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RESEARCH ARTICLE

Are High-Severity Fires Burning at Much
Higher Rates Recently than Historically in
Dry-Forest Landscapes of the Western USA?
William L. Baker*

Program in Ecology/Department of Geography, Dept. 3371, 1000 E. University Ave., University of Wyoming,
Laramie, Wyoming, United States of America

* bakerwl@uwyo.edu

Abstract
Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to

be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their

setting is fire-prone, they have been altered by land-uses, and fire severity may be increas-

ing. However, where fires were excluded, increased fire could also be hypothesized as

restorative of historical fire. These competing hypotheses are not well tested, as reference

data prior to widespread land-use expansion were insufficient. Moreover, fire-climate pro-

jections were lacking for these forests. Here, I used new reference data and records of high-

severity fire from 1984–2012 across all dry forests (25.5 million ha) of the western USA to

test these hypotheses. I also approximated projected effects of climatic change on high-

severity fire in dry forests by applying existing projections. This analysis showed the rate of

recent high-severity fire in dry forests is within the range of historical rates, or is too low,

overall across dry forests and individually in 42 of 43 analysis regions. Significant upward

trends were lacking overall from 1984–2012 for area burned and fraction burned at high

severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis

regions. Projections for A.D. 2046–2065 showed high-severity fire would generally be still

operating at, or have been restored to historical rates, although high projections suggest

high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to

generally reduce fire severity in dry forests are not supported and have significant adverse

ecological impacts, including reducing habitat for native species dependent on early-suc-

cessional burned patches and decreasing landscape heterogeneity that confers resilience

to climatic change. Some adverse ecological effects of high-severity fires are concerns.

Managers and communities can improve our ability to live with high-severity fire in dry

forests.
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Introduction
Wildfires have increased since the 1980s in some parts of the world [1], including parts of the
western USA [2–5], but are recent and projected rates of severe fire, that kill most trees, well
above historical rates and a threat to forest landscapes? Some dry forests of the temperate zone,
which are prone to wildfires, are thought to be experiencing exceptionally high rates or sizes of
severe fire relative to historical fires [6]. Earlier springs, warmer temperatures, decreased pre-
cipitation, and increased drought consistent with global warming, are contributing to increased
fire since the 1980s over substantial area [2, 4]. Increased severe fire in dry forests is also attrib-
uted to past land-uses (e.g., logging, livestock grazing), that led to unnatural fuel buildup [7].
However, analysis of fire responses to warming and drying and land-use legacies across multi-
ple regions shows effects can be heterogeneous and even divergent [8–9].

Moreover, upward trends alone do not indicate whether recent rates of severe wildfires are
below, near, or above historical rates. The first hypothesis, stated above, is that fire has already
reached unprecedented rates in dry forests. An alternative hypothesis is that fires were reduced
over the last 1–2 centuries by intentional fire suppression and indirect effects of land uses (e.g.,
reduction in fine fuels that facilitate fire spread). Thus, increased fire now could be restorative
of the rate component of the historical fire process, which is commonly considered an essential
part of restoring western dry forests [10]. Managers are allowing more wildfires to burn under
controlled conditions to restore fire across dry-forest landscapes [11]. If wildfire is operating
within, or being restored to its historical range of variability, then many aspects of the ecology
of affected forest landscapes will likely also be functioning as they did historically [12]. How-
ever, there are some ecological responses to high-severity fire (e.g., post-fire tree recruitment)
that could be hampered by increasing drought and rising temperatures [13]. Whether upward-
trending high-severity fire is hypothesized to be restorative of the rate component of the histor-
ical fire process or leading to too much high-severity fire depends on the frame of reference
and how rates compare. Here I use new evidence from dry forests in the western USA to test
these competing hypotheses. I also approximate rates of future severe fire in these dry forests.

Background on the hypotheses and projected future fire
Support for the hypothesis that rates of recent high-severity fire are exceptionally high relative
to historical rates comes in part from recent trends in high-severity fire, traditionally defined as
severe fire that kills 75% or more of the basal area in a forest stand [14]. A statistically signifi-
cant upward trend in area burned at high severity was found over the last few decades in the
southern Rockies, on the Colorado Plateau, and in mountainous parts of central and southern
Arizona and NewMexico, but not in the northern Rockies or Pacific Northwest [3–4] or in
Yosemite National Park in California [15]. Fraction of fire that burned at high severity also
increased significantly in the southern Rockies, but not elsewhere [3]. These studies, however,
were not specific to dry forests.

In dry forests, a statistically significant upward trend in area burned at high severity was not
found in the Eastern Cascades of Oregon and Washington, but was in the Klamath province
[14]. Upward trends in area burned at high severity and fraction burned at high severity were
initially found for dry forests of the Sierra Nevada, Modoc Plateau, and Southern Cascades [16]
and for fraction burned at high severity in northwestern California [5]. Analysis with a more
complete dataset for the Sierra Nevada found no trend in area burned or fraction burned at
high severity [17]. No significant upward trend was found in fraction burned at high severity in
dry provinces in the Pacific Northwest [14]. However, these studies did not generally aim to
resolve whether trends have led to historically unprecedented high-severity fire.

Recent High-Severity Fire Rates in Dry Forests
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Studies over longer periods appear to support the restorative hypothesis, but do not address
fire severity, and have incomplete evidence. Area-burned data for the 11 western states qualita-
tively suggest the 1980s increase could be restorative and a return to the higher rates of burning
of the 1910s-1930s [18]. Estimates of pre-1900 area burned, derived using an assumption that
composite fire intervals from tree-ring fire histories are equal to fire rotation, suggest so much
historical fire that recent trends would definitely be restorative, as almost an order of magni-
tude more fire would be needed to match historical area burned [19–20]. However, the
assumption that composite fire intervals represent fire rotation is not supported [21]. Charcoal
data over the last 3,000 years suggest fire closely tracked climate until a peak in the middle-
1800s, when a fire deficit began, which may link to landscape fragmentation and fire suppres-
sion, but data for the last few decades are unfortunately unresolved in these records [22].

Reconstructions of historical fire with the needed rate estimates for severe fire are rare. The
key rate parameter is the fire rotation, the expected time for high-severity fire to burn an area
equal to a study area of interest [21]. Most early tree-ring studies assumed severe fire was rare
in dry forests, and did not study it [23]. Some recent tree-ring studies reconstructed fire severity
and found evidence of historical high-severity fire in dry forests [24], but did not estimate fire
rotations. Historical high-severity fire is also documented in dry forests by early maps, photo-
graphs, and records [25], but these, too, have not been used to estimate fire rotations. Data
from early aerial-photographic research [26] have been used [27]. Recently, we used new meth-
ods, based on survey data from the U.S. General Land Office (GLO), to reconstruct historical
fire severity and fire rotation in dry forests across large land areas [28]. These data sources [28–
30] show high-severity fire occurred historically in all studied dry-forest landscapes, and rates
of high-severity fire were modest to low, with fire rotations of centuries (Table 1). These rates
for high-severity fire are corroborated by sedimentary charcoal records [31–38], which

Table 1. Reconstructions of fire rotation (FR) for high-severity fire in historical dry forests of the western USA, with corroborating evidence from
sedimentary charcoal studies.

Author(s) Location Method1 High-severity FR (years) and severe fire-episode
intervals2

DRY PINE FORESTS

Baker [29] E. Cascades, E Oregon GLO tree data 705

DRY MIXED-CONIFER FORESTS

Baker [30] W. Sierra Nevada Mts., W California GLO tree data and line
data

281–354

Long et al. [31] E. Cascades, E Oregon Charcoal in sediment
deposits

3332,3

Odion et al. [27] N. Sierra Nevada Mts., W California Early historical 488

Baker [29] E. Cascades, E Oregon GLO tree data 496

Fitch [32] Jemez Mts., N New Mexico Charcoal in sediment
deposits

500? (400–667)2,4

COMBINED DRY PINE AND MIXED-CONIFER FORESTS

Pierce and Meyer, [33] and Pierce
et al., [34]

Central Idaho Charcoal in sediment
deposits

(154–286)2,5

Williams and Baker, [28] Black Mesa, N Arizona GLO tree data 217

Jenkins et al., [35] Mogollon Plateau, N Arizona Charcoal in sediment
deposits

250 (200–400)2

Williams and Baker, [28] Front Range, E Colorado GLO tree data 271

Odion et al., [27] E Cascades, E Washington Aerial photos 379–505

Baker, [29] E Cascades, E Oregon GLO tree data 435

Bigio, [36] San Juan Mts., SW Colorado Charcoal in sediment
deposits

> 471 (> 667)2,6

(Continued)

Recent High-Severity Fire Rates in Dry Forests
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document episodes of high-severity fire at similar rates (Table 1). The charcoal data are from
debris-flow sediments mobilized after heavy precipitation on severe burns.

These sources show evidence of historical high-severity fire across a wide spectrum of bio-
physical settings in dry-forest landscapes, but high-severity fire may have been favored in
particular settings, allowing for at least temporary persistence of some dry forests with only
low-moderate severity fire [e.g., 28]. Recent high-severity fire in the western USA, not spe-
cific to dry forests, often shows preference for higher elevations, steeper topography, and
northerly-facing aspects [39]. Similar topographic effects occurred historically in dry forests,
but with only modest influence, as higher-severity fires (mixed- and high-severity fire)
spanned diverse biophysical settings across 624,000 ha of historical dry forests in the

Table 1. (Continued)

Author(s) Location Method1 High-severity FR (years) and severe fire-
episode intervals2

Colombaroli and Gavin, [37] Siskiyou Mts, SW Oregon Charcoal in sediment
deposits

500 (142)2

Frechette and Meyer, [38] Sacramento Mts., SE New Mexico Charcoal in sediment
deposits

500 (667)2,7

Williams and Baker, [28] Mogollon Plateau and Black Mesa, N
Arizona combined

GLO tree data 522

Williams and Baker, [28] Mogollon Plateau, N Arizona GLO tree data 828

Williams and Baker, [28] Blue Mts., NE Oregon GLO tree data 849

Studies are arranged by length of the fire rotation. Estimates from GLO data, FIA data, and early aerial photographs are shown in bold italics to

emphasize their higher precision, while corroborative, less certain estimates from charcoal records are shown in regular type. The range of estimates in

bold is used as the reference in this study.
1 Methods for reconstruction included using charcoal data from sediment, using early aerial photographs or historical records, using the GLO tree data and

a calibrated model [28]. I did not use the GLO line data’s direct records of entry and exit in burned areas, as these records represent moderate- to high-

severity fires, not exclusively high-severity fires [40].
2 These are intervals between severe fire episodes evident in alluvial deposits, that could approximate high-severity fire rotations, but are uncertain since

area burned is not known and fire severity is more approximately reconstructed than with other methods. I considered data for the last 500 years from

each paleo-environmental study, but also included in parentheses the interval between episodes in the last 2000 years, where this is available.
3 These authors indicate that it is difficult to determine fire severity from their methods, and only identify the recent fire frequency as 3 per 1000 years, but

they indicate that the documented fire episodes were followed by up to 100 years of recovery, which does suggest severe fires, although this is my

interpretation.
4 Fitch [32] suggested that low-severity fire dominated from 870 cal yr BP, but explains the possibility, but uncertainty, of a severe fire around 400 cal yr

BP (p. 40), thus I include this single event, with a question mark, for the 500-year estimate. More certain is evidence of 3–5 severe fires in the last 2000

years (p. 42), but those all preceded 870 cal yr BP.
5 These authors were not focused on counting the number of fire-episodes over the last 2000 years, thus I roughly estimated this from Fig 5B in Pierce

and Meyer [33] as between 7–13, as there are 7 broad peaks in this figure, but they also report 9 major debris flows between about 950 and 1150 AD,

thus the total could reach as many as 13. No severe fires occurred in the last 500 years.
6 This author provided data on the number of watersheds, out of six sampled, that burned in high-severity events [36]. I used these data to approximate a

high-severity fire rotation using the standard formula: period of observation / fraction of area burned. Thus, for the last 550 years, a total of 7 watersheds

burned, thus the fire rotation is 550 / (7/6) = 471 years. And for the last 2000 years, a total of 18 watersheds burned, thus a fire rotation of 667 years.

However, Bigio indicates that sample locations may be high in a watershed, thus it is not known that the whole watershed burned. This leaves these

estimates as minima, which I have indicated by using “>” before the estimate.
7 These authors identify periods of severe-fire activity after c. 1800 cal, yr BP, a peak in 800–500 cal yr BP, and at least one large, severe fire in the last

400 years, thus perhaps 3 episodes in the last 2000 years and one in the last 500 years. However, this is my approximation from their data, as they do not

report recurrence intervals for severe fire.

doi:10.1371/journal.pone.0136147.t001
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Colorado Front Range [40]. Similarly, extensive reconstructions (303,000 ha) of historical
dry forests in the Pacific Northwest suggest open, old-growth forests with low- to moderate-
severity fire were favored at lower elevations, on shallower slopes, and on more southerly-
facing aspects, but even in these settings “were perhaps ephemeral in nature, lasting one or
more centuries at a location, and then switching concordant with regional climate forcing to
non-equilibrium states” [26]. Further research is needed about spatial variation in high-
severity fire in historical dry forests.

Area burned by wildfire is expected to increase with global warming, adding to unprece-
dented rates of severe fire, or, alternatively, enhancing restoration of the historical fire pro-
cess. Global projections showed annual area burned at any severity may reach about 2.8
times current area burned in some regions by A.D. 2100, depending on emissions scenario,
but large areas of fire declines may also occur [8]. In the western United States, McKenzie
et al. [41] projected, using one climate model, that by A.D. 2100, ratios of future to recent
area burned could range from< 1.0 in California and Nevada up to about 1.4–2.5 in Arizona,
Colorado, Idaho, Montana, and Oregon, about 3 in Washington and Wyoming, and near 5
in New Mexico and Utah. The most recent projections for the western United States used a
large ensemble of climate models and a moderate emissions scenario to project fire in A.D.
2046–2065 [42]. They projected ratios of future-to-recent area burned of 1.63–2.24 in the
Southwest, 1.71–2.69 in Rocky Mountain Forests, 1.62–2.00 in the Eastern Rocky Moun-
tains/Great Plains, 1.56 times in the Nevada Mountains/Semi-desert, and 1.24 times in a Cal-
ifornia Coastal Shrub aggregated ecoregion [42]. Models did not agree well for the Pacific
Northwest, but ratios were 1.42–2.54. Ranges represent outcomes from two modeling
approaches.

Methods

Dry forests
Dry forests are the primary mid-elevation forests of the western USA that include dry pine for-
ests and dry mixed-conifer forests. These are roughly sequentially arrayed along an elevation
and moisture gradient extending from just above semi-arid woodlands (e.g., piñon-juniper) to
just below moist mixed-conifer forests that typically occur near the ecotone with subalpine for-
ests [43]. To define the geographical location and extent of historical dry forests, I used Bio-
physical Settings (BpS) maps from Landfire [44], a government program to map vegetation,
fuels, and related data about fire across the United States [45]. The BpS maps have 30-m resolu-
tion pixels from Landsat satellite data, and use biophysical variables to predict vegetation,
defined by NatureServe Ecological Systems [46] before widespread expansion of EuroAmerican
land uses. BpS maps may avoid the problem of a phantom trend in fire from using maps of veg-
etation after the beginning of a trend analysis period [17]. This is a concern I will revisit in the
discussion. However, the BpS maps have accuracy, as do other Landsat-derived maps, of only
about 64–67% for Ecological Systems in forests [47]. A test in Utah found generally lower, but
some higher accuracies [48].

I thus used only two categories, not detailed Ecological Systems, for analysis: dry pine forests
and dry mixed-conifer forests (Table 2). Dry pine forests cover 12.6 million ha (Fig 1, Table 3)
and include nine Ecological Systems (Table 2). Although Pinus ponderosa often dominates, dry
pine forests also include Pinus jeffreyi forests, which in places intermix with, and are similar to
P. ponderosa forests, and Madrean pine-oak forests with a diversity of pines. Dry mixed-conifer
forests cover 12.9 million ha (Fig 2, Table 4) and include eight Ecological Systems (Table 2).
They have the pines with associated firs (Abies, Pseudotsuga). I omitted minor types that did
not fit these categories. Total analysis area is about 25.5 million ha.

Recent High-Severity Fire Rates in Dry Forests

PLOS ONE | DOI:10.1371/journal.pone.0136147 September 9, 2015 5 / 26



Analysis regions and data on high-severity fire
I modified Bailey’s Ecoregions [49–50] to analyze geographical variation across dry forests. I
clipped the Ecoregion map to the eleven western states, plus the Black Hills, which together
contained 20 provinces and 80 sections. Provinces are based on vegetation types and finer sec-
tions are based on terrain [49]. I combined adjacent sections, with similar physiographic set-
ting, to create “analysis regions” that are generally each> 250,000 ha (Figs 1 and 2), so they
would be several times larger than expected maximum fire sizes. I could not always achieve
this, as a similar adjoining section was not always available. I did this separately for dry pine
forests and dry mixed-conifer forests, as their contiguous areas> 250,000 ha were not
congruent.

Area-burned data are from the Monitoring Trends in Burn Severity (MTBS) program [51],
a government program that compares Landsat satellite data before and after fires, supple-
mented by plot data, to classify and map burn severity [52]. Although fire severity may be spe-
cies-dependent [21], MTBS uses a standard protocol, based on pre-fire and post-fire satellite
data and both the differenced normalized burn ratio (dNBR) and a relativized version of this
ratio (RdNBR), to define fire-severity classes in relation to canopy tree mortality [52]. Burn
severity is mapped as background data (not part of the fire), non-mappable areas (e.g., due to
clouds), increased vegetation response or greenness not likely to indicate fire, plus four burn-
severity classes: 1 = unburned to low severity, 2 = low severity, 3 = moderate severity, 4 = high
severity. Here, I focused on class 4, but used classes 1–3 to analyze fraction of high-severity fire.
I used MTBS data for actual area burned, not just burn perimeters, as perimeters contain

Table 2. Two categories of vegetation used in the analysis and their constituent Landfire biophysical
settings and Ecological Systems.

Landfire Biophysical
Code

Ecological System

Dry Pine Forests

10310 California Montane Jeffrey Pine-(Ponderosa Pine) Woodland

10600 East Cascades Oak-Ponderosa Pine Forest and Woodland

10240 Madrean Lower Montane Pine-Oak Forest and Woodland

10300 Mediterranean California Lower Montane Black Oak-Conifer Forest &
Woodland

11650 Northern Rocky Mountain Foothill Conifer Wooded Steppe

10530–10532 Northern Rocky Mountain Ponderosa Pine Woodland and Savanna

10790–10792 Northwestern Great Plains-Black Hills Ponderosa Pine Woodland and
Savanna

11170–11172 Southern Rocky Mountain Ponderosa Pine Savanna

10540–10542 Southern Rocky Mountain Ponderosa Pine Woodland

Dry Mixed-Conifer Forests

10210 Klamath-Siskiyou Lower Montane Serpentine Mixed Conifer Woodland

10260 Madrean Upper Montane Conifer-Oak Forest and Woodland

10270 Mediterranean California Dry-Mesic Mixed Conifer Forest and Woodland

10450 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest

10451 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest-
Ponderosa

10452 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest-Larch

10453 Northern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest-Grand fir

10510 Southern Rocky Mountain Dry-Mesic Montane Mixed Conifer Forest &
Woodland

doi:10.1371/journal.pone.0136147.t002

Recent High-Severity Fire Rates in Dry Forests
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Fig 1. Dry pine analysis regions and dry pine forest area.

doi:10.1371/journal.pone.0136147.g001
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substantial unburned area [53]. I used MTBS national “burn-severity mosaics,” which are just
maps of all fires in a particular year (30 m resolution), as it was infeasible to process data for
individual fires across 25.5 million ha. The dataset is defined by the April 16, 2014 MTBS data
release, which provides full coverage of the 29 years from 1984–2012. Fires are nearly all

Table 3. Dry pine forests, high-severity fire rotations (FR), trends, and differences between recent or projected high-severity fire rotation and the
range of historical high-severity fire rotations.

Trend in area
burned

Trend in
fraction
burned

Recent
(1984–2012)

Low Projection
(2046–2065)

High Projection
(2046–2065)

Analysis
region

Dry pine
area (ha)

High-
severity
area (ha)

High-
severity
FR (years)

z p1 z p1 Difference
& Trend2

Fire3 Difference
& Trend

Fire3 Difference
& Trend

1 299,559 9,166 948 1.804 0.1509 0.254 0.5177 Too long-N 1.71 In range-N 2.69 In range-N

2 428,511 11,618 1,070 2.010 0.1112 1.585 0.1791 Too long-N 1.56 In range-N - -

3 414,399 3,838 3,131 1.145 0.2520 -0.338 0.5077 Too long-N 1.56 Too long-N - -

4 774,589 12,328 1,822 0.282 0.5109 -0.830 0.8350 Too long-N 1.71 Too long-N 2.69 In range-N

5 986,479 16,779 1,705 2.013 0.1116 0.772 0.4005 Too long-N 1.42 Too long-N 2.54 In range-N

6 446,322 6,591 1,964 2.123 0.1069 -0.117 0.6322 Too long-N 1.63 Too long-N 2.24 Too long-N

7 465,262 25,365 532 1.182 0.2520 1.626 0.1760 In range-N 1.71 In range-N 2.69 Too short-N

8 355,088 4,494 2,292 0.528 0.4537 0.654 0.4240 Too long-N 1.42 Too long-N 2.54 Too long-N

9 418,756 6,655 1,825 1.747 0.1600 0.677 0.4240 Too long-N 1.42 Too long-N 2.54 In range-N

10 968,322 59,773 470 0.807 0.3932 0.094 0.5833 In range-N 1.42 In range-N 2.54 Too short-N

11 463,235 9,834 1,366 2.594 0.0550 ▀ 1.667 0.1690 Too long-N 1.71 In range-N 2.69 In range-N

12 392,914 23,394 487 2.687 0.0503 ▀ 0.021 0.5931 In range-N 1.63 In range-N 2.24 In range-N

13 208,323 10,965 551 0.676 0.7962 -1.042 0.8810 In range-N 1.56 In range-N - -

14 749,365 36,485 596 2.987 0.0411 * 1.981 0.1116 In range-Y 1.62 In range-Y 2.00 In range-Y

15 95,560 0 - - - - - Too long-N - - - -

16 451,768 7,216 1,816 2.332 0.0800 0.542 0.4537 Too long-N 1.71 Too long-N 2.69 In range-N

17 349,208 3,405 2,974 1.163 0.2520 -0.417 0.7469 Too long-N 1.42 Too long-N 2.54 Too long-N

18 223,819 4,519 1,436 3.300 0.0220 * 0.762 0.4005 Too long-Y 1.63 Too long-Y 2.24 In range-Y

19 330,118 4,299 2,227 1.523 0.1817 -0.677 0.7962 Too long-N 1.56 Too long-N - -

20 460,167 9,440 1,414 2.425 0.0704 1.420 0.2133 Too long-N 1.62 Too long-N 2.00 In range-N

21 1,101,877 2,124 15,043 1.424 0.2118 -0.613 0.7962 Too long-N 1.63 Too long-N 2.24 Too long-N

22 469,395 6,021 2,261 1.321 0.2269 1.336 0.2269 Too long-N 1.62 Too long-N 2.00 Too long-N

23 1,855,620 78,455 686 3.264 0.0220 * 1.294 0.2269 In range-Y 1.63 In range-Y 2.24 In range-Y

Total 4 12,603,579 349,959 1,045 2.682 0.0503 ▀ 0.319 0.5077 Too long-N 1.595 In range-N 2.414 In range-N

Analysis regions are in Fig 1. All burn areas are corrected for missing small fires by dividing initial estimates by 0.95.
1 Trends significant at α < 0.05 are starred (*), trends that are close to significant (p < 0.06) have a dark square (▀). The p-values are from the Mann-

Kendall trend test after the Benjamini-Hochberg correction for n = 88 trend tests.
2 Differences between recent or projected high-severity fire rotations and the range of historical high-severity fire rotations are categorized as: (1) In range,

if recent or projected high-severity fire rotation was within the range of available historical estimates, (2) too short, if recent or projected high-severity fire

rotation was outside and shorter than the range of historical estimates, and (3) too long, if recent or projected high-severity fire rotation was outside and

longer than the range of historical estimates. “Y” indicates there was a significant upward trend in area burned at high severity, and “N” indicates there

was not.
3 The ratio of future area burned to recent area burned from the low and high projections by Yue et al. [42]
4 The total excludes 105,077 ha of dry pine forests not in the 23 analysis regions and not included in the analysis
5 This is the mean across the regions for which there is a projection

doi:10.1371/journal.pone.0136147.t003
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Fig 2. Dry mixed-conifer analysis regions and dry mixed-conifer forest area.

doi:10.1371/journal.pone.0136147.g002
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Table 4. Dry mixed-conifer forests, high-severity fire rotations (FR), trends, and differences between recent or projected high-severity fire rotation
and the range of historical high-severity fire rotations.

Trend in area
burned

Trend in
fraction
burned

Recent
(1984–
2012)

Low Projection
(2046–2065)

High Projection
(2046–2065)

Analysis
region

Dry mixed
conifer area
(ha)

High-
severity
area (ha)

High-
severity FR
(yrs)

z p1 z p1 Threat &
Trend2

Fire3 Threat &
Trend

Fire3 Threat &
Trend

1 389,489 11,287 1,001 2.087 0.1112 -0.665 0.7962 Too long-N 1.71 In range-
N

2.69 In range-
N

2 341,577 9,593 1,033 0.324 0.5077 0.025 0.5931 Too long-N 1.62 In range-
N

2.00 In range-
N

3 1,258,666 7,130 5,119 2.002 0.1112 -0.050 0.6184 Too long-N 1.71 Too long-
N

2.69 Too long-
N

4 423,653 23,451 524 1.580 0.1791 -1.136 0.8891 In range-N 1.71 In range-
N

2.69 Too
short-N

5 1,510,344 31,397 1,395 0.302 0.5093 -1.169 0.8891 Too long-N 1.71 In range-
N

2.69 In range-
N

6 374,905 9,802 1,109 2.664 0.0503 ▀ 0.415 0.4890 Too long-N 1.56 In range-
N

- -

7 298,545 40,867 212 1.144 0.2520 1.369 0.2200 Too short-
N

1.24 Too
short-N

- -

8 478,717 8,334 1,666 0.667 0.4240 0.688 0.4240 Too long-N 1.56 Too long-
N

- -

9 799,591 49,730 467 2.201 0.0948 -0.257 0.6869 In range-N 1.42 In range-
N

2.54 Too
short-N

10 845,686 11,313 2,168 0.446 0.4811 -0.109 0.6322 Too long-N 1.71 Too long-
N

2.69 In range-
N

11 430,935 6,246 2,001 0.638 0.4240 -0.573 0.7962 Too long-N 1.56 Too long-
N

- -

12 909,493 70,987 372 0.844 0.3807 1.205 0.2508 In range-N 1.71 In range-
N

2.56 Too
short-N

13 1,204,586 48,025 727 1.678 0.1690 0.374 0.5025 In range-N 1.42 In range-
N

2.54 In range-
N

14 373,118 22,132 489 2.210 0.0948 0.090 0.5833 In range-N 1.71 In range-
N

2.69 Too
short-N

15 419,845 17,881 681 0.629 0.4240 1.552 0.1817 In range-N 1.42 In range-
N

2.54 In range-
N

16 1,356,500 4,974 7,909 0.191 0.5931 -1.713 0.9570 Too long-N 1.71 Too long-
N

2.69 Too long-
N

17 420,709 14,228 858 1.276 0.2302 0.600 0.4306 Too long-N 1.42 In range-
N

2.54 In range-
N

18 509,264 15,943 926 2.878 0.0440* 1.006 0.3070 Too long-Y 1.71 In range-
Y

2.69 In range-
Y

19 270,897 9,328 842 1.538 0.1817 1.664 0.1690 In range-N 1.42 In range-
N

2.54 In range-
N

20 302,471 14,823 592 2.515 0.0587 ▀ 1.304 0.2269 In range-N 1.63 In range-
N

2.24 In range-
N

(Continued)
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wildfires, only about 2% prescribed fires, few of which likely burned at high severity. MTBS
data cover fires greater than about 405 ha, which MTBS suggests account for about 95% of
total burned area [51]. I divided initial area-burned totals by 0.95 to roughly correct for missing
fires< 405 ha in area.

I completed GIS analyses in ArcGIS 10.2, where I projected all maps to NAD 1983, Albers
Conic Equal Area Projection, if they did not have this projection, and to rasters with 30-m res-
olution pixels. I first intersected the map of the two categories of forests with the map of analy-
sis regions. Then, I calculated the area of each analysis region in each category. Next, I used the
area of each category in each region individually as a “mask,” which restricts all analysis and
area reporting to the mask area. Finally, I extracted each year’s MTBS map of area burned
within that category, and reported area burned at high severity.

Statistical analysis
I used the Mann-Kendall non-parametric statistic, widely used to analyze trend in non-normal
time-series data [54], to test the null hypothesis of no upward trend (a one-tailed test) in area
burned at high severity and fraction of total area burned that burned at high severity in each
analysis region, based on α = 0.05. However, there are 88 trend tests, and the probability of
finding at least one to be significant by chance is high, thus the tests must be corrected to avoid
false positives from multiple tests. The false positive is that a trend is found that did not exist,
and the false negative is that a trend is not found that did exist. Bonferroni correction reduces
false positives, but increases false negatives, thus I used Benjamini-Hochberg correction, with
the p.adjust program in R, to control false positives for the 88 trend tests and also control false
negatives [55]. Unlike Bonferroni correction, which adjusts alpha, this method corrects the p-
value for the chosen alpha. Prior to completing the trend analyses I tested the null hypothesis
of no temporal autocorrelation (α = 0.05), for up to 7-year lags, in the 29-year time series for

Table 4. (Continued)

Trend in area
burned

Trend in
fraction
burned

Recent
(1984–
2012)

Low Projection
(2046–2065)

High Projection
(2046–2065)

Analysis
region

Dry mixed
conifer area
(ha)

High-
severity
area (ha)

High-
severity FR
(yrs)

z p1 z p1 Threat &
Trend2

Fire3 Threat &
Trend

Fire3 Threat &
Trend

Total4 12,918,991 427,471 875 1.895 0.1276 0.506 0.4564 In range-N 1.585 In range-
N

2.565 In range-
N

Analysis regions are in Fig 2. All burn areas are corrected for missing small fires by dividing initial estimates by 0.95.
1 Trends significant at α < 0.05 are starred (*), trends that are close to significant (p < 0.06) have a dark square (▀). The p-values are from the Mann-

Kendall trend test after the Benjamini-Hochberg correction for n = 88 trend tests.
2 Differences between recent or projected high-severity fire rotation and the range of historical high-severity fire rotations are categorized as: (1) In range,

if recent or projected high-severity fire rotation was within the range of available historical estimates, (2) Too short, if recent or projected high-severity fire

rotation was outside and shorter than the range of historical estimates, and (3) Too long, if recent or projected high-severity fire rotation was outside and

longer than the range of historical estimates. “Y” indicates there was a significant upward trend in area burned at high severity, and “N” indicates there

was not.
3 The ratio of future area burned to recent area burned from the low and high projections by Yue et al. [42]
4 The total excludes 68,530 ha of dry mixed-conifer forests not in the 20 analysis regions and not included in the analysis
5 This is the mean across the regions for which there is a projection

doi:10.1371/journal.pone.0136147.t004
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each of the 88 cases using Minitab 16.0. None of the series had significant autocorrelation after
Benjamini-Hochberg correction of p-values from the Ljung-Box Q test statistic.

I did two other tests to gain further understanding of fraction burned at high severity. First,
I compared, using two one-sample t-tests, recent mean fraction of high-severity fire to mean
fractions of high severity from GLO and early aerial-photo reconstructions (Table 1), which
showed the percentage of each historical landscape with evidence of low-, mixed- and high-
severity fire evident in the late-1800s from fires that burned in the preceding 100–140 years
[28]. These tested whether the recent fraction of high-severity fire was historically unprece-
dented, was near, or was deficient relative to historical fractions. For dry pine, there is one esti-
mate each from eastern Oregon [29], the Mogollon Plateau [28] and the Coconino Plateau
[56], which are mostly dry pine. For dry mixed conifer, there is one from eastern Oregon [29],
two from the western Sierra Nevada [30], three from Colorado, Arizona, and Oregon [28], and
one from eastern Washington [26]. These have some limited dry pine. I also compared, using a
two-sample t-test, recent mean fractions of total area burned that burned at high severity,
across the 29-year period, between dry pine and dry mixed-conifer forests. This clarified
whether more high-severity fire was occurring recently in dry mixed-conifer than dry pine
forests.

Comparing fire rotations in recent and historical periods
To calculate recent high-severity fire rotation for each analysis region, I summed area burned
at high severity across the 29 years for each forest type in each region. I used the formula for
fire rotation [21]: Period of analysis / fraction of analysis region burned. Fraction of area
burned is area burned (ha) at high severity in the category and region over the 29-year period /
total area in the category in the analysis region (Tables 3 and 4).

To evaluate recent rates of high-severity fire relative to historical rates, I compared recent
high-severity fire rotations to historical rotations. I compiled reconstructions of historical
high-severity fire rotations in dry forests in the study area (Table 1). These provided insuffi-
cient data for region-by-region comparison across the study area. Thus, as a first approxima-
tion, I used the range of available estimates from GLO data, FIA data, and aerial photographs,
which is 217–849 years (Table 1), as the standard to compare with recent rates in each region.
Estimates from charcoal in sediments are provided only as corroborative evidence for historical
rates (Table 1). Charcoal study sites may not be random samples, but likely were selected with-
out bias.

I did not include studies of fire severity from early timber inventories [57–62] in Table 1,
because these inventories have too many limitations. First, timber inventories were done in
areas unrepresentative of larger landscapes [58], primarily where timber sales were likely [63]
and inventory tree data are unrepresentative even within these inventory areas. This is because
tree data were usually only recorded for merchantable forests that typically had large trees at
low density associated with low-severity fires; data were often not recorded for younger, denser
forests or recovering burned areas within an overall inventory area [62, 63]. For example,
about 70% of one inventory area had no recorded tree data [58]. Recent authors [57–61] did
not adjust estimates for these unsampled areas, although adjustments were standard inventory
protocol before 1917 [63]. These published data [57–61] thus do not provide valid statistical
samples of even the overall inventory area, much less the larger surrounding landscape. Second,
inventories typically included written records of fire severity for the section within which
inventory transects occurred [62], including reports of severe fires, but these key records were
not used in past studies [57–61]. When these fire-severity records were found and included in
a new study, abundant high-severity fire was found, with estimated high-severity fire rotations
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congruent with earlier GLO reconstructions over larger areas [62]. Finally, by 1910, understory
fuels and small trees had been reduced by livestock grazing, early miners and herders had set
fires, and logging and other human disturbances had altered forests [64]. Thus, data from early
timber inventories [57–61] are not valid samples of historical forests and studies that omit or
lack records of high-severity fire [57–61] do not provide valid estimates of rates and patterns of
high-severity fire.

GLO-based reconstructions of fire severity, the main historical source of rates of high-sever-
ity fire (Table 1), have been calibrated, validated, and corroborated [27–29, 40, 56, 65], but
some critiques missed this testing. Fulé et al. [66] suggested structure-based models we used to
reconstruct fire severity were not validated or corroborated. However, they missed our meth-
ods section that explains how we calibrated and validated our models with tree-ring recon-
structions [28] and they missed a summary of evidence corroborating our findings with
independent reconstructions and multiple lines of evidence [28, 65]. We added further corrob-
oration of our reconstructions in our reply [65], subsequent studies [29–30, 40, 56], and here
(Table 1). Another example of missing our testing is fromMaxwell et al. [67] and Collins et al.
[58], who said our fire-severity reconstructions used data from bearing trees selected by survey-
ors in a biased manner. Neither set of authors cited our study of surveyor bias and error, done
specifically in the dry forests where our GLO reconstructions were done, in which we found
low levels of bias and error [68]. Finally, several recent studies, using the early timber invento-
ries, discussed above, in areas partially overlapping or near our GLO-reconstruction areas,
found low tree densities and little or no high-severity fire, and suggested this shows that our
GLO reconstructions were in error [57–61]. However, as discussed above, it is timber-inven-
tory studies that omitted fire-severity records [57–61], and that were not validated or corrobo-
rated, that likely are in error.

Using the best available data on historical rates of high-severity fire, which included esti-
mates from GLO reconstructions, analysis of early aerial photography, and FIA data (Table 1),
I classified recent high-severity fire rotations, relative to the range of historical fire rotations,
which is 217–849 years (Table 1). The classes are: (1) within range, if the recent high-severity
fire rotation was within the historical range, (2) too short, if the recent high-severity fire rota-
tion was outside and shorter than the historical range, and (3) too long, if the recent high-
severity fire rotation was outside and longer than the historical range.

To evaluate future projected increases in high-severity fire, I compared projected high-
severity fire rotations to the historical high-severity fire rotations estimated by GLO, aerial
photo, and FIA data, and classified the outcomes as above (e.g., too long). To estimate future
high-severity fire rotations, I separately applied both the low and high regional projections of
Yue et al. [42] reported in the introduction. I used the Yue et al. projections, as others do not
report expected changes in area burned or do not provide detail for the western United States
(e.g., [69–71]). To use Yue et al. by region, I divided recent high-severity fire rotations by the
projected ratio of future area burned to recent area burned at any severity after cross-walking
ecoregions in Yue et al. with my analysis regions. I show later there was no statistically signifi-
cant upward trend in fraction of fire that burned at high severity recently, thus I assumed
future fire will not have an increased fraction of high-severity fire.

Results

Recent versus historical fire rotations
High-severity fire rotations from 1984–2012 were within the historical range or were too long,
relative to historical high-severity fire rotations, overall across the western USA in both dry
pine and mixed-conifer forests and individually in 41 of 42 analysis regions (Fig 3, Tables 3
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and 4). Fire rotation was not calculated in Region 15 in dry pine, as no high-severity fire
occurred (Table 3). Overall, recent high-severity fire rotations of 1,045 years in dry pine and
875 years in dry mixed-conifer forests were a little too long, relative to the range of historical
fire rotations of 217–849 years, meaning too little recent high-severity fire relative to historical
high-severity fire (Tables 1, 3 and 4). In dry pine forests, recent high-severity fire rotations
were within the range of historical fire rotations in 6 of 22 regions and were too long, meaning
a deficiency of high-severity fire, in 16 of 22 regions (Fig 3A, Table 3). In dry mixed-conifer for-
ests, recent high-severity fire rotations were within the range of historical rotations in 8 of 20
regions, were too long in 11 of 20 regions, but too short, producing too much high-severity fire
relative to historical fire, in one region in southern California (Fig 3B, Table 4).

Fig 3. Differences between recent (A.D. 1984–2012) high-severity fire rotation and historical range of high-severity fire rotations, recent trends,
and recent fire rotations for high-severity fire in (a) dry pine forests and (b) dry mixed-conifer forests by analysis region.High-severity fire rotation
(years), from Tables 3 and 4, is printed over each region, and represents the expected time to burn, at high severity, an area equal to the region. Colors
correspond with data in Table 3 for dry pine and Table 4 for dry mixed conifer forests. Differences are: (1) “In range,” if recent high-severity fire rotation was
within the range of historical estimates, (2) “Too short,” if outside and shorter than historical estimates, and (3) “Too long,” if outside and longer than historical
estimates. “Trend” indicates that a statistically significant upward trend in area burned at high severity was found in a region, and “No trend” indicates one
was not found, with data shown in Tables 3 and 4. Regions that lacked a statistically significant upward trend in area burned at high severity (Tables 3, 4)
have lighter shading. Several Bailey sections were merged or split to create the analysis regions.

doi:10.1371/journal.pone.0136147.g003
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Recent trends
Statistically significant upward trends were lacking overall for area burned at high severity
from 1984–2012 in both dry pine (z = 2.682, p = 0.0503) and in dry mixed-conifer forests
(z = 1.895, p = 0.1276). The dry-pine trend was very close to significant. Across analysis
regions, statistically significant upward trends in area burned were found in only 3 of 23 dry
pine regions (Fig 3A, Table 3) and1 of 20 dry mixed-conifer regions (Fig 3B, Table 4) in parts
of the Southwest and Rocky Mountains. Two regions were close to significant in dry pine and
two in dry mixed conifer, also in the Southwest and Rocky Mountains (Tables 3 and 4). Inter-
annual fluctuations in area burned closely matched in dry pine and mixed-conifer forests
(r = 0.856, p< 0.001), and area burned was concentrated in known major fire years (A.D.
1994, 1996, 2000, 2002, 2006–2007, 2011–2012), particularly since A.D. 2000 (Fig 4).

Statistically significant upward trends were also lacking overall for fraction of high-severity
fire from 1984–2012 in both dry pine (z = 0.319, p = 0.508) and in dry mixed conifer forests
(z = 0.506, p = 0.456) (Fig 4, Tables 3 and 4). Statistically significant upward trends in fraction
burned at high severity were also lacking in all 23 dry-pine regions and all 20 dry mixed-conifer

Fig 4. Trends between 1984–2012 in area burned at high severity (bottom) and fraction burned at high severity (top). Results are shown for both dry
pine and dry mixed conifer forests.

doi:10.1371/journal.pone.0136147.g004
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regions (Tables 3 and 4). Interannual fluctuations in fraction burned at high severity also sig-
nificantly matched in dry pine and mixed-conifer forests, but not as closely (r = 0.520,
p = 0.004) as for area burned (Fig 4). Fraction burned at high severity was higher in major fire
years, as was area burned, but not more so since A.D. 2000 (Fig 4).

For dry pine, the recent mean fraction of high-severity fire for the whole study area (0.117)
was not significantly (α = 0.05) different from the mean (0.111) of historical reconstructions (t
(2) = -0.15, p = 0.897). However, for dry mixed conifer, the recent mean fraction for the whole
study area (0.194) was significantly lower than the mean (0.356) of the seven reconstructions (t
(6) = 6.18, p = 0.001). Thus, these comparisons suggest that the recent mean fraction of high-
severity fire is not unprecedented, but instead congruent with historical mean fraction of high-
severity fire in dry pine and too low relative to historical mean fraction of high-severity fire in
dry mixed conifer.

A t-test showed a significant difference, in mean fraction of high-severity fire across the 29
years in the analysis period (Fig 4), between dry pine (Mean = 0.117, s.d. = 0.063) and mixed-

Fig 5. Low projection (to A.D. 2046–2065) of differences relative to the historical range of high-severity fire rotations, given 1984–2012 trends, and
projected fire rotations for high-severity fire in (a) dry pine forests and (b) dry mixed-conifer forests by analysis region. See Fig 3 for an explanation
of figure contents.

doi:10.1371/journal.pone.0136147.g005
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conifer forests (Mean = 0.194, s.d. = 0.070); t (55) = -4.51, p< 0.001. This shows that a higher
fraction of high-severity fire (1.66 times) occurred recently in mixed conifer as in pine.

Projections
Low projections [42] in dry-pine regions for 2046–2065 would be restorative of the high-sever-
ity fire process or provide ongoing maintenance of high-severity fire at historical rates, with no
region having a fire rotation too short relative to historical high-severity fire rotations (Fig 5A,
Table 3). Of 22 dry-pine regions (region 15 excluded since no high-severity fire recently), 13
that had high-severity fire rotations that were too long up to 2012 still had rotations too long
by 2046–2065, but were closer to historical high-severity rotations, thus partially restored,
while 3 of the 22 regions changed from too long to within range, indicating restoration of high-
severity fire to historical rates. The remaining six regions that were within range by 2012 stayed
in this category, thus had ongoing maintenance of high-severity fire at historical rates.

Low projections in dry mixed-conifer regions would also be restorative or provide ongoing
maintenance of high-severity fire at historical rates, except in one region (Fig 5B, Table 4). Five
of 20 dry mixed-conifer regions with high-severity fire rotations that were too long up to 2012
would still have fire rotations too long, but would be closer to historical rates, thus would have
high-severity fire rates partially restored. Six of 20 mixed-conifer regions with high-severity fire
rotations that were too long up to 2012 would change to within range, indicating restoration of
high-severity fire to historical rates. Eight of 20 mixed-conifer regions with high-severity fire
rates within range in 2012 would remain within range, indicating maintenance of high-severity
fire at historical rates. One region, however, that already had a too short high-severity fire rota-
tion by 2012, was projected to have an even shorter high-severity fire rotation.

High projections in dry-pine regions still would be predominantly restorative of high-severity
fire or provide ongoing maintenance of high-severity fire at historical rates in 15 regions, but two
regions would have high-severity fire rotations too short, relative to historical high-severity fire
rotations (Fig 6A, Table 3). High projections in dry mixed-conifer regions would also be pre-
dominantly restorative of historical high-severity fire rates or provide ongoing maintenance of
high-severity fire at historical rates in 12 regions, but four regions would have fire rotations too
short relative to historical high-severity fire rotations (Fig 6B, Table 4). High projections are
missing for four of 22 pine regions and four of 20 mixed-conifer regions (Fig 6, Tables 3 and 4),
because fire-climate relationships were not found that allowed projections [42].

Discussion
Comparison of recent and historical high-severity fire rotations shows that high-severity fire is
not occurring in dry forests at rates that are exceptionally high relative to the range of historical
rates. Recent high-severity fire instead is deficient (too long) overall across dry pine and dry
mixed-conifer forests relative to historical rates. Recent high-severity fire rotations are quite
long, averaging 1,045 years in dry pine and 875 years in dry mixed conifer, more than ample
time for forests to recover and reach very old age before the next high-severity fire. High-sever-
ity fire rotations in dry forests are also within the historical range or are too long relative to his-
torical fire rotations in all but one of 43 regions of the western USA up to A.D. 2012. Absence
of significant overall recent upward trends in area burned and in fraction burned at high sever-
ity also suggests high-severity fire is not significantly increasing or becoming more severe. The
trend is quite close to significance for area burned in dry pine forests, which I discuss below.
These findings do not support the hypothesis that high-severity fire is occurring at exception-
ally high rates in dry forests or is generally increasing or becoming more severe [6–7].

Recent High-Severity Fire Rates in Dry Forests

PLOS ONE | DOI:10.1371/journal.pone.0136147 September 9, 2015 17 / 26



The location of the few regions (4 of 43) with a statistically significant upward trend in area
burned at high severity over the 1984–2012 period, in parts of the Southwest and Rocky Moun-
tains, is consistent with previous studies in broader forest types [3–4]. This consistency sug-
gests stronger climatic than fuel influences [2–4]. A strong climatic role in upward trends is
also supported by the high correlation of interannual fluctuations in area burned at high sever-
ity between dry pine and dry mixed conifer and by concentration of area burned at high sever-
ity in major fire years. However, part of the explanation of trends in these particular regions
and the nearly significant trend overall in dry pine forests may not be climate, but human-set
fires. Two of the dry pine regions with statistically significant upward trends, in central Arizona
(Fig 3A), experienced very large human-set fires, the 2002 Rodeo-Chediski fire and the 2011
Wallow fire. In contrast, the upward trend in dry pine forests in eastern Montana is likely not
related to human-set fires, but instead to three exceptional lightning-ignited fires (Ash Creek,
Rosebud Creek, Chalky) in 2012 as well as earlier natural fires. Disentangling the contributions

Fig 6. High projection (to A.D. 2046–2065) of differences relative to the historical range of high-severity fire rotations, given 1984–2012 trends, and
projected fire rotations for high-severity fire in (a) dry pine forests and (b) dry mixed-conifer forests by analysis region. Several analysis regions are
omitted, because the high projections by Yue et al. [42] were not possible for those areas. See Fig 3 for an explanation of figure contents.

doi:10.1371/journal.pone.0136147.g006

Recent High-Severity Fire Rates in Dry Forests

PLOS ONE | DOI:10.1371/journal.pone.0136147 September 9, 2015 18 / 26



of human-set fires and climatic change to trends is beyond the scope of this study, but is
needed.

Projections to 2046–2065 suggest high-severity fire would be predominantly restorative of
the high-severity fire process or provide ongoing maintenance of high-severity fire at historical
rates, except in a few regions. Low projections indicate fire rotations too short only in one
region of 42 total, and that region already had a fire rotation too short by 2012. Thus, dry for-
ests generally have the capacity to absorb up to 1.71 times as much high-severity fire (the maxi-
mum increase in the low projections), beyond what was occurring up to 2012, without
exceeding historical rates. The six regions, under the high projections, that would have fire
rotations too short by 2046–2065, would not be able to absorb 2.54–2.69 times as much high-
severity fire as in 1984–2012, but 19 other regions that received this level of increase were not
pushed beyond historical rates. This suggests most dry-forest landscapes have the capacity to
absorb substantial increased high-severity fire, but if high-severity fire increases above about 2
1/2 to 3 times as much as in 1984–2012, that capacity will begin to be reached. Thus, it may be
at least several decades before dry-forest landscapes may generally begin to be affected by
exceptional high-severity fire rates because of projected climatic change. Projections based on
Yue et al. [42] could also be tempered by lack of actual trend in regions up to 2012, which is
35–46% of the duration from 1984 to 2046–2065. Perhaps the projection will not fully emerge
and the high projections, with the greatest increase in future fire, may be less concerning. Of
course, lack of recent trend does not clearly mean the Yue et al. [42] projections will not even-
tually occur.

If high-severity fire rotations that are too short do begin to appear, entire landscapes will
not be affected at once, but instead effects will be lagged and heterogeneous, likely requiring
centuries after onset to fully affect dry-forest landscapes. Long delays occur because fire effects
accrue over time from separate ignition and spread events. If a historical fire rotation of 400
years experiences a doubling of annual area burned, and the new rotation is 200 years, then on
average it will be 200 years before landscapes are fully affected by this change [72]. Lagged
responses of landscapes, to changes in fire, affect both increased fire that is restorative or that
leads to too-short fire rotations. The heterogeneity and lagged effects of fire contrast with those
of droughts and insect outbreaks, which can alter large land areas nearly synchronously with-
out the long delays inherent with fire. This is supported by a study that showed that major pro-
jected changes in vegetation in western North America with global warming occur mainly
from direct climate effects (e.g., drought), with< 1% from wildfire [73].

Limitations
These trend analyses and fire rotations have some inherent limitations. The Landfire Biophysi-
cal Settings maps aim to predict historical vegetation predating the trend analyses, but could
still exclude non-forested area that was burned in dry forests at high-severity early in the 1984–
2012 period, leading to false upward trends [17]. Fully reliable trend analysis across large land
areas requires a nationally consistent and detailed vegetation map based on imagery that pre-
dates MTBS data coverage in 1984. Because I cannot definitely exclude a possible false upward
trend, the four significant upward trends, and other trends close to significant, are particularly
clouded by this uncertainty.

The MTBS program has provided a remarkable dataset, but 29 years is still a limitation. Esti-
mated fire rotations are hundreds of years, and nearly a full fire rotation of data is needed to
accurately estimate the rotation [72]. Trends over the 29-year period hinge on the timing and
magnitude of only a few major fire peaks (Fig 4). Thus, estimated rotations are valid for the
29-year period, but subject to change as more data accrue. Data from 25.7 million ha temper
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this concern, but fire can be synchronized over large land areas by teleconnections with
periods> 29 years [74], thus 29 years are also insufficient from the standpoint of potential cli-
mate cycles. Also, high-severity fire rotations may not be homogeneous across landscapes;
high-severity fire could be favored in certain biophysical settings and dis-favored in others
(e.g., 5, 39). Thus, recent fire-rotation estimates in this study represent averages for analysis
regions that warrant use with caution in smaller subareas of these regions.

MTBS data, which are for fires generally> 400 ha in area, may or may not contain 95% of
total burned area, as estimated by the MTBS program. One estimate for part of the Sierra
Nevada was 92.8% [17]. If the actual percentage was not 95%, then fire rotations could be
somewhat too low or too high. Some caution is thus warranted from this standpoint in the use
of estimates, although this concern is buffered by the use of a large historical range for
comparison.

The GLO-based reconstructions may be one of the few available ways to reconstruct histori-
cal severe fires in the spatially extensive manner that is needed to provide data about fire rota-
tion, patch size, and other attributes. These reconstructions are calibrated, validated, and
corroborated [27–29, 40, 56, 65], but would benefit from additional calibration and validation
to improve the linkage of forest structure with fire severity and to help estimate the precision of
estimates of fire rotation. Precision is not known very well, except that there is calibration and
validation with tree-ring reconstructions, there is corroboration by early historical records and
maps, and there is congruence between the findings of GLO-based, aerial-photo-based, and
paleo-fire based methods (Table 1). GLO-based methods are typically based on 100–140 year
periods before the surveys, thus less than a full historical fire rotation. These methods also can-
not provide fine detail about high-severity fire patterns, since they are based on data pooled
across 259–1,036-ha areas. It would be beneficial to combine GLO-based methods with tree-
ring reconstructions and compare paleo-fire and GLO-based reconstructions in the same
areas. More landscape-scale fire history is needed and may lead to further refinements in
understanding of rates and patterns of historical high-severity fire.

The projections are first approximations. The Yue et al. [42] projections are not specific to
dry forests or high-severity fires, are not based on dynamic vegetation models, and use only a
moderate emissions scenario. Potential vegetation changes may be large [73], particularly for
P. ponderosa in the Rocky Mountains and Southwest [75]. Although the projections here may
appear simplistic, the Yue et al. projections are sophisticated. It is just that their direct transfer
here to dry forests provides only first approximations and context for thinking about future
fire in dry forests until projections specific to dry forests appear. The projections also assume
similar continuing fire management and no non-linear responses. For example, a landscape
trap [76] could arise if high-severity fire created more fire-prone landscapes that then burn
increasingly at high severity, possibly increasing area burned at high severity beyond
projections.

Management issues
The evidence presented here shows that efforts to generally lower fire severity in dry forests for
ecological restoration are not supported. Reducing fire severity in dry forests is a goal of the
2003 Healthy Forests Restoration Act (HFRA), the Collaborative Forest Landscape Restoration
Program (CFLRP) of the 2009 Omnibus Public Land Management Act, and other government
policies and programs. These laws, policies, and programs were developed before sufficient
quantitative analysis of rates of recent high-severity fire was available, and with very limited
information about rates of historical high-severity fire. Historical evidence, now available from
multiple sources across large land areas (Table 1), combined with comprehensive recent fire-

Recent High-Severity Fire Rates in Dry Forests

PLOS ONE | DOI:10.1371/journal.pone.0136147 September 9, 2015 20 / 26



severity data, together show that high-severity fire is generally operating at or below historical
rates. Thus, reducing fire-severity is fire suppression rather than restoration, as was commonly
thought before these new data and analysis were available. Fire suppression is incompatible
with laws and programs that mandate or encourage restoration of historical fire regimes and
forest structure (e.g., Collaborative Forest Landscape Restoration Program).

In dry forests, suppressing high-severity fire that is operating at or below historical rates
also has adverse ecological impacts. These adverse impacts include: (1) declining and poten-
tially threatened native animals dependent on severely burned patches [77–78], (2) loss of bio-
logically diverse early-successional habitat [79–80], reduction in fire-stimulated native shrubs
and trees that were historically abundant [30, 64], and simplification of the landscape heteroge-
neity that is key to landscape resilience to future climate-change effects [81]. High-severity
fires, for example, produce patches of younger forest that are less vulnerable to mortality in
insect outbreaks and droughts [82]. Removing or reducing small trees in dry forests to reduce
fire severity may significantly reduce the resilience of these forests to insect outbreaks and
droughts by reducing advance recruitment that enables recovery [82].

Some potentially important ecological concerns have been expressed about high-severity
fires even though these fires are not generally occurring at exceptional rates. First, many scien-
tists worry that the size of high-severity fire patches in dry forests is currently exceptional rela-
tive to historical patch sizes, possibly hampering post-fire tree recruitment and other processes
(e.g., 6). However, large comparisons of historical and modern patch sizes in dry forests, from
GLO-based reconstructions in the Colorado Front Range [40] and western Sierra [30] show
that high-severity patch sizes in both historical and modern fires ranged up to 8,000–9,400 ha,
and recent and historical patch-size distributions had only minor differences.

Second, increasing drought and higher temperatures can alter the ecological effects of high-
severity fires and modify recovery processes after these fires. Higher temperatures and drought
stress may increase tree mortality after fire, effectively increasing fire severity, independent of
fire intensity [83], although here I show that these forests have the capacity to absorb some
increased fire severity. Historical and recent high-severity fire rotations are generally long
enough to allow post-fire tree recruitment and natural recovery of dry forests between fires, but
recruitment that may have historically been poor and episodic [84], could possibly worsen
because of increased drought and high temperatures, so that forests have more difficulty recov-
ering after fires [85].

Finally, local analysis might uncover ecologically valuable sites where high-severity fire has
recently occurred at apparently exceptional rates [86–87], even though it is not in the larger
region. For example, in the Big Oak Flats area of Yosemite National Park, tree-ring [87] and
GLO reconstructions [30] both showed low- to mixed-severity fire occurred historically, with
no high-severity fire over the preceding few hundred years, and reconstructions also agreed on
low historical tree densities [30], yet the 2013 Rim Fire burned 24% of tree-ring plots at high
severity [87]. Harris and Taylor viewed the 24% high-severity component of the Rim fire in Big
Oak Flats as historically anomalous due to buildup of fuel from fire exclusion [87]. However,
high-severity fire is fully expected after more than 400 years of predominantly low- to mixed-
severity fire, given the historical high-severity fire rotation of 412 years reconstructed for south-
ern Sierran mixed conifer [30]. High-severity fires in dry forests with moderate to long histori-
cal rotations are always locally surprising, occurring suddenly after centuries of stability [14].
Other studies have suggested old dry forests with long periods of low-severity fire are expected
to suddenly burn at high severity [26]. Better evidence of concern in the Sierran mixed conifer
forest is the recent high-severity fire rotation of 212 years in the analysis region (Fig 3B), but
this region is dominated by more coastal forests where human-set fires may explain this fire
rotation. A study specifically in the lower montane of the western Sierra found a recent fire
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rotation of 461 years [17], somewhat longer than the 412 year historical rotation, suggesting
high-severity fire is not occurring at historically unprecedented rates, but needs updating to
include the 2013 Rim fire and other recent fires. Regional scales, not the Big Oak Flat scale, are
the scales that are essential to detect significant departures from historical rates of high-severity
fires [14]. Nonetheless, high local ecological values, such as special species [86] could trump
regional trends and warrant specific local management actions.

High-severity fires are infrequent powerful events, not unlike volcanic eruptions, tornadoes,
or large floods that are almost beyond control or management. Yet, the ecological importance
of large, infrequent, and often severe natural disturbances in structuring historical landscapes
and maintaining their biological diversity is well established (e.g., [21, 77–80, 88–89]). Increas-
ing appreciation of the role of large, seemingly destructive floods in maintaining the geomor-
phology and habitat diversity of rivers, suggests people may decide to accept and even restore
infrequent large, severe natural disturbances in ecosystems for ecological reasons [90]. The best
approach for high-severity fire is likely through wildland fire use [11], which is now wildland
fire for resource benefit, managed by professional fire personnel, with restoration and mainte-
nance of high-severity fire within historical rates and patterns as a goal. Land managers and
the public can reduce fire risk near housing, infrastructure, and valuable resources to maximize
area available for wildland fire use across adjoining lands. Communities can also facilitate wild-
land fire use by adopting growth boundaries to limit community expansion into dry forests
and by rearranging land uses to favor fire-resistant land uses on their outskirts [21].

Recent rates of high-severity fire, although they are not generally exceeding historical rates,
are leading to some intense fires burning into communities and damaging infrastructure. Pro-
jected increases in severe fire from climate change shown here could become even more serious
for people. Fortunately, the inherently lagged response of landscapes to changes in fire does
typically allow some time to prepare further. Based on the findings of this study, the public
should be informed that infrequent high-severity fires in dry forests are not a consequence of
poor forest management over the last century that can be fixed. Dry forests were historically
renewed, and will continue to be renewed, by sudden, dramatic, high-intensity fires after centu-
ries of stability and lower-intensity fires. Living in or near dry forests is inherently very danger-
ous, not unlike living beside a volcano or on a fault line with earthquakes. The people-fire
problem is complex [21, 91–92], but if expansion of housing and infrastructure into dangerous
dry forests [21, 93] were redirected into safer settings, both people and nature would benefit.
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