defect-free phase and be applicable to all of the models (37).

A different argument toward the same end can be obtained by noticing that the transition

from the defect-free phase can be driven by delocalization of any of 22k−1 non-trivial defects.

For a finite-R code family this number scales exponentially with n; we find it not likely that

an order parameter defined locally can distinguish this many possibilities.

5.4 Spin correlation functions

The average of any product of spin variables which cannot be expressed as a product of the

bond variables in the Hamiltonian is zero [11]. Thus, we consider two most general non-trivial

spin correlation functions:

Qm
tot(e;β) ≡ Ze,m(G̃∗; {Kb = β})

Ze,0(G̃∗; {Kb = β})
, (58)

Qm
c (e;β) ≡ Ze+c,m(G; {Kb = β})

Ze+c,0(G; {Kb = β})
; (59)

both correlation functions satisfy −1 ≤ Qm(e;β) ≤ 1. The thermal average in Eq. (59) corre-

sponds to summation over spin configurations in Zc(e;β), while that in Eq. (58) corresponds

to the same defect and spin configurations that enter Ztot(s;β), cf. Eq. (39). Using the ex-

plicit form (2), definitions of Ztot and Zc, and the fact that additional linearly-independent

rows in G̃∗ form a basis of non-equivalent codewords c, we can write the following expansion

Qm
tot(e;β) =

∑
c

(−1)c·m
Zc(e;β)Qm

c (e;β)

Ztot(se;β)
. (60)
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The correlation functions contain the products of
∏
bR

mb
b =

∏
r(Sr)

Grbmb , or the product of

spin variables in the support of the syndrome vector sm̃ ≡ GmT = G̃m̃T corresponding to

m. Thus, the defined correlation functions are trivially symmetric with respect to any gauge

symmetries, Sr → Sr(−1)αr , αG = 0 (present whenever there are Ng > 0 linearly dependent

rows of G), as well as the transformations of m leaving the syndrome invariant, m→m+γG̃.

Wilson loop: In lattice gauge theory, in the absence of a local order parameter, the de-

confining transition can be characterized by the average of the Wilson loop operator[50],

with the thermal and disorder average scaling down as an exponent of the area in the high-

temperature phase, and an exponent of the perimeter in the low-temperature phase. In

the case of the three-dimensional Z2 gauge model[11, 51], see Example 6, the correspond-

ing correlator is a product of plaquette operators covering certain surface. The correla-

tion function (59) is a natural generalization to non-local Ising models, with the minimum

weight dm ≡ minγ wgt(m + γG̃) of m corresponding to the area, and the binary weight

of the syndrome sm̃ corresponding to the perimeter. Indeed, taking e = c = 0, at high

temperatures, independent bond variables Rb fluctuate independently, and one can write

Qm
0 (0;β) = 〈

∏
Rmbb 〉 ∝ βdm , which corresponds to the area law. The same quantity at low

temperatures can be evaluated in leading order by substituting average spin Sb → 〈Sb〉 ∼M ,

with the result Qm
0 (0;β) ∝Mwgt sm̃ , the perimeter law. We expect such a behavior to persist

in a finite range of temperatures below the transition from the ordered phase, at least in the

case of LDPC codes.

However, in general there is no guarantee that the spin model (37) has a unique transition,

and the functional form of the spin correlation function (59) with generic m cannot be easily

found at intermediate temperatures. By this reason, it remains an open question whether the

scaling of the analog of the Wilson loop can be used to distinguish between specific disordered

phases.

Indicator correlation functions. Consider the correlation function (60) for m such that

the corresponding syndrome is zero, sm̃ = 0. Then the spin products in each term of the

expansion disappear, and Qm
c (e;β) = 1 for any c. The corresponding m are just the dual

codewords b̃. In general, for a pair of codewords b, c, the scalar product c · b̃ = 0 iff the

corresponding logical operators commute, see Sec. 3. For each codeword c 6' 0 there is at

least one codeword c′ such that c · c̃′ = 1, and the 2k scalar products c · b̃ with the basis

codewords b are sufficient to recover the equivalence class of c.

We further note that in the defect-free phase, for any likely disorder e, Ztot(se;β) is

dominated by the term with c = 0, thus at large n the average [Qb̃
tot(se;β)] = 1 for any

codeword b. Similarly, in a fixed-defect phase, there is only one dominant term Zc(e;β), and

[Qb̃
tot(se;β)] = ±1; the patterns of signs for different b can be used to find out which of the

codewords c dominates the partition function.

5.5 Bound on the location of the defect-free phase

In order to prove the Theorem 4, we first need to extend identities of Nishimori’s gauge theory

of spin glasses[12, 52, 10] to the averages of the spin correlation functions (58). We prove the

following

Lemma 4 The disorder average of the spin correlation function (58) for any m satisfies

[Qm
tot(e;β)] = [Qm

tot(e;β)Qm
tot(e;βp)].
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Proof. Follows exactly the proof in the usual case[12, 52, 10], if we observe∑
α

P0(e + αG̃∗) = 2Nr−Ng+N∗gZtot(se;βp),

where Nr is the number of rows of the matrix G. �.

Proof. [Proof of Theorem 4] To shorten the notations, denote the correlation function in

Lemma 4 as A ≡ Qm
tot(e;β) and B the same correlation function at the Nishimori temperature,

β = βp. Lemma 4 gives

[A] = [AB], [B] = [B2]. (61)

Now, for any real-valued t, the inequality

0 ≤ [(A− tB)2] = [A2] + t2[B2]− 2t[AB] (62)

must be valid. The corresponding discriminant must be non-positive, thus [AB]2 ≤ [A2][B2].

Using the identities (61), we obtain [A]2 ≤ [A2][B] ≤ [B] = [B2], which is equivalent to

[Qm
tot(e;β)]2 ≤ [Qm

tot(e;βp)]. (63)

A different derivation of this inequality can be found in Ref. [53]. If we sum both sides of

Eq. (63) over all dual codewords m = c̃, using the expansion (60), we obtain∑
c

[Qm=c̃
tot (e;β)]2 ≤ 22k

[
Z0(e;βp)

Ztot(se;βp)

]
. (64)

The r.h.s. equals the average probability of successful decoding times 22k; for large n it equals

22k below the decoding transition, p < pc, and it is smaller than 22k above the decoding

transition. On the other hand, we saw that in the defect-free phase, at large n, all correlation

functions [Qm̃
tot(e;β)] = 1. According to Eq. (64), this is only possible for p < pc. �.

This implies that the phase boundary of the defect-free phase (perfectly decodable) below

the Nishimori line is either vertical or reentrant as a function of temperature. Recent numerical

studies suggest that the second option is true for the random bond Ising model[54].

6 Conclusions

In this work we considered spin glass models related to the decoding transition in stabilizer

error correcting codes. Generally, these are non-local models with multi-spin couplings, with

exact Wegner-type self-duality at zero disorder, but no local order parameter and no S → −S
symmetry or other sources of ground state degeneracy. Nevertheless, we show that for models

corresponding to code families with maximum-likelihood decoding (ML) transition at a finite

bit error probability pc, there is a region of an ordered (defect-free, or decodable) phase which

must be limited to p ≤ pc, and a line of non-trivial phase transitions.

The models support what we call post-topological extended defects which generalize the

notion of domain walls to non-local spin models. For a quantum code that encodes k qubits,

there are 22k − 1 different types of extended defects. A disordered phase is associated with

proliferation of at least one of such defects. In an ordered phase, the free energy of each defect
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must diverge at large n. Moreover, for a code family with finite rate k/n, the average defect

tension, an analog of domain wall line tension, must exceed a finite threshold (Theorem 3).

The original decoding problem corresponds to the Nishimori line at the phase diagram of

the disordered spin model, with the maximum-likelihood (ML) decoding transition located

exactly at the multicritical point of the spin model. The ML decoding threshold is the

maximum possible threshold for any decoder. Thus, exploring this connection with statistical

mechanics of spin glasses, one can compare codes irrespectively of the decoder efficiency, and

get an absolute measure of performance for any given, presumably suboptimal, decoder.

While all of our results are applicable to any family of stabilizer codes, the mapping to a

spin model is only practically useful in the case of quantum LDPC codes where each qubit

is involved in a limited number of stabilizer generators. The corresponding spin models have

interaction terms coupling limited number of spins.

There are a number of open question in relation to the models we studied. In particular,

is there some sort of universality for transitions with nonlocal spin couplings? If yes, what

determines the universality class, and is there an analog of the hyperscaling relation?
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