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ABSTRACT OF THE DISSERTATION

A Finite Dimensional Approximation to Pinned Wiener Measure on
Symmetric Spaces

by

Zhehua Li
Doctor of Philosophy in Mathematics
University of California, San Diego, 2016

Professor Bruce K. Driver, Chair

Let M be a Riemannian manifold, o € M be a fixed base point, W, (M) be
the space of continuous paths from [0, 1] to M starting at o € M, and let v, denote
Wiener measure on W, (M) conditioned to end at x € M. The goal of this thesis is

to give a rigorous interpretation of the informal path integral expression for v,;

1

dv, (o) “ = "6, (o (1)) Ee_%E(U)DU Lo €W, (M).

In this expression F (o) is the “energy” of the path o, d, is the § — function based



at x, Do is interpreted as an infinite dimensional volume “measure” and Z is
a certain “normalization” constant. We will interpret the above path integral
expression as a limit of measures, vp ,, indexed by partitions, P of [0,1]. The
measures u%;w are constructed by restricting the above path integral expression to
the finite dimensional manifolds, Hp . (M), of piecewise geodesics in W, (M) which
are allowed to have jumps in their derivatives at the partition points and end at x.
The informal volume measure, Do, is then taken to be a certain Riemannian volume
measure on Hp, (M). When M is a symmetric space of non-compact type, we
show how to naturally interpret the pinning condition, i.e. the § — function term, in
such a way that 1/71;@, are in fact well defined finite measures on Hp , (M) . The main
theorem of the this thesis then asserts that 1/71)71 — v, (in a weak sense) as the mesh
size of P tends to zero. Along the way we develop a number of integration—by—parts
arguments for the approximate measures, 1/71379&, which are analogous to those known

for the measures, v,.

xi



Chapter 1

Overview

Throughout this dissertation, we fix (Md,g,V,o) to be a pointed com-
plete Riemannian manifold of dimension d with Riemannian metric g, Levi-Civita

covariant derivative (V), and base point o € M. We further let
Wy (M) :={o € C([0,1)— M) |o(0)=o0}

be the Wiener space on M and let v be the Wiener measure on W, (M)—i.e.
the law of the M—valued Brownian motion which starts at o € M.

Richard Feynman, in his groundbreaking 1942 dissertation, offered a path
integral representation of the quantum particle state based on the principle of least
action. In quantum physics, the state of a quantum particle is described by a wave

function ¢ which satisfies the Schrodinger equation,
0
9
iy ®=H¢

where H = —%Ag + V is the Schrodinger operator, A, is the Laplace-Beltrami
operator on (M, g,0), V : M — Ris an external potential and ¢ is the imaginary unit.

For our purpose, a slight modification is considered: after an analytic continuation



(roughly change t — it), the Schrédinger’s equation becomes the heat equation;

5 ¢=—Ho, ¢(x,0)= [ (). (1.1)

Let e be the solution operator to (1.1), meaning e *# f solves heat equation
(1.1) when such a solution exists. Under modest regularity conditions, this operator
admits an integrable kernel pf (-,-). In the physics literature one frequently finds

Feynman type informal identities of the form,

1 171 2
pom) =25 [ alo)e BErOremlipg (1)
Wo(M)
and
1 171 2
(e f) (o) = “—/ (o (1)) e b [BeOP+Ve@)]drp (1.3)
Z Jwoan)

Variants of these informal path integrals are often used as the basis for “defining” and
making computations in quantum-field theories. From a mathematical perspective,
making sense of such path integrals is thought to be a necessary step to developing
a rigorous definition of interacting quantum field theories, (see for example; Glimm
and Jaffe [17], Barry Simon [31], the Clay Mathematics Institute’s Millennium
problem involving Yang-Mills and Mass Gap). In general, path integrals like those

appearing in (1.2) suffer from at least five distinct flaws;

1. The normalizing constant Z should typically be interpreted as either 0 or oo

depending on the context.

2. The energy function
1 1
E (o) := —/ 6 (7)|? dr
2 Jo

appearing in the exponent in (1.2) requires o to be appropriately differentiable;
this is at odds with the fact that sample paths of Wiener measure v are

almost surely nowhere differentiable.



3. There is no Lebesgue measure Do on infinite dimensional path spaces.
4. 6, is a distribution so pointwise evaluation does not make sense.

5. It is generally not permissible to multiply a distribution d, with a measure

2 €Xp (—% fol 6 (7)]? dT) Do.
Various attempts to use path integrals to rigorously construct solutions to the
Schrodinger (heat) equation have been made, out of which we highlight two routes.
One is to approximate the path integral through piecewise “linear” paths or
polygonal paths, which evolves as a finite dimensional approximation scheme that
will be discussed more in Section 1.1. Another route, pioneered by Kac, is the

realization of taking Wiener measure as the framework of integration over path

spaces. Roughly speaking, when V' = 0, Kac suggests the formal identities;

1 .
“Ee_%fol“’(T)‘QdTDa” =dv (o) (1.4)
and
1 1.
“/ 9z (o (1)) — ez hls@lFdrpyn p1 (0, ) (1.5)
W,(M) Z
where p; (z,y) is the heat kernel on M. For example, if M = R, the heat kernel is
given by
1 —a?
0,z) = ezt
P (0,2) 2mt

which is the well known density function of a normal random variable with mean 0
and variance t. In general, if the potential V' is sufficiently regular, one can prove

rigorously the following results;

pH (0’ x) =m (0’ x) / e~ f()1 V(Es)dsdyZ
o(M)



and

_H _ —fol\/(Es)dsd$ d
e f (o) [w[p1<o,x>f<x>/o(M)e | da

where X5 : 0 3 W, (M) — o(s) € M is the coordinate function. The above
expressions are typically refered to as Feynman—Kac formulae. Interested readers
may refer to [29] and references therein for a thorough summary of this field in
Euclidean space with a flavor of rigorous quantum field theory and may refer to [4]

for a survey of results in general Riemannian manifolds.

1.1 Finite Dimensional Approximation Scheme
for Path Integrals

The central idea behind finite dimensional approximation scheme is to define
a path integral as a limit of the same integrands restricted to “natural” approximate
path spaces, for example, piecewise linear paths, broken lines, polygonal paths and so
on. The ill-defined expression under these finite dimensional approximations usually
becomes well-defined or has better interpretations, see ( [16], [23]). For example,
when M = R?, it is known that Wiener measure on W (Rd) may be approximated
by Gaussian measures on piecewise linear path spaces. More specifically, Eq. (1.4)
restricted to a finite dimensional subspace of piecewise linear paths based on a
partition of [0,1] has a natural interpretation as Gaussian probability measure
resulting from the canonical isometry between the piecewise linear path space and
R where n is the number of partition points. By combining Wiener’s theorem on
the existence of Wiener measure with the dominated convergence theorem, one can
see that these Gaussian measures converge weakly to v as the mesh of partition
tends to zero, (see for example [13, Proposition 6.17] for details). An analogous
theory on general manifolds was also developed, see for example [30], Atiyah [3],

Bismut [5], Andersson and Driver [2] and references therein. In [2], followed by [28]



and [27], the finite dimensional approximation problem is viewed in its full geometric
form by restricting the expression in Eq. (1.4) to finite dimensional sub-manifolds
of piecewise geodesic paths on M. Unlike the flat case (M = R?) where the choice
of translation invariant Riemannian metric on path spaces is irrelevant, various
Riemannian metrics on approximate path spaces are explored. Based on these
metrics, different approximate measures are constructed which lead to different
limiting measures on W, (M), see [2], [27], and [28]. In this dissertation we adopt a
so—called G3 metric on the piecewise geodesic space.

In the remainder of this section, we briefly summarize some results in [2] to
give reader a better understanding of how the finite dimensional approximation

scheme goes as well as establishing some necessary notations used in this dissertation.

Definition 1.1 (Cameron-Martin space on (M, 0)) Let
1
H (M) := {O’ eC(0,1]— M):0(0)=0, 0 is a.c. and / o' (s)]> ds < oo}
0

be the Cameron-Martin space on (M, o). (Here a.c. means absolutely continu-

ous.)

Notation 1.2 Let I'(T'M) denote the differentiable sections of TM and Ty (T'M)
be the differentiable sections of TM along o € H (M).

The space, H (M), is an infinite dimensional Hilbert manifold which is a central
object in problems related to the calculus of variation on M. Klingenberg [24]
contains a good exposition of the manifold of paths. In particular, Theorem
1.2.9 in [24] presents its differentiable structure in terms of atlases. We will be
interested in certain Riemannian metrics on H (M) and on certain finite dimensional

submanifolds.



Definition 1.3 For any o € H (M) and X,Y € I'““ (T M),
Y/VX VY

GH(X)Y) = — — d

)= [ o 0) @

where T%¢ (T'M) is the set of absolutely continuous vector fields along o with finite

energy, i.e. fol YX (5), XX (s)>g ds < o0.

Remark 1.4 To see that G is a metric on H (M), we identify the tangent space
ToH (M) with T%* (T'M). To motivate this identification, consider a differentiable
one-parameter family of curves oy in H (M) such that o9 = o. By definition of
tangent vector, % lo 01 (8) should be viewed as a tangent vector at o. This is actually

the case, for detailed proof, see Theorem 1.3.1 in [24].

Definition 1.5 (Piecewise geodesic space) Given a partition
P={0=sy<---<s,=1} of [0,1],
define:
Hp (M) :={oc € H(M)NC*([0,1]\P): Vo' (s) /ds =0 fors ¢ P}. (1.6)

The piecewise geodesic space Hp (M) is a finite dimensional embedded submanifold
of H(M). As for its tangent space, following the argument of Theorem 1.3.1
in [24], for any 0 € Hp (M), the tangent space T, Hp (M) may be identified with
vector-fields along o of the form X (s) € T,(;)M where s — X (s) is piecewise C*
and satisfies Jacobi equation for s ¢ P, i.e.

VX () = R (). X () 0 (5.

where R is the curvature tensor. (See Theorem 2.39 below for a more detailed



description of THp (M)). After specifying the tangent space of Hp (M), we can

define the G} metric as follows.

Definition 1.6 For any o € Hp (M) and X,Y € T,Hp (M), let

Gp(X,Y) = Z <% (sj-1+), % (5j1+)> Aj (1.7)

g

where Aj = s; — sj_1 and 2 (s;_14) = limg,, | 2 (s).
Endowed with the Riemannian metric G5, Hp (M) becomes a finite dimen-
sional Riemannian manifold and the left hand side of (1.4) is now well-defined on

Hp (M) if Do is interpreted as the volume measure induced from this Riemannian

metric. This motivates the following approximate measure definition.
Definition 1.7 (Approximate measure on Hp (M)) Let vy be the probability
measure on Hp (M) defined by,

1 ! !
v (0) = —pe #h @O Odsgquol gy (o), (1.8)

where dvolgy, is the volume measure on Hp (M) induced from the metric G and

Z}, is the normalization constant.
We now summarize the main theorem in Andersson and Driver [2].

Theorem 1.8 (Andersson-Driver, Theorem 1.8. [2]) Suppose f : W, (M) —

R is bounded and continuous, then

lim fo)dvp (o) = /W » f(o)dv (o).

"P‘%O Hp(M)

1.2 Main Theorems

In this section we state the main results of this dissertation while avoiding

many technical details.



Definition 1.9 (Pinned piecewise geodesic space) For any x € M,
Hp,(M):={ce€ Hp(M):0(1) =x}.

We prove below in Proposition 3.11 that when M has non—positive sectional

curvature, Hp , (M) is an embedded submanifold of Hp (M).

Theorem 1.10 If M is a Hadamard manifold with bounded sectional curvature
and P = {k/n},_, are equally-spaced partitions, then there exists a finite measure

1/713@ supported on Hp . (M), such that for any bounded continuous function f on

Hp (M),

i [ ) f @) dvp() = [ o T @),

where 55 is an approzimating sequence of §, in C3° (M).

Recall that a Hadamard manifold is a simply connected complete Riemannian

manifold with non-positive sectional curvature.
Remark 1.11 The formula for dl/71;,7z is explicitly given, see Definition 3.13.

The next theorem asserts, under additional geometric restrictions, that the
measure y};’x we obtained from Theorem 1.10 serves as a good approximation to

pinned Wiener measure v,.

Theorem 1.12 If M 1is a symmetric space of non—compact type, i.e. it is a
Hadamard manifold with parallel curvature tensor, then for any restricted cylinder

function f € RFC;, see Definition 2.31,

lim f(0)dvh, (o) = / f (o) dv, (o)

IPI=0 J Hp (M) Wo (M)

where v, is pinned Wiener measure, see Theorem 2.17 below.



1.3 Structure of the Dissertation

For the guidance to the reader, we give a brief summary of the contents of
this dissertation.

In Chapter 2 we set up some notations and preliminaries in probability and
geometry. In particular we present the Eells-Elworthy-Malliavin construction of
Brownian motion on manifolds.

In Chapter 3 we define explicitly the pinned approximate meausre V%;’x and
study its properties. In Theorem 3.15, we prove that 1/71,@ is a finite measure and
that v — [ Hpo (M) f dl/f,l;’x is a continuous function on M provided f is bounded and
continuous. This property is the key ingredient in proving Theorem 1.10, which is
given in Chapter 3.

In Chapter 4 we develop the so—called orthogonal lift of a vector field X on
M to a vector field X (-) on W, (M). We define X (-) first on H (M) by minimizing
a norm of X (-) which is induced from a “damped”metric related to the Ricci
curvature of M (see Definition 4.6). This lift is then “stochastically”extended to
W, (M). Some tools from Malliavin calculus are reviewed as needed in order to
define X (-) as an anticipating differential opearator on W, (M). We then establish
integration-byparts formula for X (-).

In Chapter 5 we focus on the finite dimensional manifold Hp (M). In
Section 5.1 a parametrization of the tangent space of Hp (M) is given. Using this
parametrization and some linear algebra we obtain a formula for the orthogonal lift
Xp of X € T (TM) relative to the norm induced from the Gb metrc on Hp (M).

In Chapter 6, (using the development maps introduced in Chapter 2), we
view Xp as defined on all of W, (M) and show that for any bounded cylinder
function f (also introduced in Chapter 2), Xpf — X f in L~ (W, (M)) and more
challengingly, we show X' f — XZ b f — 0, where X' is the adjoint of X with

<7 ’I"I/l . « <7 .
respect to v and X;’ 7 is the adjoint of Xp with respect to v3p.



10

In Chapter 7, we combine all the tools that are developed from previous

chapters to prove the main Theorem 1.12 of this dissertation.



Chapter 2

Background and Notation

For the remainder of the dissertation, let ug : R — T, M be a fixed linear
isometry which we add to the standard setup (M, g,0,uo, V). Let I' (T M) be
differentiable sections of the tangent bundle T'M. We will first introduce the
orthonormal frame bundle O (M) which is crucial in the Eells-Elworthy-Malliavin
construction of Brownian motion. A connection is then defined on O (M). The
reader may refer to Appendix A.2 for a more detailed exposition of principal bundles

(O (M) is a special case of a principal bundle) and connections on them.

Definition 2.1 (Orthonormal Frame Bundle (O (M), 7)) For any © € M,
denote by O (M), the space of orthonormal frames on T, M, i.e. the space of
linear isometries from R to T,M. Denote O (M) := UpensO (M), and let 7 :
O (M) — M be the (fiber) projection map, i.e. for each u € O (M),, 7 (u) = .
The pair (O (M) , ) is the orthonormal frame bundle over M whose structure group

is the orthogonal group O (d)-the d X d real orthogonal matrices.

Definition 2.2 (Connection on O (M)) A connection on O (M) is uniquely

specified by the so (d)-valued connection form wY on O (M) determined by V;

11



12

for any uw € O (M) and X € T,,0 (M),

where u (+) is a differentiable curve on O (M) such that u (0) = u and dl;is) |s=0= X.

For any € € RY, Vzgs) ls=0 & == % |s=0 1s the covariant derivative of u (-) & along

m(u(-)) at m(u).

wY determines a decomposition of TO (M). We will call the kernel of w¥
the horizontal vector space (denoted by HTO (M)) and call the compliment space
the vertical vector space (denoted by VT O (M)).

Definition 2.3 For any a € RY, define the horizontal lift B, € T (TO (M)) of a

in the following way: for any u € O (M),
o wy (Ba(u))=0
o 7, (B, (u) =ua

Remark 2.4 By the rank-nullity theorem, it is easy to see that the above conditions

determine uniquely the horizontal lift.

Recall that we have defined the Cameron-Martin space on M:
1
H (M) := {U € C([0,1],M):0(0) =0,0 is a.c. and / o’ (s)|§d3 < oo}
0

Similarly we define Hy (R?) and H,, (O (M)) by changing the state spaces to be
R%, O (M), reference points to be 0, ug and using the usual metric for g on the

Euclidean spaces R¢, R?*?.

Definition 2.5 (Horizontal lift of a path) For any o € H (M), a curve u :
[0,1] = O (M) is said to be a horizontal lift of o if mou = o and the tangent vector
to u (s) always belongs to HT,,O (M) .
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Theorem 2.6 Given 0 € H (M) and ug € 7' (c(0)), there exists a unique
horizontal lift u(s) such that uw(0) = ug. We denote u by 1 (o), so ¢ is the

horizontal lifting map.

Proof. The condition of existence of horizontal lift v of ¢ is equivalent to:

for s € [0, 1]

For any s € [0, 1], there exists U, in the open cover of M and ¢ > 0 such that o (1) €
U, for 7 € (s —¢,s + €)N[0,1] . Denote by w, the restriction of the connection one-
form w on 7! (U,) and ¢y ou (1) = (0 (7),9(7)) € Uy x G, where ¢, : 71 (Uy,) —
U, X G is the local trivialization. Then after identifying 7' (U, x G) with TU, x TG,
the condition w¥ (' (7)) = 0 is equivalent to Ay0’ (1) + Co(rg' (T) = 0, where A
and C are two g—valued one forms on U, and G. Since o (7) is fixed, this gives rise
to a linear system of ODEs of g (7), since the initial condition is specified, there is
a unique solution ¢ (7) and hence the unique u (7).

Notation 2.7 A pathu € H,, (O (M)) is said to be horizontal if the tangent vector
to u(s) always belongs to HT,O (M). We denote the set of horizontal paths by
HHy, (O (M)).

Fact 2.8 Ifu(o,s) = (0)(s), then u(o,s)uy’ is the parallel translation |/, (o)

along o.

Remark 2.9 Theorem 2.6 asserts that ¢ : H (M) — HH,, (O (M)) is a bijection.

It is in fact known to be a diffeomorphism with ¢! (u) = 7 o u.
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Definition 2.10 (Development map) Given w € H, (Rd), the solution to the

ordinary differential equation

is defined to be the development of w to H,, (O (M)) and we will denote this

map w — u by n, i.e. n(w) = u. Here {e;}{_, is the standard basis of R

Remark 2.11 From Definition 2.10 and the smooth dependence of driving path in
ODE systems we can see that ) is a diffeomorphism from Hy (R?) to HH,, (O (M)).

Definition 2.12 (Rolling map) ¢ = won: Hy (R?) — H (M) is said to be the
rolling map to H (M).

Remark 2.13 From Remark 2.9 and 2.11 one can see that ¢ has a smooth inverse

¢~ L, which can be defined explicitly as follows:

Definition 2.14 (Anti-rolling map) Given 0 € H (M) with w = ¢ (o). The

anti-development of o is a curve w € Hy (Rd) defined by:

t
—1
wt:/ u,lolds
0

It is mot hard to see w = ¢~ ' (o).

The Eells-Elworthy-Malliavin construction of Brownian motion depends in essence
on a stochastic version of the maps defined above. Since the development maps on
the smooth category are defined through ordinary differential equations, a natural
way to introduce probability is to replace ODEs by (Stratonovich) stochastic
diffrerential equations.

First we set up some measure theoretic notation and conventions. Suppose

that (Q,{G,},G, P) is a filtered measurable space with a finite measure P. For any
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G—measurable function f, we use P (f) and Ep [f] (if P is a probability measure)
to denote the integral [, fdP. Given two filtered measurable spaces (2,{G;},G, P)
and (,{G.},G', P’) and a G/G" measurable map f : Q2 — ', the law of f under
P is the push-forward measure f,P (-) :== P (f~!(-)). We are mostly interested in
the path spaces W, (M), Wy (R?) and W,,, (O (M)), where the following notation

is being used.

Notation 2.15 If (Y,y) is a pointed manifold, let W (Y) := C([0,1],Y) be the
space of all continuous paths in'Y equipped with the uniform topology, W, (Y') :=
{w e W (Y) | w(0) =y} be the subset of continuous paths that start at y.

Definition 2.16 For any s € [0,1] let X5 : W, (Y) — Y be the coordinate

functions given by X, (o) = o (s).

We will often view ¥ as a map from W, (V) to W, (Y) in the following way: for any
ceW,(Y)and s €[0,1], £ (o) (s) = X5 (). Let F? be the c—algebra generated
by {3, : 7 < s}. We use 7 as the raw o—algebra and {F/}, .., as the filtration
on W, (Y). The next theorem defines the Wiener measure v and pinned Wiener

measure v, on (W, (Y),F7).

Theorem 2.17 Assume Y is a geometrically complete Riemannian manifold, then
there exist two finite measures v and v, on (W, (Y),F?) which are uniquely de-
termined by their finite dimensional distributions as follows. For any partition

0=s50<s1 < <8p_1<8,=10f[0,1] and bounded functions f :Y" — R;

v(f(Es,...,58)) = y fxy, .o xn) I pas, (Tim1, @) doy - - - dz, (2.1)

and

Vg (f (2817 s 725n)) = f (xh s 7xn) H?:lpAsi (I’i,h 'T’L) dxl e dxnfl (22)

yn—1
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where py (+,-) is the heat kernel on'Y associated to the Riemannian metric, A; =

Si — Si—1, To =y and T, = x in (2.2).

Definition 2.18 (Brownian motion) A stochastic process X : (Q,Gs,{G}, P)—
(W, (Y),v) is said to be a Brownian motion on Y if the law of X is v i.e.

X,P:=PoX '=v.

Remark 2.19 From Theorem 2.17 it is clear that the law of the adapted process
W, (Y) = W, (Y) is v and ¥ is a Brownian motion. We will call ¥ the

canonical Brownian motion on Y .

Remark 2.20 Using Theorem 2.17, we can construct Wiener measure and pinnned
Wiener measure on Wy (R?), W, (M) and W,, (O (M)) respectively. In order to
avoid ambiguity from moving between W) (Rd) and Wy (M), we fix the symbol p (p)
as the Wiener (pinned Wiener) measure on Wy (R?) and reserve the symbol v (v)
as the Wiener (pinned Wiener) measure on W, (M). Meanwhile we reserve ¥ as

the canonical Brownian motion on M.

Theorem 2.21 (Horizontal Lift of Brownian Motion) If ¥ is the canonical

Brownian motion on M, then there exists a unique (up to v—equivalence) i €
Wiy, (O (M)) such that
7 (ts) = Y. (2.3)

Proof. See Theorem 2.3.5 in [21] m

Definition 2.22 (Stochastic Anti—rolling map) If ¥ is the canonical Brown-
ian motion on M, the (stochastic) anti-rolling B of ¥ is defined by,

6Bs = 1,68, , o =0 (2.4)

@ and 8 defined above are linked through the (stochastic) development map.
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Definition 2.23 (Stochastic development map) Let @ and § be as defined in
Theorem 2.21 and Definition 2.22, then u satisfies the following SDE driven by [,

d
0ty =Y Be, (iis) 6B, , @(0) = ug
=1

and u 1s said to be the development of [3.

Fact 2.24 The following facts are frequently used in this dissertation. (The proof
can be found in Appendiz A.)

e ¢ is a diffeomorphism from H, (Rd) to H(M),
CN0) ’HP(Rd) is a diffeomorphism from Hp (Rd) to Hp (M),
e (3 is a Brownian motion on (Wo (]Rd) ,,u).

From now on some notations are fixed for the conveniance of consistency.

Notation 2.25 For any o € H (M), u (o) € Hy, (O (M)) is its horizontal lift
and by (o) € Hy (RY) is its anti-rolling. Recall that {Es}ocs<t 18 fized to be the
canonical Brownian motion on (W, (M) ,v). We also fix B () to be the anti-rolling

of 3, (which is a Brownian motion on R¢) and @ (-) to be the (stochastic) horizontal

lift of 3.

Notation 2.26 Given a partition P, Pp is the piecewise linear approximation to

the Brownian motion 3 on RY given by:

B () 1= B (si0) + 52 (5= 502) i 5 € [sica, 5]

where A;B = B (s;) — B (si—1)and A; = s; — ;1.

Notation 2.27 (Geometric Notation)



18

curvature tensor For any X,Y,Z € I'(T'M), define the (Riemann) curva-
ture tensor R: T (TM) xT'(TM) — T (End (TM)) to be:

R(X,Y)Z =VxVyZ —VyVxZ —Vixy|Z

sectional curvature For any p € M and T, a two dimensional subspace of

T,M, the sectional curvature K (p,T,) with respect to T, is defined to be:
K (p,T,) == (R(X,,Y)) Yanp>g

where (X,,Y,) is an orthonormal basis of K (p,T}).
For anyo € H (M), define Ry (-, ) - to be a map from R'@R? to End (R?)
given by,

Ry(o.s) (a,0) - = u (0, $) 'R (u(o,s)a,u(o,s)b)u(o,s) Ya,be RY  (2.5)

where R is the curvature tensor of M. Similarly define Ryos) (+,-) - to be a

random map (up to v-equivalence) from R @ R to R? as follows:

Rios) () - = (0,8) ' R(i(0,8) i (0,5))i(0,s) (2.6)

Ric(+) = 25:1 R (v, ) v; is the Ricci curvature tensor on M. Here {vi}?zl
is an orthonormal basis of proper tangent space. Using u (o, s) or i (o,s) to

pull back R, we can define Ricy(, s and Ricgyss) to be maps (Random maps)
from R? to RY.

For any p € M, exp, : T,M — M 1is the Riemannian exponential map, i.e.
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for any £ € domain of exp,,

apy (€) = (15\ , é—|>

where 7 (t,v) is the unique geodesic of M with v (0) = p and ~' (0) = v

Remark 2.28 The existence of unique local geodesic v (t,v) is a standard result

in differential geometry, see Proposition 2.17 in [8].

Remark 2.29 Sometimes in the dissertation we will suppress o, sometimes even

s in u (0, s) when there is no confusion.

Remark 2.30 In this dissertation the partition P is always equally spaced, so
Pl=Ai=21 fori=1,..,n.

We introduce two commonly used test function spaces on W, (M).

Definition 2.31 f : W, (M) — R is a restricted cylinder function if there
exists a partition

P={0<s <---<s,<1}

of [0,1] and a function F : C™ (M™,R) such that

Denote this space by RFC™.

Definition 2.32 f : W, (M) — R is a cylinder function iff there exists a
partition

P={0<s <---<s, <1}

of [0,1] and a function F € C™ (O (M)",R) such that:

f=F (s, sy, ..., Us,)
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Denote this space by FC™.
Notation 2.33 Denote
FCy :={f:=F (u) € FC',F and all its partial differentials F, are bounded} .
Notation 2.34 Denote
RFC, :={f :=F (o) € FC',F and all its partial differentials F| are bounded} .

Remark 2.35 In Notation 2.34, for eachi € {1,...,n}, F/: TM — R%, so F is
bounded iff || Fj[|, < oc.

Remark 2.36 In Notation 2.33, for eachi € {1,...,n}, F/ : TO (M) — R?. F!
is bounded iff for any a € R?, A € so(d), |ATF| < C||A| < oo and |B.F;| <
C||a|| < oo, where the vectors fields AT and B, are defined in Definitions A.11 and

2.3.

Remark 2.37 Since 7 (i) = 35 and 7 : O (M) to M is smooth, RFC™ C FC™

for each m € N.

Definition 2.38 (Jacobi equation) For 0 € H(M), Y € T, (TM), we say
Y (s) € T,syM satisfies Jacobi equation if:

VQ

Y (5) = R(0' ()Y () 0" (5).

Further if the horizontal lift u (s) of o is used, we let y (s) :=u"" (s)Y (s). It then

follows that y (s) satisfies the pulled back Jacobi equation,

y' (s) = Ru(s) (V' (5),y () ¥ (s), (2.7)
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where V' (s) = u(s) "o’ (s). Once we have Jacobi equation, we can describe the

tangent space THp (M) of Hp (M):
We formalize the tangent space of Hp (M) mentioned in Definition 1.5.

Theorem 2.39 (Tangent space to Hp (M)) For all 0 € Hp (M),

T,Hp (M) ={s = u(s)J(s)| J€C([0,1],RY), J € Hp, with J(0) =0} .
(2.8)
where J € Hp , iff

J"(5) = Rygs) (V' (sic1+) . J (8)) V' (sim1+) fors € [si—1,8) i=1,...,n.

Proof. See Theorem 1.3.1 in [24]. =

Notation 2.40 Given h(-) € Ho (R?), denote
X"(0,8) :=u(o,5)h(s).
Notation 2.41 ({Cp; (0,s)} ", and {Sp, (0,s)}; ) Let
P={0=s0<s<--<8,=1}

be a partition of [0,1], K; := [s;-1, 8] and A; == s; — s;—1 for 1 <i < mn, and say
that f (s) satisfies the i —Jacobi’s equation if

f"(s) = Ry, (u™'0" (sic1t), f(s)) u™'o' (sim1+) for s € K;. (2.9)

where u='o’ (s) == u (0,8) "o’ (s) € R%.

We now let Cp; (0,s) and Sp; (0,s) € End(R?) denote the solution to Fq.



22

(2.9) with initial conditions,
Cp,i(sic1) =1, Cp,;(5i21) =0, Spi(si-1) =0 and Sp; (si—1) =1
and we further let
Cp.i(0):=Cp,(0o,s;) and Sp; (o) := Sp, (0,5;) .

Here we view Cp; (s) and Sp; (s) as maps from Hp (M) to End(R?).

Definition 2.42 Define for alli =1,--- ,n,

(
0 S € [0, 87;_1]
_ Sp.i(o,s

fP,i (07 3) - %L) S € [51;1, Si]
Cp,j(0,85)Cp,j—1(0)Cp,it1(0)Sp,i(o)

\ i

s € [Sj—bsj] fOTj :Z+17 y TV

with the convention that Spoy = |P|I and fpo = 1.

Remark 2.43 Sp (s), Cp; (s) may be expressed in terms of {fp,i}?zo by
Spj(s) =Ajfp,;(s)

Cpj(s) = frj-1(s) fﬁ,;_1 (s5) -



Chapter 3

Approximate Pinned Measures

3.1 Representation of ¢ — function

Let X be a smooth manifold (for example, M as mentioned in the disser-
tation, R? or open subset of the first two). We will denote the distribution on X
by D' (X) and, compactly supported distribution by £ (X). For a matrix A, let
eig (A) is denote the set of eigenvalues of A. To each z € X, let §, € £ (X) be the

0—function at x defined by

0u (f) = f(x) Vf e G5 (X).

Lemma 3.1 (Representation of d§, on flat space) There exist functions {gi}fzo
with go € Cg° (R?), {gj}jzl C O (R?/{0}) with supports contained in a compact
subset K C R? and satisfies

lg; ()| < el forj=1,---,d, (3.1)
such that
—go—l—za—ggcj in & (RY). (3.2)
— j

23
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In more detail, for any f € C5° (RY),

d d
f(O):/Rd (go#—;g—fé) fd:v:/Rd <gof—;§—;gj> dz. (3.3)

This lemma can be derived from Lemma 10.10 in [32]. Here we provide another
proof using the fundamental solution to the Laplace’s equation.

Proof of Lemma 3.1. Define the Newtonian kernel T' (z) on R? (d > 2) :

’x|2—d

P& = e = dw,

where wy is the volume of unit ball on RY. Then it is well-known I'(z) is a
fundamental solution of Laplace’s equation, i.e. for any y € R?, denote by A the

Laplacian on R%:

AT (- —y) =6,(-) in & (RY).

where 9§, is the delta function at y and the equality is interpreted in the distributional

sense. In particular if y = 0, we get:

If Z:= VI e C> (R?/ {0} — R?), then

—d
z|z|

12| = < Calz|'™

where Cy is a constant depending only on d and
V- Z = inS’(Rd).

In order to get compact support, let g; = ¢Z;, where ¢ € C§° (Rd) such that ¢ =1
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on B(0,1) and ¢ =0 on R?/B(0,2), B (x,r) is the ball on R? centered at x with

radius r. Then we have
V- (¢Z)=V¢-Z+¢V-Zin& (RY).
Since the support of &g is {0}, we get
0o0=V-Z=¢V-Z=V-(pZ)—Vo-Z,

where —V¢ - Z € C3° (RY) and {¢Z;}¢_, € 0 (R?/{0}) with compact support
and [¢Z;] < ¢|z|"™? for some ¢ > 0. m
Based on this representation we can get a representation of ¢, for any p € M.

Before we get to the representation of J, we state a smooth Urysohn lemma.

Lemma 3.2 (Smooth Urysohn Lemma) If M is a smooth manifold, then for
any two disjoint closed sets Vi and Va, there exists a function f € C*> (M, 0, 1))
such that =1 ({0}) = Vi and f~1 ({1}) =

This is a standard result in elementary topology, so the proof is skipped here.

Theorem 3.3 (Representation of § — function on manifold) For any p €
M, there exist functions {gj}j:o C C>*(M/{p}) N L (M) with supports in
a compact subsets K of M and smooth vector fields {Xj}jzl C ' (TM) with

compact support such that
dp _90+Z ;g5 i E (M) . (3.4)

Proof. Pick a chart {U,z} near p € M such that z (p) = 0. Since z (U) = R%, one
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can apply Lemma 3.1 on z (U) ~ R% and get:

where dy is the delta mass on x (U) supported at the origin. So for any h € C* (U)

h(p)=hoxz™"(0)

_ d
where d) is the Lebesque measure on R?. Consider { \/é]éTg o $}j:0 where g =
L)

(gij)1<z'j<d is the metric matrix, i.e. g;; = <a$_, %> . From Lemma 3.1 we know
— ) = 1 1 g

that \/&%g o x has compact support in U and therefore K := U?zlsupp ( \/é%g o 1‘)

is compact in U. Using Lemma 3.2 we can construct a smooth function ¢ €

C> (M — [0,1]) such that ¢~ ({0}) = M/U and ¢! ({1}) = K. Define

A 90
g ox
Go=¢ det g

and

A 9i 1y 0 :
gj:gb\/dé_tgox’ Xj:¢-(x 1)*%f0r]:1,...,d

J
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Then for any f € C* (M),

/(o—i-Zgj )fdvol
z/(o+zg] )fdvol

ox - ¢fdvol

\/H
e 80 )

Here dvol is the volume measure on M.

Since ¢ - (x71), gj =0 and ¢ =1 on K, we have:

~ d ~
9o 9j 1y 0
/(goJngj )fdvol L(mox+;mom@ )*a—gjj>fdvol
~ d ~
— 9o gj .
_/Rd (x/detgjL]z::\/d 8:rj>f @ /det gd)

IR
:/Rd<go—|—; a—)fox

= foxz"1(0)
=1

Therefore, by the Divergence Theorem, we can write down d, in distributional sense

as J
Sp=g0+ > Xig
j=1
where

d
g =do— Y G- divX;
=1
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and for j =1,...,n,
9i = —9;-
From the construction one can see that X; € I'** (T'M) and {g, }‘;:0 C C>(M/{p}Hn
L=t (M) with compact support.

Lemma 3.4 C§° (M) is dense in LP (M) for any 1 < p < oc.

Proof. Recall that simple functions on M are finite linear combinations of indicator
functions 1p where vol (E) < co. Since simple functions are dense in LP (M) . It
suffices to show that C§° (M) is dense in the space of simple functions with respect

to LP—norm. Given a simple function 1g,

/ 1gdvol = vol (E)
M

Since the volume measure is regular, there exists a compact set K and open set U
such that
KCFECU

and

vol (K) > vol (U) — e.

Now apply Lemma 3.2 we can find a cutoff function f € C§° (M) such that
f1({0}) = M/U and f~* ({1}) = K. Tt follows that

1 = Lolan = / 1 — 1P dvol < vol (U — K) <
M

which proves the denseness of C§° (M) in the space of simple functions and thus in
L»(M).

Remark 3.5 Using Lemma 3.4 and Theorem 3.3, for any g;,7 =1,--- ,d, we can
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find a sequence {g(-m)} C C§° (M) such that

Vi
g™ = g in L7 (M)
(

In particular, since g; has compact support, we can make Umsuppgjm) to be compact.

Corollary 3.6 Define

d
o =g+ Y X9 € G (M)
j=1

Then {555””} s an approximating sequence of delta mass 6, i.e.

6™ — &, in D' (M) .

Proof. Using integration by parts, we have for any f € C' (M),

d
/ Fomay = / <gém>+Zng§m>) Fd (3.5)
M M j=1
d
_ /M <gg’“> F+> d™x; f) d\ (3.6)
j=1

Since K := Umsuppgj(m) is compact, f-1x and X7 f-1x € L>~ (M), then 3.6 easily

follows by Holder’s inequality. m

3.2 Definition of vy,
In this section we will give the explicit definition of y%’z proposed in Theorem
1.10.

Definition 3.7 (End point map) Define Ey : H(M) — M to be Ey (o) =0 (1)

and let ET denote Ey |pgp() -
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Recall from Definition 3.16 that
1
Hp o (M):={o € Hp(M)|o(1) =z} = (ET) ({z}).

In general, it is not guaranteed that E7 is a submersion, which would guarantee
that Hp, (M) is an embedded submanifold of Hp (M). The following is an easy,

yet illuminating, example showing what can go wrong:

Example 3.8 If M =S? and P :={0,1} with starting point being the North pole,
then dim Hp (M) = 2. Consider

X (0,8) := (0,wsinsm,0) € T,Hp (M)
where
o (s) = (sinsm, 0, cos sm) .

An one parameter family realizing X (o, s) would be
oy (8) = (sin sm cos trr, sin s7 sin ¢, cos s7)

From which one can easily see that:

d d
EL (X)= E|0Ef (o) = Ebat (1) =X (0,1) = 0.

So by Rank-Nullity theorem, E\”_ is not surjective.

The problem comes from the conjugate points on M. Two points p and ¢ are
conjugate points along a geodesic o if there exists non-zero Jacobi field (smooth
vector field along o satisfying Jacobi equation) that vanishes at p and ¢. This
fact will allow the kernel of E,” to be “overly large ” (more accurately dimension

exceeds (n — 1) d), so by Rank-nullity theorem, E;, can not be surjective. In this
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dissertation we consider manifolds with non—positive sectional curvature. These
manifolds do not have conjugate points. From the next proposition we will see that

ET is a submersion on these manifolds.

Notation 3.9 We construct a Gp—orthonormal frame
{Xti:1<a<d1<i<n}
of Hp (M) as follows,

hei € Hp, and h’m(sj—i-) =

51'— Ca .
15 forj=0,...,n—1 (3.7)
Ao

where the definition of Hp , can be found in Definition 2.8.

Remark 3.10 [t is not hard to see using Proposition 5.1 that

1

hayi (8) \/ﬁ

fri(s)ea (3.8)
where { fp; (s)} is given in Definition 2.42.

Proposition 3.11 If M is complete with non-positive sectional curvature, then

forany x € M, Hp , (M) := (EP)™' ({x}) is an embedded submanifold of Hp (M) .

Proof. It suffices to show ET is a submersion. Since M is complete, for any y € M,
there exists a geodesic o parametrized on [0, 1] and connecting o and y. So ET is
surjective. To show E,” is surjective, we use a class of vector fields {X ha’"}izl in

Notation 3.9. Since
BT (Xhen) = X7 = V/nu (1) Sp peq

where u (-) = u (o, -) is the horizontal lift of ¢ € Hp (M). From Proposition B.2
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we know Sp, is invertible, therefore { EJ, (X"e) }izl spans Tipp(, M. So ET. is
surjective. ®

Since Hp, (M) is an embedded submanifold of Hp (M), we can restrict
the Riemannian metric G on THp (M) in Eq. (1.7) to a Riemannian metric on

THP,:L‘ (M)

Definition 3.12 Assuming M has non-positive sectional curvature, for any x € M,
let Gp, be the restriction of G to T,Hp o (M) C T,Hp (M) . Further, let volgy

be the associated volume measure on Hp , (M) .

Based on the Volume measure volG% on Hp, (M), we can construct the

: : 1.
pinned approximate measure vp ,

Definition 3.13 Let v}, be the measure on Hp o (M) defined by

1 1 -BO
2

A (0) = ———
Vp (0> JP (O') Z7136

dvolgy, | (o) (3.9)

where Jp (o) 1= \/det (EP Eptr> and Z3 = (27r)d7n

1 x0™1 xo

3.3 Continuous Dependence of 1/71336 on x

Recall that a Hadamard manifold is a simply connected complete manifold
with non—positive sectional curvature. Throughout this section we assume M is
a Hadamard manifold whose sectional curvature is bounded below by —N. The
following theorem illustrates that the measures, 1/71;733, are finite and “continuously

varying” with respect to x.

Notation 3.14 We will denote by Cy(Y') bounded continuous functions on a topo-
logical space Y .
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Theorem 3.15 For any v € M, Vz}),m is a finite measure. Morover, for any

f€Cy(Hp, (M)), define
@)= [ o)k, o) (3.10)

If the mesh size of |P| = L of the partition P is small enough, i.e. n > 3dN, then

Before proving this theorem, we need to set up some notations and auxiliary results.

Notation 3.16 We fizn € N and let s; :== > and 7 :=1 — % = S,_1. We further
define KC := Hp ([0, 7], M) be the space of piecewise geodesic paths, o : [0,7] — M
such that o (0) =0 € M.

Lemma 3.17 For xz,y € M, we can choose an unique element log, (y) € T, M so

that

a0 = oxp, (0 7) 1o )

is the unique minimal-lengh-geodesic connecting x to y such that v, (7) =z and
P)/yﬂz (1) = y'

Proof. Since M is a Hadamard manifold, by the Theorem of Hadamard (See
Theorem A.2 in Appendix A), exp, : T,M — M is a diffeomorphism. Therefore
we can see that log, (y) = exp,* (y) is unique and it follows that the geodesic 7, ,

is unique. =

Definition 3.18 For any given y € M, let ¢, : K — Hp, (M) := (Ef)_1 {y})
be defined by
Uy (0) = Yyo(r) ¥ O
where
o (t) if 0<t<r

(o o) (1) = | :
Yo () if T<t<1
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Notation 3.19 For any o € Hp, (M), let &, 5 = u(o,7)"" log,(, (y) € R and
also let G (0, 8) := (C, (0,5),S, (0,5))" € R2™> be the fundamental solution to the

ODE:

0 Tgxa
G (0,s) = G (o,s)
Ae, (0,8) 0

where Ag, (0,5) = Ru(o,1-s) (§y,057) &yo and 0 < s < 1.

The next lemma characterizes the differential of 1,:

Lemma 3.20 Let ¢ € K, recall from Theorem 2.39 and Notation 2.40 that
X" (o,) =u(o,")h(o,-) € T,K iff h(o,-) satisfies the piecewise Jacobi equation
as in (2.41). Then

Yye (X" (0,)) = X" (4, (0) ) == (0, (0) ) (4, () ,-)

where

R h(y(0),s se 0,7
h(y(0),s) = W (@):2) €l ]. (3.11)

S, (¥, (0),1—5)S, (¢, (0), 1) " hior) selrl]

Proof. From now on we will suppress the path argument ¢, (¢) in h. Suppose
that t — 0, € K is an one-parameter family of curves in I such that og = ¢ and

Llooy = X" (o) . Then we have

d d
Uy (X" (0)) = £|o¢y (o) = %\O%Jt(r) * O

If s € [0, 7], then

d d
£|O (Vy,at(r) * Ut) (s) = %foat (s) = Xf (o).
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While if s € [, 1] we have

d d 2
1o (et £ 01) (5) = Zloncn () = XE (8 ()

We know that X f is determined by,
1. h satisfies Jacobi’s equation,
2. h(r)=nh(r)and h(1) = 0.

Denote h (s) by g (1 —s) for s € [r,1], the above conditions are equivalent to g

being the solution to the following boundary value problem:

(

g"(s) = Ag, (5) g (s)

Then we use S, (-) to express the solution. Here we have used Proposition B.2 to

see that Sy, (s) is invertible for s € [0, 1], therefore

g(s) = S, (s) S, (%)_1 h(7) for s € [0, 7]

and thus

h(s)=g(1—s)=25,(1—-s)S, <l>_ h(r) for s € [r,1].

Corollary 3.21 For anyy € M, 1, is a diffeomorphism.

Proof. From Lemma 3.20 it is easy to see that the push forward (¢,), of ¢, is one

to one and thus an isomorphism since dim () = dim (Hp,, (M)) . Therefore the
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inverse function theorem implies that v, is a local diffeomorphism. Furthermore,
M being a Hadamard manifold implies that 1, is bijective, so v, is actually a

diffeomorphism. m

Remark 3.22 An orthonormal frame {Xha»i 1<a<dl1<i<n-— 1} of K can

be constructed similarly to Notation 3.9,

51'71,]'6(1

hai € Hp o and i, ;(s;+) = forj=0,...,n—2.

j+1
In this chapter we will use the same notation for both these two sets of orthonormal

frames as the meaning should be clear from the context.

Definition 3.23 f : M — N is a differentiable map between two Riemannian

manifolds M, N. The Normal Jacobian of f is defined to be \/det (f.ft).

We will use the orthonormal basis {Xhav" 1<a<d1<i<n— 1} of IC to esti-

4

mate the Normal Jacobian Jp of E; in Lemma 3.24 and the “volume change "V,
(See precise definition in Lemma 3.26) brought by the diffeomorphism %, in Lemma

3.26 and 3.27.

Lemma 3.24 If Jp := \/det ETP_(EP)" is the Normal Jacobian of ET, then

Jp (o) = 4| det (% ; frilo,1) f5 (o, 1)) Vo € Hp (M) .

Proof. Using
EP

1 o

X" (o) = X" (0,1),

if NS TET(U)M, then

((BP) 0. X") = (o BFX"), = () o (1)

P
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Therefore, using the orthonormal frame of T'Hp (M) given by
{X'i:1<a<d1<i<n},

we find

CXe =y (1) 0, b (1)) X

(EF.)" v =" ((BL.)" v, X"
GP

7,0 (e

Let {%}i:l be the standard basis of RY, since u (1) is an isometry, {u (1) ea}i:1 is

an O.N. basis of Tgp s M. Using

hii (1) = (1)eg for 1 <k <d,

1
ﬁfm

we can compute:

det (EP_(EP)") =det{ ((EP )" w1 EP ) (1
et (BD. (87.)") = dee{{(B) " w(ea (B1) wes), )
n d
= det { Z <hfyz (1) 7€a> <h'yz (1) ) 65)}
i=1 y=1 o,B
n d 1
:det{ E<e’y; ;?Tz (1) 6Oc> <6’Y7 ’/t)TZ (1) 66>}
i=1 y=1 a,B
. 1 tr tr
= det E< pi<1)ea7f73,z‘ (1) 65>
i=1 a,f
1 n
—det | = (1) f&r (1
e (n;fm( ) [ ( ))
n
Using the expression of Jp in Lemma 3.24, we can easily derive the following
estimate.

Corollary 3.25 Let Jp be defined as above, then for any o € Hp (M), Jp (o) > 1.



Proof. For any v € C¢, using Proposition B.2, we have:

1 — 1 &
O S A T B o LN
i=1 =1
1 & 5

2
= [ol”
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So by Min-max theorem, eig (2 31 fp;(0,1) f&, (0, 1)) C [1,400) and therefore:

Jp (o) = | det <%;fm (0.1) 7, (Ua1)> > 1.

Lemma 3.26 For any 0 € K, let V, : K — R, be the normal Jacobian of

bt K Hp o (M), ice. Vo= y[det ((40,)" ¥s,), then

Vi (0) = \Jdet (I + L, (0) P (0) Lo (0)") Vo € K,

where

and

n—2
Fp (o) = % Z fpi(o,7) fpi(o, )"
i=0

Proof. Using (3.11) and differentiating h with respect to s, we get:

W (0,74) = —C, (0, %) s, (0, 1)1 h(0,7) = — L (0) h(o,7)

n

(3.12)

(3.13)
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Also since from Proposition 5.1,

n—1
1
T) = - Z fpivi (o,7) I (0, 8+)
i=0

so we have

W (o,7+) pr iv1 (o, 7) P (0, 8i+) . (3.14)

For any o, 8 € {1,...,d} and 4,5 € {1,....,n — 1}:

<¢z* (Xha’i (0>) s Vs (Xhﬁ’j (U))>Twz(o)HP,z(M) (315)
1 n—2 1. R
= o 2 B sk o (o)) 2 (o () By () (310
k=0
j 1 1 fp; o 1 -
= 5((5:5)) + ﬁ <Lm (0> ﬁ%’ Lm <U> ﬁw> (317)
_ 5(8.9) - 1,
5(a,i) + Lz (U> nfp,l (T) €a; Lw (0> nf’P,] (7—) €g ), (318)

where
509) = Loa=68i=j

(ayi) —
0 otherwise.

It follows that the volume change

V, (o) = \/ det (I(Rd)nl + 1T, (0)) (3.19)

where T, (¢) € End <(]Rd) n_1> is defined by

A 1 1
(7. (a))d(i_lmd(j_w — <Lx (0) = Fpi (0.7) as L (0) ~ o (0.7) eﬁ> .
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If
] n—1
S, = (B € Mpax(n-1)a
Az (0)
and
1 1
A:(0) = (3220} fra () en 2L (0) Fpaa(o7)ea) € Mioosis
then

Ligay + T, (o) = S¥S,.

Apply Lemma D.1 we get:
det (I e+ T, (0)) = det (I ra) + Az (0) Ay (J)tr>
(=) (B?)

n—2 d
1 r tr r
= det ([ + ﬁ Z Z fopﬂ' (7’) 60662 fpﬂ; (’7') th )

=0 a=1

= det (I + L, FpLY)

where Fp (o) is as in Eq. (3.26). =

Lemma 3.27 For any o € K,

d

d

Ve (o) < (k;) nge¥d2(U(T),x)H;?;gekNdQ(G(Sj)ﬂ(SHl)) (3.20)
k=0

Proof. From Lemma 3.26 and Appendix D, one can see, after suppressing o,

= H?:l (1 + )‘z}x)

d
< <1 + max )‘i,w>

1<i<d
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where {\; .} = eig (L, FpLl").
Notice that
. — tr < 2
112%32/\1,36 HL:D (0) FpLy (0) H < || Ls (@) | Fp|l

1 2 2
< —|[[Lz (@)[]" sup ||fpi (7).
n 0<i<n—2

Using Proposition B.4, we get:

where for any z,y € M, d(x,y) is the geodesic distance between z and y, and

1
n

and so
HL:p (U)H2 < n26Nd2(U(T)’x)
and
N (o(r)) . 2
max Aig < ne S e o)l
Therefore

vl

1 1+ peNeEm) sup || fpa (U,T)Hz)

0<i<n—2

d
< (1 + piez@()e) sup || fp. (o, 7')“)

0<i<n—2

I
[]=
R
el

)”gew"(”’” sup | fps (7). (3.21)

0<i<n—2
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Applying Proposition B.4 to fp, (o, 7) shows

2
< pAN@(o(sn2)0(5n 1)) . ... . ENE(0(si-1)0(s0)) <1 L N (o (si1) »U(SZ-)))
- 6
< H;L:? 162Nd2(0'(3j) o(sj+1)) e—Ndz(o(Sigl)yc(si))
< II7- 22 leNdQ( (s5),0(s5+1))
< H;?:—geNd (o(s5),0(s5+1))
Taking supremum over i, we get:
SUp S (0, 7) | < T2V or), (3.22)

0<i<n—2

and (3.20) follows. m

Definition 3.28 For any X, Y € TK (the tangent bundle of K), define GPT, G%;J
to be:

n—1

Gp, (X,Y) = Z (X (s:),Y (s:)) A

and .
— /VX VY
Gh . (X,Y) — (Si— i A;.
P,r ; < ds (si-1) ds —— (s 1)>

Lemma 3.29 G% . is a metric on K.

Proof. The only non-trivial part is to check Gp . (X, X) =0 = X = 0. Since
M has non—positive curvature, there are no conjugate points. For each 0 <7 <n—1,
there is a unique Jacobi field X connecting o (s;) and o (s;41) with specified X (s;)
and ¥X (s;). Gp, (X, X) =0 = Y (s;) = 0for any 1 <i < n. Notice that

ds
X (0) =0, so by the uniqueness of Jacobi field, X =0. =

Remark 3.30 Since M has non-positive curvatures, G% _ is indeed a metric on K

\T

since the only one-paramater family of geodesics with fixed end points is a constant
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family consisting of the unique geodesic connecting the starting point and the ending

point.

0 (0 1 0 1
Based on the metric G . and Gp ., we define measures vp . and vp . on K as

follows.

Definition 3.31 Let

du%T = o )(n—l)g6_2 dvolg, -
T
and
1 —-1F
AT A

Lemma 3.32 If
pp (o) == det (M) Vo e K,
n

then dvj, . = ppdvp, . and moreover, pp (o) > 1 Vo € K.

Proof. The argument to show pp is the density of v with respect to vp . is
almost exactly the same as Theorem 5.9 in [2] with a slight change of ending point
from 1 to 7. Here we focus on the lower bound estimate of pp (0). Since for any

v e CY,

we know from propsition B.2 that for any A € eig <S%> ,

> |l

Spa
—U
n

Al >1
And from which we know:

pr (o) = it e (210 > 1



44

[ |
Proof of Theorem 3.15. Since v, is a diffeomorphism, apply Theorem C.1 and

we have:

1 f )
hp (x :/ — 2 (o) e 2P Dol (o 3.23
P (2) . (M>Z}>Jp(> aL (o) (3.23)
L J 1 Boya (o)
— [ =Ly, =@V, () dvolg: 3.24
|z vt () dvoley, (o) (320
Notice that
ile*%Eowzw): 1 _ L _em25(0) =58 (0(n):2) (3.25)
Zp (2m)2 (2m) V2
So
hp _ / ~ o), ( 2(”(7)’1)%(0)dyg%) (o) (3.26)
(2m)2 7’

Combine (3.21), (3.22) we know that:

d
. d\ i i
€—§d2(a(7),x)v;: (U) < § (k) néewg d*(o(7),z )H;% geNd (0(55),0(s54+1)) (3.27)
=0
So

d
sup 6_2 (o(r x)v ( ) < sup e~ n— de2(0 7),T Z ( )7’L2Hn 02€de (o(s5),0(s5+1))
zeM zeM =0 J

(3.28)
When n is large enough, n — Nk > 0. Therefore e~ "3 P@(M2) <1 and it suffices

to show

d
Evgy [Z( >nzny 2 Nhd (o (s, >“<Sj+1>>] < oo0. (3.29)
k=0
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For each k£ < d we have:

d 2 2
Kk) 312N (o(s]~>,o—(s]~+1>>} — C,E, [H?;geNk\Amm ] (3.30)

where C), is a generic constant.
Since for each 7, |Aj6|2 = sz:l ‘(Ajﬁ)l
of A;B, ie. AjB = ((A;8),,...,(A;8),). Since 8 is a Brownian motion on R?,

? where {(Ajﬂ)l};j:l are coordinates

{(A 7)) }d_ are i.i.d with Gaussian distribution of mean 0 and variance 1. Using
IS =1 n

Lemma B.1 in Appendix B, notice that Nk < %, we have

[SIISH

B [eNk\AjB\Q} =1L E [eNk|(Ajﬂ>z|2} = (1 - %—N)_

n

and thus the right-hand side of Eq. (3.30) is bounded (the bound here depends on
Since for any o € K, % oty (0) e 2PV () is continuous with respect
to x € M, so by dominated convergence theorem, hp (x) € C'(M). =
Not only can we show that hp (z) is a continuous function, it is bounded

uniformly in x € M and partition P, as is shown in the following proposition.
Proposition 3.33 supp sup,cy vp, (Hp (M)) < oo.

Proof. Based on Eq. (3.26),

Vo (Hp (M) < Cy [ 0N, (0) vy, (o) (3:31)

Combine Eq.(3.21) and Eq.(3.22) we know that:

d
67%d2(a(7),x)v;: (0_) < Z (Z) n§GWd2(O'(T),I) ;};geNdQ(a(sJ‘),a(Sj+1)) (332)
k=0
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For each k < d, apply Lemma 3.32, we have:

EVcl P A CIOED) <Z) n%H?;(?edez(U(Sj),U(SHl)) (3.33)

P,T
d n—

_ (k) ng/lce_ 2Nkd2(U(T)7x)H?;(?GN’%P(U(sj)’o(8j+1))dVG,1p’T (O') (334)
d) ’“/ — 2=k G2 (g (7),2) Tin—2 ,Nkd? (o (s, ;

= n: [ ez OO 2Nk (0(s;)0(si41)) vy (o 3.35
d n—

< <k‘)n§ /’Ce— szdQ(U(T)vw)H;}:—gedeQ(U(Sj)70(8j+1))dV%T (o) (3.36)

Now define the projection map mp : K — M™ !, for any o € K,

mp (o) = (0 (s1),--.,0(Sn-1))-

Since M is a Hadamard manifold, 7p is a diffeomorphism. From there one can get:

(&)

(d) n k+(n271)d

_ n_Nk 2 o 1. 2 o
— k — e P} d (:anl,w)HT.L 26 2(” 2Nk)d ($J7$J+1)dl‘1 e dxn_l
(n—1)d

(27T) P} Mn—1

NMES

/ e_n_TNkCF (0(7)’95)H?:_gede2(U(Sj)’a(sj“))dV%T (o) (3.37)
K

(3.38)

Corollary 4.2 in [33] gives a lower bound of heat kernels of manifold M such that
Ric> (1 —d)N:

1-d
sinh v/ Np) : ot
e

x,y) > (2nt _ge_é e

where N is the curvature bound and C' is some constant depending only on d and

N and p = d(z,y). Using the fact that:

sinh v Np Np?
R Se 2
VNp
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It follows that

pe(z,y) = (27Tt)_% o3 (1)t -0t

let

where N; = 2Nd + Y1,
We have, for any j € {0,...,n—1}:

NI

e 3 ANILE i) < Ol (25, 2501) (21)

So

(d) n k+(n271)d

k — sup e~ niQdeQ(infl,x)]:[‘?;gef%(n72Nd)d2(Zj,Zj+1)dx1 coedr, g
(271') 2 Mnr—1xzeM
(d)nk+(n2—l)d
~ b ndeanl/ p = (xnflu )Hj Op (xj,$]+1)d$1 'dl‘n,1
(n_N1)2 Mn-1 N1
T e R -
e
n—N;
o w7 P (0,7) (3.40)

Since the heat kernel is continuous w.r.t. to time, combine (3.36) ,(3.38) and (3.40),

we get
d Cn
en—N1
() p—=_(0,z)<C
d—k Ny 2 RN
ne (1-51)7
and hence

vh o (Hp, (M) < C.

where C' is a constant depending only on d and N. =

Theorem 3.15 shows that the class of approximate pinned measures {V%;x}
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are finite measures and using the continuity result for hp (x), one can see that V%)’m
is deserved to be formally expressed as &, (0 (1)) v and it should be interpreted in

the sense of Corollary 3.35. First we state a co—area formula.

Theorem 3.34 (Theorem 2.3 in [15]) Let H and M be two Riemannian man-
ifolds with volume measures dvoly and dvoly; respectively. If p : H — M s a

smooth submersion, g : H — [0,00) is a density function, for each x € M, let

dvoly, be the volume measure on H, := p~' ({x}) and J (y) := y/det (pyp) on

y € H,, then for any non—negative measurable function f: H — [0,00),

1

/H (f op)gdvoly = /M dvolys (z) f (x)/ mg (y) dvoly, (y) . (3.41)

Corollary 3.35 Denote by d, € E' (M) the delta—function at x € M, then for any
{5§;m)} C C5° (M) such that

6 — 5, in & (M)
i.e. for any h € C* (M), we have:

lim h@wywwdy:/fmw@@nwzxmw

where dy is the volume measure on M. Then for any f € Cg° (Hp (M)),

i [ ) f @) dvplo) = [ o F @b (@)

Proof. Using the co-area formula in (3.41) with

(1.0, p,.1) = (o () M. BT e 5,007 (0 (1) £ (2)).
P
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From Theorem 3.15 we know hp () € C' (M), therefore:

lim 8¢ (0 (1)) f (o) dvp (o) = lim | hp (y) 87 (y) dy
= hp (2)

- / f (o) dvh, ().
Hp (M)



Chapter 4

The Orthogonal Lift X of X on
H (M) and Its Stochastic

Extension

4.1 Damped Metrics and Adjoints

Definition 4.1 (a—inner product) Let a (¢) € End (R?) be a continuously vary-
ing matriz valued function. For h,k € Hy (Rd) let

(k) = /01 (jth(t)Jra(t)h(t)) (jtk(t)Jra(t)k(t)) .

Remark 4.2 We denote the norm induced by oc—inner product by ||-||,, , different-
ing from the notation ||||H (Rd) for the norm induced by the H'— inner product:

(B L)y = i B (5) -1 (5) ds.

For the moment, let E; : Hy (]Rd) — R? be the end point evaluation map in the
case where M = R?. Let E;* : R? - H, (Rd) be the adjoint of F; with respect to

50
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the a—inner product, i.e. for any a € R? and h € Hy (R?),
<E1h7 a’>Rd = <h'7 (El*) a>a :
The next theorem computes E; which is crucial in constructing the orthogonal lift

in Section 4.2.

Theorem 4.3 Let a € R? and a (t) be as in Definition 4.1, then Eja € Hy (R?)
s given by

(Efa)(t) = (S (t)/o (S (s)" S (s)] " S (1) ds) a. (4.1)
where S (t) € Aut (R?) solves

%S(t)m(t)su) =0 with S(0) =T

and
o) = ([ 56 s@saras)a

Proof. Notice that if & (t) = S () w (t) with w (-) € Hy (R?) , then

(5 +a®)ne=(G+a0)s@u00)

And in particular,

(Sv, Sw), = /0 S ()0 (t)- S (t)w(t)dt.

Given a € R?, let w(t) = E*a and define v (t) := S (t)" w(t) so that Efa =
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S (t)v(t). Then by the definition of the adjoint we find,

/01 S)v(t)-S(t)w(t)dt = (Sv,Sw), = (Eja, Sw), = a- E; (Sw)

:a~S(1)w(1):/O S (1) a-w(t)dt

As w € H, (Rd) is arbitrary we may conclude that

which proves (4.1). m

Theorem 4.4 If a € R, then h(-) € Hy (R?) defined by

is the minimal length element of H (Rd) such that E1h = a.
1.e.

A, = inf {|[E]l, | k() € Hy (RY), Eik=a}.

Proof. Since Hy (R?) = Nul (E;)" @ Nul (E}), we have F1h = a = Ejhy = a
and ||hl, > ||l where Ay, is the orthogonal projection of i onto Nul (E;)™. So we
are looking for the element, i € Hy (R?), such that E1h = a and h € Nul (B)" =
Ran (E,*) . In other words we should have h = E}v for some v € R%. Thus, using

(4.1), we need to demand that

a= B Ev = (Ev) (1) = (s (1) /01 1S (s)" S (s)] 7S (1) ds) v,

1.e.

v = (5<1) /01 s (s)*S(s)]_lS(l)*ds)la.
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It then follows that

h(t) = By (5(1)/0 1S (s)" S ()1 S (1)°

() d)
= (s (t) /Ot E (s)*S(s)]_lS(l)*ds) (5(1)/01 E (s)*S(s)rlsu)*ds)la

which is equivalent to (4.2).
Alternative proof: Let h:= Ei*a € Hy (R?) and k € Hy (R?) , then

a-k(l)=a- B (k) = (B a k), = (h,k).

= /01 (%h(t) +a(t)h(t)> -z (t)dt (4.3)

where

d
al<;(zf)+a(t)k:(1t) =:z(1).

Solving the previous equation for £ in terms of z gives,

Using this result with ¢ = 1 back in (4.3) shows

/0 (%h(t)+a(t)h(t)) -z(t)dt:a-S(l)/o S (s)"' 2 (s)ds
= /0 S*(s)"S (1) a-z(s)ds.
As z (s) is arbitrary in L? ([0, 1] ,R?) we may conclude that

d I | %
Zh@)+a()h(t) =56 51)a
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Solving this equation for h then shows,

(By*a) (t) = h(t) = S(t)/o S(s)7" 8" (s)7" S (1) ads

= (S () UO S (s)"tS*(s)7 ds] 5(1)*) a

and so we again recover (4.1). m

Remark 4.5 The expression in (4.2) matches the well known result for damped
metrics where o = § Ric,. Further observe that if a (t) = 0 (i.e. we are in the flat
case) then S (t) = I and the above expression reduces to h(t) = ta as we know to

be the correct result.

Definition 4.6 Let (,-)p,.. be the damped metric on TH (M) defined by

1
v 1_. v 1_
(X, Y) pie, = /0 < [% + §ch} X (s), {% + §ch} Y (s)> ds (4.4)
forall X,)Y €T, (TM)=T,H (M) and o € H(M).
If X = X7 and Y = X2 with that J;, J, € Hy (R?), then we have

d 1

' . d 1.
(X7 X% o, = /0 < [£ + échus} Ji(s), {E + échus} Jo (S)> ds. (4.5)

4.2 The Orthogonal Lift X on H (M)

In this section we construct the orthogonal lift X € T'(TH (M)) of X €
[' (TM) which is defined to be the minimal length element in I' (T'H (M)) relative

to the damped metric introduced in Definition 4.6.

Definition 4.7 For each o € H (M), recall that us (o) is the horizontal lift of
o. Denote by T(y : H (M) — End (R?) the solution to the following initial value
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problem:
AT, + i Ric,, T, =0
(4.6)
jh :3]

Lemma 4.8 For all s € [0,1], T, is invertible. Further both sup ||Ts|| and
0<s<1

sup |77 are bounded by ez @ DN where (d — 1) N is a bound of ||Ric||.
0<s<1

Proof. Let U, solve the ODE,

Then one easily shows that

d
E;(l@]l):: 0 = UT,=U1y=1

and this shows that U, is a left inverse to Ts. As we are in finite dimensions it follows
that T, ! exists and is equal to U,. The stated bounds now follow by Gronwall’s

inequality. m

Definition 4.9 Let K : [0,1] x H (M) — End (R?) be defined by

K, =T, [/0 T (T dr} Tr. (4.8)

Remark 4.10 A simple computation shows that K, satisfies the following initial
value problem:

K. = —LRic, K, + (T,T7)
2 ' (4.9)

Conversely, from Duhamel’s principle and (4.6) it is easy to deduce the formula in

Definition 4.9.
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Lemma 4.11 With K, as in Definition 4.9, Ky is invertible and | Ki'|| < e=DV,
provided ||Ric|]| < (d — 1) N.

Proof. Since

1
K, ::/ (WD) (LT7h) dr
0

is a symmetric positive semi-definite operator such that
! * 2
(Kyv,v) = / (AT || dr Vo € C*
0
Apply Lemma 4.8 to the expression given;

1
T Al (G

1
Z/ e—Z(d—l)NHUHZ dr
0

— 6—2(d—1)N ||U||2

From which it follows that eig (K;) C [e=(@"DV o0). m

Definition 4.12 Let X € T'(TM), define two maps H : H(M) — R and J :
0,1] x H (M) — R? as follows,

H=u;'"(0) X oE (o) (4.10)

and

J(0,5) :=Js(0) =K, (0)K{' (¢) H (0). (4.11)

Theorem 4.13 Given X € I'(TM) the minimal length lift, X, relative to the
damped metric in Definition 4.6 of X to T (TH (M)) is given by X = X”. Further
we know that Js is the solution to the following ODE:

1
J; = —éRiCuSJS + ¢3, Jo =0
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0o tr

—1
where ¢y = (LT " K H = (T71) [fl T (T dr] T7H.

Proof. Apply Theorem 4.4 with oy = %Ricus. ]
Following the construction above, one can define an similar object (still
denoted by X) on W, (M). Recall from Notation 2.25 that @ is the stochastic

horizontal lift of the canonical Brownian motion > on M.

Definition 4.14 Define T, : [0,1] x W, (M) — End (R?) to be the solution to

the following initial value problem:

disTS + %RZ.CT]STS =0 (4 )
12
Ty =1

Remark 4.15 Following the same arguments used in Lemma 4.8 and 4.11, one
can see the bounds obtained there still hold for T and K.

Definition 4.16 Using Ty, we define K : [0,1] x W, (M) — End (R?):
K, =T, [/ 71 (Tf) dr] Tr, (4.13)
0

Definition 4.17 For each X € I'(TM) define two maps H : W, (M) — R% and
J W, (M) — Hy (RY) by
H=u'XoFE (4.14)

and
J, = KK 'H forse0,1]. (4.15)

Notation 4.18 Given a measurable function h : W, (M) — Hy (Rd), let Z, :
W, (M) — Hy (R?) be the solution to the following initial value problem:

Zh/ (S) = _%RiCﬂSZh (8) + hls

Z,, (0) = 0.
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Definition 4.19 For any X € I'(TM), define
X, = X% .= 0,74 (s) for0<s<1

where

4.3 Review of Calculus on Wiener Space

In this section we interpret X#® as a first order differential operator on some
geometric Wiener functionals (see Definition 4.36). The main difficulty there is
the non-adaptedness of ®. To overcome this difficulty, we express X%® in terms of
geometric vector field (see Definition 4.27) with non-adapted coefficients. However,
these coefficients are differentiable Wiener functionals in “Malliavin calculus ”sense.
Based on this observation we derive an integration-by-parts formula for X #® which
naturally shows X#® is a closable first order differential operator on L? (W, (M)).
The integration—by—parts formula will also be one of our main tool of dealing
with d—function pinning in this dissertation. We begin with a brief review of the
classical theory of calculus on Wiener space that is needed in our work.

The first order differential geometry on path spaces that we will use can be

traced back to the famous Cameron-Martin Theorem (see [6]).

Theorem 4.20 (Cameron-Martin) For any h € Hy (R?), consider the flow ¢
generated by h, i.e. for any w € W, (Rd), O (w) = w + th. Notice that ¢ is the
flow of the vector field Dy, := &. Then the pull-back measure p" (-) == (¢), p(-) =

(- — h) and Wiener measure p are mutually absolutely continuous.

The map ¢! is usually called Cameron-Martin shift and the phenomenon described

in Theorem 4.20 is called quasi-invariance of ; under the Cameron-Martin shift.
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The generalization of Cameron-Martin Theorem to path spaces on a manifold came
quite a while later in 1990s. Driver initiated the geometric Cameron-Martin theory
in [10] and [11] where he considered the “vector field ” X"(or more precisely an

equivalence class of vector fields) on W, (M) defined as follows,
X? (U) = U (U) h

where h € {f € C1((0,1]) : £(0) = 0} C Hy (RY) .

Theorem 4.21 Let (M, g,0,V) be a compact manifold and h be as above, then for
any o € W, (M), there exists a unique flow ¢! of X", i.e. ¢t : W, (M) — W, (M)
satisfying:

S0 (o) = X (61 (0)) with o = 1

and v} (+) := (¢}), v is equivalent to v.

The existence of the flow and the quasi-invariance of the Wiener measure were later
extended to all Cameron-Martin vector field X", h € Hy (R?) in [19] and [14] and
then to a geometrically and stochastically complete Riemannian manifold in [20]
and [22]. Owing to the facts that Cameron-Martin vector fields do not form a Lie
Algrbra and more general vector fields naturally appreared in practice, it is useful

to introduce a broader class of so called “adapted vector fields 7, see [12] and [7].

Definition 4.22 (Vector Valued Brownian Semimartingales) V is a finite
dimensional vector space. A function f: W, (M) x [0,1] — V s called a Brownian

semimartingale if f has the following representation:

£ (s) =/OSQTd6T+/OSerT

where (Qs,rs) is a predictable process with values in Hom (]Rd,V) xV,Visa

vector space. We will call (Qs,1s) the kernels of f.
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Definition 4.23 (19 Space) For each ¢ > 1, f : W, (M) x [0,1] — V jointly

measurable, we define the root mean square norm in L9 (W, (M) ,v) to be:

1 | pagvry = H (/0 1f(,8)[% d5> 2

Let HY be the space of all Brownian semimartingales such that

La(Wo(M)v)

1/ ller = 117 o+ [l | o < 00

Definition 4.24 (B? Space) For each ¢ > 1, f : W, (M) x [0,1] — V jointly

measurable, we define the supremum norm in LI (W, (M) ,v) to be:

||f||3q(v) = ||f*||L11(WD(M)7V)

where f* is the essential supremum of s — f (-, s) relative to Lebesque measure on

[0,1]. Let BY be the space of all Brownian semimartingales such that

7110 = 11Q7 g0 + lIr [l 0 < o0

Definition 4.25 (Adapted Vector Field) An adapted vector field on W (Rd)
is an R-valued Brownian semimartingale with predictable kernels Q. € so (d) and
r. € L?[0,1] v — a.s. We denote the space of adapted vector fields by V and
Vi:=VYNHIL

Notation 4.26 We will use the following notation in this dissertation: H>®™ =

qulHq, BOO_ = ququ and VT =V NH®.

A class of vector field called geometric vector field can be constructed using adapted

vector fields.
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Definition 4.27 (Geometric Vector Field) For any h €V,

Xh=ah, 0<s<1

s

is said to be a geometric vector field.

Theorem 4.28 (Approximate Flow of Geometric Vector Field) Let X" be
a geometric vector field as above with h € YV NS N B>¥, t € R, there exists a
funcion E (tX") : W, (M) — W, (M) such that

% o E (tX") = X" in B>~

Proof. See Corollary 4.6 in [9]. m

For a geometric vector field, one can not construct a real flow as is constructed
for Cameron—Martin vector field in Theorem 4.21. However the theorem above
gurantees we can view them as vector fields from a natural tangent vector point of

view. In the next definition we specify a domain of these operators.

Notation 4.29 In this chapter, we fiz D (L) to be the domain of an operator L.

Definition 4.30 Given a geometric vector field X", let D (Xh) be
D (X") = {f W, (M) =R | X"f = % o f(E(tX")) € L (W, (M))}.
Notation 4.31 Recall from Notation 4.18 that Z), satisfies the following ODE,
7 (s) = —%Ricath (s) + I with Z, (0) = 0. (4.16)

We will use Z,, as the shorthand of Z;, where hy = fos (T‘l) eqadr, 1 < a <d.

r

Lemma 4.32 Let X% be given above, then X%~ is a geometric vector field with

Zo €V NB>.
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Proof. Recall that Z, satisfies the following ODE:

]_ ~ *
Z,(s) = =5 Rica, Za (5) + (T*l) 6o With Z, (0) = 0. (4.17)

S

Since <T8’1> eq is adapted, Z! is adapted. So Z, is a Brownian semimartingale

with @ = 0 and r = Z/. Since T, is bounded, from Gronwall’s inequality we
have Z, is bounded, and the bound is independent of o € W, (M) and s € [0, 1].
Therefore Z, € V*NB*. m

The next theorem shows how to differentiate a cylinder function f € FC

along a geometric vector field.

Notation 4.33 Given k : W, (M) — Hy (RY), denote [ Ra, (k;,68,) by A, (k),

where 0 1is the stratonovich differential.

Notation 4.34 Suppose F € C(O(M)") and P ={0<s1<---<s, <1} isa
partition of [0, 1], set
F(u)=F(us,...,us,),

then for A :[0,1] — so (d) and h: [0,1] — R?, set

F' (u) (A+ h) d o F (ue't) + % o F (""" (w))

b

where uet! (s) = use!ts € O (M) and eBr (u) (s) = e'Brs (uy) € O (M).

Theorem 4.35 Following Notation 2.33, if h € V> N B>, then FC, C D (X").
In more detail, if f = F (i) € FC}, then

X f = F'(0) (~A{Zn) + Zn) (4.18)
Moreover, if g € D (Xh), then

E[X%f.g] =E[f- (x7)" ] (4.19)
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where (XZh)tT’” = — X7 fol (h!,dps).

Proof. See Proposition 4.10in [9] . m

The following lemma gives an anticipating expansion of X in terms of

{X %Y pe .-

Definition 4.36 (Orthogonal lift on W, (M)) For any f € FC™, define

Xf= Zd: <éﬁ,ea>XZ“f (4.20)
a=1

-1

~ ~ .\ 1 ~
where C' = {fol (T*TT> dr] T7' and by the previous notation (Notation 4.18),

X2 = i,7, (s)

Remark 4.37 To motivate this definition, recall that we have obtained a lift

X = X% .= 0,75 (s) of X € T (TM), where

s 1 -1
o, = / (T;l) - { / (T:Tr> _1dr} T Hdr.
0 0
It is clear that ® € Hy (Rd) is not adapted. Therefore we cannot apply the theory

for geometric vector field. Alternatively we can expand ® in terms of adapted vector

fields,

o, = Z <é’]:1, ea> /S (TT_1>* eqdr. (4.21)

a=1

By superposition principle,
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and further
d
X% = 3" <(§ﬁ,ea> X2 (4.22)

a=1

Definition 4.38 Let X be given above, then define
D (X) = ni,D(X%).

Remark 4.39 From the multiplicative system theorem, one can see that FCj, is
dense in L? (W, (M)), therefore X is a densely defined operator on L* (W, (M)).
The integration—by—parts formula for X in the next section will show that it is a

closable operator.

4.4 Computing X"

This section is devoted to studying of the existence of Xtrv (The adjoint
operator of X with respect to v restricted to D <)§' >) The crucial step to show
existence is checking the anticipating coefficients in (4.20) are differentiable in the
Malliavin sense reviewed in Section 4.3. Moreover, an explicit formula which has
clearer structure as indicated in Corollary C.3 is given under the condition that the
covariant derivative of the curvature tensor is bounded, which includes manifold

with non—positive constant sectional curvature.

Proposition 4.40 Our standard assumption of bounded curvature tensor implies
that Ric is bounded. If we further assume ¥V Ric is bounded, then for any h € V>
and s € [0,1], we have Ricz, € D (X"). Moreover,

sup |X"Ricg,| € L (W, (M)). (4.23)

s€[0,1]
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Proof. Since Ricg, € FC*, from Theorem 4.35 we know Ricg, € D (X") and

X"Ricy, = (VXng'c)ﬂ‘ + [Ag (h) , Ricg,],
where [-, -] is the Lie bracket of matrices and (VynRic), : R* — R is defined to
be
(VxnRic) . =u;'VxnRic- .

Since V Ric is bounded,

U

< Ch* (4.24)

where C'is a constant and h* is the essential supremum of s — h,. Since h € B>,
we know

sup
s€[0,1]

(VxrRic)_ | € L™ (W, (M)). (4.25)

Us

Then by Burkholder’s inequality, for any ¢ € [1, 00),

E AW < ClR)?, < o0,
sil[g)u' WP = G ) =20
Since Ric is bounded, we have
sup |[As (h), Ricg,]| € L=~ (W, (M)). (4.26)

s€[0,1]
Combining (4.26) and (4.25) gives (4.23). =

Theorem 4.41 Let T, be as defined in Definition 4.14, then
TSGD(XZ") for1 < a<d.

Proof. For each X% since Lemma 4.32 shows Z, € V>, so we can construct the

approximate flow E (£X%) of X% Define T, (t) := Ty o E (tX%) and G, (t) :=
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Ts(t)—Ts

—, it is easy to see that G () satisfies the following ODE:

1 1 .
G (t) = —émcasas (t) — 5 (Rica, ) — Ricg,) Ty with Go (t) = 0. (4.27)

Then denote by G the solution to the following ODE

1
G/ = ——RiCaSG

1 -
i 5 s — 5 (XZaRiCaS) TS with GO =0 (428)

and let H, (t) be H, (t) := G4 (t) — G, we know Hj (t) satisfies

1 (R’iCas(t) - RZ'CgS

1 . N
H.(t) = —§Rz‘cﬁ5Hs (t)—= T, (t) + (X?* Ricy,) T5> , Hy(t) = 0.

2 t
(4.29)
According to Definition 4.30,
T, € D(X%) <= H,(t) = 0in L= (W, (M)).
By Gronwall’s inequality, we have
¥ | Ricg, 1y — Ricg, ~ . 1
H, ()] < / - - Y () + X% Ric, T,| dre ™5 (4.30)
0

Following Theorem 4.4 in [9], we know

RiCﬁT @t — Ricm

— X% Ricg,

and

uniformly on r € [0,1] in L>®~ (W, (M)) as t — 0. So we have H,(t) — 0 in
L= (Wy(M))ast—0. m

. N | .
Corollary 4.42 Recall that we have defined C' = [fol (T*TT> dr] T in Def-

T
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wation 4.36, then
C’ED(XZ") forl1 < a<d.

Proof. By the product rule, for any s € [0, 1],

s

X (17) = =T, (X*T) T € L (W, (41)),
5 R
so T, ' € D (X% ) and thus fol (T:Tr> dr € D (X#). Then apply the product
rule again we get C € D (X%). =

Lemma 4.43 Given X € I'(T'M) with compact support, recall from Definition
4.36 that X is its orthogonal lift on W, (M), then

d

f oS3 [T i) + 3 (-5 () o).

a=1

In other words we are claiming that
B[Xf-g] =B|7- X"

for allf,gED(f().

Proof. First of all, f € D (X) — feD (XZQ) V1l < a < d. Then since
H ¢ FCre, H ¢ D(XZ“) V1l < o < d. Based on the above observation and

Corollary 4.42, we obtain

E[f(f-g]:E

i <éﬁl, ea> X%t g] (4.31)

a=1

_ Xd:]E (% s (g (Cit.e))] (432)

= [+ 1I1+1III (4.33)



68

-l (3)s
[I=E|f-g ;<éﬁ1,ea>/o <(~8_1>*6a,d55>]
[II=E|f-g azd:l<—XZa (éﬁ),ea>]

The following lemma gives a more explicit expression of the last term in

Xtr,y
d

> (-x% (0f) )

under an extra condition that VR = 0.

Lemma 4.44 If further the covariant differential of the curvature tensor is 0, i.e.

VR =0, then
. i <XZa (éﬁ) , ea> — divX o By — i <0A1 (Z) H, ea> . (4.34)

a=1 a=1

Proof. Since for tensors, contraction commutes with covariant differentiation, and
Ric is the contraction of curvature tensor R, so VRic = 0. For any o € Hy (Rd),

using its horizontal lift u we find that

d
£Ricus = (V4 Ric),, = 0.

It follows that T, = e~3V'*! is deterministic and thus

. L L N
C = ( / [T*Tr] dr) T, ! is deterministic.
0
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Since H = ;' X (7 o @iy) € FC°, we can apply Theorem 4.35 to H to find

d d
X% (CH) e, ) = CX%H,e,
> (% (O ) en) = 3o (CX o)
=T+ 11
where .
== (Cit;' VX, ea)
a=1
and .
=% <OA1 (Z,)H, ea>
a=1
Claim: [ = —divX o E.
Proof of Claim:
d
1= = (0 Ci Vv, X W)
a=1

d
= — Z <A71VAfaX, fa>
d
(T (A7) 1)

where A = 4,C~'a;! € End (T, ()M and {fo} = {@1€a} is an orthonormal basis
of T, ()M . Since (V.X,-) is bilinear on Tg, M, by the Universal property of
tensor product we know there exists a linear map [ : T, ()M & Tg, ;)M +— R such

that
(Var X, (A7) fo) =1(Afa® (A7) fa)
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and therefore:

D (Van X, (AT fa) =1 <Z Afa® (A7Y) fa> (4.35)

Using the isomorphism between T} (V) — End (V) :(a ® b)v = a - (b,v) one can

easily see:

d d
DA (AT fa=) fa® fa (4.36)
a=1 a=1

Combine (4.35) and (4.36) we have
d
==Y (V4 X, fa) = —divX o E;
a=1

and (4.34). m



Chapter 5

The Orthogonal Lift Xp on
Hp (M)

As a remainder, unless mentioned seperately, M is a complete Riemannian
manifold with non—positive sectional curvature bounded below by —N. In this

chapter we focus on the unpinned piecewise geodesic space Hp (M).

5.1 A Parametrization of T,Hp (M)

Recall from Theorem 2.39 that for Y € I' (T'Hp (M)) iff for each 0 € Hp (M),

J(0,5) :==u(0,s) Y (0,s) satisfies (in the following equation we suppress o)
J// (S) = Ru(s) (b/ (Si,1+) s J (S)) b/ (Si,1—|—) for s € [Sifl, Si) 1= 1, oy n. (51)

where b = ¢ (o) € Hy (R?) is the anti-rolling of o.

From above we observe that J can be parametrized by

{7 (sit) = ki}ioy (5.2)

71
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where (ko, k1, ..., k,_1) is an arbitrary element of (Rd)n. Proposition 5.1 explains

this parametrization in more detail.

Proposition 5.1 If (ko, k1,...,kn_1) € (]Rd)n, then the unique J (-) €C ([0,1],R?)
satisfying (5.1) and (5.2) above is given by

-1
1
J(s) = - pr,iﬂ (s) ki fors € [s;—1,8] , 1 <1<n. (5.3)
i=0

Proof. From the definition of fp ;i1 (see Definition 2.42), J in Eq. (5.3) may be

written as
-2
J(s) =Cpy(s) ZCP,I—I . CpiraSpiyiki| + Spy(s) ki1 when s € [s;_1, 5] .
=0

To finish the proof, we need only verify that J is continuous, J' (s;+) = k; for
0 <7 <n-—1and J solves the Jacobi equation (5.1). Since Cp, (s) and Sp,(s)
satisfies Jacobi equation for s € [s;_1,s;), J satisfies (5.1) and is continuous at
s ¢ P. For each s;, 1 <1 <n—1,since Cpyy1(s)) =1, Spy1(s) =0 and J is

right continuous on [0, 1],

J(Sl—) = hmJ(s) = C’p}l

sTs;

+ Sp ki1

-2
E Cpi—1...Cpit2Spiviki
i=0

-1

Z Cpy...CpitaSpiviki

1=0

= J(Sl) = J(Sl+) .

= Cpis1 (1) + Spat1 (s1) b

So J is also continuous at partition points. Then since

-2

E Cpi—1...Cpit2Spiviki

1=0

J (s11+) = Cp (s1-1+) + Sp, (s1-17+) ki

=0+1 k1 =k,
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J satisfies (5.2). The uniqueness of J is easily seen from the uniqueness of solutions
to ODE with initial values.

Definition 5.2 For each s € [0,1], define Ly : (Rd)n — R as follows: for

s € [s1-1, 81,

L, (ko - hon Z frii ( (5.4)
and in particular

Ly (ko ke Z frit ( (5.5)
We now compute the adjoint of L.

Lemma 5.3 For any v € R?, let Lt : RY — (Rd)n be the adjoint of Ly, then

* 1 * * *
Liv = n (fP,1 (1) v, fP,Q (Do,..., fP,n (1) U) ) (5.6)
where f3; (1) is the matriz adjoint of fp, (1).
Proof. Equation (5.6) immediately follows from the identity;

(Lo (kor- - Ko < i k) = < wfren M0). 61

i =0

Definition 5.4 We now define
Kp (s)v :=nL, (Ljv). (5.8)

In particular,

pr i1 (1) fp i (D0, (5.9)

Recall that given a matrix A, eig (A) denotes the eigenvalues of A.
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Lemma 5.5 (Invertibility of Kp (1)) If M has non-positive sectional curvature,
then
eig (Kp (1)) C 1, 00) (5.10)

and thus Kp (1) is invertible.

Proof. Denote R, (V' (si—1+),)V (si-1+) by Ap,(s) : Hp (M) — End (RY).
Notice that M having non-positive sectional curvature guarantees Ap; (s) is non-

negative. Then apply Proposition B.2 to find, for any i = 1,--- ,n and v € C¢,
1
1G]l 2 lv]l and [[Spavll = ~lv].
From these inequalities it follows that

Ifpi () vl =n]|CpnCru-i - Cpis1Spuvll

1
> ol = ol
So fp; (1) is invertible and || fp,, (1)71” < 1. Therefore for any v € C¢,
1f#ps (1) 0| = || fpa (1) ]| < o]l
now replace v by f5 (1) v, we get Hf;;,i (1) v|| = |lv|| and thus
1 n—1
<K7? (1) v, U) = ﬁ Z <f’P,z'+1 (1> f;,iJrl (1) v, U>
=0
1 n—1

n|v|)? = |jv||* Vv e CL

f;;,iJrl (1)UH2

>

SRS

This implies that
cig (Kp (1)) C [1,00)
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In particular, Kp (1) is invertible. m

5.2 Orthogonal Lifts on Hp (M)

In this section we use the least square method to lift a vector field X €

I'(TM) to a vector field Xp € T' (T Hp (M)).

Theorem 5.6 (Orthogonal lift) For all X € I'(T'M), there exists a unique
orthogonal lift Xp € T (THp (M)). In more detail, Xp is uniquely determined by;

1. For all h € C* (M),

Xp (ho Ey) (o) = (Xh) (Fy (0)), ie. By, Xp(0)=X(a(1)).  (5.11)

2. Forallo € Hp (M),

HXP (U)HGI = f{||Y (0)l| ¢y, : Y € T (THp (M)),Y satisfies (5.11)}.
(5.12)

First we use the parametrization in Section 5.1 to characterize {Nul (Elw)} L

Lemma 5.7 Suppose Y € T (THp (M)) with k(-) == u(-)"'Y () : Hp (M) —
Hy (RY). ThenY € {Nul(Ey,)}" iff

(K (so4) , s k' ($p—14)) € (NulLy)" = Ran (L}).

Proof. Given Y () :=u () k(-) and Z(-) :==u(-) J(-) e ['(T'Hp (M)), then

¥ (0). 20N e =0 = Y0 (0r504) K (0 504)) A =0
= S (05) K (0, 54) =0,

1=0
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and
Z (o) € Nul (E1,,) <= Ei., (X")=u(0)J(0,1) =0 < J(0) =0.
Recall that J; = Ly (J' (so+) , ..., J' (S$p_1+)), 80
J=0 <= (J (so+),.... J (sn_1+)) € Nul (L) (5.13)

Since

i
L

(J' (si+) , K (si+)) = ((J' (S0+) ooy J' (Sn—14)) s (K (S0+) 5 ooes K (Sn—1+)))

Il
=)

%

so Y € {Nul (Ey,)}" iff

(K (50+4) ;oo k' (5p_14)) € {Nul (L)} = Ran (L)

Remark 5.8 According to (5.6) and (5.13), it is immediate that
* 1 * 1 * 1 * d
Ran (L7) = Ef?,l (1>U7EfP,Q(l)Ua"wEfP,n(l)U , YoeR ",

Definition 5.9 Given X € T'(TM), define Xp € T (THp (M)) to be Xp () =
u.Jp (+) where

Jp(s) :=Kp () Kp (1) uy 7' X 0 Ey.

Proof of Theorem 5.6. We will show Xp is the unique orthogonal lift of X.
Since T, Hp (M) = Nul (Ey,.,) ©¢i, {Nul (E1,,)} *, given a lift Z € T' (T Hp (M)
of X € I'(T'M), its orthogonal projection to {Nul (Elw)} L is also a lift but with
a smaller GL norm. So if Z is an orthogonal lift, then Z € {Nul (Fy,)}*. From
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Lemma 5.7 and 5.8 it follows that if & (-) :=u~!(-) Z (+), then

(K (s oo (50o) = (250 ()02 s ()02 (1))

for some v € R?. Then using Definition 5.4 and Proposition 5.1, k¥ must have the

following form,

for some v € R to be determined. To specify v, we use condition (5.11)

Xp(0,1) = X (0 (1)).
This implies Kp (1)v = u;* X o E;. Since Kp (1) is invertible, we can just pick v
to be Kp (1) ui'X o Ej.

Definition 5.10 We will view Xp as a differential operator with domain,
D (Xp) = O} (Hp (M)).

Since C} (Hp (M)) is dense in L? (Hp (M) ,vh), we can view Xp as a densely
defined operator on L? (Hp (M) ,v}). Using Lemma 7.5 we know its range is in
L=~ (Hp (M) ,vp) C L* (Hp (M), vp).

We will explore the limit of the orthogonal lift Xp as the mesh of |P| — 0

in Chapter 6. m

~ 1
tr,vp

5.3 Restricted Adjoint X,

<> 7’1/1 o . <7 .
In this section we study Xa"”—the adjoint of Xp with respect to vi
y Ap J P

restricted to D <Xp>, i.e. we require D <)~(ZV71’> =D (X’p)
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Lemma 5.11 Given X € T'(TM), if Xp is the orthogonal lift of X, then
~ tr.w) ~
Xp'P = —Xp+ MfOl<J7’D(s),b’(s)>ds - Myivx, (5.14)

where M, is the multiplication operator, b is the anti-rolling of o and divXp is the

divergence of Xp with respect to volG%;.

Proof. In this proof we identify the measure v} with the associated nd—form. So

by “Cartan’s magic formula”, first assume f € C} (Hp (M)) with compact support,
Ly, (fvp) = d(ix, (frp)) +ix, (d(frp))
Since fvs is a top degree form, d (frp) = 0. By Stokes’ theorem,

/HPMd (i, (fvp)) =0.

Therefore we have:

| e (i) =0
Hp (M)

and

ST s, s
Hp (M)
Recall that v = e‘éEvolG%’, S0

T
Zp

Lk, (vp) = [X’p (ZL})eéE>] volgy, + <div)2'p) Up. (5.16)
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In (5.16)
- 1 1 1~ 1 1
Xp | =e2P) = —=-Xp (F) =€ 2F
() =3 e
. N
VXP 1 _1
= — / d e 2E
/0<0 (s+), s (s+)> SZ713€
1
/ / 1 —-1p
=— [ (V' (s4),Jp(s+)) ds?e 27, (5.17)
0 P

Combining (5.15), (5.16) and (5.17) we get, if f € C} (Hp (M)) with compact
support and bounded differential df, then

/ Xpfdvh = / f- (X;;ﬂ) dvh, (5.18)
Hp (M) Hp (M)

where XZ P is defined in Eq. (5.14). For the general case choose a cut—off function
¢ € C° (R%,[0,1]) such that ¢ =1 on B(0,1) and ¢ =0 on RY/B(0,2), B (z,r)
is the ball on R? centered at = with radius . Let f, := f - ¢ (%), observe, using

product rule, that

Kofy = (%) Snf e L (%) / () N ds, (519

so Xpfn — Xpf asn — oo vp a.s.

Using Proposition 6.26 and Lemma 4.43 we have

/o (Jp (s),V (s))ds € L™ (Hp (M), dvp)

where L>7 1= N> L.
Since f has bounded derivative, from Definition 5.9 and Lemma 6.12 we
have

‘pr‘ <C <XP,XP>GI € L (Hp (M), dvb) .

P
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So using bounded convergence theorem, Eq.(5.18) with f,,, and Eq.(5.19) we obtain
Eq. (5.18) for f. =

5.4 Computing divXp
Recall from Definition 3.9 that

1

Xhei(g,8) =u (o, s) Tn

f’P,i(S)ea,lgagd,lgign

is an orthonormal frame on (T'Hp (M), G}). Using this orthonormal frame, one

can get an expression of divXp.

Proposition 5.12 Let Xp be the orthogonal lift of X € T (T M), then

d n
divXp = Y (X"90p (sj214) s €a) VA (5.20)
a=1 j=1
Proof. We know
divkp =33 a3 < [X’“”,Xp} ,X’w> : (5.21)
a=1 j=1
where [-, -] is the Lie bracket of vector fields.

Now fix j and o, notice that Xp = X/7, apply Theorem 3.5 in [2] to find
|:Xho¢,j 7 X’Pi| — Xf(ha,j:JP)’
where

fs (hag, Jp) = (X" Jp) (s) — (X7 hay) (s) +
qs (X"3) Jp (s) — qs (X7P) hay (s)
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and

gs (X7) = /0 Ry, (U (r+), f () dr.

Therefore

G%)<[Xh“vj,)z'p} ,thw‘> Z(f, L) A (5.22)

_i< Xl gp) = (X hag) Hoy) A

Si—1+

n

+Z< 0 (X") T (9)) = (0 (X77) oy (5)) W) A

Here ’ is the derivative with respect to (time) s.

Since A}, ; (si—1+) is independent of o, so
(ijhayj)/ (81;1—'—) = )(J73 (U — hlad- (U, Si71—|—)) = 0.

and thus

n

Do (X7 hay) ) A=0, (5.23)

=1

We now claim that
(gs (X"=9) Jp (s))/ = ¢, (X)) Jp (s) + g5 (X"7) J}, (s) = 0 for s € P.

Since

h/a,j (Si_1—|—) ?é 0iff 7 = j,

and when ¢ = 7,

ho,j(s) =0 for s < s;_q,

so both ¢ (X") =0 and g,,_, (X"7) = 0. It then follows that the claim is
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true and
Z <(QS (Xha,j) Jp (8))’ , h1017j>s' N A; = 0. (524)
i=1 i-1
and .
D (d (X7P) hag (s) By, D=0 (5.25)
i=1

Lastly because ¢ (X JP) is skew-symmetric,

Z <q5 (XJP) Py i h:x,j>si_1+ A; =0 (5.26)
i—1

Combining Eq.(5.23), (5.24), (5.25) and (5.26) shows,

G < [Xhayj,)%p} ,thw'> - zn: (Xter 1) A (5.27)
=1

= (X" T}y (sj-14) s €a) VA (5.28)

Summing Eq.(5.28) on « and j while making use of (5.21) gives (5.20). =



Chapter 6

Convergence Result

In this chapter M is a complete Riemannian manifold with non—positive and
bounded sectional curvature. We fix NV to be a bound of the sectional curvature.
Other conditions will be mentioned specificly in theorems if needed. First we
modify and abuse a few notations we have defined before in order to avoid messy

arguments.

Notation 6.1 Recall that 5 : W, (M) — Wy (R?) is the Brownian motion on R?
defined in Definition 2.22. We have also defined Bp : W, (M) — Hp (Rd) to be the
linear approzimation to Brownian motion on R? as in Notation 2.26. Now denote
by up :=no Bp the development map of Bp. Notice that ¢p o fp € Hp (M) a.s,
here ¢ is the development map onto H (M). So after identifying Cp;, Sp; and
hence fp,; with Cp;o¢o fp, Spio¢ofp and fp;o¢o fp, we can view them as
maps from W, (M) to End (Rd). The point here is to make the notations short

and it should not cause confusions after this explanation.

Remark 6.2 Let L>~ (W, (M)) := Ng>1L? (W, (M)). This is a Frechet space and
for any {f.}, and f in L~ (W,(M)), f. = f as n — oo in L=~ (W, (M)) iff
fo— fin L9(W,(M)) Vg > 1.

Convention 6.3 We use C to denote a generic constant. It can vary from line to

83
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line. In this chapter it depends only on an upper bound of the mesh size |P| = %
of the partition |P| (We may allow C' to depend on some other factors as well, but
this is good enough for our purpose of taking the limit as |P| — 0. )

6.1 Wong-Zakai Approximation Scheme

Wong-Zakai approximation scheme are types of theorems that approximate
solutions to stochastic differential equations (SDEs) by solutions to (random)
ordinary differential equations driven by “smooth ”approximations of the semi-
martingale that drives the SDE. Wong and Zakai [34], [35] first studied this problem
in the case of one dimensional Brownian motion and there are a lot of generalizations
that follow, which are partially listed in here : [1], [18] and so on. We record a
Wong-Zakai type theorem in the form that fits our need.

Theorem 6.4 Let f : R x R® —End(RYR") and fy : RY x R® — R" be either
twice differentiable with bounded continuous derivatives or linear. Let & € R™ and
P be a partition of [0,1]. Further let 5 and Bp be as in Notation 3.16 and £p(s)

denote the solution to the ordinary differential equation:
€p(s) = f(&p(5))Bp(s) + folép(s)),  &p(0) =& (6.1)

and ¢ denote the solution to the Stratonovich stochastic differential equation,
dé(s) = f(&(s))3B(s) + fo(&(s))ds,  &£(0) = &o. (6.2)

Then, for any v € (0, %), p € [1,00), there is a constant C(p,vy) < oo depending
only on f and M, so that

lim B |sup [Ep(s) — £(s)["| < Clp, )P (6.3)

|P|—0 s<1



85

Corollary 6.5 supy,<; [up (s) —u(s)| — 0 as |P| = 0 in L=~ (W, (M)).

6.2 Convergence of Xp to X

6.2.1 Some Useful Estimates for {Cp;}; , and {Sp;} ,

We apply Proposition B.2 to get the estimates in Lemmas 6.6 to 6.9 below.

Lemma 6.6 For anyi € {1,....,n} and s € [s;_1, s;], we have
|Cp,i ()] < cosh <\/N|Aim> < AN

Lemma 6.7 For any i € {1,...,n} and s € [s;_1, s;], we have

sinh (\/N|Alﬂ\>
VN |A;B]
< cosh <\/N|AZ-6|> VN |AB] < VN |AB| exVIdBP,

1Sp.i(s)| < VN |AB]

Lemma 6.8 For anyi € {1,...,n}, we have
2
|Spi — A < %eém&ﬂﬁ

Lemma 6.9 For anyi € {1,...,n}, we have

2
Cps — 1| < MeéNlﬁzﬂF
52 —_— 2

Lemma 6.10 For all v € (O,%), define K, :=  sup {‘ﬁfgfil}, then there
s,t€[0,1],s7#t

exists an €, > 0 such that E [ed@] < 00.

Proof. See Fernique’s Theorem (Theorem 3.2) in [26]. m
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Remark 6.11 From Lemma 6.10, it is easy to see any polynomial of €K, has finite

moments of all orders.

6.2.2 Size Estimates of fp; (s)

Recall from Definition 2.42 that fp; : W, (M)x[0,1] = End (RY) 0 <i<n

is given by
.
0 s €[0,s81]
fri(s) = SPA—(S) s € [si-1,54]
Cm’(S)Cp,jfgi'“'CPleSPvi s€[sj_1,8] forj=i+1,---.n

with the convention that Spo = |P| [ and fpo = 1.

Using the estimates in Subsection 6.2.1, it is easy to get an estimate of

fP,i (S)

Lemma 6.12 Recall from the begining of this chapter that n := = and N is the

[Pl
sectional curvature bound. For each q > 1, we have
sup E | sup sup|fp;(s)|?| < oo.
n>2qN 1€{0,--- ,n}seP
Proof. For all4,j € {0,--- ,n}, if j <4, fp;(s;) =0. So we only need to consider

the case when j > 4. Since

Fps(s) = Cp;iCpj1----- Cpit15p,

SO
q

Sp.
A,

|fri ()" < |Cpy|" |Cpja|® - 1Cpiv1]?




87

Apply Lemma 6.6 and 6.8 to find

2\ 4
| fp. <8j)‘q < 29N 2g=il Ak P <e 1881 — (6.4)
) A 2\ 7
< e30N Ti=ilwfl” <1+—N| 6i6| ) (6.5)
) gl2
< haN T lawsp  Msel (6.6)
< AN i lAB, (6.7)
Since et Li-ilArBl g independent of 7 and j, we have
sup sup|fpi(s)|? < 1N T |AkBl”, (6.8)

i€{l,- ,n}seP

Since for each k, |Aw8)* = S0 [(AxB),”, where {(Akﬁ)l}le are coordinates of
ApB, ie. AB = ((AB)y,--.,(AB),). Since B is a Brownian motion on R?,
{(ArB) 1}7:1 are i.i.d with Gaussian distribution of mean 0 and variance % Using

Lemma B.1 in Appendix B, notice that ¢N < 7, we have

vl

F [eqN\AkB\Q] — szzlE [equ(Ak/B)l|2i| - (1 _ M)_

n

and

q

E| sup suplfp(s)

<E [eqNZZﬂ\AkBIQ] (6.9)
i€{0, n}s€P N

2qN

_nd
= 1I"_E [equkﬂlz} — (1 _ T) . (6.10)

n

_nd _nd
Since (1 —22M) 72 — e74N a5 n — 00, s0 {( — 2Ny } is bounded and
n>2qN
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thus

sup E
n>2qN

sup sup|fp; (s)|q] < 00.
1€{0,+- ,n}s€P

Notation 6.13 Given n € N and s € [0,1], let s = s,_1 when s € [s,_1,5k),

|P| = L is the mesh size of the partition P and also let

Ap . (8) = Rup(s) (Bp (sk-1+) 5 +) Bp (sk-1+) -

Lemma 6.14 For each ¢ > 1, v € (O, %) there exists a constant C such that for

all n > HgN,
E| sup  fpils) = fra(s)l'| <CIPI. (6.11)
i€{0,--- ,n},s€[0,1]
Proof. For s € [s;_1,si), Taylor’s expansion gives
() = () = [ Apa () Jpi () (s = 1) (6.12)

— [ Ank 0 U0 = Jpa ) 5= )+ [ A0 0) 5= )

(6.13)

2

Since [Apy ()] < N , we have

AxB
Ay

N S
p0(9) = Fa ()] < 5 1650 [ Ui () = s (0] dr 3N A5 sup | s 5)].
k El scP
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By Gronwall’s inequality, we have:

1 N 2(s—s
Fps () = o (5)] < 5N 1AWBI sup | o (5) 2424707
se
1 2
< SN ARSI sup | fp (s)] N2+
2 seP
Using estimate (6.8) gives
e o N7 29 qN|ARBI? JgN 7, |A;8]2
[fpi (8) = fri ()" < o[RBT XTI RT et 2=l (6.14)
<C |7p|2q7 e2aN EZ:I‘Ak5|2K3(I_ (6.15)

Based on a computation exactly the same as (6.10), we know E |e24V(1+) Eﬁzl\Aké’IQ]
is finite for some € > 0 and the value is bounded above independently of n. Then
using Remark 6.10 we see K, has finite moments of all orders. The estimate in

(6.11) then follows by Holder’s inequality. m

Theorem 6.15 Let T(.) be as in Definition 4.14, then for each ¢ > 1, v € (0, %),

there exists a constant C' such that for all n > 5q7,

E fpa(s) — Tz

sup  sup < C|P|™. (6.16)

1€{0,- ,n}s€[s;,1]

In order to prove Theorem 6.15, we need the following result.

Lemma 6.16 For each q > 1, v € (O, %), there exists a constant C' such that for

all n > 5q,

E| sup sup

i€{l,,n} j=i

Fpi (5y) — (fp,i (50 = [ Ricupio fre 0 dr)

i

q] (6.17)

< CIP|™. (6.18)
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Proof. For all s; € P with j >4+ 1 and for k =1,---,j — 1, we have

1 Sk+1
fri(ski1) = fri(sk) + AQ—/ Rup(ry (A1 B, f.i (1) Agpa B (kg1 — 1) dr
k+1 Sk
(6.19)
1
= fpi(sk) + §Rup(sk) (Art1B, frii (k) Ak B + eik
where
1 Sk+1
ik = AQ—/ Rup(ry (Ars1B, fr,i (1) Apg1 B (kg1 — 1) dr
k+1 Jsg
1 Sk+1
- AT/ Ry (s) (DB, fri (56)) Akg1 B (Sp1 — 1) dr.
k+1 Jsg
Since {fp,i (s;)}, is adapted, by Ito’s lemma
1 1 [
éRUP(Sk) (Ak—i-lﬁa f'P,i (Sk)) Ak-{—lﬁ = 5/ RU/p(Sk) (51” - Bska fP,i (Sk)) dﬁr
1 §k+1
3 [ Runto @51 s 52)) 5 )
Sk
1.
- échuP(sk)fP,i (s) A

Summing (6.19) over k from i to j — 1 , we have

1 Sj ) .j_l
fri(sj) = fri(si) — 5/ Ricyp () fpi(r)dr + Mp s, + Z €ik
5i k=i

where

Mpim 5 [ Bu Br = Busfpa 0)) B+ 5 [ R (051, s (0) 6, = )

is a RZvalued martingale starting from s;. By the Burkholder-Davis-Gundy
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inequality, for ¢ > 1,

sup |Mp,|*| < CE [<Mp>f] (6.20)

S€E[s4,1]

E

where (Mp) is the quadratic variation process of Mp. An estimate of (Mp) gives

1 1
(Mp), < dN? / 1B, — B 1fps ()P dr < AN? / 1B, — B fp () .
S; 0
and by Jensen’s inequality,
q q !
(Mp)E < @i N / 1B, — Bl s (D) dr
0

Since { fp, (7‘)}106[O ) s adapted to the filtration generated by [, using the indepen-

dence of |8, — B:|* and fp; (r) we have:

B[] <aine [ B 15, - AMB i

— CsupE [| fp.: ()] [P|2 .
seP

By Lemma 6.12, we know

E [(Mpﬁ] <cp} (6.21)
So to finish the proof of Lemma 6.16, it suffices to show:
-1 |9
E sup Z eix| | <CIP. (6.22)
1€{0,--,n},jef{i+1,- ,n} i

Since |e; x| < Ip + IIp, where

1

Sk+1
Ip = AZ / Rupr) (Ar1B, fri (1) — fri (s1) Ags1B (k41 — 1) dr
k+1

Sk
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Sk+1
/ (Rup(si) — Rup(r)) (Dis1B, fri (1)) A1 B (g1 — ) dr|,

Sk

using (6.15) we know

Ip

IA

N . ,
9 sup fpi (1) = fpi ()| [Apa BP < CKZ[P|Y 2N Zierl8eil
i€{1,+ ,n},rel0,1]

Since

Sk+1
|Ru7>(8k) — Rupr)| < C/ W;D (s)lds = C|Ap1B| < CK, P,
sk

using (6.8) we have

IIp <C  sup  |fps(r)]|Aesif]>  sup |Run(s) — Rup(r)|

iE{l,'“,TL},T’EP re[5k75k+1]

< CK3 [P N Timalbl,

j—1

E €ik

k=i

1 . ,
=Pl (I+11) < C(KXHP|Y " + K3 P71 2N ZialAubl,

Since if v approaches %, 3y — 1 approaches %, so using Lemma 6.10 we get

Jj—1 q
E sup Z eir| | <CIP.
i6{0,~~~,n},j€{i+1,-~~,n} k=1

Combining (6.21) and (6.22) we obtain (6.18). m



Proof of Theorem 6.15. For s > s;, define

ﬁﬁﬁ:ﬁﬂw—%/Rmewmw

i

Then
R 1
fri(sj) = fpi(sj) §‘§/ (Riup(r) = Ricup(r) fp. (1) dr
1 [
|5 [ Ficwis s (0 = fs(0)
Since

|Ricu7,(r) — Ricup(z)‘ < CK,Y |7D|77

using Lemma 6.12 and Eq.(6.8), we know:

q

< CKIIP|™

/Sj (Ricup(r) — Ricup(w)) fr,i (r) dr

?|

and

/Sj (RiCup(r) — Ricup)) fr, (r)dr

Then consider

[ Ricunio (s 0) = Js )

By Lemma 6.14, one can easily see

Sj q
E| sup / Ricupoy (fpi(r) — fpi(r))dr| | < C|P|?.
1€{0,--,n} |Js;
Combining (6.24) and (6.25) we get
R q »
E sup | fpi(s;) — fri(sy)| | S CIPI™.
i€{0,--- ,n},j>i

q
} <cpre.
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(6.23)

(6.24)

(6.25)

(6.26)



Then for s > s;, define fp; (s) to be the solution to the following ODE

%fp,i (S) + %Ricup(s)fpd (3) =0
fP,i (s;) =1.
Therefore
~ 1 S ' B
f'P,i (3) =1 - 5 / RZCUP(’I‘)fP,i (r) dr

and

o ) = Jpa () < Ufpi (s) = 11+ 5 [ | () = o )]

By Gronwall’s inequality we have
Fpi () = Jpa (5)] < 1 (s0) = T3,

Thus by Lemma 6.8, it follows that

E fra(s) = fpils)| | < CIPI.

sup
7‘6{0’ an}ﬂszsi
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(6.27)

Lastly, we look at fp; (s) — T,T, ' where s > s;. Note that 7,7 ' satisfies the

following ODE,

So

DO | —
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By Gronwall’s inequality again we have

f’P,i (S) - TST;l < (j[(7 |7p|v e%N7

SO

E Jpi(s) =TT

sup <C|PI. (6.28)

1€{0,--,n},s>s;

The proof is complteted by combining Lemma 6.16 and (6.25), (6.26), (6.27) and
(6.28). m

6.2.3 Convergence of Kp (s) to K,

Recall from Definition 5.4 that Kp (s) satisfies the piecewise Jacobi equation:

K7 (s) = Rup(s) (Bp (si-1+) . Kp (5)) Bp (sim1+) for s € [si—1, 5i)

K% (si-1+) = fp, (1) and Kp (0) =0,fori =1,...,n

(6.29)

where fp; (1) is given in Definition 2.42.
Before we state the main theorem in this section, we need some supplemen-

tary lemmas.

Lemma 6.17 Recall that n := ﬁ and N 1s the curvature bound. For each q > 1,

sup E {supu{p (rﬂ < 0. (6.30)

n>2qN repP

Proof. For alli € {1,--- ,n}, recall from (5.6) that

=
Kp (si) = n Z frg1(8) fpja (1) -
=0

where fp; is defined in Definition 2.42.
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So for all ¢ > 1, we have
=
K (s0)|" <7 = | fp g (50)|” | fpjun (DI
=0
Using (6.8) we have
Kp (5;)]7 < €2V ZiaalAnhl, (6.31)
Then taking expectations as in Lemma 6.12 gives (6.30). m

Lemma 6.18 For each ¢ > 1 and v € (0, %), there exists a constant C' > 0 such
that for all n > 5qN,

E sup Kp (r) — Kp ()| < C|P)*"

i€{1,-,n},rel0,1]

Proof. For s € [s;_1, s,

Kp (s) = Kp (si1) (6.32)
#Bpa (5= 5) [ Rugto (B (si) Ko (1)) B (sica) (5 = ).
(6.33)
Therefore
K (s) — Kp (si-1)] (6.34)
< |fpi (D (s = si1) (6.35)
[ Bunt (5 (514) K (1) = K s0) + K 52)) B (5014) (5 = 1) o
< fpas (D] (s = 51-1) (6.36)
rnla [ 1K 1) = Kp (sl (5 = 1)+ N A8 (K o)



We use the shorthand

A7 [
A2

f(s)=1fri()|(s=si1)+ N [Kp (1) = Kp (si-1)| (s — 1) dr

Si—

1
+ §N 1ABI* Kp (si-1)] -

Then it is easily seen that

ABIP [*

1(5) = 1 D]+ N

[Kp (r) — Kp (si-1)| dr,

Si—

a2 A,
= NI 1k (5) K () < N2 ),

71(s) = N2

and f (s) satisfies the following ODE

I (s) = NEEEF (5) 46 (s)

\f(Sifl) = IN[AB) [Kp (sio1)]

where ,
A;
55 = () - NS5 F () 0.

This ODE can be solved exactly to obtain

£5) =€ (5) 5N I K (s + 8oy () s D]+ [ 8,8 (r)ar

Ci (s) := cosh (\/N 165 (si—14)| (s — si_1)>
and
sinh (VN |8 (si14)| (s = 7))

S ) = T R ]
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f(siz1) = [ fpi (1)) (6.37)
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Since 0 (r) < 0 and S, (s) > 0, we have
f(s) <Ci(s) %N DB [Kp (si-1)] + S () | fpa (1]

Then using the following estimate

we obtain
F(s) £ B (SN IABE K (50l + P11 (1)) (6.38)

o i€{1l,,n i€{1,- ,n},s€[0,1]

ap2y 1
< NEZPP <§NK3 P[> sup }‘K'p (si-1)| + |P] sup | fp.i (s)|) .
Note that f > 0, using (6.8) and (6.31) we have for g > 1,
f4(s) S U, P,

where

q
U, = e?NKIIPP <1NK3 T |7>|1—27> A D INCT
2

is a random variable with finite first moment which can be bounded uniformly for

n > 5qN. Therefore,

E sup  [Kp (r) = Kp ()| < C[PP" (6.39)

ie{lz"' 7”}7T€[0a1}

Lemma 6.19 Let Kp and K be defined as in Definition 5.6 and 4.16. Then for
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each ¢ > 1 and v € (0, %), there exists a constant C' > 0 such that for all n > 5qN,

E {sup Kp (s) — K, q} < Cyuqy |PI7. (6.40)
s€P
Proof. For all i € {1,--- ,n}, Kp (s;) and K, can be rewritten as

Kop (si) = fpi-1(8i) fria (1)_1 (Z_: friri (1) f;,jﬂ (1)) 1P| (6.41)

and

First define
Kr(s) =700 [ (R57) (RT) an
0

where 7 = s; if s € [s;-1, 5;). We will show, for each ¢ > 1,

sup | K, — Kp (s))q < C|P|". (6.42)
seP

Recall from (4.7) that Ty7""! satisfies the following ODE,

d (= -~ 1/~ = _
% (T1T7fl> = 5 <T1TT,71) RZC@T.
So by Lemma 4.8,
d /- - o
a <T1T;1> <N < N
dr
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Therefore

() (1) - () (852) | < [ [ [(0) (827) ] s
<2 [/ ()] |(7) s
<C(F-r)
< C|P|

and
R, — Kp(s)| < |77 / H(md) (13 - () (BF) | ar
< C|P|

Since the right-hand side is independent of i, we proved (6.42). Secondly, define

Kp( :T T (prg—i-l fP]+1< )) |P|

We will show, for each ¢ > 1,7 € (0, %) , there exists a constant C' > 0 such that

for all n > bqN, we have

E [sup Kp (s) — Kp (3)

q] < C|P|7 . (6.43)
seP
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For all j € {1,--- ,n},

T ) fpy00 O = (BT (BTS1)
< ’f’P,j+1 (1) fp s (1) = frjta (1) (T1 i
+ ‘fP,j—l—l (1) (Tlfs;L)* - (TlT;;L)

[ (

< <|f7>,j+1 (D] +

T

Since | fpj1 (1)] < eN i1 |AwBl? by (6.8), ans also ‘Tlfs;il) <1, we have

Fpa () oy () = (BTS1) (T

< <6NEZ:1\Ak5|2 + 1) {Sup } frj+ (1) — TITs;L :
je{l,—n

Thus for all i € {1,--- ,n},

D (o a q :—q — *  o—1 T o—1 19
Ky (s) = K ()] < P17 |fryn () 0 (0 = (RT3, (0251
=0
< <€NZZ=1IAk5\2 + 1)q sup | fp+1 (1) — Tlfs;il "

]6{17 7n}

n q n
Since (eN IRV 1) < etV Zk=1‘Ak5|2, using Holder’s inequality and Theorem
6.14 we get

E {sup
seP

Kp (s) — Kp (sﬂ <CIP".
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Lastly, we estimate Kp (s;) — Kp (s;). Using (6.41) we have

(si) — Kp (s:)

’f’Pz 1 sz 1( ) 1_Tsijﬂ1_1

(prj-‘rl ) Py (1 )) |P|

sup | fpya1 (1)

‘sz 1 sz 1( ) I_T&Tfl

JE{1, n}
Since
‘fPﬂ'—l (i) fpia (1)_1 — T, 17!
~ 1
— ’fmq (si) = T T, | | foiy (D) + | T T3, (TlTsl 1) — ),

and from Lemma 5.5, we know |f7>,i_1 (1)_1| <1, and

TlTsjl f'Pz 1 “f"/)z 1 1‘

So
‘fp,i—l (8i) fpia (1) = T, T

Ts] Tsl 1 fpvi (Sj) .

1<i,j<n

Then using Lemma 6.15, 6.12 and Holder’s inequality we have

E {sup Kp(s) — Kp (S)H < Cyqy |PI* (6.44)
seP

Finally Lemma 6.19 is proved by combining (6.42),(6.43) and (6.44). m
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Lemma 6.20 For each q > 1, there exists a constant C > 0 such that

~ ~ q
K, - K, <C|P|

sup
s€[0,1]

Proof. By the fundamental theorem of calculus, we have

5 1 s 5 s, %
K, — - / Ricy K,dr + / (TlT;1> dr.
2 0 0

Using Lemma 4.8, note that Ric is bounded by (d — 1) N, we have

g(d—l)N/OS

where C' and (d — 1) N are two constants independent of s. Then using Gronwall’s

\Ks K,.|dr+C

inequality we get

)KS < O < 0N (6.45)

so sup |K,| is bounded. Then using the fundamental theorem of calculus again
s€[0,1]

from s to s we have

B B 1 s B s %
K, - K, =~ / Ricy, K, dr + / (BT) ar

1 S - Ni S o~ * ]_ & ~
= / Rics, (K _ Kﬂ) dr + / (Tngl) dr+ 5 / Ricy K,dr.

Therefore
. . N (5~ -
)KS— =5 [ & -K|ar+crpl.
By Gronwall’s inequality again we have
~ ~ N
)Ks K, <opler
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and thus
~ ~ q
sup K, — K| <C|P|!
s€[0,1] -

The next theorem is a generalization to Lemma 6.19 in the sense that s now

can be taken to be arbitrary between 0 and 1.

Theorem 6.21 Let Kp and K be defined as in Definition 5.6 and 4.16. Then for
each ¢ > 1 and vy € (0, %), there exists a constant C' > 0 such that for all n > 5qN,

E K, — Kp (s)"

sup < Cyqy | P (6.46)

s€[0,1]

Proof. For any s € [0,1], s € [s;_1, s;] for some i € {1,--- ,n}. So

n ‘KSH .

Then using Lemma 6.18, 6.19 and 6.20 we prove this theorem. m

6.2.4 Convergence of Jp (s) to J,

Recall from Definition 5.9 that
Jp (s) = Kp (5) Kp (1) Hp (6:47)
where Hp : W, (M) — R is given by
Hp = up (1) X (roup (1))

and up is interpreted in Notation 6.1.
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Proposition 6.22 Let J, be as in Definition 4.17 and X € T'(TM) with compact
support (here both Jp and J depend on X, see Definition 4.17 and 5.9), then

Jp (8) - Js

sup — 0 in L= (W, (M)) as |P| — 0.

s€[0,1]

Proof.

where

Ip (s) = [K, = Kop ()| [Kp (1) 1

][73 (S): Ks K’p (1)_1—I~<1_1 |H73’

Iy (s) = |K,| K} Hp—ﬂ‘.

For Ip (s), since X has compact support, |Hp (¢)| is bounded. By Lemma 5.5
Kp (1)~

< 1. Then using Theorem 6.21 we have

E { sup I} (s)} < C|P|" for n > 5gN. (6.48)
0<s<1

For I1p (s) : since

Kp (1)~ K = Kp (1) (K1~ Kp (1)) K;, (6.49)
S0

[Ip (s) < ‘K Kp (1) ‘Kl ~Kp (1)‘ ‘K;l‘ |Hp|

< Csup |K,||K; —K'p(1>‘ :
s€[0,1]

Recall from (6.45) that sup |K,

s€[0,1]

is bounded (the bound is deterministic), using
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Theorem 6.21 again we have

E [ sup 11} (5)] < C|P|" for n > 5gN. (6.50)

0<s<1

For I11p (s): Since F': O (M) — R? given by F (y) = y~ !X o7 (y) is bounded,
and by Wong-Zakai approximation (Corollary 6.5), up (1) — @y in L>~ (W, (M))
as |P| — 0, by DCT,

Hp — H in L~ (W, (M)) as |P| — 0. (6.51)

Also since sup |K,| and ’Kfl‘ are bounded, we have

s€[0,1]

sup [1Ip(s) — 0in L= (W, (M)) as |P| — 0. (6.52)

0<s<1

Combining (6.48), (6.50) and (6.52) we prove this proposition. m

< 7’V1 < %
6.3 Convergence of X;’ 7 to (X)t ’

Recall from Lemma 5.11 and 4.43 that

1 - 1 ~
P / (I (s4) , dBp.) + div X (6.53)
0
and
~ T,V ~ d ~ o~ 1 ~ * o~ o~
(X)t - X+ ; <CH, ea> /0 <(T;1> €a, d63> _ ; <XZa (CH) ,e(a> . |
6.54

Theorem 6.23 If M has parallel curvature tensor, i.e. VR = 0, then for any
feFc,,
X0P o — X 5 0 in L7 (W, (M) as [P| — 0
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where if f = F (@), then fp: Hp (M) — R is defined to be F (u) € FCp,.

Proof. In correspondence with the three-term formulae (6.53) and (6.54), this

theorem is decomposed as three propositions: Proposition 6.25 states that
Xpfp — Xfin L (W, (M)) as |P| — 0,

Proposition 6.26 states that

d

/01 (p (s),dBps) > > (CH e /01 ((T:1) eardss) in L= (W, (M)

a=1

and Proposition 6.27 states that
~ d ~ o~
divXp =Y <—XZa (CH) ,ea> in L=~ (W, (M)) as |P| — 0.
a=1

Thus the proof will be complete once the stated propositions are proved. m

Remark 6.24 For Proposition 6.25 and 6.26 we assume the assumption of bounded
sectional curvature as is mentioned in the begining of this chapter. For Proposition

6.27 we further require the curvature tensor to be covariantly constant.

Proposition 6.25 If X € I' (T'M) with compact support and f € FC;, then
Xpfp—Xf—0in L= (W,(M)) as |P| — 0.

Proposition 6.26 Keeping the notation above, we have

/01 (Jp (s+),dBp) — > <éﬁ, ea> /01 <<T;1>* e, dﬁs> =0 (6.55)

a=1

in L>*= (W, (M)) as |P| — 0.
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Proposition 6.27 Continuing the notation above, if we further assume VR = 0,

then

d
divXp -3 <—Xza (0H> ,ea> 0 in L% (W, (M)) as |P| — 0.
a=1
Proof of Proposition 6.25. Notice that Xp = X7? and X = Xj, since for a

general geometric vector field of the form X* and a cylinder function f = F' (u),

n

(X*f) (0) =Y {(Vif) (0) . X5 (0))

i=1
where (V, f) denotes the gradient of F' in the i-th variable. Therefore, note that
Toup = ¢ o [Bp, we have

n

Xpfp(pofp) = Z (Vif) (moup),up (s:) Jp (s:))

=1

= (up! (50) (Vif) (moup)  Jp (s:)

and

Xf = Z <(sz) (moa) ,ﬂSiJsi> = Z <a;1 (Vif)(moa), sz> )
i=1 i=1
If f € FC;, then u — u;' (V,f) (7 o u) is continuous and bounded. Using Corollary
6.5 and DCT, we know

u;l (s:) (Vif) (moup) — 1];_1 (Vif)(moa) in L™ (W, (M)) as |P| — 0.
(6.56)
The proof is then completed by making use of (6.56) and Proposition 6.22. =
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Proof of Proposition 6.26.

[ s s = 3 (I ) )

i=1 g

*Z Ip (si-1) , Aif5) +Z</ Jp (s 8—511)d5,Ai5>

= Ip + 11p,

where
n

I =3 (U (s1) . AB)

=1

and
n

IIp=> </ Jp () (s — si_1) ds, Ai5> .

i=1

Using the fact that Jp satisfies Jacobi equation, we further have

n

=% <Ai / " R (DB, Tp (3) AdB (5 — 1) ds, Alﬂ>

i=1

= Z A2/ Rup(s) (A, Jp () AiB, Aif3) (s — si—1) ds.
Since the curvature tensor is anti-symmertric,
(Rup(s) (AiB, Jp (5)) Aif3, AiB) = 0 v-aus,
so I[Ip =0.
Ip = Z <f'Pz HP’ 15>
:Z<K7>( "Hp, fp; (1) AB) = < H?%me >
i=1

For each i > 1,5 € [s;_1, s, define g; (s) = Sp; (s) —Cp,; (s) Sp,i—1. Then Taylor’s
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expansion of g; at s;_1 gives

5(5) = =Spics + (s =) T+ [ Runiry (B (). 1)) 85 () (5 =)

So
19 (5)] < |Spic1 — (s = sim1) I| + N |Bp (si-1)[* / lg; ()] (s — ) dr-.
By Gronwall’s inequality and Lemma 6.8, we have
i (5] < G 2 [P V1T,

Note that g; (s;) = Sp; — CpiSpi-1, so by Lemma 6.6,

1
|fpi(1) = fria (1)] < W 1Cpol - |Cpisi| - |Spi — CpiSpiil
N n 2

and thus

NS~ me ) A3 <|7>|” Z|f7>z — fric (D] ]ABI

< O P TVt

Picking v € (%, %) we know for any ¢ > 1,

q

—0as [P|—0. (6.57)

me ) AiB — me1
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Since fpi-1 (1) = fpo (1) fpp (si-1) 222, s0

< HP,Z LA > (6.58)
- <f7’;70(1) Hp,ZfPO 5i_1) SAPZ_lA 5> (6.59)

Using Lemma 5.5 we have }f;b (si—1)| < 1. Then using Lemma 6.8 we obtain

— S 71— _ S i—
fpi) (5i-1) Ap—ll - fp}) (sim1)| |AB] < |22 11 — 1| A8
3 3v+1
< NPT wiacise,
- 6

Therefore for each ¢ > 1,

q

Spi_ S

s NOE3 |7>|3‘”+q g

< ppt-oy M et (6.61)
=1
< O P77 K3eEin Al (6.62)
and thus
SPz 1 ! 3vq |P|_>0
pro si) R A - pro sii) AB| | < C|P)

Rewrite

> Frh (s Adas [ f(s)d.

where fp(s) :=>" f;b (8i-1) 15,15, (). Define

M= [ g as - [ 10,
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it is easy to see M, is a martingale, then by Burkholder-Davis-Gundy inequality,

for each ¢ > 1,
E | sup [M,]*| <CE [(M}?]
rel0,1]
Since
1 -2 1 -2 Ly 2
<M>1§/ fp(s)—T,*! ds§2/ fp(s) =T, ! ds+2/ Tt =Tt ds,
0 0 B 0 B
we have
! =~ q]? - -1 =g |2
[ o= s =3 | s - 20 [
0 i=1
n . 9 - 20 2
<D | fpp (5] ‘fp,o (sic1) = Ty | (T2, | A
=1
~ |2
(6.63)

< sup ‘fP,o (s) — Ty
seP

2 1
dsg/ Nl|s—s|"ds < N|P|.
0

/: (71 ar

9 1
ds:/
0

Therefore,

(M)} SC(/Ol‘fP(S)—T!l‘ZdS)g+C(/01

<C (Sup ‘fp,o (s) — T, ! + |P|q) :

T 11

9 3
ds)

seP

Then using Theorem 6.15 we have

E [(Mﬁ] <Clp”. (6.64)
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From (6.64) it follows that for each ¢ > 1,

1
0

/01 fr (s)dps —/ Ts’ldﬁs — 0in LY(W, (M)) as |P| — 0.
Then using Eq.(6.49), Eq.(6.51) and Theorem 6.21 we have
Kp (1) " Hp — K{'H in L~ (W, (M)) as |P| =0
and
fpo (1) = Ty in L% (W, (M)) as |P| =0,

therefore
~ ~ 1 ~
Ip = <T1*K11H, / Tsldﬁs> in L2 (W, (M) as [P| — 0. (6.65)
0

Lastly, notice that

SO
K;'= (Tﬁ) C
where C' is defined in Definition 4.36, and

1 1
<Tff<1‘1ﬁ, /0 Ts‘ldﬁs> _ <éﬂ, /0 Ts‘ldﬁs> (6.66)

d

= Z <CH €a> /01 <(T‘1> Ca dﬁs> . (6.67)

Using (6.65) we get as |P| — 0,
1 d 1 N
/0 (Jp (s+),dBps) — > <CH ea>/0 <(T;1> ea,dﬁs> 5 0 in L™ (W, (M)).

a=1
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Lemma 6.28 Fiz s € [0,1], consider an one parameter family of paths {o,} C
Hp (M) and denote by u; () : the Horizontal lift of oy. For simplicity, we will
denote u; (1) by uy, oo by o, the derivative with respect to t by - and the derivative

with respect to s by 1. For any X € T (TM), define fx : O (M) — R% ~T,M by

fx (u) = v (X o) (u)

Then
d d »
%’ofx (ur) = %|0Ut Jx =uy Ve X (6.68)

— /0 Rug(r) (uo (7“)71 o (r+),ug (r) o (r)) drfx (ug)
(6.69)

Proof. Based on the decomposition of O (M) as in Definition A.12, we have:

110 = Ba (Uo) + A (Uo)

where a = ug'4]oo, (1) = ug'o (1) € T,M and A(ug) = 2|oupe** for some

A = uy" 2 (0) € s0(d) and B, (ug) = £lo//¢ (7) uo where v satisfies 4 (0) = upa

and v (0) = o (1). In this example, we can choose () to be o.(1). So

Ba () f = o /7 () (X o) (/s () w0) = "V 1, X

and

Au) fi = o™ (X o) (ue) = —Aug" X (o (1)) = ~AF. (uo)



Following the computation in Theorem 3.3 in [2], we know that

A= /O Rur (w0 (1)~ 0" (1) 0 ()™ 6 () dr.

Proof of Proposition 6.27. Because of Lemma 4.44, it suffices to prove

d

115

divXp — divX o By =Y <CA1 (Z.) H, ea> as |P| — 0 in L% (W, (M)).

a=1

Recall from Definition 5.9 that
Jp (s) = Kp (s)Kp (1) Hp.
From there we get, for each a € {1,...,d} and j € {1,...,n}, that
Ip (sj-14) = Kp (s;14) Kp (1) 7" Hp = fp; (1) Kp (1) Hp,

and

X" Tl (s;00) = Ip (@, ) + Tp (@, ) + 115 (@, ).

where

Ip () = (X" f5.; (1)) Kp (1) Hp (6.70)

IIp (a,j) = fp,; (1) (X" Kp (1)) Hp

IIp (v, §) = fp; (1) Kp (1) (X 9 Hp) .

Using Proposition 5.12, we have

d n
divXp = ZZ (Ip +1Ip+ 111p) (o, )) s €a) VA

a=1 j=1
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Based on the expression above, Proposition 6.27 will be proved as a corollary of

Lemma 6.29 to Lemma 6.32. In Lemma 6.29 and Lemma 6.30 we show that

SN UIp (a0]) e VA =Y <éA1 (Z.) ﬁ,ea> as [P| — 0.

a=1 j=1 a=1

In Lemma 6.31 we show that

ZZ<I[P <a7j)76a> \/A_j—> 0 as |’P| — 0.

a=1 j=1

In Lemma 6.32 we show that

SN U () ea) VA, =5 0 as [P| 0.

a=1 j=1

Lemma 6.29 [f VR =0, then

d n
SN UTIp () cea) VA Y <éA1 (Z) H, ea> (6.71)

a=1 j=1 a=1
in L~ (W, (M)) as |P| — 0.

Proof. Applying Lemma 6.28 to X"J Hp gives

d n
DY (IIp(,h) ea) VA = TVp + Vp,

a=1 j=1

where

d n
Vp=>"%" <f;;,j WKp (1) up (7Y, ) B g ea X ea> A;

a=1 j=1
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Ve==> )" <f;;,j ()Kp (1) /0 Ry (Bp (r+) , B (1)) dr Hp, ea> VA,

We first compute IVp. After viewing L (-) = up (1)7" Vupa)X as a linear func-

tional on R? we have

Vo =Y (fp; W Kp () L{fp; (1) €a), ea)A;

j=1 a=1

=2 Tr (fp (DKp (1) Lfp; (1)) A
B Z Tr (Ajfpy (1) fp,; (1) Kp (1)1 L)

=Tr (Z Ajfry (1) 5, (1) Kp (1) L) (6.72)

=Tr (L)

= divX o El,

where in Eq. (6.72) we use identity (5.9):
> Aifey (1) f3;(1) =Kp (1)
j=1

and given A € Myyq, Tr (A) := Zi:1 (Aeq, €,) is the trace of the matrix A.
The proof of the lemma will be completed by Lemma 6.30 below which
shows Vp term converges to the right side of Eq. (6.71). m

Lemma 6.30 Let Vp be defined as in Lemma 6.29 and VR =0, then

V-3 <C*A1 (Z.) H, ea> 50 in L% (W, (M)) as |P| - 0. (6.73)

a=1
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Proof. Recall that

DY <f;s,j OKp (U7 [ Rupiy (35 (4) oy (), > JA,

a=1 j=1

For each v € {1,...,d} and j € {1,...,n}, since hy ; (1) = /A, fp,; (1), we have

/0 Rupr) (55» (r+), \/% )

1
Rupry (Bp (r4) , fpj (r) ea) dr

Rup o) (Bp (r+), fp; () eq) dr +eg

c\c\

where e := €1 + €02
1

1
€1 = /0 Rupry (Bp (r+) , fp; (r) eq) dr — / Rup() (Bp (r4) , fr; (r) eq) dr

0

and

1 1
€02 = /0 Rup(ry (Bp (r+) , fp; (1) €a) dr — /0 Rup() (Bp (r4) , fpj (r) eq) dr.

Since VR = 0, we have argued in Lemma 4.44 that R, is independent of u, therefore
€01 = 0.

As for e 5, since

leo2|! < N sup |B8p (r+)]* sup \fpi(r) = fr; ()",
re(0,1] re0,1],57€{1,-- ,n}

using (6.15) we have

_ n NK "\
|€0,2’q < Cq,'ng |7p’qw 1 |P’2qv GQNZ]@:HAMBFK’%Q (1 + v |7)| ) :

6



119

and from which it follows
E [leos|?] < C [P’ ¥n > 5¢N. (6.74)

Picking v > £, s0 3¢y — 1 > 0 for any ¢ > 1, so E [|eg2|"] — 0 as |P| — 0.

Next we analyze
1 n
| Bt (35 () I (1) ) dr = 3 Ruey (48 (51 )
0 k=1

_ /Olgl (5) dB,

where
g1 (8) = Z RUP(Sk—l) ('7 fP,j (Sk—l) ea) 1[81@_1751@) (S> :
k=1
Define
92 (S> = Rﬂs,ﬁl ('7 f?’,j (Sk*1> ea) 1[5k—1:5k) (5)
k=1
93 (S> = Rﬁsk,l ( ) ~5k71 Ns; 601) 1[81@71,80 (S)
k=j+1

For each i = 1,2, 3,4, denote

cri) = [ a5~ [ ger(9)ds,
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then

/01 Rupr) (Bp (r+) , frj(r)eq)dr — /Sl R, <d5ra j}if%)

J

=€p,1 (1) + Ep2 (1) + €p.3 (1) + €Epa (1) .
We are about to show for each ¢ € {1,2, 3,4},

epi (1) — 0 in L= (W, (M)) as |P| — 0. (6.75)

(ep1) / 191 (5) — g2 ()2 ds,

For ep; (1), since

so for each ¢ > 1,

E [(ep,)} ()] <E / 0 (5) s (9"

q
|fp.j (sk—1)|" A

<E Z ’RUP(Skq) - Rﬂs,%l
Lk=1

<E A} sup |fp.j (3)|q] :

je{lv"' ,TL},SE[O,l]

where

Ap = sup |Rup(s) — R;

Using Theorem 6.4 we know

1
BlAL] < C o) [PI7 e (0.3) 21

Then by Holder’s inequality and Lemma 6.12,

sup B 1AL sup [ fp(s)]f

n22gN je{l,+ n},s€0,1]

< C(q,v)|P|".
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Then using Burkholder-Davies-Gundy inequality, we have

E (lep (1| < CE [(epn)! (1] < Ca,7) [PI7
and thus
ep1 (1) = 0in L™ (W, (M)) as |P| — 0. (6.76)

For ep o (1), since

67?2 /|g2 —93 )| ds,

so for each ¢ > 1,

E%MGHSE/Wm (9]

q

Ay

- ¢ Z ‘Rﬁ(Sk_l)‘q ‘fp’j <Sk_1) - TSkflTs;I
k=1

1

< E | Nsup
L s

J ($> - T5T5;1

By Holder’s inequality and Theorem 6.15,

E {Nsup 4 (s)— TSTST
7,8

q
]SC@wWW-

Then using Burkholder-Davies-Gundy inequality, we get

Ellepa (1Y) < CE [(ep2)? (1)] < C(a,7) [PI”

and thus
ep2 (1) = 0in L= (W, (M)) as |P| — 0. (6.77)

For ep 5 (1), since

<w@@§AIM@—%@ﬁm
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so for each ¢ > 1,

B [ter? ] <E[ [ 1) - au (10

n Sk o 5 5

<E | |Rag | / .1, - T, T, ' qu]
k=1 Sk—1

< C|P|".

Then using Burkholder-Davies-Gundy inequality, we get
Eleps (DIY] < CE [(eps) (1)] < Ca,7) PV

and thus
eps(l) = 0in L= (W, (M)) as |P| — 0. (6.78)

For ep 4 (1), since
T

fepa) (r) < | 195(5) = g1 (s)[ ds,

so for each ¢ > 1,

gl [ ) ) q
<E T 5; R;. RuSk ) ds
k=1 Sk—1
<E[KJ][PI"

Then using Burkholder-Davies-Gundy inequality, we have
Eflera (1)[F] < CE [(679,4>% (1)} < C(g,7)[P|"

and thus
epa(l) = 0in L= (W, (M)) as |P| — 0. (6.79)
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Combining Eq.(6.76), (6.77), (6.78) and (6.79) gives Eq. (6.75). Then using
Eq.(6.75) and Eq.(6.74) we have

‘vp ~ Vp‘ 0 in L% (W, (M) as [P| — 0. (6.80)

where
S ol <(T;;1)*T;f<;1 Ry, (45, T 75 ) B > A,

We view Vp := Vp (€q, €4) as a bilinear form on RY, therefore

Vp (€a,€a) = ‘773 <Tsj€a, (Tsﬂ)* ea)
S o o)

:;/0 <T1*K1‘1/s Ra, (dﬁr,ﬁea> T (~;1>*ea> ds. (6.81)

Then we are about to show

d 1 1 *
-3 / <T1* K / Ry, (4, Toea) 0,7 (1.) ea> ds—0  (6.82)
a=1"0 $

in L~ (W, (M)) as |P| — 0.
Using Eq.(6.81) we know

d 1
the left-hand side of Eq.(6.82) Z/ )+ 11p (s))ds,

where

1o 6) = (T3 [ R (50 Toea) 1.2 (1) e
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and
1t () = (T8 [ o (5T 1 (20 (20) =10 (1) ) ).

For Ip (s), since

[Ip (s)|" < C

Y

JRA RN

by Burkholder-Davies-Gundy inequality,

E[|I» (s)|"] < C|P|?.
Notice that

MM@MQWW{

/S Rar (dﬁrafrea)

q
|<cr.
using Holder’s inequality, we have

E [|the left-hand side of Eq.(6.82)|%]

<CZZ/ (17 (5)" + 1115 ()1

a=1 j=1

<CZZ/ PI2 4 [PI7)

a=1 j=1

SNelik

and from which Eq. (6.82) follows.
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The last step is to show a change of integration order:

;/01 <Tlel/81 R, (dﬁT,Trea) 7,7 <T51>*ea> ds

:;; / ’“ <T1*K11 / R, (45 Tel) 11,77 <T31>*ea>ds. (6.84)
Define

s) i /0 t <T1*K11 / Rs, (48, Frea) BT (T51>*ea> s
and

Then .
« o=l 7 T A >
df_;<T1K1 Ra, <dﬁt,TteQ) i, /0 T: <TS ) dseq
and f (0) = 0. Since
d t %
_ S pr—1 = F = 1 (-1 _
dg_;<T1Kl Ra, (dﬁt,Ttea> H/O T: (TS ) dsea> df

and ¢ (0) = 0, Eq. (6.84) is proved by observing that left—hand side= f; = g; =
right—hand side.

Finally, after changing the pair (e, e,) to

(/ Tt <T5’1>* dse,,
0

in the right-hand side of Eq. (6.84) (note that this action does not change its value
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by exactly the same argument as (6.81)), and recognizing

[ ) a0

0
we combine Eq. (6.80), (6.82) and (6.84) to prove Eq.(6.73). =
Lemma 6.31 I[f VR =0, then
d n

> p(ag) ea) VA =0

a=1 j=1
as |P| = 0 in L™~ (W, (M)).

Proof. Define g; (s) := X" fp; (s) and g; (s) := g; (s) — g; (s). Then we know
that g; (s) satisfies the following ODE: for k =j,--- ,n

(

g1 (5) = Ap i (5) g; () + Ap (s) (fpy () — fpy (8) s € [sk-1, 5k
gi(s)=0

\99 (5) =0

where

. d
AP,k (3) - %’0 (Rup(t,s) (ﬁ% (tv 3) ) ) Bé’ <t’ 8)) )

For s € [sk_1, sk|, we know

5= [ T S (s— 1) A (1) (o (1) = fr (s50)) dr:

Using Lemma 6.8 and 6.15, we have

T 4
[fpi(s) = fpi(s)]* < ak | A3 NIARAP gzaN il AkAl (1 + NE, PP )

20 6
NK7|7’I”>Q

<C ’7;|2q7 eqNZZ:ﬂAkaK’?q (1 + :
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and
N o2y INTT 1ABP
Si(s =) < (s = 1) {1+ G2 [P N ELsar ),
Therefore
195 (s)]

< /: Sk (s — 1) ‘A% (7“)) |fpj (1) = frj(sk—1)|dr

<C sup
ke{l,...,n},re(0,1]

: NK, |P|" n s
AP,k (T)’ ‘,P’% ng (1 + %) eNZi:1|Ai,3|2 / (S _ 7,) dr
Sk—1

: NK v n
=C sup A, (7“)’ P[P K2 (1 + ﬂ) N TimalAisl
ke{l,....n},re[0,1] 6
and thus
13 (W] <) gj (s0)] (6.85)
k=j
<C  sup ‘Aé% (r)] PP K2 (1 + ﬂ) N Zinalaibl,
kefl,....n},r€[0,1] 6

(6.86)

It remains to analyze sup ‘A% (r)]:
ke{l,...,n},rel0,1]

A ) = (o Bunten) (5 (5)) 85 (9 + R (5105 (8.9 ) B ()

d
+ RUP(S) (5;9 (S) ) ) %’05;9 (tv 3)

Using VR = 0 we find

(%\ORuP(t,s)> (Bp (s),-) Bp (s) = 0.
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Notice that
Bp (t,8) = us (0,) " op (L, 9),
using Lemma 6.28 and we have

J
07.€q

VA

X3 B (sp-1+) =

- / " Ruptry (B (1)  hay (7)) drBip (551) - (6.87)

Therefore

Al ()] < N | X% B (5114 185 (1)

IN

N (ﬁ + Nsup b ()] sup |3 <s>\2> 18 (s6-1)]

s€[0,1]

IN

1
N|—— +Nf(K,)IP PQW‘”> K, |PP
(\/W f(K) VIPIIP P

< f(K,)|PP3

where f (K,) is some random variable in L' (W, (M)), so

~ _3
3 ()] < CF (1) [PP773. (6.39)
From above one can see
d,n d,n
Do (Lea) VA = 37 (X T)) K (1) Hp.ea) VA,
o,j=1,1 a,j=1,1

I
M=

[0}

From (6.88) we know that > 7 (f];‘ (1) \/|P|> — 0 in L~ (W), also notice that
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Lemma 6.32 [f VR =0, then

S (IIp () ea) VA =0

a=1 j=1
as |P| = 0 in L*~ (W, (M)).

Proof. Since
Xheo (Kp (1)7) = —=Kp (1) X" (Kp (1) Kp (1),

SO

| Xhed (Kp (1)7)| < | X7 (Kp (1))

Then using g; (s) := X" (Kp (s)) and this lemma follows from a Lemma 6.31-type

argument. |



Chapter 7

Proof of Main Theorem

First we restate the main theorem of our paper.

Theorem 7.1 (Theorem 1.12) If M is a symmetric space of non—compact type,
then for any restricted cylinder function f € RFC},

lim f (o) dvh, (o) = /W @@

IPI=0 J Hp (M)

Before proving Theorem 1.12, first we need some supplementary results. Recall
that the manifold considered in Theorem 1.12 is a Hadamard manifold with parallel

curvature tensor.

Proposition 7.2 For any f € FCy, X € I'(TM) with compact support,
Xt f e Lo (W, (M),v).

The proof comes after Lemma 7.3 and 7.4.

Lemma 7.3 Following the notations in Lemma 4.43,

d

S (emen) [ () o) €= 0r 0 )

130
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Proof. For any v € C?,

where C' is a generic constant.

Since X has compact support and is smooth, || X (-)|] € Cy (M) and
Hﬁ(U)H — X 0 By (o)]| < sup || X]|| < C.
Also notice that C' is deterministic, so we have

fon.

Since (T‘1> is bounded, so <T‘1) e L>=([0,1]). By Burkholder’s inequality, we

< el <

S S

get
/0 ((T:1) eards,) € 17 (W, (M)
Therefore,
S (e [ () s € 17 v an),
]

Lemma 7.4 Following the notations in Definition 4.36,

i <éXZaﬁ1, ea> e Lo (W, (M), v).

a=1
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Proof. From Lemma 4.44 we know:

d d

- <XZa (éﬁ) ,ea> —divX o B~y <CA1 (Z.) H, ea> . (7
where :
Ay {Za) = /0 Rato) (Za (s) ,65.) (7.2)

Since [, [T (T)_l] ' eqdr is bounded, by Gronwall’s inequality one can see that Z,

is bounded and thus using Burkholder’s inequality, we have:
Al <Za> € L™ (Wo (M)) : (73)

It is easy to see divX o Ej (o) is bounded because X € I' (T'M) with compact

support. Therefore:

i <C*Xzaﬁ, ea> e Lo (W, (M), v).

a=1

Proof of Proposition 7.2. Recall that from Lemma 4.44 and 4.43, we have:

d

thr,uf _ _XZ®f+Zd:<C’f~],ea> /01 <(T;1)*€a,dﬁs> f = Z<éXZaﬁ, €a> f

a=1 a=1

A similar argument as in Lemma 4.44 can show that X f € L~ (W, (M)), then

combine Lemma 7.3 and 7.4 and we can prove Proposition 7.2. m
Lemma 7.5 For any f € RFC;, XZ’V%’f € L>" (Hp (M),vp).

Proof. From Theorem 6.23 we know that

Xp'? £ (6(Bp)) — X f = 0 in L= (W, (M)). (7.4)
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From Proposition 7.2 we know X f € L™~ (W, (M)), so XZ’V%’f (o (Bp)) €
L™ (W, (M)).

Since the law of ¢ (8p) under v is vp, so
Xp'"f e L (Hp (M), vp) <= X7 [(6(Bp)) € L™ (W, (M)).

Notation 7.6 Denote by g any one of {gi}fzo as i Theorem 3.3 and {g(m)}m C
C° (M) be the approzimate sequence in Lt (M) as defined in Remark 3.5.

Lemma 7.7 Define j(o) = g(o (1)) and g™ (o) = g™ (o (1)), then for any

f € Fc;,
Lo

g (X70)| (@) av (o) < o

and

lim 3 (@) (Xf) (o) dv (o) = / 3O (X @ (o)

Proof. Since v{o : 0 (1) =e} =0, so g is v — a.s. well-defined. In particular, for

any p > 0,

Wdv (o 1 (0, ) dX 7.5
/O(M)| o) /|g Py (0,) dA (1) (7.5)

where )\ is the volume measure on M.

Since g has compact support and p; (0,-) € C*> (M),

[ L @P by 0.2) 3 @) < C gl (7.6)
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Since g € L' (M), we have
g€ LT (W, (M), (7.7)

Notice that from Proposition 7.2, we have X" f € L>~ (W, (M)), so by Holder’s
inequality, we get:

/WO(M) ’g (0) X" f (o) | dv (0) < o0.

To prove (7.7), just notice that the support of g™ is contained in a compact set

for all m, so we have, following the same argument as before

/ 5™ — 37 (0) dv (o) = / 0™ (2) — g (@' pr (0,2) dA (z)  (78)
Wo(M) M

<C ”g(m) a gHiP(M) : (7.9)

Using Holder’s inequality again we can get (7.7). m

Lemma 7.8 Define g: Hp (M) — R to be g (o) = g (o (1)), then
g€ La T (Hp (M), vh).
Proof. Apply the co-area formula (3.41) to |§|% , we have:
~ _d_ 1 d_
|9 (o)t dvp (o) = [ g (2)|"T hp (2) dx
Hp (M) M

where hp (x) € C (M) is defined in Theorem 3.35 with f = 1. Since g has compact

support, we know:

/M 19/ (2)| 7 hp (2)di < C /M 19/ ()]7 de. (7.10)

Therefore g € Lt (Hp (M),vp). m
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Lemma 7.9 Define j(o) = g(o (1)) and g™ (o) = g™ (o (1)), then for any
f S FC%),Z)J

/ ‘g : (X”’”%’fﬂ (o) dvy (o) < 0 (7.11)
Hp (M)

and

m Hp(M) g™ (2) <Xthy71)f ) (0)dvp () = /HP<M) §() <thy713f ) (o) dvp (o).

Proof. Using Lemma 7.5, Lemma 7.8 and Holder’s inequality, we can easily see

Eq.(7.11). Then apply the co-area formula 3.41 with

1 “(m) ~ 4
(H7M7pagaf) = (HP (M>7MaEf>?€_%a |(g( )_g) (0)|d 1) ’
P

we have:

/H » }(g“’“ — g) (0) d ! Oll/73 / (g d T hp (x) de.

Since hp (x) € C (M) as in Theorem 3.35 with f = 1, and U,,supp (¢™ — g) is

contained in a compact subset of M, so
/ (9™ —g) (IE)|‘%1 hp (x)der — 0asm — 0
M

and

G —§ = 0in LT (dvb).

Using Holder’s inequality again we have:

/H L, @@ —3(0)) X5 f (o) dvh (o) (7.12)
<lg" -al, .z, 1 HXW”Pf pi(h) (7.13)




Therefore
. ~(m it tr,le ~ it tr,zzl
lim g( ) (o) Xp " f(0) du71; (o) = / (o) Xp 7 f (o) dv
M0 J Hp (M) Hp (M)

Lemma 7.10 For any p < di

s%pE [1g (¢ 0 Bp)["] < 0.

Proof. Since the law of ¢ o Bp under v is v}, we have:

E[|§ (60 fp)["] = / 3" (o) dv (o)

Hp(M)

Then apply co-area formula (3.41) with

I e
(#1009, ) = (o O00) ML EF, e 8113 ),
P

/ 3° (0) dvb (o / g (@) o (a
Hp (M)

where hp (z) is defined as in Theorem 3.15 with f = 1.

we get:

Apply Proposition 3.33 we know that:

sup hp (z) < 00
P
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(7.14)

(7.15)

(7.16)

(7.17)

Since g has compact support, supp hp (x) is bounded on its support and the bound

is independent of P, from there it follows that (using Holder’s inequality):

sup/ lg ()" hp (x) do < o0.
P Ju

(7.18)
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Theorem 7.11 For any f € ]-"C;,

lim g (o) X;:’V%’f (o) dvp (o) = / G (o) X" f(o)dv (o).
PI=0 ) Hp (1) Wo (M)

Proof. Since the law of ¢ o 8p under v is vp!, we have:

f 7@ (G2 @b ) =B [5- (570 ) o) (119

Also
/W i (X1 (o) dv (0) = B, [5- X 1] . (7.20)
So
| a@Xt @ k@) - [ o)X o) dv(o) (7.21)
Hp (M) Wo(M)
< [958 (60 50— 3 K01 o
<E[1§(008p)|- | X577 f (00 8p) = X f|| +E I3 (00 Bp) — 3l - | X 1] |

(7.23)

From Lemma 7.8, we have

. 4
g(¢opp)e L1 (W,(M)),
and from Theorem 6.23 we have

XIUP f(do Bp) — X f — 0'in L™ (W, (M)).



138

So by Holder’s inequality,

E[15(60 )] - | K57 f (60 Bp) = X f]] »0as [Pl 0. (729)

Then we consider

|

E[l(¢o08p) - 3l - | X1
By Holder’s inequality,

1

} (7.25)

E[lg(008p) —dl- | X f|| <Ellg (00 8p) - 31 - E |7

where p > 1 and ¢ > 1 satisfying % + % =1.
From Proposition 7.2 we know X f € L~ (W, (M)), therefore in order

to show

/ g (o) X'Z’V%’f (o) dvy (o) — / G(o) X" f(0)dv (o) = 0as [P| =0,
Hp (M) Wo(M)

(7.26)
it suffices to find a p > 1 such that

E,[|g(¢oBp) — gl = 0as [P| = 0. (7.27)
Since for any € > 0, there exists a constant C), . such that
560 8p) = 3" < Cpe (I3 (@0 BRI + g1 )

We choose p and € such that p (1 + €) < 5% From Eq. (7.7) we know E [\g\p“*ﬂ <

0o. Then using Lemma 7.10 we have

supE, [[7 (6 0 7)) < oo,
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and thus
supE, [[3 (60 Bp) — 1" < o0, (7.28)
P

Therefore

{1g (¢ o Bp) — g|’} is uniformly integrable under v.

Then consider
Up:={ceW,(M):mo® ' opp(o)=x}. (7.29)
Since the law of ®~! o 8p under v is vp, denote
Vp:={o € Hp (M) : E (0) =z}, (7.30)

then v, (Vp) = v (Up).
Apply the co-area formula (3.41) with f (y) = 1=z}, We get:

BV = [ femabe) = [ f@wd=0 (13
Hp (M)
From there we can construct a v—Null set;
N :=UpUpU{oc e W,(M): E (o) =x}.
Recall from Corollary 6.5, we have
E, [Jlup (1) — @ (1)]] — 0 as |P| — 0 for any ¢ > 1. (7.32)

This implies that
|up (1) — @ (1)| — 0 in probability.

Notice that g € C* (M/{z}) and 7 : O (M) — M is smooth, so excluding N, we
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have

|G (pofp)—3g|=|gom(up (1)) —gom(a(l))] — 0 in probability. (7.33)

Combining 7.27 and 7.33 we know

E[lg(608p) - | ]| = 0.
[
Proposition 7.12 Let f € RFC;, then
lim 6™ (%)) fdv = / fdv,
m=o0 Jw, (M) Wo (M)

where 3, (0) = o (r) is the canonical process on W, (M).

Proof. Since f = F (3;,,...,%,,), we have by Markov property,

/ 6™ () fdv = 6 (x,) F (x4, ..., ap) H?’le% (j_1,2;)dxy - - - dxyy.
Wo(M) Mn
Viewing an,l F(zy,. . x,) I p1 (254, x;)dzy - - - dx,_y as a function of x,,, ob-

serve that it is uniformly integrable with respect to x,,, therefore it is a continuous

function of z,,. Thus

lim o™ (2,) fdv

m—0o0 W, (M)

= lim 53([”) () / F(ry,..xn) Wpr (250, 25) doy -+ - dwy
M Mnfl n

m—ro0

= / F(xy,...,2p1,2) H?;llpi (j_1,25)  pr (Tp_1,x)day - - dTy_y
Mn71 n n

= / fdv,.
o(M)
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Proof of Theorem 1.12. Recall from Remark 3.5 that we can approximate the

delta mass 9, on M in the following way:
d
o = g0+ Xyg" € OF (M)
=1
and
6™ — 6, in D' (M),
where {g§m> 0<j<dm> 1} C O (M) and {X;:1<j <d} c [(TM) with

compact supports. Using the Orthogonal lift, we get:

50 = gl +prjg] € 0 (M)

7j=1

where §(0) = go Ey (o) for any g € C (M) and Xp; is the Orthogonal lift of X;
into I' (T'Hp (M)).
For any 0 < j < d (with the convention that Xp, = I), using integration

by parts, we get:

N d 5
(m) (m) 1 tr ’/7:' 1
9o T+ Xp;g; fdvp :/ f + Xp dvsp.
/HP<M> ( Z s ) Hp (M) Z

Jj=1

Now let m — oo, from Corollary 3.35 we have:

the left-hand side of (7.34) = / fdvp,
Hp CE(M)

Apply Lemma 7.9 to each ( m) ij) we have:

right hand side of 7.34 = / (90 f+ ZXtr VP ~]> du719. (7.35)
Hp (M)

7j=1



Then let |P| — 0, from Theorem 7.11 we have:

d
lim fdvh = / Go F+ X" G | av.
P1=0 S Hp (M) s Wo (M) ; ’ !

According to Lemma 7.7,

d
~ > tr,y ~
/ (90'f+ZXj fx%’)dV
W, (M) =

~ 