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ABSTRACT OF THE DISSERTATION

A Finite Dimensional Approximation to Pinned Wiener Measure on
Symmetric Spaces

by

Zhehua Li

Doctor of Philosophy in Mathematics

University of California, San Diego, 2016

Professor Bruce K. Driver, Chair

Let M be a Riemannian manifold, o ∈M be a fixed base point, Wo (M) be

the space of continuous paths from [0, 1] to M starting at o ∈M, and let νx denote

Wiener measure on Wo (M) conditioned to end at x ∈M. The goal of this thesis is

to give a rigorous interpretation of the informal path integral expression for νx;

dνx (σ) “ = ”δx (σ (1))
1

Z
e−

1
2
E(σ)Dσ , σ ∈ Wo (M) .

In this expression E (σ) is the “energy” of the path σ, δx is the δ – function based

x



at x, Dσ is interpreted as an infinite dimensional volume “measure” and Z is

a certain “normalization” constant. We will interpret the above path integral

expression as a limit of measures, ν1
P,x, indexed by partitions, P of [0, 1]. The

measures ν1
P,x are constructed by restricting the above path integral expression to

the finite dimensional manifolds, HP,x (M) , of piecewise geodesics in Wo (M) which

are allowed to have jumps in their derivatives at the partition points and end at x.

The informal volume measure, Dσ, is then taken to be a certain Riemannian volume

measure on HP,x (M) . When M is a symmetric space of non–compact type, we

show how to naturally interpret the pinning condition, i.e. the δ – function term, in

such a way that ν1
P,x, are in fact well defined finite measures on HP,x (M) . The main

theorem of the this thesis then asserts that ν1
P,x → νx (in a weak sense) as the mesh

size of P tends to zero. Along the way we develop a number of integration–by–parts

arguments for the approximate measures, ν1
P,x, which are analogous to those known

for the measures, νx.

xi



Chapter 1

Overview

Throughout this dissertation, we fix
(
Md, g,∇, o

)
to be a pointed com-

plete Riemannian manifold of dimension d with Riemannian metric g, Levi-Civita

covariant derivative (∇), and base point o ∈M . We further let

Wo (M) := {σ ∈ C ([0, 1] 7→M) | σ (0) = o}

be the Wiener space on M and let ν be the Wiener measure on Wo (M)—i.e.

the law of the M–valued Brownian motion which starts at o ∈M.

Richard Feynman, in his groundbreaking 1942 dissertation, offered a path

integral representation of the quantum particle state based on the principle of least

action. In quantum physics, the state of a quantum particle is described by a wave

function φ which satisfies the Schrödinger equation,

i
∂

∂t
φ = Hφ

where H = −1
2
∆g + V is the Schrödinger operator, ∆g is the Laplace-Beltrami

operator on (M, g, o), V : M → R is an external potential and i is the imaginary unit.

For our purpose, a slight modification is considered: after an analytic continuation

1
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(roughly change t→ it), the Schrödinger’s equation becomes the heat equation;

∂

∂t
φ = −Hφ , φ (x, 0) = f (x) . (1.1)

Let e−tH be the solution operator to (1.1), meaning e−tHf solves heat equation

(1.1) when such a solution exists. Under modest regularity conditions, this operator

admits an integrable kernel pHt (·, ·). In the physics literature one frequently finds

Feynman type informal identities of the form,

pH1 (o, x) = “
1

Z

∫
Wo(M)

δx (σ (1)) e−
∫ 1
0 [ 1

2
|σ̇(τ)|2+V (σ(τ))]dτDσ” (1.2)

and (
e−Hf

)
(o) = “

1

Z

∫
Wo(M)

f (σ (1)) e−
∫ 1
0 [ 1

2
|σ̇(τ)|2+V (σ(τ))]dτDσ” (1.3)

Variants of these informal path integrals are often used as the basis for “defining” and

making computations in quantum-field theories. From a mathematical perspective,

making sense of such path integrals is thought to be a necessary step to developing

a rigorous definition of interacting quantum field theories, (see for example; Glimm

and Jaffe [17], Barry Simon [31], the Clay Mathematics Institute’s Millennium

problem involving Yang-Mills and Mass Gap). In general, path integrals like those

appearing in (1.2) suffer from at least five distinct flaws;

1. The normalizing constant Z should typically be interpreted as either 0 or ∞

depending on the context.

2. The energy function

E (σ) :=
1

2

∫ 1

0

|σ̇ (τ)|2 dτ

appearing in the exponent in (1.2) requires σ to be appropriately differentiable;

this is at odds with the fact that sample paths of Wiener measure ν are

almost surely nowhere differentiable.
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3. There is no Lebesgue measure Dσ on infinite dimensional path spaces.

4. δx is a distribution so pointwise evaluation does not make sense.

5. It is generally not permissible to multiply a distribution δx with a measure

1
Z

exp
(
−1

2

∫ 1

0
|σ̇ (τ)|2 dτ

)
Dσ.

Various attempts to use path integrals to rigorously construct solutions to the

Schrödinger (heat) equation have been made, out of which we highlight two routes.

One is to approximate the path integral through piecewise “linear” paths or

polygonal paths, which evolves as a finite dimensional approximation scheme that

will be discussed more in Section 1.1. Another route, pioneered by Kac, is the

realization of taking Wiener measure as the framework of integration over path

spaces. Roughly speaking, when V = 0, Kac suggests the formal identities;

“
1

Z
e−

1
2

∫ 1
0 |σ̇(τ)|2dτDσ” := dν (σ) (1.4)

and

“

∫
Wo(M)

δx (σ (1))
1

Z
e−

1
2

∫ 1
0 |σ̇(τ)|2dτDσ” := p1 (o, x) (1.5)

where pt (x, y) is the heat kernel on M . For example, if M = R, the heat kernel is

given by

pt (0, x) =
1√
2πt

e
−x2

2t ,

which is the well known density function of a normal random variable with mean 0

and variance t. In general, if the potential V is sufficiently regular, one can prove

rigorously the following results;

pH (o, x) = p1 (o, x)

∫
Wo(M)

e−
∫ 1
0 V (Σs)dsdνx
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and

e−Hf (o) =

∫
M

[
p1 (o, x) f (x)

∫
Wo(M)

e−
∫ 1
0 V (Σs)dsdνx

]
dx

where Σs : σ 3 Wo (M) → σ (s) ∈ M is the coordinate function. The above

expressions are typically refered to as Feynman–Kac formulae. Interested readers

may refer to [29] and references therein for a thorough summary of this field in

Euclidean space with a flavor of rigorous quantum field theory and may refer to [4]

for a survey of results in general Riemannian manifolds.

1.1 Finite Dimensional Approximation Scheme

for Path Integrals

The central idea behind finite dimensional approximation scheme is to define

a path integral as a limit of the same integrands restricted to “natural” approximate

path spaces, for example, piecewise linear paths, broken lines, polygonal paths and so

on. The ill–defined expression under these finite dimensional approximations usually

becomes well–defined or has better interpretations, see ( [16], [23]). For example,

when M = Rd, it is known that Wiener measure on W
(
Rd
)

may be approximated

by Gaussian measures on piecewise linear path spaces. More specifically, Eq. (1.4)

restricted to a finite dimensional subspace of piecewise linear paths based on a

partition of [0, 1] has a natural interpretation as Gaussian probability measure

resulting from the canonical isometry between the piecewise linear path space and

Rdn, where n is the number of partition points. By combining Wiener’s theorem on

the existence of Wiener measure with the dominated convergence theorem, one can

see that these Gaussian measures converge weakly to ν as the mesh of partition

tends to zero, (see for example [13, Proposition 6.17] for details). An analogous

theory on general manifolds was also developed, see for example [30], Atiyah [3],

Bismut [5], Andersson and Driver [2] and references therein. In [2], followed by [28]
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and [27], the finite dimensional approximation problem is viewed in its full geometric

form by restricting the expression in Eq. (1.4) to finite dimensional sub-manifolds

of piecewise geodesic paths on M. Unlike the flat case (M = Rd) where the choice

of translation invariant Riemannian metric on path spaces is irrelevant, various

Riemannian metrics on approximate path spaces are explored. Based on these

metrics, different approximate measures are constructed which lead to different

limiting measures on Wo (M), see [2], [27], and [28]. In this dissertation we adopt a

so–called G1
P metric on the piecewise geodesic space.

In the remainder of this section, we briefly summarize some results in [2] to

give reader a better understanding of how the finite dimensional approximation

scheme goes as well as establishing some necessary notations used in this dissertation.

Definition 1.1 (Cameron-Martin space on (M, o)) Let

H (M) :=

{
σ ∈ C ([0, 1] 7→M) : σ (0) = o , σ is a.c. and

∫ 1

0

|σ′ (s)|2 ds <∞
}

be the Cameron-Martin space on (M, o). (Here a.c. means absolutely continu-

ous.)

Notation 1.2 Let Γ (TM) denote the differentiable sections of TM and Γσ (TM)

be the differentiable sections of TM along σ ∈ H (M).

The space, H (M), is an infinite dimensional Hilbert manifold which is a central

object in problems related to the calculus of variation on M . Klingenberg [24]

contains a good exposition of the manifold of paths. In particular, Theorem

1.2.9 in [24] presents its differentiable structure in terms of atlases. We will be

interested in certain Riemannian metrics on H (M) and on certain finite dimensional

submanifolds.
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Definition 1.3 For any σ ∈ H (M) and X, Y ∈ Γa.c.σ (TM),

G1 (X, Y ) =

∫ 1

0

〈
∇X
ds

(s) ,
∇Y
ds

(s)

〉
g

ds

where Γa.c.σ (TM) is the set of absolutely continuous vector fields along σ with finite

energy, i.e.
∫ 1

0

〈∇X
ds

(s) , ∇X
ds

(s)
〉
g
ds <∞.

Remark 1.4 To see that G1 is a metric on H (M), we identify the tangent space

TσH (M) with Γa.c.σ (TM). To motivate this identification, consider a differentiable

one-parameter family of curves σt in H (M) such that σ0 = σ. By definition of

tangent vector, d
dt
|0 σt (s) should be viewed as a tangent vector at σ. This is actually

the case, for detailed proof, see Theorem 1.3.1 in [24].

Definition 1.5 (Piecewise geodesic space) Given a partition

P := {0 = s0 < · · · < sn = 1} of [0, 1] ,

define:

HP (M) :=
{
σ ∈ H (M) ∩ C2 ([0, 1] \ P) : ∇σ′ (s) /ds = 0 for s /∈ P

}
. (1.6)

The piecewise geodesic space HP (M) is a finite dimensional embedded submanifold

of H (M). As for its tangent space, following the argument of Theorem 1.3.1

in [24], for any σ ∈ HP (M), the tangent space TσHP (M) may be identified with

vector-fields along σ of the form X (s) ∈ Tσ(s)M where s→ X (s) is piecewise C1

and satisfies Jacobi equation for s /∈ P , i.e.

∇2X

ds2
(s) = R (σ̇ (s) , X (s)) σ̇ (s) ,

where R is the curvature tensor. (See Theorem 2.39 below for a more detailed
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description of THP (M)). After specifying the tangent space of HP (M), we can

define the G1
P metric as follows.

Definition 1.6 For any σ ∈ HP (M) and X, Y ∈ TσHP (M) , let

G1
P 〈X, Y 〉 :=

n∑
j=1

〈
∇X
ds

(sj−1+) ,
∇Y
ds

(sj−1+)

〉
g

∆j (1.7)

where ∆j = sj − sj−1 and ∇Y
ds

(sj−1+) = lims↓sj−1

∇Y
ds

(s).

Endowed with the Riemannian metric G1
P , HP (M) becomes a finite dimen-

sional Riemannian manifold and the left hand side of (1.4) is now well–defined on

HP (M) if Dσ is interpreted as the volume measure induced from this Riemannian

metric. This motivates the following approximate measure definition.

Definition 1.7 (Approximate measure on HP (M)) Let ν1
P be the probability

measure on HP (M) defined by;

dν1
P (σ) =

1

Z1
P
e−

1
2

∫ 1
0 〈σ
′(s),σ′(s)〉dsdvolG1

P
(σ) , (1.8)

where dvolG1
P

is the volume measure on HP (M) induced from the metric G1
P and

Z1
P is the normalization constant.

We now summarize the main theorem in Andersson and Driver [2].

Theorem 1.8 (Andersson-Driver, Theorem 1.8. [2]) Suppose f : Wo (M)→

R is bounded and continuous, then

lim
|P|→0

∫
HP (M)

f (σ) dν1
P (σ) =

∫
Wo(M)

f (σ) dν (σ) .

1.2 Main Theorems

In this section we state the main results of this dissertation while avoiding

many technical details.
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Definition 1.9 (Pinned piecewise geodesic space) For any x ∈M ,

HP,x (M) := {σ ∈ HP (M) : σ (1) = x} .

We prove below in Proposition 3.11 that when M has non–positive sectional

curvature, HP,x (M) is an embedded submanifold of HP (M).

Theorem 1.10 If M is a Hadamard manifold with bounded sectional curvature

and P = {k/n}nk=0 are equally-spaced partitions, then there exists a finite measure

ν1
P,x supported on HP,x (M) , such that for any bounded continuous function f on

HP (M),

lim
m→∞

∫
HP (M)

δ(m)
x (σ (1)) f (σ) dν1

P (σ) =

∫
HP (M)

f (σ) dν1
P,x (σ) .

where δ
(m)
x is an approximating sequence of δx in C∞0 (M).

Recall that a Hadamard manifold is a simply connected complete Riemannian

manifold with non-positive sectional curvature.

Remark 1.11 The formula for dν1
P,x is explicitly given, see Definition 3.13.

The next theorem asserts, under additional geometric restrictions, that the

measure ν1
P,x we obtained from Theorem 1.10 serves as a good approximation to

pinned Wiener measure νx.

Theorem 1.12 If M is a symmetric space of non–compact type, i.e. it is a

Hadamard manifold with parallel curvature tensor, then for any restricted cylinder

function f ∈ RFC1
b , see Definition 2.31,

lim
|P|→0

∫
HP (M)

f (σ) dν1
P,x (σ) =

∫
Wo(M)

f (σ) dνx (σ)

where νx is pinned Wiener measure, see Theorem 2.17 below.
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1.3 Structure of the Dissertation

For the guidance to the reader, we give a brief summary of the contents of

this dissertation.

In Chapter 2 we set up some notations and preliminaries in probability and

geometry. In particular we present the Eells-Elworthy-Malliavin construction of

Brownian motion on manifolds.

In Chapter 3 we define explicitly the pinned approximate meausre ν1
P,x and

study its properties. In Theorem 3.15, we prove that ν1
P,x is a finite measure and

that x→
∫
HP,x(M)

fdν1
P,x is a continuous function on M provided f is bounded and

continuous. This property is the key ingredient in proving Theorem 1.10, which is

given in Chapter 3.

In Chapter 4 we develop the so–called orthogonal lift of a vector field X on

M to a vector field X̃ (·) on Wo (M). We define X̃ (·) first on H (M) by minimizing

a norm of X̃ (·) which is induced from a “damped”metric related to the Ricci

curvature of M (see Definition 4.6). This lift is then “stochastically”extended to

Wo (M). Some tools from Malliavin calculus are reviewed as needed in order to

define X̃ (·) as an anticipating differential opearator on Wo (M). We then establish

integration–by–parts formula for X̃ (·).

In Chapter 5 we focus on the finite dimensional manifold HP (M). In

Section 5.1 a parametrization of the tangent space of HP (M) is given. Using this

parametrization and some linear algebra we obtain a formula for the orthogonal lift

X̃P of X ∈ Γ (TM) relative to the norm induced from the G1
P metrc on HP (M).

In Chapter 6, (using the development maps introduced in Chapter 2), we

view X̃P as defined on all of Wo (M) and show that for any bounded cylinder

function f (also introduced in Chapter 2), X̃Pf → X̃f in L∞− (Wo (M)) and more

challengingly, we show X̃ tr,νf − X̃ tr,ν1
P

P f → 0, where X̃ tr,ν is the adjoint of X̃ with

respect to ν and X̃
tr,ν1
P

P is the adjoint of X̃P with respect to ν1
P .
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In Chapter 7, we combine all the tools that are developed from previous

chapters to prove the main Theorem 1.12 of this dissertation.



Chapter 2

Background and Notation

For the remainder of the dissertation, let u0 : Rd → ToM be a fixed linear

isometry which we add to the standard setup (M, g, o, u0,∇). Let Γ (TM) be

differentiable sections of the tangent bundle TM . We will first introduce the

orthonormal frame bundle O (M) which is crucial in the Eells-Elworthy-Malliavin

construction of Brownian motion. A connection is then defined on O (M). The

reader may refer to Appendix A.2 for a more detailed exposition of principal bundles

(O (M) is a special case of a principal bundle) and connections on them.

Definition 2.1 (Orthonormal Frame Bundle (O (M) , π)) For any x ∈ M ,

denote by O (M)x the space of orthonormal frames on TxM , i.e. the space of

linear isometries from Rd to TxM . Denote O (M) := ∪x∈MO (M)x and let π :

O (M) → M be the (fiber) projection map, i.e. for each u ∈ O (M)x, π (u) = x.

The pair (O (M) , π) is the orthonormal frame bundle over M whose structure group

is the orthogonal group O (d)–the d× d real orthogonal matrices.

Definition 2.2 (Connection on O (M)) A connection on O (M) is uniquely

specified by the so (d)–valued connection form ω∇ on O (M) determined by ∇;

11
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for any u ∈ O (M) and X ∈ TuO (M),

ω∇u (X) := u−1∇u (s)

ds
|s=0

where u (·) is a differentiable curve on O (M) such that u (0) = u and du(s)
ds
|s=0= X.

For any ξ ∈ Rd, ∇u(s)
ds
|s=0 ξ := ∇u(s)ξ

ds
|s=0 is the covariant derivative of u (·) ξ along

π (u (·)) at π (u).

ω∇ determines a decomposition of TO (M). We will call the kernel of ω∇

the horizontal vector space (denoted by HTO (M)) and call the compliment space

the vertical vector space (denoted by V TO (M)).

Definition 2.3 For any a ∈ Rd, define the horizontal lift Ba ∈ Γ (TO (M)) of a

in the following way: for any u ∈ O (M),

• ω∇u (Ba (u)) = 0

• π∗ (Ba (u)) = ua

Remark 2.4 By the rank-nullity theorem, it is easy to see that the above conditions

determine uniquely the horizontal lift.

Recall that we have defined the Cameron-Martin space on M :

H (M) :=

{
σ ∈ C ([0, 1] ,M) : σ (0) = o, σ is a.c. and

∫ 1

0

|σ′ (s)|2g ds <∞
}

Similarly we define H0

(
Rd
)

and Hu0 (O (M)) by changing the state spaces to be

Rd, O (M), reference points to be 0, u0 and using the usual metric for g on the

Euclidean spaces Rd, Rd×d.

Definition 2.5 (Horizontal lift of a path) For any σ ∈ H (M), a curve u :

[0, 1]→ O (M) is said to be a horizontal lift of σ if π ◦u = σ and the tangent vector

to u (s) always belongs to HTu(s)O (M) .
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Theorem 2.6 Given σ ∈ H (M) and u0 ∈ π−1 (σ (0)), there exists a unique

horizontal lift u (s) such that u (0) = u0. We denote u by ψ (σ), so ψ is the

horizontal lifting map.

Proof. The condition of existence of horizontal lift u of σ is equivalent to:

π (u (s)) = σ (s)

ω∇ (u′ (s)) = 0
for s ∈ [0, 1]

For any s ∈ [0, 1], there exists Uα in the open cover of M and ε > 0 such that σ (τ) ∈

Uα for τ ∈ (s− ε, s+ ε)∩ [0, 1] . Denote by ωα the restriction of the connection one-

form ω on π−1 (Uα) and φα ◦u (τ) = (σ (τ) , g (τ)) ∈ Uα×G, where φα : π−1 (Uα)→

Uα×G is the local trivialization. Then after identifying T (Uα ×G) with TUα×TG,

the condition ω∇ (u′ (τ)) = 0 is equivalent to Aσ(τ)σ
′ (τ) + Cσ(τ)g

′ (τ) = 0, where A

and C are two g−valued one forms on Uα and G. Since σ (τ) is fixed, this gives rise

to a linear system of ODEs of g (τ) , since the initial condition is specified, there is

a unique solution g (τ) and hence the unique u (τ) .

Notation 2.7 A path u ∈ Hu0 (O (M)) is said to be horizontal if the tangent vector

to u (s) always belongs to HTu(s)O (M). We denote the set of horizontal paths by

HHu0 (O (M)).

Fact 2.8 If u (σ, s) = ψ (σ) (s), then u (σ, s)u−1
0 is the parallel translation //s (σ)

along σ.

Remark 2.9 Theorem 2.6 asserts that ψ : H (M)→ HHu0 (O (M)) is a bijection.

It is in fact known to be a diffeomorphism with ψ−1 (u) = π ◦ u.
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Definition 2.10 (Development map) Given w ∈ H0

(
Rd
)
, the solution to the

ordinary differential equation

du (s) =
d∑
i=1

Bei (u (s)) dwi (s) , u (0) = u0

is defined to be the development of w to Hu0 (O (M)) and we will denote this

map w → u by η, i.e. η (w) = u. Here {ei}di=1 is the standard basis of Rd.

Remark 2.11 From Definition 2.10 and the smooth dependence of driving path in

ODE systems we can see that η is a diffeomorphism from H0

(
Rd
)

to HHu0 (O (M)).

Definition 2.12 (Rolling map) φ = π ◦ η : H0

(
Rd
)
→ H (M) is said to be the

rolling map to H (M).

Remark 2.13 From Remark 2.9 and 2.11 one can see that φ has a smooth inverse

φ−1, which can be defined explicitly as follows:

Definition 2.14 (Anti-rolling map) Given σ ∈ H (M) with u = ψ (σ) . The

anti-development of σ is a curve w ∈ H0

(
Rd
)

defined by:

wt =

∫ t

0

u−1
s σ′sds

It is not hard to see w = φ−1 (σ).

The Eells-Elworthy-Malliavin construction of Brownian motion depends in essence

on a stochastic version of the maps defined above. Since the development maps on

the smooth category are defined through ordinary differential equations, a natural

way to introduce probability is to replace ODEs by (Stratonovich) stochastic

diffrerential equations.

First we set up some measure theoretic notation and conventions. Suppose

that (Ω, {Gs} ,G, P ) is a filtered measurable space with a finite measure P . For any
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G—measurable function f , we use P (f) and EP [f ] (if P is a probability measure)

to denote the integral
∫

Ω
fdP . Given two filtered measurable spaces (Ω, {Gs} ,G, P )

and (Ω′, {G ′s} ,G ′, P ′) and a G/G ′ measurable map f : Ω→ Ω′, the law of f under

P is the push-forward measure f∗P (·) := P (f−1 (·)). We are mostly interested in

the path spaces Wo (M), W0

(
Rd
)

and Wu0 (O (M)), where the following notation

is being used.

Notation 2.15 If (Y, y) is a pointed manifold, let W (Y ) := C ([0, 1] , Y ) be the

space of all continuous paths in Y equipped with the uniform topology, Wy (Y ) :=

{w ∈ W (Y ) | w (0) = y} be the subset of continuous paths that start at y.

Definition 2.16 For any s ∈ [0, 1] let Σs : Wy (Y ) → Y be the coordinate

functions given by Σs (σ) = σ (s).

We will often view Σ as a map from Wy (Y ) to Wy (Y ) in the following way: for any

σ ∈ Wy (Y ) and s ∈ [0, 1], Σ (σ) (s) = Σs (σ). Let Fos be the σ−algebra generated

by {Στ : τ ≤ s}. We use Fo1 as the raw σ−algebra and {Fos }0≤s≤1 as the filtration

on Wy (Y ) . The next theorem defines the Wiener measure ν and pinned Wiener

measure νx on (Wy (Y ) ,Fo1 ) .

Theorem 2.17 Assume Y is a geometrically complete Riemannian manifold, then

there exist two finite measures ν and νx on (Wy (Y ) ,Fo1 ) which are uniquely de-

termined by their finite dimensional distributions as follows. For any partition

0 = s0 < s1 < · · · < sn−1 < sn = 1 of [0, 1] and bounded functions f : Y n → R;

ν (f (Σs1 , . . . ,Σsn)) =

∫
Y n
f (x1, . . . , xn) Πn

i=1p∆si (xi−1, xi) dx1 · · · dxn (2.1)

and

νx (f (Σs1 , . . . ,Σsn)) =

∫
Y n−1

f (x1, . . . , xn) Πn
i=1p∆si (xi−1, xi) dx1 · · · dxn−1 (2.2)
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where pt (·, ·) is the heat kernel on Y associated to the Riemannian metric, ∆i =

si − si−1, x0 ≡ y and xn ≡ x in (2.2).

Definition 2.18 (Brownian motion) A stochastic process X : (Ω,Gs, {G} , P )→

(Wy (Y ) , ν) is said to be a Brownian motion on Y if the law of X is ν i.e.

X∗P := P ◦X−1 = ν.

Remark 2.19 From Theorem 2.17 it is clear that the law of the adapted process

Σ : Wy (Y ) → Wy (Y ) is ν and Σ is a Brownian motion. We will call Σ the

canonical Brownian motion on Y .

Remark 2.20 Using Theorem 2.17, we can construct Wiener measure and pinnned

Wiener measure on W0

(
Rd
)
, Wo (M) and Wu0 (O (M)) respectively. In order to

avoid ambiguity from moving between W0

(
Rd
)

and Wo (M), we fix the symbol µ (µx)

as the Wiener (pinned Wiener) measure on W0

(
Rd
)

and reserve the symbol ν (νx)

as the Wiener (pinned Wiener) measure on Wo (M). Meanwhile we reserve Σ as

the canonical Brownian motion on M .

Theorem 2.21 (Horizontal Lift of Brownian Motion) If Σ is the canonical

Brownian motion on M , then there exists a unique (up to ν−equivalence) ũ ∈

Wu0 (O (M)) such that

π (ũs) = Σs. (2.3)

Proof. See Theorem 2.3.5 in [21]

Definition 2.22 (Stochastic Anti–rolling map) If Σ is the canonical Brown-

ian motion on M , the (stochastic) anti–rolling β of Σ is defined by,

δβs = ũ−1
s δΣs , β0 = 0 (2.4)

ũ and β defined above are linked through the (stochastic) development map.
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Definition 2.23 (Stochastic development map) Let ũ and β be as defined in

Theorem 2.21 and Definition 2.22, then ũ satisfies the following SDE driven by β,

δũs =
d∑
i=1

Bei (ũs) δβs , ũ (0) = u0

and ũ is said to be the development of β.

Fact 2.24 The following facts are frequently used in this dissertation. (The proof

can be found in Appendix A.)

• φ is a diffeomorphism from H0

(
Rd
)

to H (M) ,

• φ |HP(Rd) is a diffeomorphism from HP
(
Rd
)

to HP (M) ,

• β is a Brownian motion on
(
W0

(
Rd
)
, µ
)
.

From now on some notations are fixed for the conveniance of consistency.

Notation 2.25 For any σ ∈ H (M), u(·) (σ) ∈ Hu0 (O (M)) is its horizontal lift

and b(·) (σ) ∈ H0

(
Rd
)

is its anti-rolling. Recall that {Σs}0≤s≤1 is fixed to be the

canonical Brownian motion on (Wo (M) , ν). We also fix β (·) to be the anti-rolling

of Σ, (which is a Brownian motion on Rd) and ũ (·) to be the (stochastic) horizontal

lift of Σ.

Notation 2.26 Given a partition P, βP is the piecewise linear approximation to

the Brownian motion β on Rd given by:

βP (s) := β (si−1) +
∆iβ

∆i

(s− si−1) if s ∈ [si−1, si]

where ∆iβ = β (si)− β (si−1)and ∆i = si − si−1.

Notation 2.27 (Geometric Notation)
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• curvature tensor For any X, Y, Z ∈ Γ (TM) , define the (Riemann) curva-

ture tensor R : Γ (TM)× Γ (TM)→ Γ (End (TM)) to be:

R (X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

• sectional curvature For any p ∈M and Tp a two dimensional subspace of

TpM , the sectional curvature K (p, Tp) with respect to Tp is defined to be:

K (p, Tp) := 〈R (Xp, Yp)Yp, Xp〉g

where (Xp, Yp) is an orthonormal basis of K (p, Tp).

• For any σ ∈ H (M), define Ru(σ,s) (·, ·) · to be a map from Rd⊗Rd to End
(
Rd
)

given by;

Ru(σ,s) (a, b) · = u (σ, s)−1R (u (σ, s) a, u (σ, s) b)u (σ, s) ∀a, b ∈ Rd (2.5)

where R is the curvature tensor of M . Similarly define Rũ(σ,s) (·, ·) · to be a

random map (up to ν-equivalence) from Rd ⊗ Rd to Rd as follows:

Rũ(σ,s) (·, ·) · = ũ (σ, s)−1R (ũ (σ, s) ·, ũ (σ, s) ·) ũ (σ, s) (2.6)

• Ric (·) :=
∑d

i=1R (vi, ·) vi is the Ricci curvature tensor on M. Here {vi}di=1

is an orthonormal basis of proper tangent space. Using u (σ, s) or ũ (σ, s) to

pull back R, we can define Ricu(σ,s) and Ricũ(σ,s) to be maps (Random maps)

from Rd to Rd.

• For any p ∈ M , expp : TpM → M is the Riemannian exponential map, i.e.
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for any ξ ∈ domain of expp,

expp (ξ) = γ

(
|ξ| , ξ
|ξ|

)

where γ (t, v) is the unique geodesic of M with γ (0) = p and γ′ (0) = v

Remark 2.28 The existence of unique local geodesic γ (t, v) is a standard result

in differential geometry, see Proposition 2.17 in [8].

Remark 2.29 Sometimes in the dissertation we will suppress σ, sometimes even

s in u (σ, s) when there is no confusion.

Remark 2.30 In this dissertation the partition P is always equally spaced, so

|P| ≡ ∆i ≡ 1
n

for i = 1, ..., n.

We introduce two commonly used test function spaces on Wo (M).

Definition 2.31 f : Wo (M) 7→ R is a restricted cylinder function if there

exists a partition

P := {0 < s1 < · · · < sn ≤ 1}

of [0, 1] and a function F : Cm (Mn,R) such that

f = F (Σs1 ,Σs2 , . . . ,Σsn)

Denote this space by RFCm.

Definition 2.32 f : Wo (M) 7→ R is a cylinder function iff there exists a

partition

P := {0 < s1 < · · · < sn ≤ 1}

of [0, 1] and a function F ∈ Cm (O (M)n ,R) such that:

f = F (ũs1 , ũs2 , . . . , ũsn)
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Denote this space by FCm.

Notation 2.33 Denote

FC1
b :=

{
f := F (u) ∈ FC1, F and all its partial differentials F ′i are bounded

}
.

Notation 2.34 Denote

RFC1
b :=

{
f := F (σ) ∈ FC1, F and all its partial differentials F ′i are bounded

}
.

Remark 2.35 In Notation 2.34, for each i ∈ {1, . . . , n}, F ′i : TM → Rd, so F ′i is

bounded iff ‖F ′i‖g <∞.

Remark 2.36 In Notation 2.33, for each i ∈ {1, . . . , n}, F ′i : TO (M)→ Rd. F ′i

is bounded iff for any a ∈ Rd, A ∈ so (d),
∣∣A†Fi∣∣ ≤ C ‖A‖ < ∞ and |BaFi| ≤

C ‖a‖ <∞, where the vectors fields A† and Ba are defined in Definitions A.11 and

2.3.

Remark 2.37 Since π (ũs) = Σs and π : O (M) to M is smooth, RFCm ⊂ FCm

for each m ∈ N.

Definition 2.38 (Jacobi equation) For σ ∈ H (M), Y ∈ Γσ (TM), we say

Y (s) ∈ Tσ(s)M satisfies Jacobi equation if:

∇2

ds2
Y (s) = R(σ′ (s) , Y (s))σ′ (s) .

Further if the horizontal lift u (s) of σ is used, we let y (s) := u−1 (s)Y (s) . It then

follows that y (s) satisfies the pulled back Jacobi equation,

y′′ (s) = Ru(s) (b′ (s) , y (s)) b′ (s) , (2.7)
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where b′ (s) = u (s)−1 σ′ (s) . Once we have Jacobi equation, we can describe the

tangent space THP (M) of HP (M):

We formalize the tangent space of HP (M) mentioned in Definition 1.5.

Theorem 2.39 (Tangent space to HP (M)) For all σ ∈ HP (M),

TσHP (M) =
{
s→ u (s) J (s) | J ∈ C

(
[0, 1] ,Rd

)
, J ∈ HP,σ with J (0) = 0

}
.

(2.8)

where J ∈ HP,σ iff

J ′′ (s) = Ru(s) (b′ (si−1+) , J (s)) b′ (si−1+) for s ∈ [si−1, si) i = 1, ..., n.

Proof. See Theorem 1.3.1 in [24].

Notation 2.40 Given h (·) ∈ H0

(
Rd
)
, denote

Xh (σ, s) := u (σ, s)h (s) .

Notation 2.41 ({CP,i (σ, s)} ni=1 and {SP,i (σ, s)}ni=1) Let

P := {0 = s0 < s1 < · · · < sn = 1}

be a partition of [0, 1] , Ki := [si−1, si] and ∆i := si − si−1 for 1 ≤ i ≤ n, and say

that f (s) satisfies the i –Jacobi’s equation if

f ′′ (s) = Rus

(
u−1σ′ (si−1+) , f (s)

)
u−1σ′ (si−1+) for s ∈ Ki. (2.9)

where u−1σ′ (s) := u (σ, s)−1 σ′ (s) ∈ Rd.

We now let CP,i (σ, s) and SP,i (σ, s) ∈ End(Rd) denote the solution to Eq.
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(2.9) with initial conditions,

CP,i (si−1) = I, C ′P,i (si−1) = 0, SP,i (si−1) = 0 and S ′P,i (si−1) = I

and we further let

CP,i (σ) := CP,i (σ, si) and SP,i (σ) := SP,i (σ, si) .

Here we view CP,i (s) and SP,i (s) as maps from HP (M) to End(Rd).

Definition 2.42 Define for all i = 1, · · · , n,

fP,i (σ, s) =


0 s ∈ [0, si−1]

SP,i(σ,s)

∆i
s ∈ [si−1, si]

CP,j(σ,s)CP,j−1(σ)·····CP,i+1(σ)SP,i(σ)

∆i
s ∈ [sj−1, sj] for j = i+ 1, · · · , n

with the convention that SP,0 ≡ |P| I and fP,0 ≡ I.

Remark 2.43 SP,j (s), CP,j (s) may be expressed in terms of {fP,i}ni=0 by

SP,j (s) = ∆jfP,j (s)

CP,j (s) = fP,j−1 (s) f−1
P,j−1 (sj) .



Chapter 3

Approximate Pinned Measures

3.1 Representation of δ – function

Let X be a smooth manifold (for example, M as mentioned in the disser-

tation, Rd or open subset of the first two). We will denote the distribution on X

by D′ (X) and, compactly supported distribution by E ′ (X). For a matrix A, let

eig (A) is denote the set of eigenvalues of A. To each x ∈ X, let δx ∈ E ′ (X) be the

δ–function at x defined by

δx (f) = f (x) ∀f ∈ C∞0 (X) .

Lemma 3.1 (Representation of δ0 on flat space) There exist functions {gi}di=0

with g0 ∈ C∞0
(
Rd
)
, {gj}dj=1 ⊂ C∞

(
Rd/ {0}

)
with supports contained in a compact

subset K ⊂ Rd and satisfies

|gj (x)| ≤ c |x|1−d for j = 1, · · · , d, (3.1)

such that

δ0 = g0 +
d∑
j=1

∂gj
∂xj

in E ′
(
Rd
)
. (3.2)

23
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In more detail, for any f ∈ C∞0
(
Rd
)
,

f (0) =

∫
Rd

(
g0 +

d∑
j=1

∂gj
∂xj

)
fdx =

∫
Rd

(
g0f −

d∑
j=1

∂f

∂xj
gj

)
dx. (3.3)

This lemma can be derived from Lemma 10.10 in [32]. Here we provide another

proof using the fundamental solution to the Laplace’s equation.

Proof of Lemma 3.1. Define the Newtonian kernel Γ (x) on Rd (d > 2) :

Γ (x) =
|x|2−d

d (2− d)wd

where wd is the volume of unit ball on Rd. Then it is well-known Γ (x) is a

fundamental solution of Laplace’s equation, i.e. for any y ∈ Rd, denote by ∆ the

Laplacian on Rd:

∆Γ (· − y) = δy (·) in E ′
(
Rd
)
.

where δy is the delta function at y and the equality is interpreted in the distributional

sense. In particular if y = 0, we get:

∆Γ (·) = δ0 (·) .

If Z := ∇Γ ∈ C∞
(
Rd/ {0} → Rd

)
, then

|Z| =

∣∣∣∣∣x |x|−ddwd

∣∣∣∣∣ ≤ Cd |x|1−d

where Cd is a constant depending only on d and

∇ · Z = δ0 in E ′
(
Rd
)
.

In order to get compact support, let gj = φZj , where φ ∈ C∞0
(
Rd
)

such that φ ≡ 1
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on B (0, 1) and φ ≡ 0 on Rd/B (0, 2), B (x, r) is the ball on Rd centered at x with

radius r. Then we have

∇ · (φZ) = ∇φ · Z + φ∇ · Z in E ′
(
Rd
)
.

Since the support of δ0 is {0}, we get

δ0 = ∇ · Z = φ∇ · Z = ∇ · (φZ)−∇φ · Z,

where −∇φ · Z ∈ C∞0
(
Rd
)

and {φZi}di=1 ⊂ C∞
(
Rd/ {0}

)
with compact support

and |φZi| ≤ c |x|1−d for some c > 0.

Based on this representation we can get a representation of δp for any p ∈M.

Before we get to the representation of δp we state a smooth Urysohn lemma.

Lemma 3.2 (Smooth Urysohn Lemma) If M is a smooth manifold, then for

any two disjoint closed sets V1 and V2, there exists a function f ∈ C∞ (M, [0, 1])

such that f−1 ({0}) = V1 and f−1 ({1}) = V2.

This is a standard result in elementary topology, so the proof is skipped here.

Theorem 3.3 (Representation of δ – function on manifold) For any p ∈

M, there exist functions {gj}dj=0 ⊂ C∞ (M/ {p}) ∩ L
d
d−1 (M) with supports in

a compact subsets K of M and smooth vector fields {Xj}dj=1 ⊂ Γ∞ (TM) with

compact support such that

δp = g0 +
d∑
j=1

Xjgj in E ′ (M) . (3.4)

Proof. Pick a chart {U, x} near p ∈M such that x (p) = 0. Since x (U) = Rd, one
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can apply Lemma 3.1 on x (U) ' Rd and get:

δ0 = g̃0 −
d∑
j=1

∂

∂xj
g̃j

where δ0 is the delta mass on x (U) supported at the origin. So for any h ∈ C∞ (U)

h (p) = h ◦ x−1 (0)

=

∫
Rd

(
g̃0 −

d∑
j=1

∂

∂xj
g̃j

)
h ◦ x−1dλ

=

∫
Rd

(
g̃0 +

d∑
j=1

g̃j
∂

∂xj

)
h ◦ x−1dλ

where dλ is the Lebesque measure on Rd. Consider
{

g̃j√
det g
◦ x
}d
j=0

where g =

(gij)1≤i,j≤d is the metric matrix, i.e. gij =
〈

∂
∂xi
, ∂
∂xi

〉
g
. From Lemma 3.1 we know

that
g̃j√
det g
◦ x has compact support in U and therefore K := ∪dj=1supp

(
g̃j√
det g
◦ x
)

is compact in U. Using Lemma 3.2 we can construct a smooth function φ ∈

C∞ (M → [0, 1]) such that φ−1 ({0}) = M/U and φ−1 ({1}) = K. Define

ĝ0 = φ
g̃0√
det g

◦ x

and

ĝj = φ
g̃j√
det g

◦ x, Xj = φ ·
(
x−1
)
∗
∂

∂xj
for j = 1, . . . , d
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Then for any f ∈ C∞ (M) ,

∫
M

(
ĝ0 +

d∑
j=1

ĝjXj

)
fdvol

=

∫
U

(
ĝ0 +

d∑
j=1

ĝjXj

)
fdvol

=

∫
U

g̃0√
det g

◦ x · φfdvol

+
d∑
j=1

∫
U

φ2 g̃j√
det g

◦ x
((
x−1
)
∗
∂φf

∂xj
−
(
x−1
)
∗
∂φ

∂xj
f

)
dvol

Here dvol is the volume measure on M .

Since φ · (x−1)∗
∂φ
∂xj
≡ 0 and φ ≡ 1 on K, we have:

∫
M

(
ĝ0 +

d∑
j=1

ĝjXj

)
fdvol =

∫
U

(
g̃0√
det g

◦ x+
d∑
j=1

g̃j√
det g

◦ x
(
x−1
)
∗
∂

∂xj

)
fdvol

=

∫
Rd

(
g̃0√
det g

+
d∑
j=1

g̃j√
det g

∂

∂xj

)
f ◦ x−1

√
det gdλ

=

∫
Rd

(
g̃0 +

d∑
j=1

g̃j
∂

∂xj

)
f ◦ x−1dλ

= f ◦ x−1 (0)

= f (p)

Therefore, by the Divergence Theorem, we can write down δp in distributional sense

as

δp = g0 +
d∑
j=1

Xjgj

where

g0 = ĝ0 −
d∑
j=1

ĝj · divXj
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and for j = 1, . . . , n,

gj = −ĝj.

From the construction one can see thatXj ∈ Γ∞ (TM) and {gj}dj=0 ⊂ C∞ (M/ {p})∩

L
d
d−1 (M) with compact support.

Lemma 3.4 C∞0 (M) is dense in Lp (M) for any 1 ≤ p <∞.

Proof. Recall that simple functions on M are finite linear combinations of indicator

functions 1E where vol (E) < ∞. Since simple functions are dense in Lp (M) . It

suffices to show that C∞0 (M) is dense in the space of simple functions with respect

to Lp−norm. Given a simple function 1E,

∫
M

1Edvol = vol (E)

Since the volume measure is regular, there exists a compact set K and open set U

such that

K ⊂ E ⊂ U

and

vol (K) ≥ vol (U)− ε.

Now apply Lemma 3.2 we can find a cutoff function f ∈ C∞0 (M) such that

f−1 ({0}) = M/U and f−1 ({1}) = K. It follows that

‖f − 1E‖pLp(M) =

∫
M

|f − 1E|p dvol ≤ vol (U −K) ≤ ε,

which proves the denseness of C∞0 (M) in the space of simple functions and thus in

Lp (M) .

Remark 3.5 Using Lemma 3.4 and Theorem 3.3, for any gj, j = 1, · · · , d, we can
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find a sequence
{
g

(m)
j

}
m
⊂ C∞0 (M) such that

g
(m)
j → gj in L

d
d−1 (M)

In particular, since gj has compact support, we can make ∪msuppg(m)
j to be compact.

Corollary 3.6 Define

δ(m)
x := g

(m)
0 +

d∑
j=1

Xjg
(m)
j ∈ C∞0 (M) .

Then
{
δ

(m)
x

}
m

is an approximating sequence of delta mass δx, i.e.

δ(m)
x → δx in D′ (M) .

Proof. Using integration by parts, we have for any f ∈ C (M),

∫
M

fδ(m)
x dλ =

∫
M

(
g

(m)
0 +

d∑
j=1

Xjg
(m)
j

)
fdλ (3.5)

=

∫
M

(
g

(m)
0 f +

d∑
j=1

g
(m)
j X∗j f

)
dλ (3.6)

Since K := ∪msuppg(m)
j is compact, f ·1K and X∗j f ·1K ∈ L∞− (M), then 3.6 easily

follows by Holder’s inequality.

3.2 Definition of ν1
P ,x

In this section we will give the explicit definition of ν1
P,x proposed in Theorem

1.10.

Definition 3.7 (End point map) Define E1 : H (M)→M to be E1 (σ) = σ (1)

and let EP1 denote E1 |HP (M) .
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Recall from Definition 3.16 that

HP,x (M) := {σ ∈ HP (M) | σ (1) = x} =
(
EP1
)−1

({x}) .

In general, it is not guaranteed that EP1 is a submersion, which would guarantee

that HP,x (M) is an embedded submanifold of HP (M). The following is an easy,

yet illuminating, example showing what can go wrong:

Example 3.8 If M = S2 and P := {0, 1} with starting point being the North pole,

then dimHP (M) = 2. Consider

X (σ, s) := (0, π sin sπ, 0) ∈ TσHP (M)

where

σ (s) = (sin sπ, 0, cos sπ) .

An one parameter family realizing X (σ, s) would be

σt (s) = (sin sπ cos tπ, sin sπ sin tπ, cos sπ)

From which one can easily see that:

E1
P
∗σ (X) =

d

dt
|0EP1 (σt) =

d

dt
|0σt (1) = X (σ, 1) = 0.

So by Rank-Nullity theorem, E1
P
∗σ is not surjective.

The problem comes from the conjugate points on M . Two points p and q are

conjugate points along a geodesic σ if there exists non-zero Jacobi field (smooth

vector field along σ satisfying Jacobi equation) that vanishes at p and q. This

fact will allow the kernel of E1
P
∗ to be “overly large ”(more accurately dimension

exceeds (n− 1) d), so by Rank-nullity theorem, E1∗ can not be surjective. In this
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dissertation we consider manifolds with non–positive sectional curvature. These

manifolds do not have conjugate points. From the next proposition we will see that

EP1 is a submersion on these manifolds.

Notation 3.9 We construct a G1
P–orthonormal frame

{
Xhα,i : 1 ≤ α ≤ d, 1 ≤ i ≤ n

}
of HP (M) as follows,

hα,i ∈ HP,σ and h′α,i(sj+) =
δi−1,jeα√

∆j+1

for j = 0, ..., n− 1 (3.7)

where the definition of HP,σ can be found in Definition 2.8.

Remark 3.10 It is not hard to see using Proposition 5.1 that

hα,i (s) =
1√
n
fP,i (s) eα (3.8)

where {fP,i (s)} is given in Definition 2.42.

Proposition 3.11 If M is complete with non-positive sectional curvature, then

for any x ∈M , HP,x (M) := (EP1 )
−1

({x}) is an embedded submanifold of HP (M) .

Proof. It suffices to show EP1 is a submersion. Since M is complete, for any y ∈M ,

there exists a geodesic σ parametrized on [0, 1] and connecting o and y. So EP1 is

surjective. To show E1
P
∗ is surjective, we use a class of vector fields

{
Xhα,n

}d
α=1

in

Notation 3.9. Since

E1
P
∗
(
Xhα,n

)
= X

hα,n
1 =

√
nu (1)SP,neα

where u (·) = u (σ, ·) is the horizontal lift of σ ∈ HP (M). From Proposition B.2
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we know SP,n is invertible, therefore
{
EP1 ∗

(
Xhα,n

)}d
α=1

spans TEP1 (σ)M . So EP1 ∗ is

surjective.

Since HP,x (M) is an embedded submanifold of HP (M), we can restrict

the Riemannian metric G1
P on THP (M) in Eq. (1.7) to a Riemannian metric on

THP,x (M).

Definition 3.12 Assuming M has non-positive sectional curvature, for any x ∈M,

let G1
P,x be the restriction of G1

P to TσHP,x (M) ⊂ TσHP (M) . Further, let volG1
P,x

be the associated volume measure on HP,x (M) .

Based on the Volume measure volG1
P,x

on HP,x (M) , we can construct the

pinned approximate measure ν1
P,x :

Definition 3.13 Let ν1
P,x be the measure on HP,x (M) defined by

dν1
P,x (σ) =

1

JP (σ)

1

Z1
P
e
−E(σ)

2 dvolG1
P,x

(σ) (3.9)

where JP (σ) :=

√
det
(
EP1 ∗σE

P
1
tr
∗σ

)
and Z1

P := (2π)
dn
2 .

3.3 Continuous Dependence of ν1
P ,x on x

Recall that a Hadamard manifold is a simply connected complete manifold

with non–positive sectional curvature. Throughout this section we assume M is

a Hadamard manifold whose sectional curvature is bounded below by −N . The

following theorem illustrates that the measures, ν1
P,x, are finite and “continuously

varying”with respect to x.

Notation 3.14 We will denote by Cb(Y ) bounded continuous functions on a topo-

logical space Y .
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Theorem 3.15 For any x ∈ M , ν1
P,x is a finite measure. Morover, for any

f ∈ Cb (HP,x (M)), define

hP (x) :=

∫
HP,x(M)

f (σ) dν1
P,x (σ) . (3.10)

If the mesh size of |P| := 1
n

of the partition P is small enough, i.e. n ≥ 3dN , then

hP (x) ∈ C (M).

Before proving this theorem, we need to set up some notations and auxiliary results.

Notation 3.16 We fix n ∈ N and let si := i
n

and τ := 1− 1
n

= sn−1. We further

define K := HP ([0, τ ] ,M) be the space of piecewise geodesic paths, σ : [0, τ ]→M

such that σ (0) = o ∈M.

Lemma 3.17 For x, y ∈M , we can choose an unique element logx (y) ∈ TxM so

that

γy,x (t) := expx

(
(t− τ)

1

n
logx (y)

)
,

is the unique minimal-lengh-geodesic connecting x to y such that γy,x (τ) = x and

γy,x (1) = y.

Proof. Since M is a Hadamard manifold, by the Theorem of Hadamard (See

Theorem A.2 in Appendix A), expx : TxM → M is a diffeomorphism. Therefore

we can see that logx (y) = exp−1
x (y) is unique and it follows that the geodesic γy,x

is unique.

Definition 3.18 For any given y ∈ M, let ψy : K → HP,y (M) :=
(
EP1
)−1

({y})

be defined by

ψy (σ) := γy,σ(τ) ∗ σ

where (
γy,σ(τ) ∗ σ

)
(t) =

 σ (t) if 0 ≤ t ≤ τ

γy,σ(τ) (t) if τ ≤ t ≤ 1
.
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Notation 3.19 For any σ ∈ HP,y (M), let ξy,σ := u (σ, τ)−1 logσ(τ) (y) ∈ Rd and

also let G (σ, s) := (Cy (σ, s) , Sy (σ, s))t ∈ R2d×d be the fundamental solution to the

ODE:

G′ (σ, s) =

 0 Id×d

Aξy (σ, s) 0

G (σ, s)

where Aξy (σ, s) = Ru(σ,1−s) (ξy,σ, ·) ξy,σ and 0 ≤ s ≤ 1.

The next lemma characterizes the differential of ψy:

Lemma 3.20 Let σ ∈ K, recall from Theorem 2.39 and Notation 2.40 that

Xh (σ, ·) = u (σ, ·)h (σ, ·) ∈ TσK iff h (σ, ·) satisfies the piecewise Jacobi equation

as in (2.41). Then

ψy∗
(
Xh (σ, ·)

)
= X ĥ (ψy (σ) , ·) := u (ψy (σ) , ·) ĥ (ψy (σ) , ·)

where

ĥ (ψy (σ) , s) =

h (ψy (σ) , s) s ∈ [0, τ ]

Sy (ψy (σ) , 1− s)Sy
(
ψy (σ) , 1

n

)−1
h (σ, τ) s ∈ [τ, 1]

. (3.11)

Proof. From now on we will suppress the path argument ψy (σ) in ĥ. Suppose

that t→ σt ∈ K is an one-parameter family of curves in K such that σ0 = σ and

d
dt
|0σt = Xh (σ) . Then we have

ψy∗
(
Xh (σ)

)
=

d

dt
|0ψy (σt) =

d

dt
|0γy,σt(τ) ∗ σt.

If s ∈ [0, τ ] , then

d

dt
|0
(
γy,σt(τ) ∗ σt

)
(s) =

d

dt
|0σt (s) = Xh

s (σ) .
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While if s ∈ [τ, 1] we have

d

dt
|0
(
γy,σt(τ) ∗ σt

)
(s) =

d

dt
|0γy,σt(τ) (t) =: X ĥ

s (ψy (σ))

We know that X ĥ
s is determined by,

1. ĥ satisfies Jacobi’s equation,

2. ĥ (τ) = h (τ) and ĥ (1) = 0.

Denote ĥ (s) by g (1− s) for s ∈ [τ, 1], the above conditions are equivalent to g

being the solution to the following boundary value problem:
g′′ (s) = Aξy (s) g (s)

g (0) = 0

g
(

1
n

)
= h (τ)

.

Then we use Sy (·) to express the solution. Here we have used Proposition B.2 to

see that Sy (s) is invertible for s ∈
[
0, 1

n

]
, therefore

g (s) = Sy (s)Sy

(
1

n

)−1

h (τ) for s ∈ [0, τ ]

and thus

ĥ (s) = g (1− s) = Sy (1− s)Sy
(

1

n

)−1

h (τ) for s ∈ [τ, 1] .

Corollary 3.21 For any y ∈M , ψy is a diffeomorphism.

Proof. From Lemma 3.20 it is easy to see that the push forward (ψy)∗ of ψy is one

to one and thus an isomorphism since dim (K) = dim (HP,y (M)) . Therefore the
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inverse function theorem implies that ψy is a local diffeomorphism. Furthermore,

M being a Hadamard manifold implies that ψy is bijective, so ψy is actually a

diffeomorphism.

Remark 3.22 An orthonormal frame
{
Xhα,i : 1 ≤ α ≤ d, 1 ≤ i ≤ n− 1

}
of K can

be constructed similarly to Notation 3.9,

hα,i ∈ HP,σ and h′α,i(sj+) =
δi−1,jeα√

∆j+1

for j = 0, ..., n− 2.

In this chapter we will use the same notation for both these two sets of orthonormal

frames as the meaning should be clear from the context.

Definition 3.23 f : M → N is a differentiable map between two Riemannian

manifolds M,N . The Normal Jacobian of f is defined to be
√

det (f∗f tr∗ ).

We will use the orthonormal basis
{
Xhα,i : 1 ≤ α ≤ d, 1 ≤ i ≤ n− 1

}
of K to esti-

mate the Normal Jacobian JP of E1 in Lemma 3.24 and the “volume change ”Vx

(See precise definition in Lemma 3.26) brought by the diffeomorphism ψx in Lemma

3.26 and 3.27.

Lemma 3.24 If JP :=
√

detEP1 ∗ (EP1 ∗)
tr

is the Normal Jacobian of EP1 , then

JP (σ) =

√√√√det

(
1

n

n∑
i=1

fP,i (σ, 1) f trP,i (σ, 1)

)
∀σ ∈ HP (M) .

Proof. Using

EP1 ∗σX
h (σ) = Xh (σ, 1) ,

if v ∈ TEP1 (σ)M , then

〈(
EP1 ∗

)tr
v,Xh

〉
G1
P

=
〈
v, EP1 ∗X

h
〉
TE1(σ)M

=
〈
u (1)−1 v, h (1)

〉
Rd .
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Therefore, using the orthonormal frame of THP (M) given by

{
Xhα,i : 1 ≤ α ≤ d, 1 ≤ i ≤ n

}
,

we find

(
EP1 ∗

)tr
v =

∑
i,α

〈(
EP1 ∗

)tr
v,Xhα,i

〉
G1
P

Xhα,i =
∑
i,α

〈
u (1)−1 v, hα,i (1)

〉
Rd X

hα,i .

Let {eα}dα=1 be the standard basis of Rd, since u (1) is an isometry, {u (1) eα}dα=1 is

an O.N. basis of TEP1 (σ)M . Using

hk,i (1) =
1√
n
fP,i (1) ek for 1 ≤ k ≤ d,

we can compute:

det
(
EP1 ∗

(
EP1 ∗

)tr)
= det

{〈(
EP1 ∗

)tr
u (1) eα,

(
EP1 ∗

)tr
u (1) eβ

〉
TE1(σ)M

}
α,β

= det

{
n∑
i=1

d∑
γ=1

〈hγ,i (1) , eα〉 〈hγ,i (1) , eβ〉

}
α,β

= det

{
n∑
i=1

d∑
γ=1

1

n

〈
eγ, f

tr
P,i (1) eα

〉 〈
eγ, f

tr
P,i (1) eβ

〉}
α,β

= det

{
n∑
i=1

1

n

〈
f trP,i (1) eα, f

tr
P,i (1) eβ

〉}
α,β

= det

(
1

n

n∑
i=1

fP,i (1) f trP,i (1)

)
.

Using the expression of JP in Lemma 3.24, we can easily derive the following

estimate.

Corollary 3.25 Let JP be defined as above, then for any σ ∈ HP (M), JP (σ) ≥ 1.
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Proof. For any v ∈ Cd, using Proposition B.2, we have:〈
1

n

n∑
i=1

fP,i (σ, 1) f trP,i (σ, 1) v, v

〉
=

1

n

n∑
i=1

∥∥f trP,i (σ, 1) v
∥∥2

≥ 1

n

n∑
i=1

‖v‖2

= ‖v‖2 .

So by Min-max theorem, eig
(

1
n

∑n
i=1 fP,i (σ, 1) f trP,i (σ, 1)

)
⊂ [1,+∞) and therefore:

JP (σ) =

√√√√det

(
1

n

n∑
i=1

fP,i (σ, 1) f trP,i (σ, 1)

)
≥ 1.

Lemma 3.26 For any σ ∈ K, let Vx : K → R+ be the normal Jacobian of

ψx : K → HP,x (M), i.e. Vx :=
√

det
(
(ψx∗)

tr ψx∗
)
, then

Vx (σ) =
√

det
(
I + Lx (σ)FP (σ)Lx (σ)tr

)
∀σ ∈ K, (3.12)

where

Lx (σ) := Cx

(
σ,

1

n

)
Sx

(
σ,

1

n

)−1

and

FP (σ) :=
1

n2

n−2∑
i=0

fP,i (σ, τ) fP,i (σ, τ)tr

Proof. Using (3.11) and differentiating ĥ with respect to s, we get:

ĥ′ (σ, τ+) = −Cx
(
σ,

1

n

)
Sx

(
σ,

1

n

)−1

h (σ, τ) := −Lx (σ)h (σ, τ) (3.13)
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Also since from Proposition 5.1,

h (σ, τ) =
1

n

n−1∑
i=0

fP,i+1 (σ, τ)h′ (σ, si+) ,

so we have

ĥ′ (σ, τ+) = −Lx (σ)
1

n

n−1∑
i=0

fP,i+1 (σ, τ)h′ (σ, si+) . (3.14)

For any α, β ∈ {1, ..., d} and i, j ∈ {1, ..., n− 1}:

〈
ψx∗

(
Xhα,i (σ)

)
, ψx∗

(
Xhβ,j (σ)

)〉
Tψx(σ)HP,x(M)

(3.15)

=
1

n

n−2∑
k=0

〈
h′α,i (sk+) , h′β,j (sk+)

〉
+

1

n

〈
ĥ′α,i (τ+) , ĥ′β,j (τ+)

〉
(3.16)

= δ
(β,j)
(α,i) +

1

n

〈
Lx (σ)

1

n

fP,i (τ) eα√
1
n

, Lx (σ)
1

n

fP,j (τ) eβ√
1
n

〉
(3.17)

= δ
(β,j)
(α,i) +

〈
Lx (σ)

1

n
fP,i (τ) eα, Lx (σ)

1

n
fP,j (τ) eβ

〉
, (3.18)

where

δ
(β,j)
(α,i) =

1 α = β, i = j

0 otherwise.

It follows that the volume change

Vx (σ) =

√
det

(
I
(Rd)

n−1 + T̂x (σ)

)
(3.19)

where T̂x (σ) ∈ End
((

Rd
)n−1

)
is defined by

(
T̂x (σ)

)
d(i−1)+α,d(j−1)+β

=

〈
Lx (σ)

1

n
fP,i (σ, τ) eα, Lx (σ)

1

n
fP,j (σ, τ) eβ

〉
.
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If

Sσ =

 I
(Rd)

n−1

Ax (σ)

 ∈Mnd×(n−1)d

and

Ax (σ) =

(
1

n
Lx (σ) fP,0 (σ, τ) e1, · · · ,

1

n
Lx (σ) fP,n−2 (σ, τ) ed

)
∈Md×(n−1)d,

then

I
(Rd)

n−1 + T̂x (σ) = Strσ Sσ.

Apply Lemma D.1 we get:

det

(
I
(Rd)

n−1 + T̂x (σ)

)
= det

(
I(Rd) + Ax (σ)Ax (σ)tr

)
= det

(
I +

1

n2

n−2∑
i=0

d∑
α=1

LxfP,i (τ) eαe
tr
α fP,i (τ)tr Ltrx

)
= det

(
I + LxFPL

tr
x

)
where FP (σ) is as in Eq. (3.26).

Lemma 3.27 For any σ ∈ K,

Vx (σ) ≤
d∑

k=0

(
d

k

)
n
k
2 e

Nk
2
d2(σ(τ),x)Πn−2

j=0 e
kNd2(σ(sj),σ(sj+1)) (3.20)

Proof. From Lemma 3.26 and Appendix D, one can see, after suppressing σ,

det

(
I
(Rd)

n−1 + T̂x

)
= det

(
I + LxFPL

tr
x

)
= Πd

i=1 (1 + λi,x)

≤
(

1 + max
1≤i≤d

λi,x

)d
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where {λi,x} = eig (LxFPL
tr
x ).

Notice that

max
1≤i≤d

λi,x =
∥∥Lx (σ)FPLx (σ)tr

∥∥ ≤ ‖Lx (σ)‖2 ‖FP‖

≤ 1

n
‖Lx (σ)‖2 sup

0≤i≤n−2
‖fP,i (τ)‖2 .

Using Proposition B.4, we get:∥∥∥∥Cx(σ, 1

n

)∥∥∥∥ ≤ e
N
2
d2(σ(τ),x),

where for any x, y ∈M, d (x, y) is the geodesic distance between x and y, and∥∥∥∥S−1
x

(
σ,

1

n

)∥∥∥∥ ≤ n,

and so

‖Lx (σ)‖2 ≤ n2eNd
2(σ(τ),x)

and

max
1≤i≤d

λi,x ≤ neNd
2(σ(τ),x) sup

0≤i≤n−2
‖fP,i (σ, τ)‖2 .

Therefore

Vx (σ) =

(
1 + max

1≤i≤d
λi,x

) d
2

≤
(

1 + neNd
2(σ(τ),x) sup

0≤i≤n−2
‖fP,i (σ, τ)‖2

) d
2

≤
(

1 + n
1
2 e

N
2
d2(σ(τ),x) sup

0≤i≤n−2
‖fP,i (σ, τ)‖

)d
=

d∑
k=0

(
d

k

)
n
k
2 e

Nk
2
d2(σ(τ),x) sup

0≤i≤n−2
‖fP,i (σ, τ)‖k . (3.21)
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Applying Proposition B.4 to fP,i (σ, τ) shows

‖fP,i (τ)‖ ≤ ‖CP,n−1‖ · · · ‖CP,i+1‖
∥∥∥∥ Si∆i

∥∥∥∥
≤ e

1
2
Nd2(σ(sn−2),σ(sn−1)) · · · · · e

1
2
Nd2(σ(si−1),σ(si))

(
1 +

Nd2 (σ (si−1) , σ (si))

6

)
≤ Πn−2

j=i−1e
1
2
Nd2(σ(sj),σ(sj+1)) · e

Nd2(σ(si−1),σ(si))
6

≤ Πn−2
j=i−1e

Nd2(σ(sj),σ(sj+1))

≤ Πn−2
j=0 e

Nd2(σ(sj),σ(sj+1))

Taking supremum over i, we get:

sup
0≤i≤n−2

‖fP,i (σ, τ)‖ ≤ Πn−2
j=0 e

Nd2(σ(sj),σ(sj+1)). (3.22)

and (3.20) follows.

Definition 3.28 For any X, Y ∈ TK(the tangent bundle of K), define G0
P,τ , G1

P,τ

to be:

G0
P,τ (X, Y ) =

n−1∑
i=1

〈X (si) , Y (si)〉∆i

and

G1
P,τ (X, Y ) =

n−1∑
i=1

〈
∇X
ds

(si−1) ,
∇Y
ds

(si−1)

〉
∆i.

Lemma 3.29 G0
P,τ is a metric on K.

Proof. The only non–trivial part is to check G1
P,τ (X,X) = 0 =⇒ X = 0. Since

M has non–positive curvature, there are no conjugate points. For each 0 ≤ i ≤ n−1,

there is a unique Jacobi field X connecting σ (si) and σ (si+1) with specified X (si)

and ∇Y
ds

(si). G
1
P,τ (X,X) = 0 =⇒ ∇Y

ds
(si) = 0 for any 1 ≤ i ≤ n. Notice that

X (0) = 0, so by the uniqueness of Jacobi field, X ≡ 0.

Remark 3.30 Since M has non-positive curvatures, G0
P,τ is indeed a metric on K

since the only one-paramater family of geodesics with fixed end points is a constant
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family consisting of the unique geodesic connecting the starting point and the ending

point.

Based on the metric G0
P,τ and G1

P,τ , we define measures ν0
P,τ and ν1

P,τ on K as

follows.

Definition 3.31 Let

dν0
P,τ :=

n(n−1)d

(2π)(n−1) d
2

e−
1
2
EdvolG0

P,τ

and

dν1
P,τ =

1

(2π)(n−1) d
2

e−
1
2
EdvolG1

P,τ

Lemma 3.32 If

ρP (σ) := Πn−1
i=1 det

(
SP,i (σ)

n

)
∀σ ∈ K,

then dν0
P,τ = ρPdν

1
P,τ and moreover, ρP (σ) ≥ 1 ∀σ ∈ K.

Proof. The argument to show ρP is the density of ν0
P,τ with respect to ν1

P,τ is

almost exactly the same as Theorem 5.9 in [2] with a slight change of ending point

from 1 to τ . Here we focus on the lower bound estimate of ρP (σ) . Since for any

v ∈ Cd, ∥∥∥∥SP,in v

∥∥∥∥ ≥ ‖v‖ ,
we know from propsition B.2 that for any λ ∈ eig

(
SP,i
n

)
,

|λ| ≥ 1

And from which we know:

ρP (σ) = Πn−1
i=1 det

(
SP,i (σ)

n

)
≥ 1.
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Proof of Theorem 3.15. Since ψx is a diffeomorphism, apply Theorem C.1 and

we have:

hP (x) =

∫
HP,x(M)

1

Z1
P

f

JP
(σ) e−

1
2
E(σ)dvolG1

P,x
(σ) (3.23)

=

∫
K

1

Z1
P

f

JP
◦ ψx (σ) e−

1
2
E◦ψx(σ)Vx (σ) dvolG1

P,τ
(σ) (3.24)

Notice that

1

Z1
P
e−

1
2
E◦ψx(σ) =

1

(2π)
d
2

1

(2π)(n−1) d
2

e−
1
2
E(σ)e−

n
2
d2(σ(τ),x), (3.25)

So

hP (x) =
1

(2π)
d
2

∫
K

f

JP
◦ ψx (σ) e−

n
2
d2(σ(τ),x)Vx (σ) dνG1

P,τ
(σ) (3.26)

Combine (3.21), (3.22) we know that:

e−
n
2
d2(σ(τ),x)Vx (σ) ≤

d∑
k=0

(
d

k

)
n
k
2 e

Nk−n
2

d2(σ(τ),x)Πn−2
j=0 e

Nd2(σ(sj),σ(sj+1)) (3.27)

So

sup
x∈M

e−
n
2
d2(σ(τ),x)Vx (σ) ≤ sup

x∈M
e−

n−Nk
2

d2(σ(τ),x)

d∑
k=0

(
d

k

)
n
k
2 Πn−2

j=0 e
Nkd2(σ(sj),σ(sj+1))

(3.28)

When n is large enough, n−Nk > 0. Therefore e−
n−Nk

2
d2(σ(τ),x) ≤ 1 and it suffices

to show

Eν
G1
P,τ

[
d∑

k=0

(
d

k

)
n
k
2 Πn−2

j=0 e
Nkd2(σ(sj),σ(sj+1))

]
<∞. (3.29)
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For each k ≤ d we have:

Eν
G1
P,τ

[(
d

k

)
n
k
2 Πn−2

j=0 e
Nkd2(σ(sj),σ(sj+1))

]
= CnEµ

[
Πn−2
j=0 e

Nk|∆j+1β|2
]

(3.30)

where Cn is a generic constant.

Since for each j, |∆jβ|2 =
∑d

l=1

∣∣(∆jβ)l
∣∣2, where

{
(∆jβ)l

}d
l=1

are coordinates

of ∆jβ, i.e. ∆jβ =
(
(∆jβ)1 , . . . , (∆jβ)d

)
. Since β is a Brownian motion on Rd,{

(∆jβ)l
}d
l=1

are i.i.d with Gaussian distribution of mean 0 and variance 1
n
. Using

Lemma B.1 in Appendix B, notice that Nk < n
2
, we have

E
[
eNk|∆jβ|2

]
= Πd

l=1E
[
eNk|(∆jβ)l|

2]
=

(
1− 2kN

n

)− d
2

and thus the right–hand side of Eq. (3.30) is bounded (the bound here depends on

n).

Since for any σ ∈ K, f
JP
◦ψx (σ) e−

n
2
d2(σ(τ),x)Vx (σ) is continuous with respect

to x ∈M , so by dominated convergence theorem, hP (x) ∈ C (M).

Not only can we show that hP (x) is a continuous function, it is bounded

uniformly in x ∈M and partition P , as is shown in the following proposition.

Proposition 3.33 supP supx∈M ν1
P,x (HP,x (M)) <∞.

Proof. Based on Eq. (3.26),

ν1
P,x (HP,x (M)) ≤ Cd

∫
K
e−

n
2
d2(σ(τ),x)Vx (σ) dνG1

P,τ
(σ) (3.31)

Combine Eq.(3.21) and Eq.(3.22) we know that:

e−
n
2
d2(σ(τ),x)Vx (σ) ≤

d∑
k=0

(
d

k

)
n
k
2 e

Nk−n
2

d2(σ(τ),x)Πn−2
j=0 e

Nd2(σ(sj),σ(sj+1)) (3.32)
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For each k ≤ d, apply Lemma 3.32, we have:

Eν
G1
P,τ

[
e−

n−Nk
2

d2(σ(τ),x)

(
d

k

)
n
k
2 Πn−2

j=0 e
Nkd2(σ(sj),σ(sj+1))

]
(3.33)

=

(
d

k

)
n
k
2

∫
K
e−

n−Nk
2

d2(σ(τ),x)Πn−2
j=0 e

Nkd2(σ(sj),σ(sj+1))dνG1
P,τ

(σ) (3.34)

=

(
d

k

)
n
k
2

∫
K
e−

n−Nk
2

d2(σ(τ),x)Πn−2
j=0 e

Nkd2(σ(sj),σ(sj+1)) 1

ρP (σ)
dν0
P,τ (σ) (3.35)

≤
(
d

k

)
n
k
2

∫
K
e−

n−Nk
2

d2(σ(τ),x)Πn−2
j=0 e

Nkd2(σ(sj),σ(sj+1))dν0
P,τ (σ) (3.36)

Now define the projection map πP : K →Mn−1, for any σ ∈ K,

πP (σ) := (σ (s1) , . . . , σ (sn−1)) .

Since M is a Hadamard manifold, πP is a diffeomorphism. From there one can get:

(
d

k

)
n
k
2

∫
K
e−

n−Nk
2

d2(σ(τ),x)Πn−2
j=0 e

Nkd2(σ(sj),σ(sj+1))dν0
P,τ (σ) (3.37)

=

(
d
k

)
n
k+(n−1)d

2

(2π)
(n−1)d

2

∫
Mn−1

e−
n−Nk

2
d2(xn−1,x)Πn−2

j=0 e
− 1

2
(n−2Nk)d2(xj ,xj+1)dx1 · · · dxn−1

(3.38)

Corollary 4.2 in [33] gives a lower bound of heat kernels of manifold M such that

Ric ≥ (1− d)N :

pt (x, y) ≥ (2πt)−
d
2 e−

ρ2

2t

(
sinh
√
Nρ√

Nρ

) 1−d
2

e−Ct

where N is the curvature bound and C is some constant depending only on d and

N and ρ = d (x, y) . Using the fact that:

sinh
√
Nρ√

Nρ
≤ e

Nρ2

2
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It follows that

pt (x, y) ≥ (2πt)−
d
2 e−

1
2( 1

t
+
N(d−1)

2 )ρ2

e−Ct

let

t =
1

n−N1

where N1 = 2Nd+ N(d−1)
2

.

We have, for any j ∈ {0, . . . , n− 1}:

e−
1
2

(n−2Nd)d2(xj ,xj+1) ≤ eCtpt (xj, xj+1) (2πt)
d
2 .

So(
d
k

)
n
k+(n−1)d

2

(2π)
(n−1)d

2

∫
Mn−1

sup
x∈M

e−
n−2Nk

2
d2(xn−1,x)Πn−2

j=0 e
− 1

2
(n−2Nd)d2(xj ,xj+1)dx1 · · · dxn−1

≤
(
d
k

)
n
k+(n−1)d

2

(n−N1)
nd
2

e
C n
n−N1

∫
Mn−1

p 1
n−N1

(xn−1, x) Πn−2
j=0p 1

n−N1

(xj, xj+1) dx1 · · · dxn−1

=

(
d
k

)
e

Cn
n−N1

n
d−k

2

(
1− N1

n

)nd
2

∫
M

p 1
n−N1

(xn−1, x) p n−1
n−N1

(o, xn−1) dxn−1 (3.39)

=

(
d
k

)
e

Cn
n−N1

n
d−k

2

(
1− N1

n

)nd
2

p n
n−N1

(o, x) (3.40)

Since the heat kernel is continuous w.r.t. to time, combine (3.36) ,(3.38) and (3.40),

we get (
d
k

)
e

Cn
n−N1

n
d−k

2

(
1− N1

n

)nd
2

p n
n−N1

(0, x) ≤ C.

and hence

ν1
P,x (HP,x (M)) ≤ C.

where C is a constant depending only on d and N .

Theorem 3.15 shows that the class of approximate pinned measures
{
ν1
P,x
}
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are finite measures and using the continuity result for hP (x) , one can see that ν1
P,x

is deserved to be formally expressed as δx (σ (1)) ν1
P and it should be interpreted in

the sense of Corollary 3.35. First we state a co–area formula.

Theorem 3.34 (Theorem 2.3 in [15]) Let H and M be two Riemannian man-

ifolds with volume measures dvolH and dvolM respectively. If p : H → M is a

smooth submersion, g : H → [0,∞) is a density function, for each x ∈ M , let

dvolHx be the volume measure on Hx := p−1 ({x}) and J (y) :=
√

det
(
p∗yptr∗y

)
on

y ∈ Hx, then for any non–negative measurable function f : H → [0,∞),

∫
H

(f ◦ p) gdvolH =

∫
M

dvolM (x) f (x)

∫
Hx

1

J (y)
g (y) dvolHx (y) . (3.41)

Corollary 3.35 Denote by δx ∈ E ′ (M) the delta–function at x ∈M , then for any{
δ

(m)
x

}
⊂ C∞0 (M) such that

δ(m)
x → δx in E ′ (M)

i.e. for any h ∈ C∞ (M) , we have:

lim
m→∞

∫
M

h (y) δ(m)
x (y) dy =

∫
M

h (y) δx (y) dy =: h (x)

where dy is the volume measure on M . Then for any f ∈ C∞b (HP (M)),

lim
m→∞

∫
HP (M)

δ(m)
x (σ (1)) f (σ) dν1

P (σ) =

∫
HP,x(M)

f (σ) dν1
P,x (σ) .

Proof. Using the co-area formula in (3.41) with

(H,M, p, g, f) =

(
HP (M) ,M,EP1 ,

1

Z1
P
e−

E
2 , δ(m)

x (σ (1)) f (σ)

)
,



49

we have

∫
HP (M)

δ(m)
x (σ (1)) f (σ) dν1

P (σ) =

∫
M

dyδ(m)
x (y)

∫
HP,y(M)

f (σ) dν1
P,y (σ)

=

∫
M

hP (y) δ(m)
x (y) dy

From Theorem 3.15 we know hP (x) ∈ C (M) , therefore:

lim
m→∞

∫
HP (M)

δ(m)
x (σ (1)) f (σ) dν1

P (σ) = lim
m→∞

∫
M

hP (y) δ(m)
x (y) dy

= hP (x)

=

∫
HP,x(M)

f (σ) dν1
P,x (σ) .



Chapter 4

The Orthogonal Lift X̃ of X on

H (M) and Its Stochastic

Extension

4.1 Damped Metrics and Adjoints

Definition 4.1 (α–inner product) Let α (t) ∈ End
(
Rd
)

be a continuously vary-

ing matrix valued function. For h, k ∈ H0

(
Rd
)

let

〈h, k〉α :=

∫ 1

0

(
d

dt
h (t) + α (t)h (t)

)
·
(
d

dt
k (t) + α (t) k (t)

)
dt.

Remark 4.2 We denote the norm induced by α–inner product by ‖·‖α , different-

ing from the notation ‖·‖H0(Rd) for the norm induced by the H1– inner product:

〈h, l〉H1 =
∫ 1

0
h′ (s) · l′ (s) ds.

For the moment, let E1 : H0

(
Rd
)
→ Rd be the end point evaluation map in the

case where M = Rd. Let E1
∗ : Rd → H0

(
Rd
)

be the adjoint of E1 with respect to

50
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the α–inner product, i.e. for any a ∈ Rd and h ∈ H0

(
Rd
)
,

〈E1h, a〉Rd = 〈h, (E1
∗) a〉α .

The next theorem computes E∗1 which is crucial in constructing the orthogonal lift

in Section 4.2.

Theorem 4.3 Let a ∈ Rd and α (t) be as in Definition 4.1, then E∗1a ∈ H0

(
Rd
)

is given by

(E∗1a) (t) =

(
S (t)

∫ t

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)
a. (4.1)

where S (t) ∈ Aut
(
Rd
)

solves

d

dt
S (t) + α (t)S (t) = 0 with S (0) = I

and

v (t) =

(∫ t

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)
a.

Proof. Notice that if h (t) = S (t)w (t) with w (·) ∈ H0

(
Rd
)
, then

(
d

dt
+ α (t)

)
h (t) =

(
d

dt
+ α (t)

)
[S (t)w (t)]

=

[(
d

dt
+ α (t)

)
S (t)

]
w (t) + S (t) ẇ (t)

= S (t) ẇ (t) .

And in particular,

〈Sv, Sw〉α =

∫ 1

0

S (t) v̇ (t) · S (t) ẇ (t) dt.

Given a ∈ Rd, let w (t) = E∗1a and define v (t) := S (t)−1w (t) so that E∗1a =
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S (t) v (t) . Then by the definition of the adjoint we find,

∫ 1

0

S (t) v̇ (t) · S (t) ẇ (t) dt = 〈Sv, Sw〉α = 〈E∗1a, Sw〉α = a · E1 (Sw)

= a · S (1)w (1) =

∫ 1

0

S (1)∗ a · ẇ (t) dt

As w ∈ H0

(
Rd
)

is arbitrary we may conclude that

S (t)∗ S (t) v̇ (t) = S (1)∗ a =⇒ v (t) =

∫ t

0

[S (s)∗ S (s)]
−1
S (1)∗ ads

which proves (4.1).

Theorem 4.4 If a ∈ Rd, then h (·) ∈ H0

(
Rd
)

defined by

h (t) := S (t)

(∫ t

0

[S (s)∗ S (s)]
−1
ds

)(∫ 1

0

[S (s)∗ S (s)]
−1
ds

)−1

S (1)−1 a, (4.2)

is the minimal length element of H0

(
Rd
)

such that E1h = a.

i.e.

‖h‖α = inf
{
‖k‖α | k (·) ∈ H0

(
Rd
)
, E1k = a

}
.

Proof. Since H0

(
Rd
)

= Nul (E1)⊥ ⊕ Nul (E1), we have E1h = a =⇒ E1hk = a

and ‖h‖α ≥ ‖hk‖α where hk is the orthogonal projection of h onto Nul (E1)⊥. So we

are looking for the element, h ∈ H0

(
Rd
)
, such that E1h = a and h ∈ Nul (E1)⊥ =

Ran (E1
∗) . In other words we should have h = E∗1v for some v ∈ Rd. Thus, using

(4.1), we need to demand that

a = E1E1
∗v = (E1

∗v) (1) =

(
S (1)

∫ 1

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)
v,

i.e.

v =

(
S (1)

∫ 1

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)−1

a.
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It then follows that

h (t) = E1
∗
(
S (1)

∫ 1

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)−1

a

=

(
S (t)

∫ t

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)(
S (1)

∫ 1

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)−1

a

which is equivalent to (4.2).

Alternative proof: Let h := E1
∗a ∈ H0

(
Rd
)

and k ∈ H0

(
Rd
)
, then

a · k (1) = a · E1 (k) = 〈E1
∗a, k〉α = 〈h, k〉α

=

∫ 1

0

(
d

dt
h (t) + α (t)h (t)

)
· z (t) dt (4.3)

where
d

dt
k (t) + α (t) k (t) =: z (t) .

Solving the previous equation for k in terms of z gives,

k (t) = S (t)

∫ t

0

S (s)−1 z (s) ds.

Using this result with t = 1 back in (4.3) shows

∫ 1

0

(
d

dt
h (t) + α (t)h (t)

)
· z (t) dt = a · S (1)

∫ 1

0

S (s)−1 z (s) ds

=

∫ 1

0

S∗ (s)−1 S (1)∗ a · z (s) ds.

As z (s) is arbitrary in L2
(
[0, 1] ,Rd

)
we may conclude that

d

dt
h (t) + α (t)h (t) = S∗ (t)−1 S (1)∗ a.
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Solving this equation for h then shows,

(E1
∗a) (t) = h (t) = S (t)

∫ t

0

S (s)−1 S∗ (s)−1 S (1)∗ ads

=

(
S (t)

[∫ t

0

S (s)−1 S∗ (s)−1 ds

]
S (1)∗

)
a

and so we again recover (4.1).

Remark 4.5 The expression in (4.2) matches the well known result for damped

metrics where α = 1
2

Ricu. Further observe that if α (t) = 0 (i.e. we are in the flat

case) then S (t) = I and the above expression reduces to h (t) = ta as we know to

be the correct result.

Definition 4.6 Let 〈·, ·〉Ricu be the damped metric on TH (M) defined by

〈X, Y 〉Ricu :=

∫ 1

0

〈[
∇
ds

+
1

2
Ric

]
X (s) ,

[
∇
ds

+
1

2
Ric

]
Y (s)

〉
ds (4.4)

for all X, Y ∈ Γσ (TM) = TσH (M) and σ ∈ H (M) .

If X = XJ1 and Y = XJ2 with that J1, J2 ∈ H0

(
Rd
)
, then we have

〈
XJ1 , XJ2

〉
Ricu

=

∫ 1

0

〈[
d

ds
+

1

2
Ricus

]
J1 (s) ,

[
d

ds
+

1

2
Ricus

]
J2 (s)

〉
ds. (4.5)

4.2 The Orthogonal Lift X̃ on H (M)

In this section we construct the orthogonal lift X̃ ∈ Γ (TH (M)) of X ∈

Γ (TM) which is defined to be the minimal length element in Γ (TH (M)) relative

to the damped metric introduced in Definition 4.6.

Definition 4.7 For each σ ∈ H (M), recall that us (σ) is the horizontal lift of

σ. Denote by T(·) : H (M)→ End
(
Rd
)

the solution to the following initial value
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problem: 
d
ds
Ts + 1

2
RicusTs = 0

T0 = I

(4.6)

Lemma 4.8 For all s ∈ [0, 1], Ts is invertible. Further both sup
0≤s≤1

‖Ts‖ and

sup
0≤s≤1

‖T−1
s ‖ are bounded by e

1
2

(d−1)N , where (d− 1)N is a bound of ‖Ric‖ .

Proof. Let Us solve the ODE,
d
ds
Us = 1

2
Us Ricus

U0 = I.

(4.7)

Then one easily shows that

d

ds
(UsTs) = 0 =⇒ UsTs = U0T0 = I

and this shows that Us is a left inverse to Ts. As we are in finite dimensions it follows

that T−1
s exists and is equal to Us. The stated bounds now follow by Gronwall’s

inequality.

Definition 4.9 Let K : [0, 1]×H (M)→ End
(
Rd
)

be defined by

Ks := Ts

[∫ s

0

T−1
r

(
T−1
r

)∗
dr

]
T ∗1 . (4.8)

Remark 4.10 A simple computation shows that Ks satisfies the following initial

value problem: K′s = −1
2

Ricus Ks + (T1T
−1
s )

∗

K0 = 0.

(4.9)

Conversely, from Duhamel’s principle and (4.6) it is easy to deduce the formula in

Definition 4.9.
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Lemma 4.11 With Ks as in Definition 4.9, K1 is invertible and
∥∥K−1

1

∥∥ ≤ e(d−1)N ,

provided ‖Ric‖ ≤ (d− 1)N .

Proof. Since

K1 :=

∫ 1

0

(
T1T

−1
r

) (
T1T

−1
r

)∗
dr

is a symmetric positive semi-definite operator such that

〈K1v, v〉 =

∫ 1

0

∥∥(T1T
−1
r

)∗
v
∥∥2
dr ∀v ∈ Cd.

Apply Lemma 4.8 to the expression given;

〈K1v, v〉 ≥
∫ 1

0

e−(d−1)N
∥∥(T−1

r

)∗
v
∥∥2
dr

≥
∫ 1

0

e−2(d−1)N ‖v‖2 dr

= e−2(d−1)N ‖v‖2

From which it follows that eig (K1) ⊂ [e−(d−1)N ,∞).

Definition 4.12 Let X ∈ Γ (TM), define two maps H : H (M) → Rd and J :

[0, 1]×H (M)→ Rd as follows,

H̃ = u−1
1 (σ)X ◦ E1 (σ) (4.10)

and

J (σ, s) := Js (σ) := Ks (σ) K−1
1 (σ)H (σ) . (4.11)

Theorem 4.13 Given X ∈ Γ (TM) the minimal length lift, X̃, relative to the

damped metric in Definition 4.6 of X to Γ (TH (M)) is given by X̃ = XJ . Further

we know that Js is the solution to the following ODE:

J ′s = −1

2
RicusJs + φs, J0 = 0
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where φs = (T1T
−1
s ) ∗K−1

1 H = (T−1
s ) ∗

[∫ 1

0
T−1
r (T−1

r )
∗
dr
]−1

T−1
1 H.

Proof. Apply Theorem 4.4 with αs = 1
2
Ricus .

Following the construction above, one can define an similar object (still

denoted by X̃) on Wo (M). Recall from Notation 2.25 that ũ is the stochastic

horizontal lift of the canonical Brownian motion Σ on M .

Definition 4.14 Define T̃(·) : [0, 1] ×Wo (M) → End
(
Rd
)

to be the solution to

the following initial value problem:
d
ds
T̃s + 1

2
RicũsT̃s = 0

T̃0 = I

(4.12)

Remark 4.15 Following the same arguments used in Lemma 4.8 and 4.11, one

can see the bounds obtained there still hold for T̃ and K̃.

Definition 4.16 Using T̃s, we define K̃ : [0, 1]×Wo (M)→ End
(
Rd
)
:

K̃s := T̃s

[∫ s

0

T̃−1
r

(
T̃−1
r

)
dr

]
T̃ ∗1 . (4.13)

Definition 4.17 For each X ∈ Γ (TM) define two maps H̃ : Wo (M) → Rd and

J̃ : Wo (M)→ H0

(
Rd
)

by

H̃ = ũ−1
1 X ◦ E1 (4.14)

and

J̃s := K̃sK̃
−1
1 H̃ for s ∈ [0, 1] . (4.15)

Notation 4.18 Given a measurable function h : Wo (M) → H0

(
Rd
)
, let Zh :

Wo (M)→ H0

(
Rd
)

be the solution to the following initial value problem:

Zh
′ (s) = −1

2
RicũsZh (s) + h′s

Zh (0) = 0.
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Definition 4.19 For any X ∈ Γ (TM) , define

X̃s = XZΦ
s := ũsZΦ (s) for 0 ≤ s ≤ 1

where

Φs =

∫ s

0

(
T̃−1
τ

)
∗
[∫ 1

0

(
T̃ ∗r T̃r

)
−1dr

]−1

T̃−1
1 H̃dτ.

4.3 Review of Calculus on Wiener Space

In this section we interpret XZΦ as a first order differential operator on some

geometric Wiener functionals (see Definition 4.36). The main difficulty there is

the non-adaptedness of Φ. To overcome this difficulty, we express XZΦ in terms of

geometric vector field (see Definition 4.27) with non–adapted coefficients. However,

these coefficients are differentiable Wiener functionals in “Malliavin calculus ”sense.

Based on this observation we derive an integration–by–parts formula for XZΦ which

naturally shows XZΦ is a closable first order differential operator on L2 (Wo (M)).

The integration–by–parts formula will also be one of our main tool of dealing

with δ—function pinning in this dissertation. We begin with a brief review of the

classical theory of calculus on Wiener space that is needed in our work.

The first order differential geometry on path spaces that we will use can be

traced back to the famous Cameron-Martin Theorem (see [6]).

Theorem 4.20 (Cameron-Martin) For any h ∈ H0

(
Rd
)
, consider the flow φht

generated by h, i.e. for any w ∈ W0

(
Rd
)
, φht (w) = w + th. Notice that φht is the

flow of the vector field Dh := ∂
∂h
. Then the pull–back measure µh (·) :=

(
φh1
)
∗ µ (·) =

µ (· − h) and Wiener measure µ are mutually absolutely continuous.

The map φht is usually called Cameron-Martin shift and the phenomenon described

in Theorem 4.20 is called quasi-invariance of µ under the Cameron-Martin shift.
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The generalization of Cameron-Martin Theorem to path spaces on a manifold came

quite a while later in 1990s. Driver initiated the geometric Cameron-Martin theory

in [10] and [11] where he considered the “vector field ”Xh(or more precisely an

equivalence class of vector fields) on Wo (M) defined as follows,

Xh
s (σ) = ũs (σ)hs

where h ∈ {f ∈ C1 ([0, 1]) : f (0) = 0} ⊂ H0

(
Rd
)
.

Theorem 4.21 Let (M, g, o,∇) be a compact manifold and h be as above, then for

any σ ∈ Wo (M) , there exists a unique flow φht of Xh, i.e. φht : Wo (M) 7→ Wo (M)

satisfying:
d

dt
φht (σ) = Xh

(
φht (σ)

)
with φh0 = I

and νht (·) :=
(
φht
)
∗ ν is equivalent to ν.

The existence of the flow and the quasi-invariance of the Wiener measure were later

extended to all Cameron-Martin vector field Xh, h ∈ H0

(
Rd
)

in [19] and [14] and

then to a geometrically and stochastically complete Riemannian manifold in [20]

and [22]. Owing to the facts that Cameron-Martin vector fields do not form a Lie

Algrbra and more general vector fields naturally appreared in practice, it is useful

to introduce a broader class of so called “adapted vector fields ”, see [12] and [7].

Definition 4.22 (Vector Valued Brownian Semimartingales) V is a finite

dimensional vector space. A function f : Wo (M)× [0, 1]→ V is called a Brownian

semimartingale if f has the following representation:

f (s) =

∫ s

0

Qτdβτ +

∫ s

0

rτdτ

where (Qs, rs) is a predictable process with values in Hom
(
Rd, V

)
× V , V is a

vector space. We will call (Qs, rs) the kernels of f .
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Definition 4.23 (Hq Space) For each q ≥ 1, f : Wo (M) × [0, 1] → V jointly

measurable, we define the root mean square norm in Lq (Wo (M) , ν) to be:

‖f‖Rq(V ) ≡

∥∥∥∥∥
(∫ 1

0

|f (·, s)|2V ds
) 1

2

∥∥∥∥∥
Lq(Wo(M),ν)

Let Hq be the space of all Brownian semimartingales such that

‖f‖Hq :=
∥∥Qf

∥∥
Rq

+
∥∥rf∥∥

Rq
<∞

Definition 4.24 (Bq Space) For each q ≥ 1, f : Wo (M) × [0, 1] → V jointly

measurable, we define the supremum norm in Lq (Wo (M) , ν) to be:

‖f‖Sq(V ) ≡ ‖f
∗‖Lq(Wo(M),ν)

where f ∗ is the essential supremum of s→ f (·, s) relative to Lebesque measure on

[0, 1]. Let Bq be the space of all Brownian semimartingales such that

‖f‖Bq :=
∥∥Qf

∥∥
Sq

+
∥∥rf∥∥

Sq
<∞

Definition 4.25 (Adapted Vector Field) An adapted vector field on W0

(
Rd
)

is an Rd–valued Brownian semimartingale with predictable kernels Q· ∈ so (d) and

r· ∈ L2 [0, 1] ν − a.s. We denote the space of adapted vector fields by V and

Vq := V ∩ Hq.

Notation 4.26 We will use the following notation in this dissertation: H∞− :=

∩q≥1Hq, B∞− = ∩q≥1Bq and V∞− = V ∩ H∞−.

A class of vector field called geometric vector field can be constructed using adapted

vector fields.
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Definition 4.27 (Geometric Vector Field) For any h ∈ V,

Xh
s := ũshs 0 ≤ s ≤ 1

is said to be a geometric vector field.

Theorem 4.28 (Approximate Flow of Geometric Vector Field) Let Xh be

a geometric vector field as above with h ∈ V ∩ S∞ ∩ B∞, t ∈ R, there exists a

funcion E
(
tXh

)
: Wo (M)→ Wo (M) such that

d

dt
|0 E

(
tXh

)
= Xh in B∞−.

Proof. See Corollary 4.6 in [9].

For a geometric vector field, one can not construct a real flow as is constructed

for Cameron–Martin vector field in Theorem 4.21. However the theorem above

gurantees we can view them as vector fields from a natural tangent vector point of

view. In the next definition we specify a domain of these operators.

Notation 4.29 In this chapter, we fix D (L) to be the domain of an operator L.

Definition 4.30 Given a geometric vector field Xh, let D
(
Xh
)

be

D
(
Xh
)

:=

{
f : Wo (M)→ R | Xhf :=

d

dt
|0 f

(
E
(
tXh

))
∈ L∞− (Wo (M))

}
.

Notation 4.31 Recall from Notation 4.18 that Zh satisfies the following ODE,

Z ′h (s) = −1

2
RicũsZh (s) + h′s with Zh (0) = 0. (4.16)

We will use Zα as the shorthand of Zh where hs =
∫ s

0

(
T̃−1
r

)∗
eαdr, 1 ≤ α ≤ d.

Lemma 4.32 Let XZα be given above, then XZα is a geometric vector field with

Zα ∈ V∞ ∩ B∞.
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Proof. Recall that Zα satisfies the following ODE:

Z ′α (s) = −1

2
RicũsZα (s) +

(
T̃−1
s

)∗
eα with Zα (0) = 0. (4.17)

Since
(
T̃−1
s

)∗
eα is adapted, Z ′α is adapted. So Zα is a Brownian semimartingale

with Q ≡ 0 and r = Z ′α. Since T̃s is bounded, from Gronwall’s inequality we

have Zα is bounded, and the bound is independent of σ ∈ Wo (M) and s ∈ [0, 1].

Therefore Zα ∈ V∞ ∩ B∞.

The next theorem shows how to differentiate a cylinder function f ∈ FC

along a geometric vector field.

Notation 4.33 Given k : Wo (M) → H0

(
Rd
)
, denote

∫ s
0
Rũr (kr, δβr) by As 〈k〉,

where δ is the stratonovich differential.

Notation 4.34 Suppose F ∈ C (O (M)n) and P = {0 < s1 < · · · < sn ≤ 1} is a

partition of [0, 1], set

F (u) = F (us1 , . . . , usn) ,

then for A : [0, 1]→ so (d) and h : [0, 1]→ Rd, set

F ′ (u) 〈A+ h〉 :=
d

dt
|0 F

(
uetA

)
+
d

dt
|0 F

(
etBh (u)

)
where uetA (s) = use

tAs ∈ O (M) and etBh (u) (s) = etBhs (us) ∈ O (M) .

Theorem 4.35 Following Notation 2.33, if h ∈ V∞ ∩ B∞, then FC1
b ⊂ D

(
Xh
)
.

In more detail, if f = F (ũ) ∈ FC1
b , then

XZhf = F ′ (ũ) 〈−A 〈Zh〉+ Zh〉 (4.18)

Moreover, if g ∈ D
(
Xh
)
, then

E
[
XZhf · g

]
= E

[
f ·
(
XZh

)tr,ν
g
]

(4.19)
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where
(
XZh

)tr,ν
:= −XZh +

∫ 1

0
〈h′s, dβs〉.

Proof. See Proposition 4.10 in [9] .

The following lemma gives an anticipating expansion of X̃ in terms of

{XZh}h∈H(M).

Definition 4.36 (Orthogonal lift on Wo (M)) For any f ∈ FC∞, define

X̃f :=
d∑

α = 1

〈
C̃H̃, eα

〉
XZαf (4.20)

where C̃ =

[∫ 1

0

(
T̃ ∗r T̃r

)−1

dr

]−1

T̃−1
1 and by the previous notation (Notation 4.18),

XZα
s = ũsZα (s)

Remark 4.37 To motivate this definition, recall that we have obtained a lift

X̃ = XZΦ := ũsZΦ (s) of X ∈ Γ (TM), where

Φs =

∫ s

0

(
T̃−1
τ

)
∗
[∫ 1

0

(
T̃ ∗r T̃r

)
−1dr

]−1

T̃−1
1 H̃dτ.

It is clear that Φ ∈ H0

(
Rd
)

is not adapted. Therefore we cannot apply the theory

for geometric vector field. Alternatively we can expand Φ in terms of adapted vector

fields,

Φs =
d∑

α=1

〈
C̃H̃, eα

〉∫ s

0

(
T̃−1
r

)∗
eαdr. (4.21)

By superposition principle,

ZΦ (s) =
d∑

α = 1

〈
C̃H̃, eα

〉
Zα (s)
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and further

XZΦ =
d∑

α = 1

〈
C̃H̃, eα

〉
XZα . (4.22)

Definition 4.38 Let X̃ be given above, then define

D
(
X̃
)

:= ∩dα=1D
(
XZα

)
.

Remark 4.39 From the multiplicative system theorem, one can see that FC1
b is

dense in L2 (Wo (M)), therefore X̃ is a densely defined operator on L2 (Wo (M)).

The integration–by–parts formula for X̃ in the next section will show that it is a

closable operator.

4.4 Computing X̃ tr,ν

This section is devoted to studying of the existence of X̃ tr,ν (The adjoint

operator of X̃ with respect to ν restricted to D
(
X̃
)

). The crucial step to show

existence is checking the anticipating coefficients in (4.20) are differentiable in the

Malliavin sense reviewed in Section 4.3. Moreover, an explicit formula which has

clearer structure as indicated in Corollary C.3 is given under the condition that the

covariant derivative of the curvature tensor is bounded, which includes manifold

with non–positive constant sectional curvature.

Proposition 4.40 Our standard assumption of bounded curvature tensor implies

that Ric is bounded. If we further assume ∇Ric is bounded, then for any h ∈ V∞

and s ∈ [0, 1], we have Ricũs ∈ D
(
Xh
)
. Moreover,

sup
s∈[0,1]

∣∣XhRicũs
∣∣ ∈ L∞− (Wo (M)). (4.23)
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Proof. Since Ricũs ∈ FC∞, from Theorem 4.35 we know Ricũs ∈ D
(
Xh
)

and

XhRicũs =
(
∇Xh

s
Ric
)
ũs

+ [As 〈h〉 , Ricũs ] ,

where [·, ·] is the Lie bracket of matrices and
(
∇Xh

s
Ric
)
ũs

: Rd → Rd is defined to

be (
∇Xh

s
Ric
)
ũs

= ũ−1
s ∇Xh

s
Ric · ũs.

Since ∇Ric is bounded, ∣∣∣(∇Xh
s
Ric
)
ũs

∣∣∣ ≤ Ch∗ (4.24)

where C is a constant and h∗ is the essential supremum of s→ hs. Since h ∈ B∞,

we know

sup
s∈[0,1]

∣∣∣(∇Xh
s
Ric
)
ũs

∣∣∣ ∈ L∞ (Wo (M)) . (4.25)

Then by Burkholder’s inequality, for any q ∈ [1,∞),

E

[
sup
s∈[0,1]

|As 〈h〉|q
]
≤ C ‖h‖

q
2

L
q
2 (Wo(M))

<∞.

Since Ric is bounded, we have

sup
s∈[0,1]

|[As 〈h〉 , Ricũs ]| ∈ L∞− (Wo (M)) . (4.26)

Combining (4.26) and (4.25) gives (4.23).

Theorem 4.41 Let T̃s be as defined in Definition 4.14, then

T̃s ∈ D
(
XZα

)
for 1 ≤ α ≤ d.

Proof. For each XZα , since Lemma 4.32 shows Zα ∈ V∞−, so we can construct the

approximate flow E
(
tXZα

)
of XZα . Define T̃s (t) := T̃s ◦ E

(
tXZα

)
and Gs (t) :=



66

T̃s(t)−T̃s
t

, it is easy to see that Gs (t) satisfies the following ODE:

G′s (t) = −1

2
RicũsGs (t)− 1

2t

(
Ricũs(t) −Ricũs

)
T̃s with G0 (t) = 0. (4.27)

Then denote by Gs the solution to the following ODE

G′s = −1

2
RicũsGs −

1

2

(
XZαRicũs

)
T̃s with G0 = 0 (4.28)

and let Hs (t) be Hs (t) := Gs (t)−Gs, we know Hs (t) satisfies

H ′s (t) = −1

2
RicũsHs (t)−1

2

(
Ricũs(t) −Ricũs

t
T̃s (t) +

(
XZαRicũs

)
T̃s

)
, H0 (t) = 0.

(4.29)

According to Definition 4.30,

T̃s ∈ D
(
XZα

)
⇐⇒ Hs (t)→ 0 in L∞− (Wo (M)) .

By Gronwall’s inequality, we have

|Hs (t)| ≤
∫ s

0

∣∣∣∣Ricũr(t) −Ricũrt
T̃r (t) +XZαRicũr T̃r

∣∣∣∣ dre d(N−1)
2 (4.30)

Following Theorem 4.4 in [9], we know

Ricũr(t) −Ricũr
t

→ XZαRicũr

and

T̃r (t)→ T̃r → 0

uniformly on r ∈ [0, 1] in L∞− (Wo (M)) as t → 0. So we have Hs (t) → 0 in

L∞− (Wo (M)) as t→ 0.

Corollary 4.42 Recall that we have defined C̃ =

[∫ 1

0

(
T̃ ∗r T̃r

)−1

dr

]−1

T̃−1
1 in Def-
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inition 4.36, then

C̃ ∈ D
(
XZα

)
for 1 ≤ α ≤ d.

Proof. By the product rule, for any s ∈ [0, 1],

XZα
(
T̃−1
s

)
= −T̃s

(
XZαT̃s

)
T̃s ∈ L∞− (Wo (M)) ,

so T̃−1
s ∈ D

(
XZα

)
and thus

∫ 1

0

(
T̃ ∗r T̃r

)−1

dr ∈ D
(
XZα

)
. Then apply the product

rule again we get C̃ ∈ D
(
XZα

)
.

Lemma 4.43 Given X ∈ Γ (TM) with compact support, recall from Definition

4.36 that X̃ is its orthogonal lift on Wo (M), then

X̃tr,ν =− X̃ +
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
+

d∑
α=1

〈
−XZα

(
C̃H̃

)
, eα

〉
.

In other words we are claiming that

E
[
X̃f · g

]
= E

[
f · X̃ tr,νg

]
for all f, g ∈ D

(
X̃
)
.

Proof. First of all, f ∈ D
(
X̃
)
⇐⇒ f ∈ D

(
XZα

)
∀1 ≤ α ≤ d. Then since

H̃ ∈ FC∞b , H̃ ∈ D
(
XZα

)
∀1 ≤ α ≤ d. Based on the above observation and

Corollary 4.42, we obtain

E
[
X̃f · g

]
= E

[
d∑

α = 1

〈
C̃H̃, eα

〉
XZαf · g

]
(4.31)

=
d∑

α=1

E
[
XZαf ·

(
g ·
〈
C̃H̃, eα

〉)]
(4.32)

= I + II + III (4.33)
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where

I = E
[
f ·
(
−X̃

)
g
]

II = E

[
f · g ·

d∑
α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉]

III = E

[
f · g ·

d∑
α=1

〈
−XZα

(
C̃H̃

)
, eα

〉]
.

The following lemma gives a more explicit expression of the last term in

X̃ tr,ν

d∑
α=1

〈
−XZα

(
C̃H̃

)
, eα

〉
under an extra condition that ∇R ≡ 0.

Lemma 4.44 If further the covariant differential of the curvature tensor is 0, i.e.

∇R ≡ 0, then

−
d∑

α=1

〈
XZα

(
C̃H̃

)
, eα

〉
= divX ◦ E1 −

d∑
α=1

〈
C̃A1 〈Zα〉 H̃, eα

〉
. (4.34)

Proof. Since for tensors, contraction commutes with covariant differentiation, and

Ric is the contraction of curvature tensor R, so ∇Ric ≡ 0. For any σ ∈ H0

(
Rd
)
,

using its horizontal lift u we find that

d

ds
Ricus = (∇σ′sRic)us = 0.

It follows that T̃s = e−
1
2
N ′sI is deterministic and thus

C̃ =

(∫ 1

0

[
T̃ ∗r T̃r

]−1

dr

)−1

T̃−1
1 is deterministic.
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Since H̃ = ũ−1
1 X (π ◦ ũ1) ∈ FC∞b , we can apply Theorem 4.35 to H̃ to find

d∑
α=1

〈
XZα

(
C̃H̃

)
, eα

〉
=

d∑
α=1

〈
C̃XZαH̃, eα

〉
= I + II

where

I = −
d∑

α=1

〈
C̃ũ−1

1 ∇Zα(1)X, eα

〉
and

II =
d∑

α=1

〈
C̃A1 〈Zα〉 H̃, eα

〉
.

Claim: I = −divX ◦ E1.

Proof of Claim:

I = −
d∑

α=1

〈
ũ1C̃ũ

−1
1 ∇ũ1C̃−1ũ−1

1 ũ1eα
X, ũ1eα

〉
= −

d∑
α=1

〈
A−1∇AfαX, fα

〉
= −

d∑
α=1

〈
∇AfαX,

(
A−1

)∗
fα
〉

where A = ũ1C̃
−1ũ−1

1 ∈ End
(
TE1(σ)M

)
and {fα} = {ũ1eα} is an orthonormal basis

of TE1(σ)M . Since 〈∇·X, ·〉 is bilinear on TE1(σ)M , by the Universal property of

tensor product we know there exists a linear map l : TE1(σ)M ⊗ TE1(σ)M 7→ R such

that 〈
∇AfαX,

(
A−1

)∗
fα
〉

= l
(
Afα ⊗

(
A−1

)∗
fα
)
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and therefore:

d∑
α=1

〈
∇AfαX,

(
A−1

)∗
fα
〉

= l

(
d∑

α=1

Afα ⊗
(
A−1

)∗
fα

)
(4.35)

Using the isomorphism between T 1
1 (V ) 7→ End (V ) :(a⊗ b) v = a · 〈b, v〉 one can

easily see:
d∑

α=1

Afα ⊗
(
A−1

)∗
fα =

d∑
α=1

fα ⊗ fα (4.36)

Combine (4.35) and (4.36) we have

I = −
d∑

α=1

〈∇fαX, fα〉 = −divX ◦ E1

and (4.34).



Chapter 5

The Orthogonal Lift X̃P on

HP (M)

As a remainder, unless mentioned seperately, M is a complete Riemannian

manifold with non–positive sectional curvature bounded below by −N . In this

chapter we focus on the unpinned piecewise geodesic space HP (M).

5.1 A Parametrization of TσHP (M)

Recall from Theorem 2.39 that for Y ∈ Γ (THP (M)) iff for each σ ∈ HP (M),

J (σ, s) := u (σ, s)−1 Y (σ, s) satisfies (in the following equation we suppress σ)

J ′′ (s) = Ru(s) (b′ (si−1+) , J (s)) b′ (si−1+) for s ∈ [si−1, si) i = 1, ..., n. (5.1)

where b = φ (σ) ∈ H0

(
Rd
)

is the anti–rolling of σ.

From above we observe that J can be parametrized by

{J ′ (si+) = ki}n−1
i=0 (5.2)
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where (k0, k1, . . . , kn−1) is an arbitrary element of
(
Rd
)n
. Proposition 5.1 explains

this parametrization in more detail.

Proposition 5.1 If (k0, k1, . . . , kn−1) ∈
(
Rd
)n

, then the unique J (·) ∈C
(
[0, 1] ,Rd

)
satisfying (5.1) and (5.2) above is given by

J (s) =
1

n

l−1∑
i=0

fP,i+1 (s) ki for s ∈ [sl−1, sl] , 1 ≤ l ≤ n. (5.3)

Proof. From the definition of fP,i+1 (see Definition 2.42), J in Eq. (5.3) may be

written as

J (s) = CP,l (s)

[
l−2∑
i=0

CP,l−1 . . . CP,i+2SP,i+1ki

]
+ SP,l (s) kl−1 when s ∈ [sl−1, sl] .

To finish the proof, we need only verify that J is continuous, J ′ (si+) = ki for

0 ≤ i ≤ n − 1 and J solves the Jacobi equation (5.1). Since CP,l (s) and SP,l (s)

satisfies Jacobi equation for s ∈ [sl−1, sl), J satisfies (5.1) and is continuous at

s /∈ P. For each sl, 1 ≤ l ≤ n − 1, since CP,l+1 (sl) = I, SP,l+1 (sl) = 0 and J is

right continuous on [0, 1],

J (sl−) = lim
s↑sl

J (s) = CP,l

[
l−2∑
i=0

CP,l−1 . . . CP,i+2SP,i+1ki

]
+ SP,lkl−1

= CP,l+1 (sl)

[
l−1∑
i=0

CP,l . . . CP,i+2SP,i+1ki

]
+ SP,l+1 (sl) kl

= J (sl) = J (sl+) .

So J is also continuous at partition points. Then since

J ′ (sl−1+) = C ′P,l (sl−1+)

[
l−2∑
i=0

CP,l−1 . . . CP,i+2SP,i+1ki

]
+ S ′P,l (sl−1+) kl−1

= 0 + I · kl−1 = kl−1,
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J satisfies (5.2). The uniqueness of J is easily seen from the uniqueness of solutions

to ODE with initial values.

Definition 5.2 For each s ∈ [0, 1], define Ls :
(
Rd
)n → Rd as follows: for

s ∈ [sl−1, sl],

Ls (k0, . . . , kn−1) =
1

n

l−1∑
i=0

fP,i+1 (s) ki (5.4)

and in particular

L1 (k0, . . . , kn−1) =
1

n

n−1∑
i=0

fP,i+1 (1) ki (5.5)

We now compute the adjoint of L1.

Lemma 5.3 For any v ∈ Rd, let L∗1 : Rd →
(
Rd
)n

be the adjoint of L1, then

L∗1v =
1

n

(
f ∗P,1 (1) v, f ∗P,2 (1) v, . . . , f ∗P,n (1) v

)
, (5.6)

where f ∗P,i (1) is the matrix adjoint of fP,i (1).

Proof. Equation (5.6) immediately follows from the identity;

〈L1 (k0, . . . , kn−1) , v〉 =
n−1∑
i=0

〈
1

n
fP,i+1 (1) ki, v

〉
=

n−1∑
i=0

〈
ki,

1

n
f ∗P,i+1 (1) v

〉
. (5.7)

Definition 5.4 We now define

KP (s) v := nLs (L∗1v) . (5.8)

In particular,

KP (1) v =
1

n

n−1∑
i=0

fP,i+1 (1) f ∗P,i+1 (1) v. (5.9)

Recall that given a matrix A, eig (A) denotes the eigenvalues of A.
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Lemma 5.5 (Invertibility of KP (1)) If M has non-positive sectional curvature,

then

eig (KP (1)) ⊂ [1,∞) (5.10)

and thus KP (1) is invertible.

Proof. Denote Rus (b′ (si−1+) , ·) b′ (si−1+) by AP,i (s) : HP (M) → End
(
Rd
)
.

Notice that M having non-positive sectional curvature guarantees AP,i (s) is non-

negative. Then apply Proposition B.2 to find, for any i = 1, · · · , n and v ∈ Cd,

‖CP,iv‖ ≥ ‖v‖ and ‖SP,iv‖ ≥
1

n
‖v‖ .

From these inequalities it follows that

‖fP,i (1) v‖ = n ‖CP,nCP,n−1 · · ·CP,i+1SP,iv‖

≥ n · 1

n
‖v‖ = ‖v‖ .

So fP,i (1) is invertible and
∥∥fP,i (1)−1

∥∥ ≤ 1. Therefore for any v ∈ Cd,

∥∥f ∗P,i (1)−1 v
∥∥ =

∥∥fP,i (1)−1 v
∥∥ ≤ ‖v‖ ,

now replace v by f ∗P,i (1) v, we get
∥∥f ∗P,i (1) v

∥∥ ≥ ‖v‖ and thus

〈KP (1) v, v〉 =
1

n

n−1∑
i=0

〈
fP,i+1 (1) f ∗P,i+1 (1) v, v

〉
=

1

n

n−1∑
i=0

∥∥f ∗P,i+1 (1) v
∥∥2

≥ 1

n
· n ‖v‖2 = ‖v‖2 ∀v ∈ Cd.

This implies that

eig (KP (1)) ⊂ [1,∞)



75

In particular, KP (1) is invertible.

5.2 Orthogonal Lifts on HP (M)

In this section we use the least square method to lift a vector field X ∈

Γ (TM) to a vector field X̃P ∈ Γ (THP (M)).

Theorem 5.6 (Orthogonal lift) For all X ∈ Γ (TM), there exists a unique

orthogonal lift X̃P ∈ Γ (THP (M)). In more detail, X̃P is uniquely determined by;

1. For all h ∈ C1 (M),

X̃P (h ◦ E1) (σ) = (Xh) (E1 (σ)) , i.e. E1∗X̃P (σ) = X (σ (1)) . (5.11)

2. For all σ ∈ HP (M) ,

∥∥∥X̃P (σ)
∥∥∥
G1
P

= inf{‖Y (σ)‖ G1
P

: Y ∈ Γ (THP (M)) , Y satisfies (5.11)}.

(5.12)

First we use the parametrization in Section 5.1 to characterize
{

Nul
(
E1∗,σ

)} ⊥.

Lemma 5.7 Suppose Y ∈ Γ (THP (M)) with k (·) := u (·)−1 Y (·) : HP (M) →

H0

(
Rd
)
. Then Y ∈ {Nul (E1∗)}⊥ iff

(k′ (s0+) , ..., k′ (sn−1+)) ∈ (Nul L1)⊥ = Ran (L∗1) .

Proof. Given Y (·) := u (·) k (·) and Z (·) := u (·) J (·) ∈ Γ (THP (M)), then

〈Y (σ) , Z (σ)〉 G1
P

= 0 ⇐⇒
n−1∑
i=0

〈J ′ (σ, si+) , k′ (σ, si+)〉∆i+1 = 0

⇐⇒
n−1∑
i=0

〈J ′ (σ, si+) , k′ (σ, si+)〉 = 0,
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and

Z (σ) ∈ Nul
(
E1∗,σ

)
⇐⇒ E1∗,σ

(
XJ1

)
= u1 (σ) J (σ, 1) = 0 ⇐⇒ J1 (σ) = 0.

Recall that J1 = L1 (J ′ (s0+) , ..., J ′ (sn−1+)), so

J1 = 0 ⇐⇒ (J ′ (s0+) , ..., J ′ (sn−1+)) ∈ Nul (L1) (5.13)

Since

n−1∑
i=0

〈J ′ (si+) , k′ (si+)〉 = 〈(J ′ (s0+) , ..., J ′ (sn−1+)) , (k′ (s0+) , ..., k′ (sn−1+))〉 ,

so Y ∈ {Nul (E1∗)}⊥ iff

(k′ (s0+) , ..., k′ (sn−1+)) ∈ {Nul (L1)}⊥ = Ran (L∗1) .

Remark 5.8 According to (5.6) and (5.13), it is immediate that

Ran (L∗1) =

{(
1

n
f ∗P,1 (1) v,

1

n
f ∗P,2 (1) v, . . . ,

1

n
f ∗P,n (1) v

)
, ∀ v ∈ Rd

}
,

Definition 5.9 Given X ∈ Γ (TM), define X̃P ∈ Γ (THP (M)) to be X̃P (·) =

u·JP (·) where

JP (s) := KP (s) KP (1)−1 u1
−1X ◦ E1.

Proof of Theorem 5.6. We will show X̃P is the unique orthogonal lift of X.

Since TσHP (M) = Nul
(
E1∗,σ

)
⊕G1

P

{
Nul

(
E1∗,σ

)} ⊥, given a lift Z ∈ Γ (THP (M))

of X ∈ Γ (TM), its orthogonal projection to
{

Nul
(
E1∗,σ

)} ⊥ is also a lift but with

a smaller G1
P norm. So if Z is an orthogonal lift, then Z ∈ {Nul (E1∗)} ⊥. From
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Lemma 5.7 and 5.8 it follows that if k (·) := u−1 (·)Z (·), then

(k′ (s0) , . . . , k′ (sn−1)) =

(
1

n
f ∗P,1 (1) v,

1

n
f ∗P,2 (1) v, . . . ,

1

n
f ∗P,n (1) v

)

for some v ∈ Rd. Then using Definition 5.4 and Proposition 5.1, k must have the

following form,

ks = KP (s) v

for some v ∈ Rd to be determined. To specify v, we use condition (5.11)

X̃P (σ, 1) = X (σ (1)) .

This implies KP (1) v = u−1
1 X ◦ E1. Since KP (1) is invertible, we can just pick v

to be KP (1)−1 u−1
1 X ◦ E1.

Definition 5.10 We will view X̃P as a differential operator with domain,

D
(
X̃P

)
:= C1

b (HP (M)) .

Since C1
b (HP (M)) is dense in L2 (HP (M) , ν1

P), we can view X̃P as a densely

defined operator on L2 (HP (M) , ν1
P). Using Lemma 7.5 we know its range is in

L∞− (HP (M) , ν1
P) ⊂ L2 (HP (M) , ν1

P).

We will explore the limit of the orthogonal lift X̃P as the mesh of |P | → 0

in Chapter 6.

5.3 Restricted Adjoint X̃
tr,ν1P
P

In this section we study X̃
tr,ν1
P

P —the adjoint of X̃P with respect to ν1
P

restricted to D
(
X̃P

)
, i.e. we require D

(
X̃
tr,ν1
P

P

)
= D

(
X̃P

)
.
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Lemma 5.11 Given X ∈ Γ (TM), if X̃P is the orthogonal lift of X, then

X̃
tr,ν1
P

P = −X̃P +M∫ 1
0 〈J ′P (s),b′(s)〉ds −MdivX̃P

(5.14)

where M� is the multiplication operator, b is the anti-rolling of σ and divX̃P is the

divergence of X̃P with respect to volG1
P

.

Proof. In this proof we identify the measure ν1
P with the associated nd—form. So

by “Cartan’s magic formula”, first assume f ∈ C1
b (HP (M)) with compact support,

LX̃P
(
fν1
P
)

= d
(
iX̃P

(
fν1
P
))

+ iX̃P
(
d
(
fν1
P
))
.

Since fν1
P is a top degree form, d (fν1

P) = 0. By Stokes’ theorem,

∫
HPM

d
(
iX̃P

(
fν1
P
))

= 0.

Therefore we have: ∫
HP (M)

LX̃P
(
fν1
P
)

= 0

and

∫
HP (M)

(
X̃Pf

)
dν1
P =

∫
HP (M)

LX̃P
(
fν1
P
)
−
∫
HP (M)

fLX̃P
(
ν1
P
)

= −
∫
HP (M)

fLX̃P
(
ν1
P
)
. (5.15)

Recall that ν1
P = 1

Z1
P
e−

1
2
EvolG1

P
, so

LX̃P
(
ν1
P
)

=

[
X̃P

(
1

Z1
P
e−

1
2
E

)]
volG1

P
+
(
divX̃P

)
ν1
P . (5.16)
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In (5.16)

X̃P

(
1

Z1
P
e−

1
2
E

)
= −1

2
X̃P (E)

1

Z1
P
e−

1
2
E

= −
∫ 1

0

〈
σ′ (s+) ,

∇X̃P
ds

(s+)

〉
ds

1

Z1
P
e−

1
2
E

= −
∫ 1

0

〈b′ (s+) , J ′P (s+)〉 ds 1

Z1
P
e−

1
2
E. (5.17)

Combining (5.15), (5.16) and (5.17) we get, if f ∈ C1
b (HP (M)) with compact

support and bounded differential df , then

∫
HP (M)

X̃Pfdν
1
P =

∫
HP (M)

f ·
(
X̃
tr,ν1
P

P 1
)
dν1
P , (5.18)

where X̃
tr,ν1
P

P is defined in Eq. (5.14). For the general case choose a cut–off function

φ ∈ C∞0
(
Rd, [0, 1]

)
such that φ ≡ 1 on B (0, 1) and φ ≡ 0 on Rd/B (0, 2), B (x, r)

is the ball on Rd centered at x with radius r. Let fn := f · φ
(
E
n

)
, observe, using

product rule, that

X̃Pfn = φ

(
E

n

)
· X̃Pf +

1

n
f · φ′

(
E

n

)∫ 1

0

〈J ′P (s) , b′ (s)〉 ds, (5.19)

so X̃Pfn → X̃Pf as n→∞ ν1
P a.s.

Using Proposition 6.26 and Lemma 4.43 we have

∫ 1

0

〈J ′P (s) , b′ (s)〉 ds ∈ L∞−
(
HP (M) , dν1

P
)

where L∞− := ∩q≥1L
q.

Since f has bounded derivative, from Definition 5.9 and Lemma 6.12 we

have ∣∣∣X̃Pf ∣∣∣ ≤ C
〈
X̃P , X̃P

〉
G1
P

∈ L∞−
(
HP (M) , dν1

P
)
.
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So using bounded convergence theorem, Eq.(5.18) with fn, and Eq.(5.19) we obtain

Eq. (5.18) for f .

5.4 Computing divX̃P

Recall from Definition 3.9 that

Xhα,i (σ, s) = u (σ, s)
1√
n
fP,i (s) eα , 1 ≤ α ≤ d , 1 ≤ i ≤ n

is an orthonormal frame on (THP (M) , G1
P). Using this orthonormal frame, one

can get an expression of divX̃P .

Proposition 5.12 Let X̃P be the orthogonal lift of X ∈ Γ (TM), then

divX̃P =
d∑

α=1

n∑
j=1

〈
Xhα,jJ ′P (sj−1+) , eα

〉√
∆j (5.20)

Proof. We know

divX̃P =
d∑

α=1

n∑
j=1

G1
P

〈[
Xhα,j , X̃P

]
, Xhα,j

〉
, (5.21)

where [·, ·] is the Lie bracket of vector fields.

Now fix j and α, notice that X̃P = XJP , apply Theorem 3.5 in [2] to find

[
Xhα,j , X̃P

]
= Xf(hα,j ,JP ),

where

fs (hα,j, JP) =
(
Xhα,jJP

)
(s)−

(
XJPhα,j

)
(s) +

qs
(
Xhα,j

)
JP (s)− qs

(
XJP

)
hα,j (s)
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and

qs
(
Xf
)

=

∫ s

0

Rur (b′ (r+) , f (r)) dr.

Therefore

G1
P

〈[
Xhα,j , X̃P

]
, Xhα,j

〉
=

n∑
i=1

〈
f ′, h′α,j

〉
si−1+

∆i (5.22)

=
n∑
i=1

〈(
Xhα,jJP

)′ − (XJPhα,j
)′
, h′α,j

〉
si−1+

∆i

+
n∑
i=1

〈(
qs
(
Xhα,j

)
JP (s)

)′ − (qs (XJP
)
hα,j (s)

)′
, h′α,j

〉
si−1+

∆i

Here ′ is the derivative with respect to (time) s.

Since h′α,j (si−1+) is independent of σ, so

(
XJPhα,j

)′
(si−1+) = XJP

(
σ → h′α,j (σ, si−1+)

)
= 0.

and thus
n∑
i=1

〈(
XJPhα,j

)′
, h′α,j

〉
si−1+

∆i = 0. (5.23)

We now claim that

(
qs
(
Xhα,j

)
JP (s)

)′
= q′s

(
Xhα,j

)
JP (s) + qs

(
Xhα,j

)
J ′P (s) = 0 for s ∈ P .

Since

h′α,j (si−1+) 6= 0 iff i = j,

and when i = j,

hα,j (s) = 0 for s ≤ si−1,

so both q′si−1

(
Xhα,j

)
= 0 and qsi−1

(
Xhα,j

)
= 0. It then follows that the claim is
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true and
n∑
i=1

〈(
qs
(
Xhα,j

)
JP (s)

)′
, h′α,j

〉
si−1+

∆i = 0. (5.24)

and
n∑
i=1

〈
q′s
(
XJP

)
hα,j (s) , h′α,j

〉
si−1+

∆i = 0 (5.25)

Lastly because qs
(
XJP

)
is skew-symmetric,

n∑
i=1

〈
qs
(
XJP

)
h′α,j, h

′
α,j

〉
si−1+

∆i = 0 (5.26)

Combining Eq.(5.23), (5.24), (5.25) and (5.26) shows,

G1
P

〈[
Xhα,j , X̃P

]
, Xhα,j

〉
=

n∑
i=1

〈
Xhα,jJ ′P , h

′
α,j

〉
si−1+

∆i (5.27)

=
〈
Xhα,jJ ′P (sj−1+) , eα

〉√
∆j. (5.28)

Summing Eq.(5.28) on α and j while making use of (5.21) gives (5.20).



Chapter 6

Convergence Result

In this chapter M is a complete Riemannian manifold with non–positive and

bounded sectional curvature. We fix N to be a bound of the sectional curvature.

Other conditions will be mentioned specificly in theorems if needed. First we

modify and abuse a few notations we have defined before in order to avoid messy

arguments.

Notation 6.1 Recall that β : Wo (M)→ W0

(
Rd
)

is the Brownian motion on Rd

defined in Definition 2.22. We have also defined βP : Wo (M)→ HP
(
Rd
)

to be the

linear approximation to Brownian motion on Rd as in Notation 2.26. Now denote

by uP := η ◦ βP the development map of βP . Notice that φ ◦ βP ∈ HP (M)–ν a.s,

here φ is the development map onto H (M). So after identifying CP,i, SP,i and

hence fP,i with CP,i ◦ φ ◦ βP , SP,i ◦ φ ◦ βP and fP,i ◦ φ ◦ βP , we can view them as

maps from Wo (M) to End
(
Rd
)
. The point here is to make the notations short

and it should not cause confusions after this explanation.

Remark 6.2 Let L∞− (Wo (M)) := ∩q≥1L
q (Wo (M)). This is a Frechet space and

for any {fn}n and f in L∞− (Wo (M)), fn → f as n → ∞ in L∞− (Wo (M)) iff

fn → f in Lq (Wo (M)) ∀q ≥ 1.

Convention 6.3 We use C to denote a generic constant. It can vary from line to

83
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line. In this chapter it depends only on an upper bound of the mesh size |P| := 1
n

of the partition |P| (We may allow C to depend on some other factors as well, but

this is good enough for our purpose of taking the limit as |P| → 0. )

6.1 Wong-Zakai Approximation Scheme

Wong-Zakai approximation scheme are types of theorems that approximate

solutions to stochastic differential equations (SDEs) by solutions to (random)

ordinary differential equations driven by “smooth ”approximations of the semi-

martingale that drives the SDE. Wong and Zakai [34], [35] first studied this problem

in the case of one dimensional Brownian motion and there are a lot of generalizations

that follow, which are partially listed in here : [1], [18] and so on. We record a

Wong-Zakai type theorem in the form that fits our need.

Theorem 6.4 Let f : Rd × Rn →End(Rd,Rn) and f0 : Rd × Rn → Rn be either

twice differentiable with bounded continuous derivatives or linear. Let ξ0 ∈ Rn and

P be a partition of [0, 1]. Further let β and βP be as in Notation 3.16 and ξP(s)

denote the solution to the ordinary differential equation:

ξ′P(s) = f(ξP(s))β′P(s) + f0(ξP(s)), ξP(0) = ξ0 (6.1)

and ξ denote the solution to the Stratonovich stochastic differential equation,

dξ(s) = f(ξ(s))δβ(s) + f0(ξ(s))ds, ξ(0) = ξ0. (6.2)

Then, for any γ ∈ (0, 1
2
), p ∈ [1,∞), there is a constant C(p, γ) < ∞ depending

only on f and M , so that

lim
|P|→0

E
[
sup
s≤1
|ξP(s)− ξ(s)|p

]
≤ C(p, γ)|P|γp. (6.3)
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Corollary 6.5 sup0≤s≤1 |uP (s)− ũ (s)| → 0 as |P| → 0 in L∞− (Wo (M)).

6.2 Convergence of X̃P to X̃

6.2.1 Some Useful Estimates for {CP,i}ni=1 and {SP,i}ni=1

We apply Proposition B.2 to get the estimates in Lemmas 6.6 to 6.9 below.

Lemma 6.6 For any i ∈ {1, ..., n} and s ∈ [si−1, si], we have

|CP,i (s)| ≤ cosh
(√

N |∆iβ|
)
≤ e

1
2
N |∆iβ|2 .

Lemma 6.7 For any i ∈ {1, ..., n} and s ∈ [si−1, si], we have

|SP,i(s)| ≤
√
N |∆iβ|

sinh
(√

N |∆iβ|
)

√
N |∆iβ|

≤ cosh
(√

N |∆iβ|
)√

N |∆iβ| ≤
√
N |∆iβ| e

1
2
N |∆iβ|2 .

Lemma 6.8 For any i ∈ {1, ..., n}, we have

|SP,i −∆iI| ≤
N |∆iβ|2 ∆i

6
e

1
2
N |∆iβ|2

Lemma 6.9 For any i ∈ {1, ..., n}, we have

|CP,i − I| ≤
N |∆iβ|2

2
e

1
2
N |∆iβ|2

Lemma 6.10 For all γ ∈
(
0, 1

2

)
, define Kγ := sup

s,t∈[0,1],s 6=t

{
|βt−βs|
|t−s|γ

}
, then there

exists an εγ > 0 such that E
[
eεK

2
γ

]
<∞.

Proof. See Fernique’s Theorem (Theorem 3.2) in [26].
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Remark 6.11 From Lemma 6.10, it is easy to see any polynomial of εKγ has finite

moments of all orders.

6.2.2 Size Estimates of fP,i (s)

Recall from Definition 2.42 that fP,i : Wo (M)×[0, 1]→ End
(
Rd
)

0 ≤ i ≤ n

is given by

fP,i (s) =


0 s ∈ [0, si−1]

SP,i(s)

∆i
s ∈ [si−1, si]

CP,j(s)CP,j−1·····CP,i+1SP,i
∆i

s ∈ [sj−1, sj] for j = i+ 1, · · · , n

with the convention that SP,0 ≡ |P| I and fP,0 ≡ I.

Using the estimates in Subsection 6.2.1, it is easy to get an estimate of

fP,i (s).

Lemma 6.12 Recall from the begining of this chapter that n := 1
|P| and N is the

sectional curvature bound. For each q ≥ 1, we have

sup
n≥2qN

E

[
sup

i∈{0,··· ,n}
sup
s∈P
|fP,i (s)|q

]
<∞.

Proof. For all i, j ∈ {0, · · · , n}, if j < i, fP,i (sj) ≡ 0. So we only need to consider

the case when j ≥ i. Since

fP,i (sj) =
CP,jCP,j−1 · · · · · CP,i+1SP,i

∆i

,

so

|fP,i (sj)|q ≤ |CP,j|q |CP,j−1|q · · · · · |CP,i+1|q
∣∣∣∣SP,i∆i

∣∣∣∣q .
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Apply Lemma 6.6 and 6.8 to find

|fP,i (sj)|q ≤ e
1
2
qN

∑j
k=i|∆kβ|2

(
e−

N
2
|∆iβ|2 +

N |∆iβ|2

6

)q

(6.4)

≤ e
1
2
qN

∑j
k=i|∆kβ|2

(
1 +

N |∆iβ|2

6

)q

(6.5)

≤ e
1
2
qN

∑j
k=i|∆kβ|2e

Nq|∆iβ|2
6 (6.6)

≤ eqN
∑n
k=1|∆kβ|2 . (6.7)

Since eqN
∑n
k=1|∆kβ|2 is independent of i and j, we have

sup
i∈{1,··· ,n}

sup
s∈P
|fP,i (s)|q ≤ eqN

∑n
k=1|∆kβ|2 . (6.8)

Since for each k, |∆kβ|2 =
∑d

l=1 |(∆kβ)l|
2, where {(∆kβ)l}

d
l=1 are coordinates of

∆kβ, i.e. ∆kβ = ((∆kβ)1 , . . . , (∆kβ)d). Since β is a Brownian motion on Rd,

{(∆kβ)l}
d
l=1 are i.i.d with Gaussian distribution of mean 0 and variance 1

n
. Using

Lemma B.1 in Appendix B, notice that qN < n
2
, we have

E
[
eqN |∆kβ|2

]
= Πd

l=1E
[
eqN|(∆kβ)l|2

]
=

(
1− 2qN

n

)− d
2

and

E

[
sup

i∈{0,··· ,n}
sup
s∈P
|fP,i (s)|q

]
≤ E

[
eqN

∑n
k=1|∆kβ|2

]
(6.9)

= Πn
k=1E

[
eqN |∆kβ|2

]
=

(
1− 2qN

n

)−nd
2

. (6.10)

Since
(
1− 2qN

n

)−nd
2 → e−dqN as n→∞, so

{(
1− 2qN

n

)−nd
2

}
n>2qN

is bounded and
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thus

sup
n≥2qN

E

[
sup

i∈{0,··· ,n}
sup
s∈P
|fP,i (s)|q

]
<∞.

Notation 6.13 Given n ∈ N and s ∈ [0, 1] , let s = sk−1 when s ∈ [sk−1, sk),

|P| = 1
n

is the mesh size of the partition P and also let

AP,k (s) := RuP (s) (β′P (sk−1+) , ·) β′P (sk−1+) .

Lemma 6.14 For each q ≥ 1, γ ∈
(
0, 1

2

)
there exists a constant C such that for

all n > 5qN ,

E

[
sup

i∈{0,··· ,n},s∈[0,1]

|fP,i (s)− fP,i (s)|q
]
≤ C |P|2qγ . (6.11)

Proof. For s ∈ [sk−1, sk), Taylor’s expansion gives

fP,i (s)− fP,i (s) =

∫ s

s

AP,k (r) fP,i (r) (s− r) dr (6.12)

=

∫ s

s

AP,k (r) (fP,i (r)− fP,i (r)) (s− r) dr +

∫ s

s

AP,k (r) fP,i (r) (s− r) dr.

(6.13)

Since |AP,k (s)| ≤ N
∣∣∣∆kβ

∆k

∣∣∣2 , we have

|fP,i (s)− fP,i (s)| ≤
N

∆k

|∆kβ|2
∫ s

s

|fP,i (r)− fP,i (r)| dr+
1

2
N |∆kβ|2 sup

s∈P
|fP,i (s)| .
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By Gronwall’s inequality, we have:

|fP,i (s)− fP,i (s)| ≤
1

2
N |∆kβ|2 sup

s∈P
|fP,i (s)| e

N
∆k
|∆kβ|2(s−s)

≤ 1

2
N |∆kβ|2 sup

s∈P
|fP,i (s)| eN |∆kβ|2

Using estimate (6.8) gives

|fP,i (s)− fP,i (s)|q ≤
N q

2q
|∆kβ|2q eqN |∆kβ|2eqN

∑n
j=1|∆jβ|2 (6.14)

≤ C |P|2qγ e2qN
∑n
k=1|∆kβ|2K2q

γ . (6.15)

Based on a computation exactly the same as (6.10), we know E
[
e2qN(1+ε)

∑n
k=1|∆kβ|2

]
is finite for some ε > 0 and the value is bounded above independently of n. Then

using Remark 6.10 we see Kγ has finite moments of all orders. The estimate in

(6.11) then follows by Holder’s inequality.

Theorem 6.15 Let T̃(·) be as in Definition 4.14, then for each q ≥ 1, γ ∈
(
0, 1

2

)
,

there exists a constant C such that for all n > 5qγ,

E

[
sup

i∈{0,··· ,n}
sup
s∈[si,1]

∣∣∣fP,i (s)− T̃sT̃−1
si

∣∣∣q] ≤ C |P|γq . (6.16)

In order to prove Theorem 6.15, we need the following result.

Lemma 6.16 For each q ≥ 1, γ ∈
(
0, 1

2

)
, there exists a constant C such that for

all n > 5qγ,

E

[
sup

i∈{1,··· ,n}
sup
j≥i

∣∣∣∣fP,i (sj)− (fP,i (si)− ∫ sj

si

RicuP (r)fP,i (r) dr

)∣∣∣∣q
]

(6.17)

≤ C |P|γq . (6.18)
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Proof. For all sj ∈ P with j ≥ i+ 1 and for k = i, · · · , j − 1, we have

fP,i (sk+1) = fP,i (sk) +
1

∆2
k+1

∫ sk+1

sk

RuP (r) (∆k+1β, fP,i (r)) ∆k+1β (sk+1 − r) dr

(6.19)

= fP,i (sk) +
1

2
RuP (sk) (∆k+1β, fP,i (sk)) ∆k+1β + ei,k

where

ei,k =
1

∆2
k+1

∫ sk+1

sk

RuP (r) (∆k+1β, fP,i (r)) ∆k+1β (sk+1 − r) dr

− 1

∆2
k+1

∫ sk+1

sk

RuP (sk) (∆k+1β, fP,i (sk)) ∆k+1β (sk+1 − r) dr.

Since {fP,i (sj)}j is adapted, by Ito’s lemma

1

2
RuP (sk) (∆k+1β, fP,i (sk)) ∆k+1β =

1

2

∫ sk+1

sk

RuP (sk) (βr − βsk , fP,i (sk)) dβr

+
1

2

∫ sk+1

sk

RuP (sk) (dβr, fP,i (sk)) (βr − βsk)

− 1

2
RicuP (sk)fP,i (sk) ∆k.

Summing (6.19) over k from i to j − 1 , we have

fP,i (sj) = fP,i (si)−
1

2

∫ sj

si

RicuP (r)fP,i (r) dr +MP,sj +

j−1∑
k=i

ei,k

where

MP,s :=
1

2

∫ s

si

RuP (r) (βr − βr, fP,i (r)) dβr +
1

2

∫ s

si

RuP (r) (dβr, fP,i (r)) (βr − βr)

is a Rd-valued martingale starting from si. By the Burkholder-Davis-Gundy
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inequality, for q ≥ 1,

E

[
sup
s∈[si,1]

|MP,s|q
]
≤ CE

[
〈MP〉

q
2
1

]
(6.20)

where 〈MP〉 is the quadratic variation process of MP . An estimate of 〈MP〉 gives

〈MP〉1 ≤ dN2

∫ 1

si

|βr − βr|2 |fP,i (r)|2 dr ≤ dN2

∫ 1

0

|βr − βr|2 |fP,i (r)|2 dr,

and by Jensen’s inequality,

〈MP〉
q
2
1 ≤ d

q
2N q

∫ 1

0

|βr − βr|q |fP,i (r)|q dr.

Since {fP,i (r)}r∈[0,1] is adapted to the filtration generated by β, using the indepen-

dence of |βr − βr|q and fP,i (r) we have:

E
[
〈MP〉

q
2
1

]
≤ d

q
2N q

∫ 1

0

E [|βr − βr|q]E [|fP,i (r)|q] dr

= Csup
s∈P

E [|fP,i (s)|q] |P|
q
2 .

By Lemma 6.12, we know

E
[
〈MP〉

q
2
1

]
≤ C |P|

q
2 (6.21)

So to finish the proof of Lemma 6.16, it suffices to show:

E

[
sup

i∈{0,··· ,n},j∈{i+1,··· ,n}

∣∣∣∣∣
j−1∑
k=i

ei,k

∣∣∣∣∣
q]
≤ C |P|γq . (6.22)

Since |ei,k| ≤ IP + IIP , where

IP =
1

∆2
k+1

∣∣∣∣∫ sk+1

sk

RuP (r) (∆k+1β, fP,i (r)− fP,i (sk)) ∆k+1β (sk+1 − r) dr
∣∣∣∣
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and

IIP =
1

∆2
k+1

∣∣∣∣∫ sk+1

sk

(
RuP (sk) −RuP (r)

)
(∆k+1β, fP,i (sk)) ∆k+1β (sk+1 − r) dr

∣∣∣∣ ,
using (6.15) we know

IP ≤
N

2
sup

i∈{1,··· ,n},r∈[0,1]

|fP,i (r)− fP,i (r)| |∆k+1β|2 ≤ CK4
γ |P|

4γ e2N
∑n
k=1|∆kβ|2 .

Since

∣∣RuP (sk) −RuP (r)

∣∣ ≤ C

∫ sk+1

sk

|β′P (s)| ds = C |∆k+1β| ≤ CKγ |P|γ ,

using (6.8) we have

IIP ≤ C sup
i∈{1,··· ,n},r∈P

|fP,i (r)| |∆k+1β|2 sup
r∈[sk,sk+1]

∣∣RuP (sk) −RuP (r)

∣∣
≤ CK3

γ |P|
3γ eN

∑n
k=1|∆kβ|2 .

So ∣∣∣∣∣
j−1∑
k=i

ei,k

∣∣∣∣∣ ≤ 1

|P|
(I + II) ≤ C

(
K4
γ |P|

4γ−1 +K3
γ |P|

3γ−1) e2N
∑n
k=1|∆kβ|2 .

Since if γ approaches 1
2
, 3γ − 1 approaches 1

2
, so using Lemma 6.10 we get

E

[
sup

i∈{0,··· ,n},j∈{i+1,··· ,n}

∣∣∣∣∣
j−1∑
k=i

ei,k

∣∣∣∣∣
q]
≤ C |P|γq .

Combining (6.21) and (6.22) we obtain (6.18).
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Proof of Theorem 6.15. For s ≥ si, define

f̂P,i (s) := fP,i (si)−
1

2

∫ s

si

RicuP (r)fP,i (r) dr. (6.23)

Then

∣∣∣f̂P,i (sj)− fP,i (sj)∣∣∣ ≤ ∣∣∣∣12
∫ sj

si

(
RicuP (r) −RicuP (r)

)
fP,i (r) dr

∣∣∣∣
+

∣∣∣∣12
∫ sj

si

RicuP (r) (fP,i (r)− fP,i (r)) dr
∣∣∣∣ .

Since ∣∣RicuP (r) −RicuP (r)

∣∣ ≤ CKγ |P|γ ,

using Lemma 6.12 and Eq.(6.8), we know:∣∣∣∣∫ sj

si

(
RicuP (r) −RicuP (r)

)
fP,i (r) dr

∣∣∣∣q ≤ CKq
γ |P|

γq (6.24)

and

E
[∣∣∣∣∫ sj

si

(
RicuP (r) −RicuP (r)

)
fP,i (r) dr

∣∣∣∣q] ≤ C |P|γq .

Then consider ∣∣∣∣∫ sj

si

RicuP (r) (fP,i (r)− fP,i (r)) dr
∣∣∣∣ .

By Lemma 6.14, one can easily see

E

[
sup

i∈{0,··· ,n}

∣∣∣∣∫ sj

si

RicuP (r) (fP,i (r)− fP,i (r)) dr
∣∣∣∣q
]
≤ C |P|q . (6.25)

Combining (6.24) and (6.25) we get

E

[
sup

i∈{0,··· ,n},j≥i

∣∣∣f̂P,i (sj)− fP,i (sj)∣∣∣q] ≤ C |P|γq . (6.26)
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Then for s ≥ si, define f̃P,i (s) to be the solution to the following ODE


d
ds
f̃P,i (s) + 1

2
RicuP (s)f̃P,i (s) = 0

f̃P,i (si) = I.

Therefore

f̃P,i (s) = I − 1

2

∫ s

si

RicuP (r)f̃P,i (r) dr

and

∣∣∣f̃P,i (s)− f̂P,i (s)∣∣∣ ≤ |fP,i (si)− I|+ 1

2

∫ s

si

N
∣∣∣f̃P,i (r)− f̂P,i (r)∣∣∣ dr.

By Gronwall’s inequality we have

∣∣∣f̃P,i (s)− f̂P,i (s)∣∣∣ ≤ |fP,i (si)− I| e 1
2
N .

Thus by Lemma 6.8, it follows that

E

[
sup

i∈{0,··· ,n},s≥si

∣∣∣f̃P,i (s)− f̂P,i (s)∣∣∣q] ≤ C |P|q . (6.27)

Lastly, we look at f̃P,i (s) − T̃sT̃−1
si

where s ≥ si. Note that T̃sT̃
−1
si

satisfies the

following ODE, 
(
T̃sT̃

−1
si

)′
+ 1

2
Ricũs

(
T̃sT̃

−1
si

)
= 0(

T̃siT̃
−1
si

)
= I.

So

f̃P,i (s)− T̃sT̃−1
si

=
1

2

∫ s

si

(
RicuP (r) −Ricũr

) (
f̃P,i (r)− T̃rT̃−1

si

)
dr.
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By Gronwall’s inequality again we have

∣∣∣f̃P,i (s)− T̃sT̃−1
si

∣∣∣ ≤ CKγ |P|γ e
1
2
N ,

so

E

[
sup

i∈{0,··· ,n},s≥si

∣∣∣f̃P,i (s)− T̃sT̃−1
si

∣∣∣q] ≤ C |P|γq . (6.28)

The proof is complteted by combining Lemma 6.16 and (6.25), (6.26), (6.27) and

(6.28).

6.2.3 Convergence of KP (s) to K̃s

Recall from Definition 5.4 that KP (s) satisfies the piecewise Jacobi equation:

K′′P (s) = RuP (s) (β′P (si−1+) ,KP (s)) β′P (si−1+) for s ∈ [si−1, si)

K′P (si−1+) = f ∗P,i (1) and KP (0) = 0, for i = 1, ..., n

(6.29)

where fP,i (1) is given in Definition 2.42.

Before we state the main theorem in this section, we need some supplemen-

tary lemmas.

Lemma 6.17 Recall that n := 1
|P| and N is the curvature bound. For each q ≥ 1,

sup
n>2qN

E
[
sup
r∈P
|KP (r)|q

]
<∞. (6.30)

Proof. For all i ∈ {1, · · · , n} , recall from (5.6) that

KP (si) =
1

n

i−1∑
j=0

fP,j+1 (s) f ∗P,j+1 (1) .

where fP,i is defined in Definition 2.42.
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So for all q ≥ 1, we have

|KP (si)|q ≤ iq−1 1

nq

i−1∑
j=0

|fP,j+1 (si)|q |fP,j+1 (1)|q .

Using (6.8) we have

|KP (si)|q ≤ e2qN
∑n
k=1|∆kβ|2 . (6.31)

Then taking expectations as in Lemma 6.12 gives (6.30).

Lemma 6.18 For each q ≥ 1 and γ ∈
(
0, 1

2

)
, there exists a constant C > 0 such

that for all n > 5qN ,

E

[
sup

i∈{1,··· ,n},r∈[0,1]

|KP (r)−KP (r)|q
]
≤ C |P|2qγ

Proof. For s ∈ [si−1, si],

KP (s) = KP (si−1) (6.32)

+ f ∗P,i (1) (s− si−1) +

∫ s

si−1

RuP (s) (β′P (si−1+) ,KP (r)) β′P (si−1+) (s− r) dr.

(6.33)

Therefore

|KP (s)−KP (si−1)| (6.34)

≤ |fP,i (1)| (s− si−1) (6.35)

+

∣∣∣∣∫ s

si−1

RuP (s) (β′P (si−1+) ,KP (r)−KP (si−1) + KP (si−1)) β′P (si−1+) (s− r) dr
∣∣∣∣

≤ |fP,i (1)| (s− si−1) (6.36)

+N
|∆iβ|2

∆2
i

∫ s

si−1

|KP (r)−KP (si−1)| (s− r) dr +
1

2
N |∆iβ|2 |KP (si−1)|
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We use the shorthand

f (s) := |fP,i (1)| (s− si−1) +N
|∆iβ|2

∆2
i

∫ s

si−1

|KP (r)−KP (si−1)| (s− r) dr

+
1

2
N |∆iβ|2 |KP (si−1)| .

Then it is easily seen that

f ′ (s) = |fP,i (1)|+N
|∆iβ|2

∆2
i

∫ s

si−1

|KP (r)−KP (si−1)| dr,

f ′′ (s) = N
|∆iβ|2

∆2
i

|KP (s)−KP (si−1)| ≤ N
|∆iβ|2

∆2
i

f (s) ,

and f (s) satisfies the following ODE
f ′′ (s) = N |∆iβ|2

∆2
i
f (s) + δ (s)

f ′ (si−1) = |fP,i (1)|

f (si−1) = 1
2
N |∆iβ|2 |KP (si−1)|

(6.37)

where

δ (s) = f ′′ (s)−N |∆iβ|2

∆2
i

f (s) ≤ 0.

This ODE can be solved exactly to obtain

f (s) = Ci (s)
1

2
N |∆iβ|2 |KP (si−1)|+ Ssi−1

(s) |fP,i (1)|+
∫ s

si−1

Sr (s) δ (r) dr

where

Ci (s) := cosh
(√

N |β′P (si−1+)| (s− si−1)
)

and

Sr (s) :=
sinh

(√
N |β′P (si−1+)| (s− r)

)
√
N |β′P (si−1+)|

.
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Since δ (r) ≤ 0 and Sr (s) ≥ 0, we have

f (s) ≤ Ci (s)
1

2
N |∆iβ|2 |KP (si−1)|+ Si (s) |fP,i (1)| .

Then using the following estimate

Ssi−1
(s)

∆i

≤ Ci (s)
s− si−1

∆i

≤ eN |∆iβ|2 ,

we obtain

f (s) ≤ eN |∆iβ|2
(

1

2
N |∆iβ|2 |KP (si−1)|+ |P| |fP,i (1)|

)
(6.38)

≤ eNK
2
γ |P|

2γ

(
1

2
NK2

γ |P|
2γ sup

i∈{1,··· ,n}
|KP (si−1)|+ |P| sup

i∈{1,··· ,n},s∈[0,1]

|fP,i (s)|

)
.

Note that f ≥ 0, using (6.8) and (6.31) we have for q ≥ 1,

f q (s) ≤ Uq |P |2qγ ,

where

Uq = eqNK
2
γ |P|

2γ

(
1

2
NK2

γ + |P|1−2γ

)q
eqN

∑n
k=1|∆kβ|2

is a random variable with finite first moment which can be bounded uniformly for

n > 5qN . Therefore,

E

[
sup

i∈{1,··· ,n},r∈[0,1]

|KP (r)−KP (r)|q
]
≤ C |P|2qγ (6.39)

Lemma 6.19 Let KP and K̃ be defined as in Definition 5.6 and 4.16. Then for
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each q ≥ 1 and γ ∈
(
0, 1

2

)
, there exists a constant C > 0 such that for all n > 5qN ,

E
[
sup
s∈P

∣∣∣KP (s)− K̃s

∣∣∣q] ≤ Cq,γ |P|q . (6.40)

Proof. For all i ∈ {1, · · · , n}, KP (si) and K̃si can be rewritten as

KP (si) = fP,i−1 (si) fP,i−1 (1)−1

(
i−1∑
j=0

fP,j+1 (1) f ∗P,j+1 (1)

)
|P| (6.41)

and

K̃si = T̃siT̃
−1
1

∫ si

0

(
T̃1T̃

−1
r

)(
T̃1T̃

−1
r

)∗
dr.

First define

K̄P (si) := T̃siT̃
−1
1

∫ si

0

(
T̃1T̃

−1
r

)(
T̃1T̃

−1
r

)∗
dr,

where r = si if s ∈ [si−1, si). We will show, for each q ≥ 1,

sup
s∈P

∣∣∣K̃s − K̄P (s)
∣∣∣q ≤ C |P|q . (6.42)

Recall from (4.7) that T̃1T̃
−1
r satisfies the following ODE,

d

dr

(
T̃1T̃

−1
r

)
=

1

2

(
T̃1T̃

−1
r

)
Ricũr .

So by Lemma 4.8, ∣∣∣∣ ddr (T̃1T̃
−1
r

)∣∣∣∣ ≤ N
∣∣∣T̃1T̃

−1
r

∣∣∣ ≤ N.
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Therefore

∣∣∣(T̃1T̃
−1
r

)(
T̃1T̃

−1
r

)∗
−
(
T̃1T̃

−1
r

)(
T̃1T̃

−1
r

)∗∣∣∣ ≤ ∫ r

r

∣∣∣∣ dds [(T̃1T̃
−1
s

)(
T̃1T̃

−1
s

)∗]∣∣∣∣ ds
≤ 2

∫ r

r

∣∣∣∣ dds (T̃1T̃
−1
s

)∣∣∣∣ ∣∣∣(T̃1T̃
−1
s

)∗∣∣∣ ds
≤ C (r − r)

≤ C |P| ,

and

∣∣∣K̃si − K̄P (si)
∣∣∣ ≤ ∣∣∣T̃siT̃−1

1

∣∣∣ ∫ si

0

∣∣∣(T̃1T̃
−1
r

)(
T̃1T̃

−1
r

)∗
−
(
T̃1T̃

−1
r

)(
T̃1T̃

−1
r

)∗∣∣∣ dr
≤ C |P| .

Since the right–hand side is independent of i, we proved (6.42). Secondly, define

K̂P (si) := T̃siT̃
−1
1

(
i−1∑
j=0

fP,j+1 (1) f ∗P,j+1 (1)

)
|P| .

We will show, for each q ≥ 1, γ ∈
(
0, 1

2

)
, there exists a constant C > 0 such that

for all n > 5qN , we have

E
[
sup
s∈P

∣∣∣K̂P (s)− K̄P (s)
∣∣∣q] ≤ C |P|qγ . (6.43)
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For all j ∈ {1, · · · , n} ,

∣∣∣fP,j+1 (1) f ∗P,j+1 (1)−
(
T̃1T̃

−1
sj+1

)(
T̃1T̃

−1
sj+1

)∗∣∣∣
≤
∣∣∣fP,j+1 (1) f ∗P,j+1 (1)− fP,j+1 (1)

(
T̃1T̃

−1
sj+1

)∗∣∣∣
+
∣∣∣fP,j+1 (1)

(
T̃1T̃

−1
sj+1

)∗
−
(
T̃1T̃

−1
sj+1

)(
T̃1T̃

−1
sj+1

)∗∣∣∣
≤
(
|fP,j+1 (1)|+

∣∣∣T̃1T̃
−1
sj+1

∣∣∣) ∣∣∣fP,j+1 (1)− T̃1T̃
−1
sj+1

∣∣∣ .
Since |fP,j+1 (1)| ≤ eN

∑n
k=1|∆kβ|2 by (6.8), ans also

∣∣∣T̃1T̃
−1
sj+1

∣∣∣ ≤ 1, we have

∣∣∣fP,j+1 (1) f ∗P,j+1 (1)−
(
T̃1T̃

−1
sj+1

)(
T̃1T̃

−1
sj+1

)∗∣∣∣
≤
(
eN

∑n
k=1|∆kβ|2 + 1

)
sup

j∈{1,··· ,n}

∣∣∣fP,j+1 (1)− T̃1T̃
−1
sj+1

∣∣∣ .
Thus for all i ∈ {1, · · · , n},

∣∣∣K̂P (si)− K̃P (si)
∣∣∣q ≤ |P|q i−q i−1∑

j=0

∣∣∣fP,j+1 (1) f ∗P,j+1 (1)−
(
T̃1T̃

−1
sj+1

)(
T̃1T̃

−1
sj+1

)∗∣∣∣q
≤
(
eN

∑n
k=1|∆kβ|2 + 1

)q
sup

j∈{1,··· ,n}

∣∣∣fP,j+1 (1)− T̃1T̃
−1
sj+1

∣∣∣q .
Since

(
eN

∑n
k=1|∆kβ|2 + 1

)q
≤ eqN

∑n
k=1|∆kβ|2 , using Holder’s inequality and Theorem

6.14 we get

E
[
sup
s∈P

∣∣∣K̂P (s)− K̃P (s)
∣∣∣q] ≤ C |P|qγ .
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Lastly, we estimate K̂P (si)−KP (si). Using (6.41) we have

∣∣∣K̂P (si)−KP (si)
∣∣∣

≤
∣∣∣fP,i−1 (si) fP,i−1 (1)−1 − T̃siT̃−1

1

∣∣∣ ∣∣∣∣∣
(

i−1∑
j=0

fP,j+1 (1) f ∗P,j+1 (1)

)
|P|

∣∣∣∣∣
≤
∣∣∣fP,i−1 (si) fP,i−1 (1)−1 − T̃siT̃−1

1

∣∣∣ sup
j∈{1,··· ,n}

|fP,j+1 (1)|2

Since

∣∣∣fP,i−1 (si) fP,i−1 (1)−1 − T̃siT̃−1
1

∣∣∣
=
∣∣∣fP,i−1 (si)− T̃siT̃−1

si−1

∣∣∣ ∣∣f−1
P,i−1 (1)

∣∣+
∣∣∣T̃siT̃−1

si−1

∣∣∣ ∣∣∣∣(T̃1T̃
−1
si−1

)−1

− f−1
P,i−1 (1)

∣∣∣∣ ,
and from Lemma 5.5, we know

∣∣fP,i−1 (1)−1
∣∣ ≤ 1, and∣∣∣∣(T̃1T̃

−1
si−1

)−1

− fP,i−1 (1)−1

∣∣∣∣
≤
∣∣∣∣(T̃1T̃

−1
si−1

)−1
∣∣∣∣ ∣∣∣T̃1T̃

−1
si−1
− fP,i−1 (1)

∣∣∣ ∣∣fP,i−1 (1)−1
∣∣

≤
∣∣∣T̃1T̃

−1
si−1
− fP,i−1 (1)

∣∣∣ .
So ∣∣∣fP,i−1 (si) fP,i−1 (1)−1 − T̃siT̃−1

1

∣∣∣ ≤ 2 sup
1≤i,j≤n

∣∣∣T̃sj T̃−1
si
− fP,i (sj)

∣∣∣ .
Then using Lemma 6.15, 6.12 and Holder’s inequality we have

E
[
sup
s∈P

∣∣∣K̂P (s)−KP (s)
∣∣∣q] ≤ Cq,γ |P|qγ (6.44)

Finally Lemma 6.19 is proved by combining (6.42),(6.43) and (6.44).
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Lemma 6.20 For each q ≥ 1, there exists a constant C > 0 such that

sup
s∈[0,1]

∣∣∣K̃s − K̃s

∣∣∣q ≤ C |P|q

Proof. By the fundamental theorem of calculus, we have

K̃s = −1

2

∫ s

0

RicũrK̃rdr +

∫ s

0

(
T̃1T̃

−1
r

)∗
dr.

Using Lemma 4.8, note that Ric is bounded by (d− 1)N , we have

∣∣∣K̃s

∣∣∣ ≤ (d− 1)N

∫ s

0

∣∣∣K̃r

∣∣∣ dr + C

where C and (d− 1)N are two constants independent of s. Then using Gronwall’s

inequality we get ∣∣∣K̃s

∣∣∣ ≤ CeNs ≤ CeN (6.45)

so sup
s∈[0,1]

∣∣∣K̃s

∣∣∣ is bounded. Then using the fundamental theorem of calculus again

from s to s we have

K̃s − K̃s =− 1

2

∫ s

s

RicũrK̃rdr +

∫ s

s

(
T̃1T̃

−1
r

)∗
dr

=− 1

2

∫ s

s

Ricũr

(
K̃r − K̃r

)
dr +

∫ s

s

(
T̃1T̃

−1
r

)∗
dr +

1

2

∫ s

s

RicũrK̃rdr.

Therefore ∣∣∣K̃s − K̃s

∣∣∣ ≤ N

2

∫ s

s

∣∣∣K̃r − K̃r

∣∣∣ dr + C |P| .

By Gronwall’s inequality again we have

∣∣∣K̃s − K̃s

∣∣∣ ≤ C |P| e
N
2
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and thus

sup
s∈[0,1]

∣∣∣K̃s − K̃s

∣∣∣q ≤ C |P|q

The next theorem is a generalization to Lemma 6.19 in the sense that s now

can be taken to be arbitrary between 0 and 1.

Theorem 6.21 Let KP and K̃ be defined as in Definition 5.6 and 4.16. Then for

each q ≥ 1 and γ ∈
(
0, 1

2

)
, there exists a constant C > 0 such that for all n > 5qN ,

E

[
sup
s∈[0,1]

∣∣∣K̃s −KP (s)
∣∣∣q] ≤ Cq,γ |P|γq (6.46)

Proof. For any s ∈ [0, 1], s ∈ [si−1, si] for some i ∈ {1, · · · , n}. So

∣∣∣KP (s)− K̃s

∣∣∣ ≤ |KP (s)−KP (si−1)|

+
∣∣∣KP (si−1)− K̃si−1

∣∣∣+
∣∣∣K̃si−1

− K̃s

∣∣∣ .
Then using Lemma 6.18, 6.19 and 6.20 we prove this theorem.

6.2.4 Convergence of JP (s) to J̃s

Recall from Definition 5.9 that

JP (s) := KP (s) KP (1)−1HP (6.47)

where HP : Wo (M)→ Rd is given by

HP = uP (1)−1X (π ◦ uP (1))

and uP is interpreted in Notation 6.1.
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Proposition 6.22 Let J̃s be as in Definition 4.17 and X ∈ Γ (TM) with compact

support (here both JP and J̃ depend on X, see Definition 4.17 and 5.9), then

sup
s∈[0,1]

∣∣∣JP (s)− J̃s
∣∣∣→ 0 in L∞− (Wo (M)) as |P| → 0.

Proof. ∣∣∣JP (s)− J̃s
∣∣∣ ≤ IP (s) + IIP (s) + IIIP (s) ,

where

IP (s) =
∣∣∣K̃s −KP (s)

∣∣∣ ∣∣KP (1)−1
∣∣ |HP |

IIP (s) =
∣∣∣K̃s

∣∣∣ ∣∣∣KP (1)−1 − K̃−1
1

∣∣∣ |HP |
IIIP (s) =

∣∣∣K̃s

∣∣∣ ∣∣∣K̃−1
1

∣∣∣ ∣∣∣HP − H̃∣∣∣ .
For IP (s), since X has compact support, |HP (σ)| is bounded. By Lemma 5.5∣∣KP (1)−1

∣∣ ≤ 1. Then using Theorem 6.21 we have

E
[

sup
0≤s≤1

IqP (s)

]
≤ C |P|qγ for n > 5qN. (6.48)

For IIP (s) : since

KP (1)−1 − K̃−1
1 = KP (1)−1

(
K̃1 −KP (1)

)
K̃−1

1 , (6.49)

so

IIP (s) ≤
∣∣∣K̃s

∣∣∣ ∣∣KP (1)−1
∣∣ ∣∣∣K̃1 −KP (1)

∣∣∣ ∣∣∣K̃−1
1

∣∣∣ |HP |
≤ C sup

s∈[0,1]

∣∣∣K̃s

∣∣∣ ∣∣∣K̃1 −KP (1)
∣∣∣ .

Recall from (6.45) that sup
s∈[0,1]

∣∣∣K̃s

∣∣∣ is bounded (the bound is deterministic), using
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Theorem 6.21 again we have

E
[

sup
0≤s≤1

IIqP (s)

]
≤ C |P|qγ for n > 5qN. (6.50)

For IIIP (s): Since F : O (M) → Rd given by F (y) = y−1X ◦ π (y) is bounded,

and by Wong–Zakai approximation (Corollary 6.5), uP (1)→ ũ1 in L∞− (Wo (M))

as |P| → 0, by DCT,

HP → H̃ in L∞− (Wo (M)) as |P| → 0. (6.51)

Also since sup
s∈[0,1]

∣∣∣K̃s

∣∣∣ and
∣∣∣K̃−1

1

∣∣∣ are bounded, we have

sup
0≤s≤1

IIIP (s)→ 0 in L∞− (Wo (M)) as |P| → 0. (6.52)

Combining (6.48), (6.50) and (6.52) we prove this proposition.

6.3 Convergence of X̃
tr,ν1P
P to

(
X̃
)tr,ν

Recall from Lemma 5.11 and 4.43 that

X̃
tr,ν1
P

P = −X̃P +

∫ 1

0

〈J ′P (s+) , dβP,s〉+ divX̃P (6.53)

and

(
X̃
)tr,ν

= −X̃ +
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
−

d∑
α=1

〈
XZα

(
C̃H̃

)
, eα

〉
.

(6.54)

Theorem 6.23 If M has parallel curvature tensor, i.e. ∇R ≡ 0, then for any

f ∈ FC1
b ,

X̃
tr,ν1
P

P fP − X̃ tr,νf → 0 in L∞− (Wo (M)) as |P| → 0
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where if f = F (ũ), then fP : HP (M)→ R is defined to be F (u) ∈ FC1
P,b.

Proof. In correspondence with the three–term formulae (6.53) and (6.54), this

theorem is decomposed as three propositions: Proposition 6.25 states that

X̃PfP → X̃f in L∞− (Wo (M)) as |P| → 0,

Proposition 6.26 states that

∫ 1

0

〈J ′P (s+) , dβP,s〉 →
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
in L∞− (Wo (M))

and Proposition 6.27 states that

divX̃P →
d∑

α=1

〈
−XZα

(
C̃H̃

)
, eα

〉
in L∞− (Wo (M)) as |P| → 0.

Thus the proof will be complete once the stated propositions are proved.

Remark 6.24 For Proposition 6.25 and 6.26 we assume the assumption of bounded

sectional curvature as is mentioned in the begining of this chapter. For Proposition

6.27 we further require the curvature tensor to be covariantly constant.

Proposition 6.25 If X ∈ Γ (TM) with compact support and f ∈ FC1
b , then

X̃PfP − X̃f → 0 in L∞− (Wo (M)) as |P| → 0.

Proposition 6.26 Keeping the notation above, we have

∫ 1

0

〈J ′P (s+) , dβP,s〉 −
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
→ 0 (6.55)

in L∞− (Wo (M)) as |P| → 0.
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Proposition 6.27 Continuing the notation above, if we further assume ∇R ≡ 0,

then

divX̃P −
d∑

α=1

〈
−XZα

(
C̃H̃

)
, eα

〉
→ 0 in L∞− (Wo (M)) as |P| → 0.

Proof of Proposition 6.25. Notice that X̃P = XJP and X̃ = X J̃ , since for a

general geometric vector field of the form Xz and a cylinder function f = F (u),

(Xzf) (σ) =
n∑
i=1

〈
(∇if) (σ) , Xz

si
(σ)
〉
,

where (∇if) denotes the gradient of F in the i–th variable. Therefore, note that

π ◦ uP = φ ◦ βP , we have

X̃PfP (φ ◦ βP) =
n∑
i=1

〈(∇if) (π ◦ uP) , uP (si) JP (si)〉

=
n∑
i=1

〈
u−1
P (si) (∇if) (π ◦ uP) , JP (si)

〉
,

and

X̃f =
n∑
i=1

〈
(∇if) (π ◦ ũ) , ũsi J̃si

〉
=

n∑
i=1

〈
ũ−1
si

(∇if) (π ◦ ũ) , J̃si

〉
.

If f ∈ FC1
b , then u→ u−1

si
(∇if) (π ◦ u) is continuous and bounded. Using Corollary

6.5 and DCT, we know

u−1
P (si) (∇if) (π ◦ uP)→ ũ−1

si
(∇if) (π ◦ ũ) in L∞− (Wo (M)) as |P| → 0.

(6.56)

The proof is then completed by making use of (6.56) and Proposition 6.22.
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Proof of Proposition 6.26.

∫ 1

0

〈J ′P (s+) , dβP (s)〉 =
n∑
i=1

〈
JP (si)− JP (si−1)

∆i

,∆iβ

〉
=

n∑
i=1

〈J ′P (si−1) ,∆iβ〉+
n∑
i=1

〈∫ si

si−1

J ′′P (s) (s− si−1) ds,∆iβ

〉
= IP + IIP ,

where

IP =
n∑
i=1

〈J ′P (si−1) ,∆iβ〉

and

IIP =
n∑
i=1

〈∫ si

si−1

J ′′P (s) (s− si−1) ds,∆iβ

〉
.

Using the fact that JP satisfies Jacobi equation, we further have

IIP =
n∑
i=1

〈
1

∆2
i

∫ si

si−1

RuP (s) (∆iβ, JP (s)) ∆iβ (s− si−1) ds,∆iβ

〉
=

n∑
i=1

1

∆2
i

∫ si

si−1

〈
RuP (s) (∆iβ, JP (s)) ∆iβ,∆iβ

〉
(s− si−1) ds.

Since the curvature tensor is anti-symmertric,

〈
RuP (s) (∆iβ, JP (s)) ∆iβ,∆iβ

〉
≡ 0 ν–a.s,

so IIP ≡ 0.

IP =
n∑
i=1

〈
f ∗P,i (1) KP (1)−1HP ,∆iβ

〉
=

n∑
i=1

〈
KP (1)−1HP , fP,i (1) ∆iβ

〉
=

〈
KP (1)−1HP ,

n∑
i=1

fP,i (1) ∆iβ

〉
.

For each i ≥ 1, s ∈ [si−1, si] , define gi (s) = SP,i (s)−CP,i (s)SP,i−1. Then Taylor’s
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expansion of gi at si−1 gives

gi (s) = −SP,i−1 + (s− si−1) I +

∫ s

si−1

RuP (r) (β′P (r) , gi (r)) β
′
P (r) (s− r) dr.

So

|gi (s)| ≤ |SP,i−1 − (s− si−1) I|+N |β′P (si−1)|2
∫ s

si−1

|gi (r)| (s− r) dr.

By Gronwall’s inequality and Lemma 6.8, we have

|gi (si)| ≤
N

6
K2
γ |P|

2γ+1 e
1
2
N |∆iβ|2 .

Note that gi (si) = SP,i − CP,iSP,i−1, so by Lemma 6.6,

|fP,i (1)− fP,i−1 (1)| ≤ 1

|P|
|CP,n| · · · · · |CP,i+1| · |SP,i − CP,iSP,i−1|

≤ N

6
K2
γ |P|

2γ e
∑n
i=1 N |∆iβ|2

and thus∣∣∣∣∣
n∑
i=1

fP,i (1) ∆iβ −
n∑
i=1

fP,i−1 (1) ∆iβ

∣∣∣∣∣
q

≤ |P|1−q
[

n∑
i=1

|fP,i (1)− fP,i−1 (1)|q |∆iβ|q
]

≤ CK3q
γ |P|

3qγ−q e
∑n
i=1 qN |∆iβ|2 .

Picking γ ∈
(

1
2
, 1

3

)
we know for any q ≥ 1,

E

[∣∣∣∣∣
n∑
i=1

fP,i (1) ∆iβ −
n∑
i=1

fP,i−1 (1) ∆iβ

∣∣∣∣∣
q]
→ 0 as |P| → 0. (6.57)
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Since fP,i−1 (1) = fP,0 (1) f−1
P,0 (si−1)

SP,i−1

∆i−1
, so

〈
KP (1)−1HP ,

n∑
i=1

T̃si−1
∆iβ

〉
(6.58)

=

〈
f ∗P,0 (1) KP (1)−1HP ,

n∑
i=1

f−1
P,0 (si−1)

SP,i−1

∆i−1

∆iβ

〉
. (6.59)

Using Lemma 5.5 we have
∣∣f−1
P,0 (si−1)

∣∣ ≤ 1. Then using Lemma 6.8 we obtain

∣∣∣∣f−1
P,0 (si−1)

SP,i−1

∆i−1

− f−1
P,0 (si−1)

∣∣∣∣ |∆iβ| ≤
∣∣∣∣SP,i−1

∆i−1

− I
∣∣∣∣ |∆iβ|

≤
NK3

γ |P|
3γ+1

6
e
N
2
|∆i−1β|2 .

Therefore for each q ≥ 1,∣∣∣∣∣
n∑
i=1

f−1
P,0 (si−1)

SP,i−1

∆i−1

∆iβ −
n∑
i=1

f−1
P,0 (si−1) ∆iβ

∣∣∣∣∣
q

(6.60)

≤ |P|1−q
n∑
i=1

N qK3q
γ |P|

3qγ+q

6q
e
Nq
2
|∆i−1β|2 (6.61)

≤ C |P|3γqK3q
γ e

∑n
i=1

Nq
2
|∆i−1β|2 (6.62)

and thus

E

[∣∣∣∣∣
n∑
i=1

f−1
P,0 (si−1)

SP,i−1

∆i−1

∆iβ −
n∑
i=1

f−1
P,0 (si−1) ∆iβ

∣∣∣∣∣
q]
≤ C |P|3γq |P|→0−→ 0.

Rewrite
n∑
i=1

f−1
P,0 (si−1) ∆iβ as

∫ 1

0

fP (s) dβs,

where fP (s) :=
∑n

i=1 f
−1
P,0 (si−1) 1[si−1,si) (s). Define

Mr :=

∫ r

0

fP (s) dβs −
∫ r

0

T̃−1
s dβs,
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it is easy to see Mr is a martingale, then by Burkholder-Davis-Gundy inequality,

for each q ≥ 1,

E

[
sup
r∈[0,1]

|Mr|q
]
≤ CE

[
〈M〉

q
2
1

]
.

Since

〈M〉1 ≤
∫ 1

0

∣∣∣fP (s)− T̃−1
s

∣∣∣2 ds ≤ 2

∫ 1

0

∣∣∣fP (s)− T̃−1
s

∣∣∣2 ds+ 2

∫ 1

0

∣∣∣T̃−1
s − T̃−1

s

∣∣∣2 ds,
we have

∫ 1

0

∣∣∣fP (s)− T̃−1
s

∣∣∣2 ds =
n∑
i=1

∣∣∣f−1
P,0 (si−1)− T̃−1

si−1

∣∣∣2 ∆i

≤
n∑
i=1

∣∣f−1
P,0 (si−1)

∣∣2 ∣∣∣fP,0 (si−1)− T̃si−1

∣∣∣2 ∣∣∣T̃−1
si−1

∣∣∣2 ∆i

≤ sup
s∈P

∣∣∣fP,0 (s)− T̃s
∣∣∣2 (6.63)

and

∫ 1

0

∣∣∣T̃−1
s − T̃−1

s

∣∣∣2 ds =

∫ 1

0

∣∣∣∣∫ s

s

(
T̃−1
r

)′
dr

∣∣∣∣2 ds ≤ ∫ 1

0

N |s− s|2 ds ≤ N |P|2 .

Therefore,

〈M〉
q
2
1 ≤ C

(∫ 1

0

∣∣∣fP (s)− T̃−1
s

∣∣∣2 ds) q
2

+ C

(∫ 1

0

∣∣∣T̃−1
s − T̃−1

s

∣∣∣2 ds) q
2

≤ C

(
sup
s∈P

∣∣∣fP,0 (s)− T̃s
∣∣∣q + |P|q

)
.

Then using Theorem 6.15 we have

E
[
〈M〉

q
2
1

]
≤ C |P|qγ . (6.64)
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From (6.64) it follows that for each q ≥ 1,

∫ 1

0

fP (s) dβs −
∫ 1

0

T̃−1
s dβs → 0 in Lq (Wo (M)) as |P| → 0.

Then using Eq.(6.49), Eq.(6.51) and Theorem 6.21 we have

KP (1)−1HP → K̃−1
1 H̃ in L∞− (Wo (M)) as |P| → 0

and

f ∗P,0 (1)→ T̃ ∗1 in L∞− (Wo (M)) as |P| → 0,

therefore

IP →
〈
T ∗1 K̃−1

1 H̃,

∫ 1

0

T̃−1
s dβs

〉
in L∞− (Wo (M)) as |P| → 0. (6.65)

Lastly, notice that

K̃1 = T̃1

∫ 1

0

(
T̃ ∗r T̃r

)−1

drT ∗1 ,

so

K̃−1
1 =

(
T̃−1

1

)∗
C̃

where C̃ is defined in Definition 4.36, and

〈
T ∗1 K̃−1

1 H̃,

∫ 1

0

T̃−1
s dβs

〉
=

〈
C̃H̃,

∫ 1

0

T̃−1
s dβs

〉
(6.66)

=
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
. (6.67)

Using (6.65) we get as |P| → 0,

∫ 1

0

〈J ′P (s+) , dβP,s〉 −
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
→ 0 in L∞− (Wo (M)) .



114

Lemma 6.28 Fix s ∈ [0, 1], consider an one parameter family of paths {σt} ⊂

HP (M) and denote by ut (·) : the Horizontal lift of σt. For simplicity, we will

denote ut (1) by ut, σ0 by σ, the derivative with respect to t by · and the derivative

with respect to s by ′. For any X ∈ Γ (TM), define fX : O (M) 7→ Rd ' ToM by

fX (u) = u−1 (X ◦ π) (u)

Then:

d

dt
|0fX (ut) =

(
d

dt
|0ut
)
fX = u−1

0 ∇σ̇(1)X (6.68)

−
∫ 1

0

Ru0(r)

(
u0 (r)−1 σ′ (r+) , u0 (r)−1 σ̇ (r)

)
drfX (u0)

(6.69)

Proof. Based on the decomposition of O (M) as in Definition A.12, we have:

u̇0 = Ba (u0) + Ã (u0)

where a = u−1
0

d
dt
|0σt (1) = u−1

0 σ̇ (1) ∈ ToM and Ã (u0) = d
dt
|0u0e

tA for some

A = u−1
0
Out
dt

(0) ∈ so(d) and Ba (u0) = d
dt
|0//t (γ)u0 where γ satisfies γ̇ (0) = u0a

and γ (0) = σ (1). In this example, we can choose γ(·) to be σ· (1). So

Ba (u0) fX =
d

dt
|0u−1

0 //−1
t (γ) (X ◦ π) (//t (γ)u0) = u−1

0 ∇ ˙σ(s)X

and

Ã (u) fX =
d

dt
|0e−tAu−1 (X ◦ π)

(
uetA

)
= −Au−1

0 X (σ (1)) = −Afx (u0)



115

Following the computation in Theorem 3.3 in [2], we know that

A =

∫ 1

0

Ru0(r)

(
u0 (r)−1 σ′ (r+) , u0 (r)−1 σ̇ (r)

)
dr.

Proof of Proposition 6.27. Because of Lemma 4.44, it suffices to prove

divX̃P → divX ◦ E1 −
d∑

α=1

〈
C̃A1 〈Zα〉 H̃, eα

〉
as |P| → 0 in L∞− (Wo (M)) .

Recall from Definition 5.9 that

JP (s) = KP (s) KP (1)−1HP .

From there we get, for each α ∈ {1, . . . , d} and j ∈ {1, . . . , n}, that

J ′P (sj−1+) = K′P (sj−1+) KP (1)−1HP = f ∗P,j (1) KP (1)−1HP ,

and

Xhα,jJ ′P (sj−1+) = IP (α, j) + IIP (α, j) + IIIP (α, j) ,

where

IP (α, j) =
(
Xhα,jf ∗P,j (1)

)
KP (1)−1HP (6.70)

IIP (α, j) = f ∗P,j (1)
(
Xhα,jKP (1)−1)HP

IIIP (α, j) = f ∗P,j (1) KP (1)−1 (Xhα,jHP
)
.

Using Proposition 5.12, we have

divX̃P =
d∑

α=1

n∑
j=1

〈(IP + IIP + IIIP) (α, j) , eα〉
√

∆j
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Based on the expression above, Proposition 6.27 will be proved as a corollary of

Lemma 6.29 to Lemma 6.32. In Lemma 6.29 and Lemma 6.30 we show that

d∑
α=1

n∑
j=1

〈IIIP (α, j) , eα〉
√

∆j →
d∑

α=1

〈
C̃A1 〈Zα〉 H̃, eα

〉
as |P| → 0.

In Lemma 6.31 we show that

d∑
α=1

n∑
j=1

〈IIP (α, j) , eα〉
√

∆j → 0 as |P| → 0.

In Lemma 6.32 we show that

d∑
α=1

n∑
j=1

〈IP (α, j) , eα〉
√

∆j → 0 as |P| → 0.

Lemma 6.29 If ∇R ≡ 0, then

d∑
α=1

n∑
j=1

〈IIIP (α, j) , eα〉
√

∆j →
d∑

α=1

〈
C̃A1 〈Zα〉 H̃, eα

〉
(6.71)

in L∞− (Wo (M)) as |P| → 0.

Proof. Applying Lemma 6.28 to Xhα,jHP gives

d∑
α=1

n∑
j=1

〈IIIP (α, j) , eα〉
√

∆j = IVP + VP ,

where

IVP =
d∑

α=1

n∑
j=1

〈
f ∗P,j (1) KP (1)−1 uP (1)−1∇

uP (1)
√

∆jfP,j(1)eα
X, eα

〉√
∆j
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and

VP = −
d∑

α=1

n∑
j=1

〈
f ∗P,j (1) KP (1)−1

∫ 1

0

RuP (r) (β′P (r+) , hα,j (r)) drHP , eα

〉√
∆j.

We first compute IVP . After viewing L (·) = uP (1)−1∇uP (1)(·)X as a linear func-

tional on Rd we have

IVP =
n∑
j=1

d∑
α=1

〈
f ∗P,j (1) KP (1)−1 L (fP,j (1) eα) , eα

〉
∆j

=
n∑
j=1

Tr
(
f ∗P,j (1) KP (1)−1 LfP,j (1)

)
∆j

=
n∑
j=1

Tr
(
∆jfP,j (1) f ∗P,j (1) KP (1)−1 L

)
= Tr

(
n∑
j=1

∆jfP,j (1) f ∗P,j (1) KP (1)−1 L

)
(6.72)

= Tr (L)

= divX ◦ E1,

where in Eq. (6.72) we use identity (5.9):

n∑
j=1

∆jfP,j (1) f ∗P,j (1) = KP (1)

and given A ∈Md×d, Tr (A) :=
∑d

α=1 〈Aeα, eα〉 is the trace of the matrix A.

The proof of the lemma will be completed by Lemma 6.30 below which

shows VP term converges to the right side of Eq. (6.71).

Lemma 6.30 Let VP be defined as in Lemma 6.29 and ∇R ≡ 0, then

VP −
d∑

α=1

〈
C̃A1 〈Zα〉 H̃, eα

〉
→ 0 in L∞− (Wo (M)) as |P| → 0. (6.73)



118

Proof. Recall that

VP = −
d∑

α=1

n∑
j=1

〈
f ∗P,j (1) KP (1)−1

∫ 1

0

RuP (r) (β′P (r+) , hα,j (r)) drHP , eα

〉√
∆j.

For each α ∈ {1, . . . , d} and j ∈ {1, . . . , n}, since hα,j (r) =
√

∆jfP,j (r), we have

∫ 1

0

RuP (r)

(
β′P (r+) ,

1√
∆j

hα,j (r)

)
dr =

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr

=

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr + e0

where e0 := e0,1 + e0,2

e0,1 =

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr −
∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr

and

e0,2 =

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr −
∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr.

Since ∇R ≡ 0, we have argued in Lemma 4.44 that Ru is independent of u, therefore

e0,1 = 0.

As for e0,2, since

|e0,2|q ≤ N sup
r∈[0,1]

|β′P (r+)|q sup
r∈[0,1],j∈{1,··· ,n}

|fP,j (r)− fP,j (r)|q ,

using (6.15) we have

|e0,2|q ≤ Cq,γK
q
γ |P|

qγ−1 |P|2qγ eqN
∑n
k=1|∆kβ|2K2q

γ

(
1 +

NKγ |P|γ

6

)q
,
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and from which it follows

E [|e0,2|q] ≤ C |P|3qγ−1 ∀n ≥ 5qN. (6.74)

Picking γ > 1
3
, so 3qγ − 1 > 0 for any q ≥ 1, so E [|e0,2|q]→ 0 as |P| → 0.

Next we analyze

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr =
n∑
k=1

RuP (sk−1) (∆kβ, fP,j (sk−1) eα)

=

∫ 1

0

g1 (s) dβs,

where

g1 (s) =
n∑
k=1

RuP (sk−1) (·, fP,j (sk−1) eα) 1[sk−1,sk) (s) .

Define

g2 (s) =
n∑
k=1

Rũsk−1
(·, fP,j (sk−1) eα) 1[sk−1,sk) (s)

g3 (s) =
n∑

k=j+1

Rũsk−1

(
·, T̃sk−1

T̃−1
sj
eα

)
1[sk−1,sk) (s)

g4 (s) = Rũs

(
·, T̃sT̃−1

sj
eα

)
1[sj ,1] (s)

g5 (s) = Rũs

(
·, T̃sT̃−1

sj
eα

)
1[sj ,1] (s) .

For each i = 1, 2, 3, 4, denote

eP,i (r) =

∫ r

0

gi (s) dβs −
∫ r

0

gi+1 (s) dβs,
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then

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr −
∫ 1

sj

Rũr

(
dβr, T̃rT̃

−1
sj
eα

)
= eP,1 (1) + eP,2 (1) + eP,3 (1) + eP,4 (1) .

We are about to show for each i ∈ {1, 2, 3, 4},

eP,i (1)→ 0 in L∞− (Wo (M)) as |P| → 0. (6.75)

For eP,1 (1), since

〈eP,1〉 (r) ≤
∫ r

0

|g1 (s)− g2 (s)|2 ds,

so for each q ≥ 1,

E
[
〈eP,1〉

q
2 (1)

]
≤ E

[∫ 1

0

|g1 (s)− g2 (s)|q ds
]

≤ E

[
n∑
k=1

∣∣∣RuP (sk−1) −Rũsk−1

∣∣∣q |fP,j (sk−1)|q ∆k

]

≤ E

[
AqP sup

j∈{1,··· ,n},s∈[0,1]

|fP,j (s)|q
]
,

where

AP := sup
s∈[0,1]

∣∣RuP (s) −Rũs

∣∣ .
Using Theorem 6.4 we know

E [AqP ] ≤ C (q, γ) |P|qγ ∀γ ∈
(

0,
1

2

)
, q ≥ 1.

Then by Holder’s inequality and Lemma 6.12,

sup
n≥2qN

E

[
AqP sup

j∈{1,··· ,n},s∈[0,1]

|fP,j (s)|q
]
≤ C (q, γ) |P|qγ .
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Then using Burkholder-Davies-Gundy inequality, we have

E [|eP,1 (1)|q] ≤ CE
[
〈eP,1〉

q
2 (1)

]
≤ C (q, γ) |P|qγ

and thus

eP,1 (1)→ 0 in L∞− (Wo (M)) as |P| → 0. (6.76)

For eP,2 (1), since

〈eP,2〉 (r) ≤
∫ r

0

|g2 (s)− g3 (s)|2 ds,

so for each q ≥ 1,

E
[
〈e2〉

q
2 (1)

]
≤ E

[∫ 1

0

|g2 (s)− g3 (s)|q ds
]

≤ E

[
n∑
k=1

∣∣Rũ(sk−1)

∣∣q ∣∣∣fP,j (sk−1)− T̃sk−1
T̃−1
sj

∣∣∣q ∆k

]

≤ E
[
Nsup

j,s

∣∣∣fP,j (s)− T̃sT̃−1
sj

∣∣∣q] .
By Holder’s inequality and Theorem 6.15,

E
[
Nsup

j,s

∣∣∣fP,j (s)− T̃sT̃−1
sj

∣∣∣q] ≤ C (q, γ) |P|qγ .

Then using Burkholder-Davies-Gundy inequality, we get

E [|eP,2 (1)|q] ≤ CE
[
〈eP,2〉

q
2 (1)

]
≤ C (q, γ) |P|qγ

and thus

eP,2 (1)→ 0 in L∞− (Wo (M)) as |P| → 0. (6.77)

For eP,3 (1), since

〈eP,3〉 (r) ≤
∫ r

0

|g3 (s)− g4 (s)|2 ds,
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so for each q ≥ 1,

E
[
〈eP,3〉

q
2 (1)

]
≤ E

[∫ 1

0

|g3 (s)− g4 (s)|q ds
]

≤ E

[
n∑
k=1

∣∣Rũ(sk−1)

∣∣q ∫ sk

sk−1

∣∣∣T̃sT̃−1
sj
− T̃sk−1

T̃−1
sj

∣∣∣q ds]
≤ C |P|q .

Then using Burkholder-Davies-Gundy inequality, we get

E [|eP,3 (1)|q] ≤ CE
[
〈eP,3〉

q
2 (1)

]
≤ C (q, γ) |P|q

and thus

eP,3 (1)→ 0 in L∞− (Wo (M)) as |P| → 0. (6.78)

For eP,4 (1), since

〈eP,4〉 (r) ≤
∫ r

0

|g5 (s)− g4 (s)|2 ds,

so for each q ≥ 1,

E
[
〈eP,4〉

q
2 (1)

]
≤ E

[∫ 1

0

|g5 (s)− g4 (s)|q ds
]

≤ E

[
n∑
k=1

∣∣∣T̃sT̃−1
sj

∣∣∣q ∫ sk

sk−1

∣∣∣Rũs −Rũsk−1

∣∣∣q ds]
≤ E

[
Kq
γ

]
|P|qγ .

Then using Burkholder-Davies-Gundy inequality, we have

E [|eP,4 (1)|q] ≤ CE
[
〈eP,4〉

q
2 (1)

]
≤ C (q, γ) |P|qγ

and thus

eP,4 (1)→ 0 in L∞− (Wo (M)) as |P| → 0. (6.79)
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Combining Eq.(6.76), (6.77), (6.78) and (6.79) gives Eq. (6.75). Then using

Eq.(6.75) and Eq.(6.74) we have

∣∣∣VP − ṼP∣∣∣→ 0 in L∞− (Wo (M)) as |P| → 0. (6.80)

where

ṼP = −
d∑

α=1

n∑
j=1

〈(
T̃−1
sj

)∗
T̃ ∗1 K̃−1

1

∫ 1

sj

Rũr

(
dβr, T̃rT̃

−1
sj
eα

)
H̃, eα

〉
∆j.

We view ṼP := ṼP (eα, eα) as a bilinear form on Rd, therefore

ṼP (eα, eα) = ṼP

(
T̃sjeα,

(
T̃−1
sj

)∗
eα

)
=

d∑
α=1

n∑
j=1

〈
T̃ ∗1K

−1
1

∫ 1

sj

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

sj

(
T̃−1
sj

)∗
eα

〉
∆j

=
d∑

α=1

∫ 1

0

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds. (6.81)

Then we are about to show

ṼP −
d∑

α=1

∫ 1

0

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds→ 0 (6.82)

in L∞− (Wo (M)) as |P| → 0.

Using Eq.(6.81) we know

the left–hand side of Eq.(6.82) ≤
d∑

α=1

∫ 1

0

(IP (s) + IIP (s)) ds,

where

IP (s) =

〈
T̃ ∗1K

−1
1

∫ s

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
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and

IIP (s) =

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃,
(
T̃−1
s

(
T̃−1
s

)∗
− T̃−1

s

(
T̃−1
s

)∗)
eα

〉
.

(6.83)

For IP (s), since

|IP (s)|q ≤ C

∣∣∣∣∫ s

s

Rũr

(
dβr, T̃reα

)∣∣∣∣q ,
by Burkholder-Davies-Gundy inequality,

E [|IP (s)|q] ≤ C |P|
q
2 .

Notice that

E [|IIP (s)|q] ≤ C |P|q E
[∣∣∣∣∫ s

s

Rũr

(
dβr, T̃reα

)∣∣∣∣q] ≤ C |P|q ,

using Holder’s inequality, we have

E [|the left–hand side of Eq.(6.82)|q]

≤ C
d∑

α=1

n∑
j=1

∫ sj

sj−1

E [|IP (s)|q + |IIP (s)|q]

≤ C

d∑
α=1

n∑
j=1

∫ sj

sj−1

(
|P|

q
2 + |P|q

)
= C |P|

q
2

and from which Eq. (6.82) follows.
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The last step is to show a change of integration order:

d∑
α=1

∫ 1

0

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds

=
d∑

α=1

∫ r

0

〈
T̃ ∗1K

−1
1

∫ 1

0

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds. (6.84)

Define

f (s) =
d∑

α=1

∫ t

0

〈
T̃ ∗1K

−1
1

∫ t

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds

and

g (s) =
d∑

α=1

∫ r

0

〈
T̃ ∗1K

−1
1

∫ t

0

Rũr

(
dβr, T̃reα

)
H̃,

∫ r

0

T̃−1
s

(
T̃−1
s

)∗
dseα

〉
.

Then

df =
d∑

α=1

〈
T̃ ∗1K

−1
1 Rũt

(
dβt, T̃teα

)
H̃,

∫ t

0

T̃−1
s

(
T̃−1
s

)∗
dseα

〉
and f (0) ≡ 0. Since

dg =
d∑

α=1

〈
T̃ ∗1K

−1
1 Rũt

(
dβt, T̃teα

)
H̃,

∫ t

0

T̃−1
s

(
T̃−1
s

)∗
dseα

〉
= df

and g (0) = 0, Eq. (6.84) is proved by observing that left–hand side= f1 = g1 =

right–hand side.

Finally, after changing the pair (eα, eα) to

(∫ r

0

T̃−1
s

(
T̃−1
s

)∗
dseα,

[(∫ r

0

T̃−1
s

(
T̃−1
s

)∗
ds

)−1
]∗
eα

)

in the right–hand side of Eq. (6.84) (note that this action does not change its value
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by exactly the same argument as (6.81)), and recognizing

T̃r

∫ r

0

T̃−1
s

(
T̃−1
s

)∗
dseα = Zα (r) ,

we combine Eq. (6.80), (6.82) and (6.84) to prove Eq.(6.73).

Lemma 6.31 If ∇R ≡ 0, then

d∑
α=1

n∑
j=1

〈IP (α, j) , eα〉
√

∆j → 0

as |P| → 0 in L∞− (Wo (M)) .

Proof. Define g̃j (s) := Xhα,jfP,j (s) and gj (s) := g̃j (s) − g̃j (s). Then we know

that gj (s) satisfies the following ODE: for k = j, · · · , n
g′′j (s) = AP,k (s) gj (s) + ˙AP,k (s) (fP,j (s)− fP,j (s)) s ∈ [sk−1, sk]

gj (s) = 0

g′j (s) = 0

where

˙AP,k (s) =
d

dt
|0
(
RuP (t,s) (β′P (t, s) , ·) β′P (t, s)

)
.

For s ∈ [sk−1, sk] , we know

gj (s) =

∫ s

sk−1

Sk (s− r) ȦkP (r) (fP,j (r)− fP,j (sk−1)) dr.

Using Lemma 6.8 and 6.15, we have

|fP,i (s)− fP,i (s)|q ≤
N q

2q
|∆kβ|2q eN |∆kβ|2e

1
2
qN

∑n
k=1|∆kβ|2

(
1 +

NKγ |P|γ

6

)q
≤ C |P|2qγ eqN

∑n
k=1|∆kβ|2K2q

γ

(
1 +

NKγ |P|γ

6

)q
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and

|Sk (s− r)| ≤ (s− r)
(

1 +
N

6
K2
γ |P|

2γ e
1
2
N

∑n
i=1|∆iβ|2

)
.

Therefore

|gj (s)|

≤
∫ s

sk−1

|Sk (s− r)|
∣∣∣ȦkP (r)

∣∣∣ |fP,j (r)− fP,j (sk−1)| dr

≤ C sup
k∈{1,...,n},r∈[0,1]

∣∣∣ ˙AP,k (r)
∣∣∣ |P|2γK2

γ

(
1 +

NKγ |P|γ

6

)
eN

∑n
i=1|∆iβ|2

∫ s

sk−1

(s− r) dr

= C sup
k∈{1,...,n},r∈[0,1]

∣∣∣ȦkP (r)
∣∣∣ |P|2γ+2K2

γ

(
1 +

NKγ |P|γ

6

)
eN

∑n
i=1|∆iβ|2 ,

and thus

|g̃j (1)| ≤
n∑
k=j

|gj (sk)| (6.85)

≤ C sup
k∈{1,...,n},r∈[0,1]

∣∣∣ȦkP (r)
∣∣∣ |P|2γ+1 K2

γ

(
1 +

NKγ |P|γ

6

)
eN

∑n
i=1|∆iβ|2 .

(6.86)

It remains to analyze sup
k∈{1,...,n},r∈[0,1]

∣∣∣ȦkP (r)
∣∣∣:

ȦkP (r) =

(
d

dt
|0RuP (t,s)

)
(β′P (s) , ·) β′P (s) +RuP (s)

(
d

dt
|0β′P (t, s) , ·

)
β′P (s)

+RuP (s) (β′P (s) , ·) d
dt
|0β′P (t, s)

Using ∇R ≡ 0 we find

(
d

dt
|0RuP (t,s)

)
(β′P (s) , ·) β′P (s) = 0.
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Notice that

β′P (t, s) = us (σt)
−1 σ′P (t, s) ,

using Lemma 6.28 and we have

Xhα,jβ′P (sk−1+) =
δjkeα√

∆j

−
∫ sk−1

0

RuP (τ) (β′P (τ+) , hα,j (τ)) dτβ′P (sk−1+) . (6.87)

Therefore

∣∣∣ȦkP (r)
∣∣∣ ≤ N

∣∣Xhα,jβ′P (sk−1+)
∣∣ |β′P (sk−1)|

≤ N

(
1√
|P|

+Nsup
j,s
|hα,j (s)| sup

s∈[0,1]

|β′P (s)|2
)
|β′P (sk−1)|

≤ N

(
1√
|P|

+Nf (Kγ)
√
|P| |P|2(γ−1)

)
Kγ |P|γ−1

≤ f (Kγ) |P|3γ−
5
2

where f (Kγ) is some random variable in L1 (Wo (M)), so

|g̃j (1)| ≤ Cf (Kγ) |P|5γ−
3
2 . (6.88)

From above one can see

d,n∑
α,j=1,1

〈I, eα〉
√

∆j =

d,n∑
α,j=1,1

〈(
Xhα,jT ∗j

)
K−1
P (1)HP , eα

〉√
∆j

=
d∑

α=1

〈
n∑
j=1

(
g̃∗j (1)

√
|P|
)

KP (1)−1HP , eα

〉
.

From (6.88) we know that
∑n

j=1

(
g̃∗j (1)

√
|P|
)
→ 0 in L∞− (W ), also notice that
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KP (1)−1HP → K (1)−1 H̃ in L∞− (Wo (M)), so:

d∑
α=1

〈
n∑
j=1

(
g̃∗j (1)

√
|P|
)

KP (1)−1HP , eα

〉
→ 0 in L∞− (Wo (M)) .

Lemma 6.32 If ∇R ≡ 0, then

d∑
α=1

n∑
j=1

〈IIP (α, j) , eα〉
√

∆j → 0

as |P| → 0 in L∞− (Wo (M)) .

Proof. Since

Xhα,j
(
KP (1)−1) = −KP (1)−1Xhα,j (KP (1)) KP (1)−1 ,

so ∣∣Xhα,j
(
KP (1)−1)∣∣ ≤ ∣∣Xhα,j (KP (1))

∣∣ .
Then using g̃j (s) := Xhα,j (KP (s)) and this lemma follows from a Lemma 6.31-type

argument.



Chapter 7

Proof of Main Theorem

First we restate the main theorem of our paper.

Theorem 7.1 (Theorem 1.12) If M is a symmetric space of non–compact type,

then for any restricted cylinder function f ∈ RFC1
b ,

lim
|P|→0

∫
HP (M)

f (σ) dν1
P,x (σ) =

∫
Wo(M)

f (σ) dνx (σ)

Before proving Theorem 1.12, first we need some supplementary results. Recall

that the manifold considered in Theorem 1.12 is a Hadamard manifold with parallel

curvature tensor.

Proposition 7.2 For any f ∈ FC1
b , X ∈ Γ (TM) with compact support,

X̃ tr,νf ∈ L∞− (Wo (M) , ν) .

The proof comes after Lemma 7.3 and 7.4.

Lemma 7.3 Following the notations in Lemma 4.43,

d∑
α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
∈ L∞− (Wo (M) , ν) .

130
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Proof. For any v ∈ Cd,

〈(∫ 1

0

T̃−1
r (T̃−1

r )∗dr

)
v, v

〉
=

∫ 1

0

∥∥∥(T̃−1
r )∗v

∥∥∥2

dr ≥ C ‖v‖2 .

So ∥∥∥∥∥
(∫ 1

0

T̃−1
r (T−1

r )∗dr

)−1
∥∥∥∥∥ ≤ 1

C

where C is a generic constant.

Since X has compact support and is smooth, ‖X (·)‖ ∈ C0 (M) and

∥∥∥H̃ (σ)
∥∥∥ = ‖X ◦ E1 (σ)‖ ≤ sup ‖X‖ < C.

Also notice that C̃ is deterministic, so we have

∥∥∥〈C̃H̃, eα〉∥∥∥ ≤ ∥∥∥C̃∥∥∥∥∥∥H̃∥∥∥ <∞.
Since

(
T̃−1
s

)
is bounded, so

(
T̃−1
s

)
∈ L∞ ([0, 1]). By Burkholder’s inequality, we

get ∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
∈ L∞− (Wo (M)) .

Therefore,

d∑
α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
∈ L∞− (Wo (M)) .

Lemma 7.4 Following the notations in Definition 4.36,

d∑
α=1

〈
C̃XZαH̃, eα

〉
∈ L∞− (Wo (M) , ν) .
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Proof. From Lemma 4.44 we know:

−
d∑

α=1

〈
XZα

(
C̃H̃

)
, eα

〉
= divX ◦ E1 −

d∑
α=1

〈
C̃A1 〈Zα〉 H̃, eα

〉
. (7.1)

where

A1 〈Zα〉 =

∫ 1

0

Rũ(s) (Zα (s) , δβs) (7.2)

Since
∫ ·

0

[
T̃ (r)−1

]∗
eαdr is bounded, by Gronwall’s inequality one can see that Zα

is bounded and thus using Burkholder’s inequality, we have:

A1 〈Zα〉 ∈ L∞− (Wo (M)) . (7.3)

It is easy to see divX ◦ E1 (σ) is bounded because X ∈ Γ (TM) with compact

support. Therefore:

d∑
α=1

〈
C̃XZαH̃, eα

〉
∈ L∞− (Wo (M) , ν) .

Proof of Proposition 7.2. Recall that from Lemma 4.44 and 4.43, we have:

X̃ tr,νf = −XZΦf +
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
· f −

d∑
α=1

〈
C̃XZαH̃, eα

〉
· f

A similar argument as in Lemma 4.44 can show that X̃f ∈ L∞− (Wo (M)), then

combine Lemma 7.3 and 7.4 and we can prove Proposition 7.2.

Lemma 7.5 For any f ∈ RFC1
b , X̃

tr,ν1
P

P f ∈ L∞− (HP (M) , ν1
P) .

Proof. From Theorem 6.23 we know that

X̃
tr,ν1
P

P f (φ (βP))− X̃f → 0 in L∞− (Wo (M)) . (7.4)



133

From Proposition 7.2 we know X̃f̃ ∈ L∞− (Wo (M)), so X̃
tr,ν1
P

P f (φ (βP)) ∈

L∞− (Wo (M)).

Since the law of φ (βP) under ν is ν1
P , so

X̃
tr,ν1
P

P f ∈ L∞−
(
HP (M) , ν1

P
)
⇐⇒ X̃

tr,ν1
P

P f (φ (βP)) ∈ L∞− (Wo (M)) .

Notation 7.6 Denote by g any one of {gi}di=0 as in Theorem 3.3 and
{
g(m)

}
m
⊂

C∞0 (M) be the approximate sequence in L
d
d−1 (M) as defined in Remark 3.5.

Lemma 7.7 Define g̃ (σ) = g (σ (1)) and g̃(m) (σ) = g(m) (σ (1)), then for any

f ∈ FC1
b , ∫

Wo(M)

∣∣∣g̃ · (X̃ tr,νf
)∣∣∣ (σ) dν (σ) <∞

and

lim
m→∞

∫
Wo(M)

g̃(m) (σ)
(
X̃ tr,νf

)
(σ) dν (σ) =

∫
Wo(M)

g̃ (σ)
(
X̃ tr,νf

)
(σ) dν (σ) .

Proof. Since ν {σ : σ (1) = e} = 0, so g̃ is ν − a.s. well-defined. In particular, for

any p > 0,

∫
Wo(M)

|g̃ (σ)|p dν (σ) =

∫
M

|g (x)|p p1 (0, x) dλ (x) , (7.5)

where λ is the volume measure on M .

Since g has compact support and p1 (0, ·) ∈ C∞ (M),

∫
M

|g (x)|p p1 (0, x) dλ (x) ≤ C ‖g‖pLp(M) . (7.6)
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Since g ∈ L1+ 1
d−1 (M), we have

g̃ ∈ L1+ 1
d−1 (Wo (M)) . (7.7)

Notice that from Proposition 7.2, we have X̃ tr,νf ∈ L∞− (Wo (M)), so by Holder’s

inequality, we get: ∫
Wo(M)

∣∣∣g̃ (σ) X̃ tr,νf (σ)
∣∣∣ dν (σ) <∞.

To prove (7.7), just notice that the support of g(m) is contained in a compact set

for all m, so we have, following the same argument as before

∫
Wo(M)

∣∣g̃(m) − g̃
∣∣p (σ) dν (σ) =

∫
M

∣∣g(m) (x)− g (x)
∣∣p p1 (0, x) dλ (x) (7.8)

≤ C
∥∥g(m) − g

∥∥p
Lp(M)

. (7.9)

Using Holder’s inequality again we can get (7.7).

Lemma 7.8 Define g̃ : HP (M)→ R to be g̃ (σ) = g (σ (1)), then

g̃ ∈ L
d
d−1

(
HP (M) , ν1

P
)
.

Proof. Apply the co-area formula (3.41) to |g̃|
d
d−1 , we have:

∫
HP (M)

|g̃ (σ)|
d
d−1 dν1

P (σ) =

∫
M

|g (x)|
d
d−1 hP (x) dx

where hP (x) ∈ C (M) is defined in Theorem 3.35 with f ≡ 1. Since g has compact

support, we know:

∫
M

|g (x)|
d
d−1 hP (x) dx ≤ C

∫
M

|g (x)|
d
d−1 dx. (7.10)

Therefore g̃ ∈ L
d
d−1 (HP (M) , ν1

P).
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Lemma 7.9 Define g̃ (σ) = g (σ (1)) and g̃(m) (σ) = g(m) (σ (1)), then for any

f ∈ FC1
P,b, ∫

HP (M)

∣∣∣g̃ · (X̃ tr,ν1
Pf
)∣∣∣ (σ) dν1

P (σ) <∞ (7.11)

and

lim
m→∞

∫
HP (M)

g̃(m) (σ)
(
X̃ tr,ν1

Pf
)

(σ) dν1
P (σ) =

∫
HP (M)

g̃ (σ)
(
X̃ tr,ν1

Pf
)

(σ) dν1
P (σ) .

Proof. Using Lemma 7.5, Lemma 7.8 and Holder’s inequality, we can easily see

Eq.(7.11). Then apply the co-area formula 3.41 with

(H,M, p, g, f) =

(
HP (M) ,M,EP1 ,

1

Z1
P
e−

E
2 ,
∣∣(g̃(m) − g̃

)
(σ)
∣∣ d
d−1

)
,

we have:

∫
HP (M)

∣∣(g̃(m) − g̃
)

(σ)
∣∣ d
d−1 dν1

P (σ) =

∫
M

|(gm − g) (x)|
d
d−1 hP (x) dx.

Since hP (x) ∈ C (M) as in Theorem 3.35 with f ≡ 1, and ∪msupp (gm − g) is

contained in a compact subset of M , so

∫
M

|(gm − g) (x)|
d
d−1 hP (x) dx→ 0 as m→ 0

and

g̃(m) − g̃ → 0 in L
d
d−1

(
dν1
P
)
.

Using Holder’s inequality again we have:∣∣∣∣∫
HP (M)

(
g̃(m) (σ)− g̃ (σ)

)
X̃
tr,ν1
P

P f (σ) dν1
P (σ)

∣∣∣∣ (7.12)

≤
∥∥g̃(m) − g̃

∥∥
L

d
d−1 (ν1

P)

∥∥∥X̃ tr,ν1
P

P f
∥∥∥
Ld(ν1

P)
. (7.13)
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Therefore

lim
m→∞

∫
HP (M)

g̃(m) (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ) =

∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ) .

Lemma 7.10 For any p ≤ d
d−1

,

sup
P

E [|g̃ (φ ◦ βP)|p] <∞. (7.14)

Proof. Since the law of φ ◦ βP under ν is ν1
P , we have:

E [|g̃ (φ ◦ βP)|p] =

∫
HP (M)

|g̃|p (σ) dν1
P (σ) . (7.15)

Then apply co-area formula (3.41) with

(H,M, p, g, f) =

(
HP (M) ,M,EP1 ,

1

Z1
P
e−

E
2 , |g̃|p

)
,

we get: ∫
HP (M)

|g̃|p (σ) dν1
P (σ) =

∫
M

|g (x)|p hP (x) dx (7.16)

where hP (x) is defined as in Theorem 3.15 with f ≡ 1.

Apply Proposition 3.33 we know that:

sup
P
hP (x) <∞ (7.17)

Since g has compact support, supP hP (x) is bounded on its support and the bound

is independent of P , from there it follows that (using Holder’s inequality):

sup
P

∫
M

|g (x)|p hP (x) dx <∞. (7.18)
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Theorem 7.11 For any f ∈ FC1
b ,

lim
|P|→0

∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ) =

∫
Wo(M)

g̃ (σ) X̃ tr,νf (σ) dν (σ) .

Proof. Since the law of φ ◦ βP under ν is νP
1, we have:

∫
HP (M)

g̃ (σ)
(
X̃
tr,ν1
P

P f
)

(σ) dν1
P (σ) = Eν

[
g̃ ·
(
X̃
tr,ν1
P

P f
)

(φ ◦ βP)
]
. (7.19)

Also ∫
Wo(M)

g̃ (σ)
(
X̃ tr,νf

)
(σ) dν (σ) = Eν

[
g̃ · X̃ tr,νf

]
. (7.20)

So∣∣∣∣∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ)−

∫
Wo(M)

g̃ (σ) X̃ tr,νf (σ) dν (σ)

∣∣∣∣ (7.21)

≤ E
[∣∣∣g̃ · X̃ tr,ν1

P
P f (φ ◦ βP)− g̃ · X̃ tr,νf

∣∣∣] (7.22)

≤ E
[
|g̃ (φ ◦ βP)| ·

∣∣∣X̃ tr,ν1
P

P f (φ ◦ βP)− X̃ tr,νf
∣∣∣]+ E

[
|g̃ (φ ◦ βP)− g̃| ·

∣∣∣X̃ tr,νf
∣∣∣] .

(7.23)

From Lemma 7.8, we have

g̃ (φ ◦ βP) ∈ L
d
d−1 (Wo (M)) ,

and from Theorem 6.23 we have

X̃
tr,ν1
P

P f (φ ◦ βP)− X̃ tr,νf → 0 in L∞ (Wo (M)) .
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So by Holder’s inequality,

E
[
|g̃ (φ ◦ βP)| ·

∣∣∣X̃ tr,ν1
P

P f (φ ◦ βP)− X̃ tr,νf
∣∣∣]→ 0 as |P| → 0. (7.24)

Then we consider

E
[
|g̃ (φ ◦ βP)− g̃| ·

∣∣∣X̃ tr,νf
∣∣∣] .

By Holder’s inequality,

E
[
|g̃ (φ ◦ βP)− g̃| ·

∣∣∣X̃ tr,νf
∣∣∣] ≤ E [|g̃ (φ ◦ βP)− g̃|p]

1
p · E

[∣∣∣X̃ tr,νf
∣∣∣q] 1

q

(7.25)

where p > 1 and q > 1 satisfying 1
p

+ 1
q

= 1.

From Proposition 7.2 we know X̃ tr,νf ∈ L∞− (Wo (M)), therefore in order

to show∣∣∣∣∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ)−

∫
Wo(M)

g̃ (σ) X̃ tr,νf (σ) dν (σ)

∣∣∣∣→ 0 as |P| → 0,

(7.26)

it suffices to find a p > 1 such that

Eν [|g̃ (φ ◦ βP)− g̃|p]→ 0 as |P| → 0. (7.27)

Since for any ε > 0, there exists a constant Cp,ε such that

|g̃ (φ ◦ βP)− g̃|p(1+ε) ≤ Cp,ε

(
|g̃ (φ ◦ βP)|p(1+ε) + |g̃|p(1+ε)

)
We choose p and ε such that p (1 + ε) < d

d−1
. From Eq. (7.7) we know E

[
|g̃|p(1+ε)

]
<

∞. Then using Lemma 7.10 we have

sup
P

Eν
[
|g̃ (φ ◦ βP)|p(1+ε)

]
<∞,
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and thus

sup
P

Eν
[
|g̃ (φ ◦ βP)− g̃|p(1+ε)

]
<∞. (7.28)

Therefore

{|g̃ (φ ◦ βP)− g̃|p} is uniformly integrable under ν.

Then consider

UP :=
{
σ ∈ Wo (M) : π ◦ Φ−1 ◦ βP (σ) = x

}
. (7.29)

Since the law of Φ−1 ◦ βP under ν is ν1
P , denote

VP :=
{
σ ∈ HP (M) : EP1 (σ) = x

}
, (7.30)

then ν1
P (VP) = ν (UP).

Apply the co-area formula (3.41) with f (y) = 1{y=x}, we get:

ν1
P (VP) =

∫
HP (M)

f (σ (1)) dν1
P (σ) =

∫
M

f (y)hP (y) dy = 0. (7.31)

From there we can construct a ν−Null set;

N := ∪PUP ∪ {σ ∈ Wo (M) : E1 (σ) = x} .

Recall from Corollary 6.5, we have

Eν [|uP (1)− ũ (1)|q]→ 0 as |P| → 0 for any q ≥ 1. (7.32)

This implies that

|uP (1)− ũ (1)| → 0 in probability.

Notice that g ∈ C∞ (M/ {x}) and π : O (M)→M is smooth, so excluding N , we
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have

|g̃ (φ ◦ βP)− g̃| = |g ◦ π(uP (1))− g ◦ π (ũ (1))| → 0 in probability. (7.33)

Combining 7.27 and 7.33 we know

E
[
|g̃ (φ ◦ βP)− g̃| ·

∣∣∣X̃ tr,νf
∣∣∣]→ 0.

Proposition 7.12 Let f ∈ RFC1
b , then

lim
m→∞

∫
Wo(M)

δ(m)
x (Σ1) fdν =

∫
Wo(M)

fdνx

where Σr (σ) = σ (r) is the canonical process on Wo (M).

Proof. Since f = F (Σs1 , . . . ,Σsn), we have by Markov property,

∫
Wo(M)

δ(m)
x (Σ1) fdν =

∫
Mn

δ(m)
x (xn)F (x1, . . . , xn) Πn

j=1p 1
n

(xj−1, xj) dx1 · · · dxn.

Viewing
∫
Mn−1 F (x1, . . . , xn) Πn

j=1p 1
n

(xj−1, xj) dx1 · · · dxn−1 as a function of xn, ob-

serve that it is uniformly integrable with respect to xn, therefore it is a continuous

function of xn. Thus

lim
m→∞

∫
Wo(M)

δ(m)
x (Σ1) fdν

= lim
m→∞

∫
M

δ(m)
x (xn)

∫
Mn−1

F (x1, . . . , xn) Πn
j=1p 1

n
(xj−1, xj) dx1 · · · dxn−1

=

∫
Mn−1

F (x1, . . . , xn−1, x) Πn−1
j=1p 1

n
(xj−1, xj) · p 1

n
(xn−1, x) dx1 · · · dxn−1

=

∫
Wo(M)

fdνx.
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Proof of Theorem 1.12. Recall from Remark 3.5 that we can approximate the

delta mass δx on M in the following way:

δ(m)
x := g

(m)
0 +

d∑
j=1

Xjg
(m)
j ∈ C∞0 (M)

and

δ(m)
x → δx in D′ (M) ,

where
{
g

(m)
j : 0 ≤ j ≤ d,m ≥ 1

}
⊂ C∞0 (M) and {Xj : 1 ≤ j ≤ d} ⊂ Γ (TM) with

compact supports. Using the Orthogonal lift, we get:

˜
δ

(m)
x :=

˜
g

(m)
0 +

d∑
j=1

XP,j
˜
g

(m)
j ∈ C∞0 (M)

where g̃ (σ) = g ◦ E1 (σ) for any g ∈ C (M) and XP,i is the Orthogonal lift of Xi

into Γ (THP (M)).

For any 0 ≤ j ≤ d (with the convention that XP,0 = I), using integration

by parts, we get:

∫
HP (M)

(
˜
g

(m)
0 +

d∑
j=1

XP,j
˜
g

(m)
j

)
fdν1

P =

∫
HP (M)

(
˜
g

(m)
0 · f +

d∑
j=1

X
tr,ν1
P

P,j f · ˜
g

(m)
j

)
dν1
P .

(7.34)

Now let m→∞, from Corollary 3.35 we have:

the left–hand side of (7.34) =

∫
HP,x(M)

fdν1
P,x

Apply Lemma 7.9 to each
(

˜
g

(m)
j , XP,j

)
, we have:

right hand side of 7.34 =

∫
HP (M)

(
g̃0 · f +

d∑
j=1

X
tr,ν1
P

P,j f · g̃j

)
dν1
P . (7.35)
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Then let |P| → 0, from Theorem 7.11 we have:

lim
|P|→0

∫
HP,x(M)

fdν1
P,x =

∫
Wo(M)

(
g̃0 · f +

d∑
j=1

X̃j
tr,ν
f · g̃j

)
dν. (7.36)

According to Lemma 7.7,

∫
Wo(M)

(
g̃0 · f +

d∑
j=1

X̃j
tr,ν
f · g̃j

)
dν (7.37)

= lim
m→∞

∫
Wo(M)

(
˜
g

(m)
0 · f +

d∑
j=1

X̃j
tr,ν
f · ˜

g
(m)
j

)
dν. (7.38)

Then use integration by parts formula developed in Lemma 4.43 we have:

∫
Wo(M)

(
˜
g

(m)
0 · f +

d∑
j=1

X̃j
tr,ν
f · ˜

g
(m)
j

)
dν =

∫
Wo(M)

(
˜
g

(m)
0 +

d∑
j=1

X̃j
˜
g

(m)
j

)
· fdν

(7.39)

=

∫
Wo(M)

δ̃x
(m)
fdν. (7.40)

If f ∈ RFC1
b , using Proposition 7.12 we have

∫
Wo(M)

δ̃x
(m)
fdν →

∫
Wo(M)

fdνx.

Therefore

lim
|P|→0

∫
HP,x(M)

fdν1
P,x =

∫
Wo(M)

fdνx. (7.41)



Appendix A

Riemannian Manifolds

A.1 Hadamard Manifold

Definition A.1 (Hadamard Manifold) A Hadamard manifold is a complete

Riemannian manifold, simply connected and with non–positive sectional curvature.

Hadamard manifolds share very nice global properties as recorded in the following

theorem as the Theorem of Hadamard.

Theorem A.2 If M is a Hadamard manifold, then M is diffeomorphic to Rd,

d = dimM ; more precisely for any x ∈M , expx : TxM →M is a diffeomorphism.

A.2 Connections on Principal Bundle

Notation A.3 Denote by Γ∞ (TM) the smooth sections of the tangent bundle.

You can think of this as the space of smooth vector field.

Definition A.4 (Affine connection) An affine connection is a map ∇ : Γ (TM)×

Γ (TM) 7→ Γ (TM) or (X, Y ) 7→ ∇XY satisfying the following conditions: for

143
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X, Y, Z ∈ Γ (TM) and f, g ∈ C∞ (M) :

∇XfY = (Xf)Y + f∇XfY

∇X (Y + Z) = ∇XY +∇XZ

∇fX+gYZ = f∇XZ + g∇YZ

Definition A.5 An affine connection ∇ is said to be metric compatible if the

following is true for any X, Y, Z ∈ Γ (TM):

(∇Zg) (X, Y ) = g (∇ZX, Y ) + g (X,∇ZY )

A metric compatible connection is also called the metric connection.

Definition A.6 For any X, Y, Z ∈ Γ (TM) , define the Riemann curvature

tensor R : Γ (TM) × Γ (TM) × Γ (TM) → Γ (TM) and torsion tensor T :

Γ (TM)× Γ (TM)→ Γ (TM) to be:

R (X, Y, Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

T (X, Y ) = ∇XY −∇YX − [X, Y ]

A connection is said to be symmetric if T ≡ 0.

Theorem A.7 (Levi-Civita) There exists a unique symmetric metric connection,

which is called the Levi-Civita connection.

Throughout this paper we stick with the Levi-Civita connection ∇.

Definition A.8 (Principal bundle) A principal bundle (P,G, π,M, {Uα} , φα)

consists of the following data:

• P,M are smooth manifolds. π : P →M smooth submersion is called the fibre

projection map.
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• A Lie group G is said to be the structure group of P : i.e. G admits a free

and transitive group action on P on the right:

(G,P ) 3 (g, u)→ u · g ∈ P

• (Local trivialization) {Uα} is an open covering of M , then φα : π−1 (Uα)→

Uα ×G is a diffeomorphism.

Example A.9 (Frame bundle L (M)) Let G be the general linear group GL (d,R)

where d = dimM and for each x ∈M , denote by L (M)x the linear frames of TxM

( Here we will identify a linear frame with a linear isomorphism from Rd → TxM ).

Then L (M) := ∪x∈ML (M)x can be made a principal bundle with structure group

GL (d,R) . We will call this principal bundle the frame bundle over M , simply

denoted by L (M) .

Example A.10 (Orthonormal frame bundle (O (M) , π)) See Definition 2.1

Definition A.11 (Fundamental vector field) Given a principal bundle P over

M with structure group G, for any p ∈M , dentote by Gp := π−1 ({p}) the fiber at

p = π (u) . Let VuP be the tangent space of P at u which is tangent to Gp. Since

Gp
∼= G, so

dimVuP = dimG = dim g.

One can construct a base of VuP in the following way: take a basis {Ai} of

g, consider

u (s) := u exp (sAi)

then u (s) is a differentiable curve on VuP with u (0) = u. Define:

A†i :=
d

ds
|0 u (s)
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This is called the fundamental vector field generated by Ai. Using substitution, one

can see that the map A → A† is a real vector space isomorphism. (Actually this

is a Lie algebra isomorphism.) However, there is no unique way to specify the

“orthogonal compliment” of this vector bundle V P unless some more structures are

involved, which is called connection on P.

Definition A.12 (Connection on principal bundle) A (smooth) connection

on a principal bundle P is a choice of (smooth) decomposition of the tangent bundle

TP over P as follows, for any u ∈ P :

TuP = VuP ⊕HuP

and

HugP = Rg∗HuP

where Rg : P 3 u→ ug ∈ P is the right action of G on P.

Definition A.13 (Connection one-form) A connection form is a Lie–algebra

valued one form on P , i.e. ω ∈ g⊗ T ∗P satisfying the following requirement:

(i) ω
(
A†
)

= A for any A ∈ g

(ii) R∗gω = Adg−1ω for any g ∈ G
(A.1)

here Adg−1X = g−1Xg for any X ∈ g.

Remark A.14 Given a smooth connection on P, we can naturally get a connection

one-form ω in the following way: for each X ∈ TuP , there exists unique AX ∈ g

and XH ∈ HuP such that X = A†X +XH . define ω (X) = AX . It is easy to see that

ω satisfies A.1. Conversely, given a smooth connection one-form ω, we can define

HuP = kerωu and it gives a smooth connection on P.

Remark A.15 It is known that a smooth connection on a principal bundle P

induces a smooth connection on its associated vector bundles. In particular, it gives
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rise to a connection on M defined as in Definition A.4. There are usually two ways

to see that. One is to use the connection on P to derive “horizontal lift” and further

parallel translation, then use parallel translation to define covariant derivative and

further a connection on M. Interested readers can refer to the Chapter III section 1

in the classical book [25] by Kobayashi and Nomizu for a more detailed exposition.

The other way is to use local one-forms of ω in P and the push-forward of the

representation of G to derive a compatible local one-forms on M from which one

can construct a connection on M .

Conversely, an affine connection on M gives rise to a connection on the

frame bundle L (M) introduced on Example A.9, see Chapter III section 2 in [25]

and section 2.1 in [21]. In particular, if the connection ∇ is a metric connection on

M , the connection on L (M) reduces to a connection on O (M) . Throughout this

paper we will fix ∇ to be the Levi-civita connection and consider only the connection

on O (M) induced by ∇. We also fix a u0 ∈ O (M)o so that O (M) becomes a

pointed manifold and further we use u0 to identify ToM with Rd.

Remark A.16 π induces an isomorphism π∗ : HuO (M)→ Tπ(u)M following the

decomposition specified by ∇. This is a result of the fact that π∗ {VuO (M)} and

dimTuO (M) = d + dim so (d) = d + dimVuO (M). Therefore for any x ∈ M ,

u ∈ π−1 ({x}), X ∈ TxM , there exists a unique tangent vector X∗ ∈ HuO (M) such

that π∗X
∗ = X. X∗ is called the horizontal lift of X to u.



Appendix B

ODE estimates

Lemma B.1 If X is a normal random variable with mean 0 and variance t, then

E
[
ek|X|

2
]

=

∞ if k ≥ 1
2t

(1− 2kt)−
1
2 if k < 1

2t

Proof. The result follows from the direct computation below.

E
[
ek|X|

2
]

=

∫ ∞
−∞

ekx
2 1√

2πt
e−

x2

2t dx =
1√
2πt

∫ ∞
−∞

e(k−
1
2t)x2

dx.

If k ≥ 1
2t

, then

1√
2πt

∫ ∞
−∞

e(k−
1
2t)x2

dx ≥ 1√
2πt

∫ ∞
−∞

dx =∞.

If k < 1
2t

, then

1√
2πt

∫ ∞
−∞

e(k−
1
2t)x2

dx =
1√

2πt
(

1
2t
− k
) ∫ ∞
−∞

ey
2

dy = (1− 2kt)−
1
2 .
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Proposition B.2 Consider an ODE:

Y ′′ (s) = A (s)Y (s)

where Y (s) , A (s) ∈Mn×n (R) are real n× n matrices and A (s) is positive semi-

definite.

Denote by {C (s) , S (s)}the solutions to this ODE with initial values:

C (0) = I, C ′ (0) = 0 and S (0) = 0, S ′ (0) = I

Recall that in this paper we use eig (X) to denote the set of eigenvalues of matrix

X. Then

• If λ ∈ eig (C (s)) , then |λ| ≥ 1.

• If λ ∈ eig (S (s)) , then |λ| ≥ s.

Proof. For all v ∈ Cd, define v (s) := C (s) v, then:

〈v′′ (s) , v (s)〉 = 〈A (s) v (s) , v (s)〉 ≥ 0.

Therefore,
d

ds
〈v′ (s) , v (s)〉 = 〈v′′ (s) , v (s)〉+ ‖v′ (s)‖2 ≥ 0.

Since 〈v′ (0) , v (0)〉 = 0, so 〈v′ (s) , v (s)〉 ≥ 0. Therefore

d

ds
‖v (s)‖2 = 2Re 〈v′ (s) , v (s)〉 ≥ 0.

Notice that ‖v (0)‖2 = ‖v‖2, so

‖v (s)‖2 ≥ ‖v‖2 .
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Therefore if λ ∈ eig (C (s)), choose v ∈ Cd to be an eigenvector associated to λ,

then

‖λv‖2 = ‖C (s) v‖2 ≥ ‖v‖2 .

So

|λ| ≥ 1.

Therefore C (s) is invertible and

‖C (s)‖ = max
λ∈eig(C(s))

|λ| ≥ 1.

A lower bound result for ‖S(s)v‖ can be found in [27, Appendix E]:

‖S(s)v‖ ≥ s ‖v‖ .

From there it follows

If λ ∈ eig (S (s)) , then |λ| ≥ s

and S (s) is invertible with

‖S (s)‖ = max
λ∈eig(S(s))

|λ| ≥ s.

Definition B.3 Denote Ru(s) (ξ, ·) ξ by Aξ (s), (Cξ (s) , Sξ (s))t is the fundamental

solution to the ODE:

V ′ (s) =

 0 1

Aξx 0

V (s)
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Proposition B.4 If R is bounded by a constant N , i.e. |R (ξ, ·) ξ| ≤ N |ξ|2 , then

|Cξ (s)| ≤ cosh
(√

N |ξ| s
)
≤ e

1
2
N |ξ|2s2 (B.1)

|Sξ(s)| ≤
√
N |ξ| s

sinh
(√

N |ξ| s
)

√
N |ξ| s

≤ cosh
(√

N |ξ| s
)√

N |ξ| s

≤
√
N |ξ| se

1
2
N |ξ|2s2 (B.2)

|Sξ (s)− sI| ≤ N |ξ|2 s3

6
e

1
2
N |ξ|2s2 (B.3)

and

|Cξ (s)− I| ≤ N |ξ|2 s2

2
e

1
2
N |ξ|2s2 (B.4)

Proof. B.1 and B.2 are quite elementary, so here we only resent the proof of B.3

and B.4.

By Taylor’s expansion,

Sξ (s) = sI +

∫ s

0

Rũr (ξ, Sξ (r)) ξ (s− r) dr.

|Sξ (s)− sI| ≤ N |ξ|2
∫ s

0

|Sξ (r)| (s− r) dr

≤ N |ξ|2
∫ s

0

[|Sξ (r)− rI|+ r] (s− r) dr

Define f (s) := |Sξ (s)− sI| , then we have:

f (s) ≤
∫ s

0

N |ξ|2 (s− r) f (r) dr +N |ξ|2 s
3

6
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By Gronwall’s inequality:

f (s) ≤ N |ξ|2 s
3

6
e

1
2
N |ξ|2s2

Then we consider Cξ (s) :

Cξ (s) = I +

∫ s

0

Rũr (ξ, Cξ (r)) ξ (s− r) dr.

So

|Cξ (s)− I| ≤ N |ξ|2
∫ s

0

|Cξ (r)| (s− r) dr

≤ N |ξ|2
∫ s

0

[|Cξ (r)− I|+ 1] (s− r) dr.

Define f (s) := |Cξ (s)− I| , then we have:

f (s) ≤
∫ s

0

N |ξ|2 (s− r) f (r) dr +N |ξ|2 s
2

2
.

By Gronwall’s inequality:

f (s) ≤ N |ξ|2 s
2

2
e

1
2
N |ξ|2s2 .



Appendix C

Calculus on Differential Forms

Theorem C.1 (change of variable formula on manifold) If F : M → N is

an orientation preserving diffeomorphism and α is a d−form on N with d = dimM .

Then F ∗α is a d−form on M and the following is true:

∫
M

F ∗α =

∫
N

α. (C.1)

In particular, if M and N are Riemannian manifolds with volume forms volM and

volN , then

F ∗volN = JFvolM . (C.2)

where JF =
√

det (DF )trDF.

Proof. Since the integral of forms are independent of the choice of open coverings,

so it suffices to prove for in a chart (U, x) of N ,

∫
F−1(U)

F ∗α =

∫
U

α

Locally on U , α = f (x) dx1∧ · · ·∧dxd and F ∗α = f ◦Fd (x1 ◦ F )∧ · · ·∧d (xd ◦ F ).
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Choose a chart map y on F−1 (U) ∼= Rd, then

F ∗α = f ◦ F ◦ y−1d
(
x1 ◦ F ◦ y−1

)
∧ · · · ∧ d

(
xd ◦ F ◦ y−1

)
(C.3)

= f ◦ F ◦ y−1 det

(
∂ (xi ◦ F ◦ y−1)

∂yj

)
dy1 ∧ · · · ∧ dyd (C.4)

Notice that F is orientation preserving, so Equation C.1 is easily follows from the

change of variable formula on Rd applied to x ◦ F ◦ y−1 : Rd → Rd. Equation C.1

is thus easily obtained by using orthonormal frames on M and N .

C.1 A Structure Theorem for divg
(
X̃
)

This section is devoted to a structure theorem for divg

(
X̃
)

which is t

Let π : (M, g)→ (N, h) be a submersion of two smooth Riemannian mani-

folds. To each m ∈M and v ∈ Tπ(m)N, let v̂ := πtr
∗m (π∗mπ

tr
∗m)
−1
v ∈ TmM so that v̂

is the unique shortest vector in TmM such that π∗mv̂ = v. So if X ∈ Γ (TN) is a vec-

tor field on N, then X̂ ∈ Γ (TM) is defined by X̂ (m) = πtr
∗m (π∗mπ

tr
∗m)
−1
X (π (m))

and we have π∗X̂ = X ◦π. Finally, let Volg and Volh be the volume forms on (M, g)

and (N, h) respectively.

Lemma C.2 If K := dimM > k := dimN, then there exists a unique K − k –

form (γ) on M such that;

1. Volg = (π∗Volh) ∧ γ

2. iv̂γ = 0 for any v ∈ Tπ(m)N and m ∈M.

Proof. Uniqueness. Assuming such a γ exists, choose an orthonormal basis
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{e1, . . . , ek} for Tπ(m)N such that Volh (e1, . . . , ek) = 1. Then it follows that

Volg (ê1, . . . , êk, ·, . . . , ·) = (π∗Volh) (ê1, . . . , êk) ∧ γ

= Volh (π∗ê1, . . . , π∗êk) ∧ γ

= Volh (e1, . . . , ek) ∧ γ = γ

which shows γ is unique if it exists.

Existence. Now suppose that {e1, . . . , ek} is a local orthonormal frame on

M in a neighborhood of π (m) such that Volh (e1, . . . , ek) = 1. Then by above we

must define

γ := Volg (ê1, . . . , êk, ·, . . . , ·) in a neighborhood of m.

It is now straightforward to check that this γ has the desired properties and is

defined independent of the choice of frame.

Corollary C.3 If X ∈ Γ (TN) and X̂ ∈ Γ (TM) is its lift as described above, then

divg

(
X̂
)

= divh (X) ◦ π + ρX̂

where ρX̂ (m) is a function on M depending only on X̂ (m) . {To compute ρX̂

explicitly will require a better understanding of dγ.]

Proof. From Lemma C.2 we learn,

divg

(
X̂
)

Volg = d [iX̂ Volg] = d [iX̂ ((π∗Volh) ∧ γ)]

= d [(iX̂ (π∗Volh) ∧ γ)]

= [d (iX̂ (π∗Volh))] ∧ γ + (−1)k (iX̂ (π∗Volh) ∧ dγ) .
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Since

iX̂ (π∗Volh) = (π∗Volh)
(
X̂,−−

)
= Volh

(
π∗X̂, π∗ −−

)
= Volh (X ◦ π, π∗ −−) = π∗ (iX Volh)

it follows that

d (iX̂ (π∗Volh)) = d (π∗ (iX Volh)) = π∗ (d (iX Volh))

= π∗ (divh (X) Volh) = divh (X) ◦ π · π∗Volh .

Combining these equations then shows,

divg

(
X̂
)

Volg = divh (X) ◦ π · (π∗Volh) ∧ γ + (−1)k (iX̂ (π∗Volh) ∧ dγ)

= [divh (X) ◦ π + ρX̂ ] · Volg

where

ρX̂ =
(−1)k (iX̂ (π∗Volh) ∧ dγ)

Volg
.



Appendix D

Some matrix analysis

Consider

a :=


a1

a2

...

an

 ∈ Rn and S =

 In×n

atr



so that

Str =
[
In×n a

]
.

Notice that S is a (n+ 1)×n and Str is n× (n+ 1) matrix. For x ∈ Rn and u ∈ R

we have

Str

 x

u

 = x+ ua and Sx =

 x

a · x


StrSx = x+ (a · x) a = x+ a atrx =

(
I + aatr

)
x.

Thus choosing an orthonormal basis {ui}ni=1 for Rn such that u1 = â we learn that

StrSu1 =
(
1 + ‖a‖2)u1 and StrSui = ui for i > 1.
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Thus it follows that det (StrS) = 1 + ‖a‖2 . We record the higher dimensional

generalization of the result above. It is used in computing some determinants in

the dissertation.

Theorem D.1 Suppose that V is a finite dimensional inner product space, A :

V n → V is a linear map, and

S :=

 IV n×V n

A

 : V n → V n+1.

Then

det
[
StrS

]
= det

[
IV + AAtr

]
.

Proof. First observe that

StrS =
[
I Atr

] I

A

 = I + AtrA.

We let {uj}nj=1 ⊂ V be an orthonormal basis of eigenvectors for AAtr : V → V so

that AAtruj = λjuj and then let vj := Atruj. Then it follows that

AtrAvj = AtrAAtruj = Atrλjuj = λjA
truj = λjvj.

Now extend {vj}nj=1 to a basis for all V n. From this we will find that StrS has

eigenvalues {1} ∪ {1 + λj}nj=1 and therefore

det
(
StrS

)
=

n∏
j=1

(1 + λj) = det
(
I + AAtr

)
.
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