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 Psychiatric disorders are not well understood. Their diagnosis is based purely on 

behavioral symptoms and they lack a clearly defined pathology in brain, which challenges our 

ability to understand their biological roots. However, it is well established that psychiatric disorders 

are heritable, and large-scale genetic studies have begun to identify now thousands of psychiatric 

genetic risk variants.1 Discovering how these genetic variants converge within discrete 

neurobiological pathways is a critical next step for understanding psychiatric disorder 

mechanisms and identifying new targets for therapeutic development. In search for these 

convergent pathways, transcriptomic studies have started to identify gene expression changes 

within human postmortem brain samples from psychiatric patients compared to neurotypical 
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controls. The transcriptome – the set of expressed RNA transcripts present in a given tissue or 

cellular samples – represents a snapshot of the cell-types and subcellular, molecular processes 

present and active in sequenced samples. As such, transcriptomic profiling of brain samples from 

psychiatric cases versus controls may provide increased resolution to identify a molecular 

pathology of disease not observed via traditional approaches. For example, in ASD, upregulation 

of microglial, astrocyte, and immune signaling genes, downregulation of specific synaptic genes, 

and attenuation of regional gene expression differences have been observed with transcriptomic 

analyses.2,3 While transcriptomic studies have substantially improved our understanding of 

psychiatric neuropathology, they are limited in scope to single psychiatric disorders and few brain 

regions. Considering the growing evidence for genetic overlap between distinct psychiatric 

disorders,4 it is a reasonable next step to determine if these disorders also share biological 

signatures in the brain. Comparing and contrasting gene expression changes across distinct 

psychiatric disorders – as well as across the entire cerebral cortex - will provide a fuller picture of 

the spatial landscape and specificity of molecular dysregulation in the psychiatric disease brain, 

pinpointing potential regions of particular vulnerability and biological pathways involved in 

psychiatric disease mechanisms. 

 To obtain this cross-disorder and multi-regional understanding of psychiatric gene 

expression changes, here I present a comprehensive set of transcriptomic investigations 

conducted by myself and others, spanning multiple psychiatric disorders and brain regions. In 

Chapter 2, I share our published mega-analysis of gene expression microarray datasets 

containing frontal cortex samples from subjects diagnosed with schizophrenia, bipolar disorder, 

ASD, and major depressive disorder subjects, compared with non-psychiatric controls.5 We find 

that polygenic overlap parallels transcriptomic overlap, and that psychiatric genetic risk variants 

are associated with downregulated neuronal genes found in ASD, schizophrenia, and bipolar 

disorder. In Chapter 3, I present my contributions to our published collaborative work with the 
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PsychENCODE Consortium,6 in which we compiled and uniformly processed genotype and RNA-

sequencing data from more than 2,000 postmortem human brain samples to gain an 

understanding of how the entire transcriptome is impacted in frontal cortex samples from subjects 

diagnosed with schizophrenia, bipolar disorder, and ASD. Here, I detail my work integrating 

polygenic risk scores --measures of common genetic burden for psychiatric disease   -- with 

transcriptomic changes to obtain a deeper understanding of how genetic variants directly regulate 

psychiatric gene expression changes. In Chapter 4, I present our work characterizing ASD 

transcriptomic across 11 distinct regions spanning the ASD cerebral cortex. We find widespread 

dysregulation across the cerebral cortex, with this dysregulation exhibiting the greatest magnitude 

of effect in the occipital region. ASD genetic risk variants are associated with genes 

downregulated cortex-wide that contribute to neuronal synaptic plasticity pathways, heavily 

implicating neuronal synaptic plasticity in ASD neuropathology. Together, these transcriptomic 

analyses expand our understanding of the molecular pathology of psychiatric disorders across 

distinct disorders and the cerebral cortex, implicating specific genes, cell-types, and biological 

pathways in psychiatric neuropathology. 

 

 

 

 

 

 

 

 

 

 



v 
 

Abstract Bibliography 

1. Sullivan, P. F. & Geschwind, D. H. Defining the Genetic, Genomic, Cellular, and 

Diagnostic Architectures of Psychiatric Disorders. Cell 177, 162–183 (2019). 

2. I. Voineagu et al., Transcriptomic analysis of autistic brain reveals convergent molecular 

pathology. Nature. 474, 380–384 (2011). 

3. Parikshak, N. N. et al. Genome-wide changes in lncRNA, splicing, and regional gene 

expression patterns in autism. Nature 540, 423–427 (2016). 

4. Bulik-Sullivan, B., Finucane, H., Anttila, V. et al. An atlas of genetic correlations across 

human diseases and traits. Nat Genet 47, 1236–1241 (2015). 

5. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders 

parallels polygenic overlap. Science 359, 693–697 (2018). 

6. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, 

schizophrenia, and bipolar disorder. Science 362, (2018). 

  

http://paperpile.com/b/PTbgY8/9TUZ
http://paperpile.com/b/PTbgY8/9TUZ
http://paperpile.com/b/PTbgY8/9TUZ
http://paperpile.com/b/PTbgY8/9TUZ
http://paperpile.com/b/PTbgY8/9TUZ
http://paperpile.com/b/PTbgY8/9TUZ
http://paperpile.com/b/GaGm1R/XcB4
http://paperpile.com/b/GaGm1R/XcB4
http://paperpile.com/b/GaGm1R/XcB4
http://paperpile.com/b/GaGm1R/XcB4
http://paperpile.com/b/GaGm1R/XcB4
http://paperpile.com/b/GaGm1R/XcB4
http://paperpile.com/b/GaGm1R/XcB4
http://paperpile.com/b/GaGm1R/XcB4
http://paperpile.com/b/GaGm1R/w8Xg
http://paperpile.com/b/GaGm1R/w8Xg
http://paperpile.com/b/GaGm1R/w8Xg
http://paperpile.com/b/GaGm1R/w8Xg
http://paperpile.com/b/GaGm1R/w8Xg
http://paperpile.com/b/GaGm1R/w8Xg
http://paperpile.com/b/GaGm1R/w8Xg
http://paperpile.com/b/GaGm1R/w8Xg
http://paperpile.com/b/GaGm1R/2cBf
http://paperpile.com/b/GaGm1R/2cBf
http://paperpile.com/b/GaGm1R/2cBf
http://paperpile.com/b/GaGm1R/2cBf
http://paperpile.com/b/GaGm1R/2cBf
http://paperpile.com/b/GaGm1R/2cBf
http://paperpile.com/b/GaGm1R/2cBf
http://paperpile.com/b/GaGm1R/2cBf


vi 
 

The dissertation of Jillian Roberta de Bree is approved. 

Carrie E. Bearden 

Roel A. Ophoff 

Bogdan Pasanuic 

Daniel H. Geschwind, Committee Co-Chair 

Michael Jeffrey Gandal, Committee Co-Chair 

 

 

University of California, Los Angeles 

2020 

  



vii 
 

TABLE OF CONTENTS 

LIST OF TABLES AND FIGURES ............................................................................................... x 

ACKNOWLEDGEMENTS ......................................................................................................... xv 

VITA .......................................................................................................................................... xx 

CHAPTER 1: Leveraging RNA-seq in psychiatric disorder research .................................... 1 

 1.1: Introduction ............................................................................................................... 2 

1.2: Applications of RNA-seq in psychiatric disorder research ......................................... 4 

1.3: Effective experimental design for RNA-seq ............................................................... 9 

1.4: Processing RNA-seq data ...................................................................................... 17 

1.5: Gene prioritization with RNA-seq ............................................................................ 24 

1.6: Integration of RNA-seq results with orthogonal data ............................................... 34 

1.7: Functional interpretation and application of RNA-seq results .................................. 39 

1.8: Discussion .............................................................................................................. 45 

1.9: Bibliography ............................................................................................................ 47 

 

CHAPTER 2: Shared molecular neuropathology across psychiatric disorders ................. 55 

2.1: Contributing authors ............................................................................................... 56 

2.2: Experimental rationale and overlapping psychiatric cortical gene expression ......... 56 

2.3: Gene network analysis maps psychiatric gene expression to biological systems .... 61 

2.4: Down-regulated neuronal modules are enriched for psychiatric genetic risk  

factors .................................................................................................................... 64 

2.5: Discussion .............................................................................................................. 66 

2.6: Materials and Methods ........................................................................................... 67 

2.7: Bibliography ............................................................................................................ 67 

 

CHAPTER 3: Polygenic risk scores are associated with transcriptomic changes in ASD, 

schizophrenia, and bipolar disorder ...................................................................................... 74 

3.1: Introduction and contributing authors ...................................................................... 75 

3.2: Project summary: psychiatric cross-disorder transcriptome-wide analysis .............. 76 

3.3: Identifying genetic drivers of transcriptomic dysregulation ...................................... 77 



viii 
 

3.4: Materials and Methods ........................................................................................... 81 

3.5: Bibliography ............................................................................................................ 81 

 

CHAPTER 4: Broad transcriptomic dysregulation across the cerebral cortex in ASD ...... 90 

4.1: Abstract .................................................................................................................. 91 

4.2: Transcriptomic changes across the cerebral cortex in ASD .................................... 91 

4.3: Broad attenuation of transcriptomic regional identity ............................................... 95 

4.4: Refining disrupted gene co-expression networks in ASD ........................................ 97 

4.4.1: Cortex-wide dysregulation observed for ASD risk genes .......................... 98 

4.4.2: Magnitude of effect parallels anterior – posterior gradients .................... 100 

4.4.3: Cell-type changes mirror regional variation ............................................ 103 

4.5: Discussion ............................................................................................................ 106 

4.6: Materials and Methods ......................................................................................... 108 

4.7: Bibliography .......................................................................................................... 115 

 

CHAPTER 5: Conclusions and future directions ................................................................ 119 

5.1: Conclusions ..................................................................................................................... 120 

5.2: Future directions .............................................................................................................. 123 

5.3: Bibliography ..................................................................................................................... 125 

 

APPENDIX ............................................................................................................................. 127 

A1: Supplementary Materials for Chapter 2 ............................................................................. 128 

 A1.1: Extended Materials and Methods ....................................................................... 128 

 A1.2: Extended Text .................................................................................................... 143 

 A1.3: Extended Figures ............................................................................................... 150 

 A1.4: Extended Tables ................................................................................................ 167 

 A1.5: Extended Bibliography ....................................................................................... 171 

 

A2: Additional Results Accompanying Chapter 3 .................................................................... 172 

A2.1: Introduction ........................................................................................................ 172 

A2.2: Gene and isoform expression alterations in disease........................................... 176 

A2.3: Differential expression of the non-coding transcriptome ..................................... 178 



ix 
 

A2.4: Local splicing dysregulation in disease ............................................................... 179 

A2.5: Transcriptome-wide association ......................................................................... 182 

A2.6: Co-expression networks refine shared cross-disorder signals ............................ 185 

A2.7: Neuronal isoform networks capture disease specificity ....................................... 189 

A2.8: Distinct trajectories of neural-immune dysregulation ........................................... 192 

A2.9: Non-coding modules and lncRNA regulatory relationships ................................. 194 

A2.10: Isoform network specificity and switching ......................................................... 197 

A2.11: Discussion ........................................................................................................ 198 

 A2.12: Materials and Methods ..................................................................................... 202 

 A2.14: Bibliography ..................................................................................................... 202 

 

A3: Supplementary Materials for Chapter 3 and Appendix Section A2 .................................... 203 

 A3.1: Extended Materials and Methods ....................................................................... 203 

 A3.2: Extended Figures ............................................................................................... 233 

 A3.3: Extended Tables ................................................................................................ 256 

 A3.4: Extended Bibliography ....................................................................................... 258 

 

A4: Supplementary Materials for Chapter 4 ............................................................................. 259 

 A4.1: Extended Materials and Methods ....................................................................... 259 

 A4.2: Extended Figures ............................................................................................... 273 

 A4.3: Extended Tables ................................................................................................ 288 

 A4.4: Extended Bibliography ....................................................................................... 289 

  



x 
 

LIST OF TABLES AND FIGURES 

Chapter 1 

 Figure 1.1: The value of RNA-seq analysis in psychiatric research 

 Figure 1.2: Basic workflow for RNA-seq experiments 

 Table 1.1: RNA-seq basic terminology 

 Figure 1.3: Overview of RNA-seq data processing steps 

 Table 1.2: Overview of RNA-seq processing steps 

 Figure 1.4: Decision chart for GLM design 

 Table 1.3: Approaches for identifying DE gene sets 

 Table 1.4: Approaches for gene network analysis 

 Table 1.5: Approaches for orthogonal data integration with interesting gene sets 

 Figure 1.5: Direct applications of RNA-seq in psychiatric research 

Chapter 2 

 Figure 2.1: Experimental rationale and design. 

 Figure 2.2: Cortical gene expression patterns overlap. 

 Figure 2.3: Network analysis identifies modules of coexpressed genes across disease. 

 Figure 2.4: Down-regulated neuronal modules are enriched for common and rare genetic 

risk factors. 

Chapter 3 

 Figure 3.1: Overlaps and genetic enrichment among dysregulated transcriptomic 

features 

Chapter 4 

 Figure 4.1: ASD transcriptomic differences across 11 cortical regions 

 Figure 4.2: Transcriptomic regional identity attenuation in ASD 



xi 
 

 Figure 4.3: Co-expression network analysis characterizes cortex-wide dysregulation of 

ASD risk genes 

 Figure 4.4: Functional characterization of regionally-variable transcriptomic dysregulation 

in ASD 

Appendix Section A1: Supplementary Materials for Chapter 2 

 Figure A1.1: Microarray experiment quality control 

 Figure A1.2: Gene expression principal component loadings 

 Figure A1.3: Transcriptome overlap across disorders is robust to method differences 

 Figure A1.4: Top 50 most differentially expressed genes across disorders 

 Figure A1.5: Transcriptomic analysis of antipsychotic medications in primates 

 Figure A1.6: QC plots for RNAseq replication datasets 

 Figure A1.7: RNAseq replication plots 

 Figure A1.8: Robustness of the gene co-expression network 

 Figure A1.9: Linear regression adjusted R2 values for module eigengene associations 

 Figure A1.10: Module stability across individual studies 

 Figure A1.11: Co-expression Enrichment for Brain Enhancer Regulation 

 Figure A1.12: eQTL-GWAS enrichment 

 Figure A1.13: Leave-one-out analysis for polygenic ~ transcriptomic associations 

 Table A1.1: Gene expression microarray datasets 

 Table A1.2: RNAseq replication of differential gene expression 

 Table A1.3: GWAS summary statistics used in this study 

 Data Table A1.1: Differential gene expression summary statistics 

 Data Table A1.2: Gene co-expression module data 

Data Table A1.3: Compilation of psychiatric risk variants 

Data Table A1.4: LD score regression-based partitioned heritability analyses 



xii 
 

Data Table A1.5: ASD GWAS summary statistics (from the iPSYCH Consortium) 

Appendix Section A2: Additional Results Accompanying Chapter 3 

 Figure A2.1: Gene and isoform expression dysregulation in psychiatric brain 

 Figure A2.2: Aberrant local splicing and isoform usage in ASD, SCZ and BD 

 Figure A2.3: Transcriptome-wide association 

 Figure A2.4: Gene and isoform co-expression networks capture shared and disease-

specific cellular processes and interactions 

 Figure A2.5: Two RBFOX1 isoform modules capture distinct biological and disease 

associations 

 Figure A2.6: Distinct neural-immune trajectories in disease 

 Figure A2.7: LncRNA annotation, ANK2 isoform switching & micro-exon enrichment 

Appendix Section A3: Supplementary Materials for Chapter 3 

 Figure A3.1: Dataset composition, analysis and integration pipeline 

 Figure A3.2: Dataset demographics and quality control 

 Figure A3.3: Selection of Covariates 

 Figure A3.4: Validation of DGE Results 

 Figure A3.5: Validation of differential transcript expression and differential splicing 

 Figure A3.6: Annotation of individual ncRNAs 

 Figure A3.7: Covariate correction of DS 

 Figure A3.8: Annotation of DS events, Cross data DGE-DTE-DS overlaps 

 Figure A3.9: Additional differential local splicing examples 

 Figure A3.10: Age effects on differential gene expression 

 Figure A3.11: Assessment of psychiatric medication effects 

 Figure A3.12: Co-expression network cell type enrichments 

 Figure A3.13: Genetic enrichment analyses 



xiii 
 

 Figure A3.14: Module-trait associations after SCZ downsampling 

 Figure A3.15: csuWGCNA identifies putative lncRNA negative regulatory relationships 

 Figure A3.16: LINC00643 and LINC01166 expression in human prefrontal cortex 

 Figure A3.17: Additional switch isoforms 

 Table A3.1: DE genes 

 Table A3.2: Annotation of psychiatric ncRNAs 

 Table A3.3: Differential splicing 

 Table A3.4: TWAS results 

 Table A3.5: WGCNA results 

 Table A3.6: csuWGCNA results 

 Table A3.7: Switch isoform and microexon characterization 

 Table A3.8: Splicing and isoform validation 

 Table A3.9: RNAscope 

Appendix Section A4: Supplementary Materials for Chapter 4 

 Figure A4.1: Experiment workflow and sample overview 

 Figure A4.2: Quality control measures 

 Figure A4.3: Model covariates and previous studies across 11 cortical regions 

 Figure A4.4: Transcriptomic changes across 11 cortical regions 

 Figure A4.5: Transcriptomic regional identity attenuation in ASD 

 Figure A4.6: Additional ARI gene dysregulation 

 Figure A4.7: Gene-level co-expression network analysis module associations 

 Figure A4.8: Isoform-level co-expression network analysis module associations 

 Figure A4.9: Additional neuronal density associations and snRNA-seq 

 Figure A4.10: Results summary 

 Table A4.1: Metadata and sequencing quality metrics 



xiv 
 

 Table A4.2: DE gene overlap analyses 

 Table A4.3: DE gene results 

 Table A4.4: Transcriptomic regional identity analysis results 

 Table A4.5: Genes matched to WGCNA modules 

 Table A4.6: Functional characterization of WGCNA modules 

 Table A4.7: Supporting data for analyses of regionally-variable ASD transcriptomic 

dysregulation 

   

 

 

 

 

  



xv 
 

ACKNOWLEDGEMENTS 

 I want to offer my most sincere thanks to my doctoral committee co-chairs and mentors, 

Michael Gandal and Daniel Geschwind. When I began my neurogenetics journey in 2014, I was 

a young, eager, 4th year undergraduate student with no applied research experience. Dan and 

Mike, however, saw my potential, and took the risk to bring me on as a lab assistant. I am so 

incredibly grateful that they did, since the opportunity to work with them both has enabled me to 

become an independent, thoughtful, and insightful interdisciplinary scientist. They have both 

supported my career development in different ways. Dan’s wealth of expertise, intuition for 

psychiatric neurogenetics, and general guidance have opened my eyes to the possibilities of 

integrative bioinformatic analyses in biology. Mike’s weekly (and sometimes daily) support with 

tackling tough problems, his patience with me as I learned and grew, his willingness to discuss 

the full spectrum of challenges and considerations for psychiatric genetics with me, and his 

unwavering belief in my abilities have all helped me to become more confident, resilient, endlessly 

curious about biology and statistics, and (I hope) a researcher on the cutting edge of our field. In 

addition to both Mike and Dan’s direct mentorship, I am also grateful for their financial support, 

and for the access that they have granted me to amazing datasets for my PhD research. 

 I also need to thank several other people who have contributed directly to my doctoral 

degree progress. Felix Schweizer and Jenny Lee from the NSIDP have provided endless 

guidance, and have kept me on track to complete my PhD research in a timely manner. With the 

NSIDP, they have created a program that is a foundation of support for all Neuroscience PhD 

students, and that foundation has surely enabled me to become a better scientist. My committee 

members, Bogdan Pasaniuc, Roel Ophoff, and Carrie Bearden, have all been willing to discuss 

my doctoral research with me and helped me to think critically about the results and implications 

of my research. I would also like to thank Ben Novitch and Bill Lowry, who gave me the opportunity 

to learn about in vitro techniques that enhanced my understanding of neuroscience. Finally, I 



xvi 
 

would like to sincerely thank Jenifer Sakai, Lauren Kawaguchi, and Luis Espana from the 

Geschwind lab, who have all ensured that I received my funding, got meeting time slots with Dan, 

and had access to the tools that I needed to conduct my research. 

 There are many people to thank in the Geschwind and Gandal labs, who have been my 

colleagues and friends for so many years. When I first began learning about neurogenetics as a 

lab assistant in the Geschwind lab, Neelroop Pariskshak, Vivek Swarup, Virpi Leppa, and Laura 

Perez-Cano all welcomed me, supported my efforts to learn, and engaged in conversations about 

our work that must have seemed very trivial to all of them. They were (and still are) my role models 

in many ways, and I am so grateful for the opportunities I had to learn from all of them. Later on, 

as I progressed and become a PhD student, I was fortunate to work with Gokul Ramaswami, 

Damon Polioudakis, Chris Hartl, Jennifer Lowe, and Jessica Rexach, who were all willing to 

mentor me and discuss current topics in psychiatric genomics with me, no matter how busy they 

were. Finally, as one of the founding members of the Gandal lab, I had the unique privilege to see 

how an academic lab grows and got to meet so many wonderful people in that process. Sepideh 

Parhami provided endless support and friendship for me, and together we began to establish the 

Gandal lab culture. I am also grateful for the opportunities I had to work with Minsoo Kim, Leanna 

Hernandez, and Gil Hoftman in the Gandal lab, who have all contributed substantially to my 

understanding of neuroscience and biostatistics. In general, I am so privileged to have worked 

with all of the smart, talented, and kind people who have passed through the Gandal and 

Geschwind labs over the years, and I am thankful to all of them for being my colleagues, mentors, 

and friends. 

 In chapter two, all of the work presented was published in Science in February of 2018, in 

a research article entitled “Shared molecular neuropathology across major psychiatric disorders 

parallels polygenic overlap” (volume 359, pages 693–697). Michael Gandal was the primary 

author of this work and completed all major analyses, such as the expression microarray mega-



xvii 
 

analysis. I, as the second author, conducted the RNA-seq validation analyses, calculated 

partitioned heritability scores for the identified gene co-expression modules, and generally 

supported all analyses and interpretation of results. Other co-authors included Neelroop N. 

Parikshak, Virpi Leppa, Gokul Ramaswami, Chris Hartl, Andrew J. Schork, Vivek Appadurai, 

Alfonso Buil, Thomas M. Werge, Chunyu Liu, Kevin P. White, and Steve Horvath. They all 

contributed to supporting analyses and interpretation of results, providing essential contributions 

for the publication. Daniel Geschwind was the senior author and project director. This work was 

associated with the PsychENCODE Consortium and iPSYCH-BROAD Working Group. 

 Chapter three contains work that was also published in Science, in December 2018, with 

the title “Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar 

disorder” (volume 362, no page numbers). Michael Gandal was, again, the primary author of this 

work, and as a co-author I generated and analyzed polygenic risk scores for the psychiatric 

disorders we investigated (the focus of chapter three), conducted transcriptomic analyses that 

examined the effects of anti-psychotic drugs in primate neural tissue (also included in chapter 

three), and assisted with the interpretation and communication of results. Other co-authors 

included Pan Zhang, Evi Hadjimichael, Rebecca Walker, Chao Chen, Shuang Liu, Hyejung Won, 

Harm van Bakel, Merina Varghese, Yongjun Wang, Annie W. Shieh, Sepideh Parhami, Judson 

Belmont, Minsoo Kim, Patricia Moran Losada, Zenab Khan, Justyna Mleczko, Yan Xia, Rujia Dai, 

Daifeng Wang, Yucheng T. Yang, Min Xu, Kenneth Fish, Patrick R. Hof, Jonathan Warrell, 

Dominic Fitzgerald, Andrew E. Jaffe, Kevin White, Mette A. Peters, Mark Gerstein, Chunyu Liu, 

Lilia M. Iakoucheva, and Dalila Pinto. Daniel Geschwind was the senior author and main project 

director. All of these co-authors contributed to major and minor analyses for this project, and 

helped write, edit, and review the resulting manuscript. This work was associated with the 

PsychENCODE Consortium. 



xviii 
 

 Chapter four consists of work that is currently in preparation, titled “Broad transcriptomic 

dysregulation across the cerebral cortex in ASD”. I am the primary author of this work and 

personally conducted (or substantially contributed to) every analysis. I also synthesized and 

interpreted all of the results, constructed all accompanying graphics and tables, and wrote the 

manuscript. Other co-authors assisted with drawing functional insights from transcriptomic data, 

contributed to and performed supporting analyses (such as the single nucleus RNA-seq analysis, 

performed by Brie Wamsley, and the cell-type deconvolution analysis, performed by Prashant 

Emani), and improved the quality and readability of the complete manuscript. These co-authors 

include Brie Wamsley, George T. Chen, Gil D. Hoftman, Sepideh Parhami, Diego de Alba, Gaurav 

Kale, Gokul Ramaswami, Christopher L. Hartl, Jing Ou, Ye Emily Wu, Neelroop N. Parikshak, 

Vivek Swarup, T. Grant Belgard, Prashant Emani, Nathan Chang, Daifeng Wang, and Bogdan 

Pasaniuc. Michael Gandal and Daniel Geschwind are joint senior authors and project leaders for 

this work. 

 I would also like to acknowledge my funding sources, for without this financial support 

none of this work would have been possible. My first year of support was provided by the UCLA 

NSIDP through the Brain Research Institute. For subsequent years, the following grants from 

Daniel Geschwind contributed to my work: NIMH R01MH110927, U01MH115746, P50-

MH106438, and R01 MH-109912, R01 MH094714. The following grants from Michael Gandal 

also provided me with financial support: SFARI Bridge to Independence Award, NIMH R01-

MH121521, NIMH R01-MH123922, NICHD-P50-HD103557. Finally, I would like to offer sincere 

thanks to the Achievement Rewards for College Scientists (ARCS) Foundation Los Angeles 

Founder Chapter for funding during the 2019 – 2020 academic year, which provided essential 

support as I neared the end of my doctoral studies. 

 To conclude, I offer my most humble appreciation and thanks for my family and friends 

who supported me and believed in me throughout my PhD journey. My parents, Rob and Robin 



xix 
 

Haney, and my brother, Ed Haney, have created a foundation of kindness, love, and trust that 

has supported me since childhood, and that foundation has continued to carry me through my 

PhD years. Their willingness to listen to me explain and think through my work, over and over 

again, sometimes for hours, was so valuable for helping me to improve my science 

communication skills and think about my work with a fresh perspective. To my new family-in-law, 

Jim, Teresa, and Kevin de Bree, and Kristina de Bree and Brian Child, I thank you all for 

welcoming me into your family and supporting my endeavors to obtain a doctoral degree. To my 

friends, especially my fellow cohort members in the NSIDP, thank you for all of the laughter, the 

candid discussions about science and graduate student life, and the emotional support over these 

many years. And finally, to my husband James de Bree – your unwavering belief in me, your 

support in every aspect of our lives together, and your boundless love, have all empowered me 

to achieve this great feat and complete all of this pivotal, important research. I am so grateful to 

be your wife, and to share the rest of my scientific career and personal journey with you. 

  



xx 
 

VITA 

Ph.D. Candidate in Neuroscience 
University of California, Los Angeles 
(UCLA) | GPA 4.0 
Dr. Daniel H. Geschwind and Dr. 
Michael J. Gandal Labs 

Fall 2016 – Present 

Computational Genomics Internship 
Vertex Pharmaceuticals | Boston, MA 

Summer 2020 

B.S. in Mathematics/Applied Science 
(Medical and Life Science Focus) 
University of California, Los Angeles (UCLA) | GPA 3.5 

Fall 2010 – Fall 2014 

HONORS AND LEADERSHIP 
 

 

ARCS Graduate Scholar 2019 – 2020 
Achievement Rewards for College Scientists Foundation Los Angeles 
Founder Chapter. $10,000 awarded for the 2019 - 2020 academic 
year. 

October 2019 

UCLA AWiSE Administrative Coordinator 
UCLA Advancing Women in Science and Engineering (AWiSE). 
Responsible for managing and coordinating the efforts of AWiSE 
leadership team members to create a yearly calendar of events which 
supports the advancement of women in STEM-oriented careers. 

Fall 2017 - Present  

UCLA Alumni Scholar (Undergraduate) 
Earned a $4,000 scholarship for undergraduate tuition and performed 
120+ hours of community service. 

Fall 2010 – Fall 2014 

Graduate of the UCLA Honors College (Undergraduate) 
Earned a 3.51 GPA and completed 44 honors units in both the 

sciences and humanities. 

Fall 2010 – Fall 2014 

 

CONFERENCE PRESENTATIONS 
 

 
 

Regional variation in transcriptional dysregulation and patterning in 
postmortem cerebral cortex in ASD. 

 

• Oral Presentation Finalist:  
World Congress of Psychiatric Genetics 2019 in Los Angeles, CA October 2019 

• Poster Presentation: 
The 69th Annual Meeting of the American Society of Human Genetics 
in Houston, Texas October 2019 

• Poster Presentation 
11th Annual International Conference On Systems Biology Of Human 
Diseases at UCLA June 2018 

EDUCATION AND WORK EXPERIENCE 
 

 



xxi 
 

• Travel Award and Poster Presentation 
4th Annual Molecular Psychiatry Meeting in Mauii, Hawaii October 2016 

PUBLICATIONS 

 
 

 

• Regional variation in transcriptional dysregulation and patterning in 
postmortem cerebral cortex in ASD. In Preparation. 

Jillian R. Haney, Brie Wamsley, … , Michael J. Gandal, Daniel H. Geschwind. 

December 2020 

• Integrative genomics identifies a convergent molecular subtype that links 
epigenomic with transcriptomic differences in autism. Nature 
Communications. 

Gokul Ramaswami, Hyejung Won, Michael J. Gandal, Jillian Haney, … , Daniel H. 
Geschwind. 

September 2020 

• Network signature of complement component 4 variation in the human 
brain identifies convergent molecular risk for schizophrenia. bioRxiv (In 
Submission). 

Minsoo Kim, Jillian R. Haney, Pan Zhang, ... , Michael J. Gandal. 

March 2020 

• TGFβ superfamily signaling regulates the state of human stem cell 
pluripotency and competency to create telencephalic organoids. bioRxiv (In 
Submission). 

Momoko Watanabe, Jillian R. Haney, … , Michael J. Gandal, Bennett G. Novitch. 

December 2019 

• Hepatic arginase deficiency fosters dysmyelination during postnatal 
CNS development. Journal of Clinical Insight. 

Xiao-Bo Liu, Jillian R. Haney, … , Stephen D. Cederbaum, and Gerald S. Lipshutz. 

September 2019 

• Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, 
and bipolar disorder. Science. 

Michael J. Gandal, Pan Zhang, …, Jillian Haney, … , Daniel H. Geschwind. 

December 2018 

• Banking on Polygenicity to Disentangle Psychiatric Comorbidity. 
Biological Psychiatry. 

Jillian R. Haney, Sepideh Parhami, Michael J. Gandal. 

July 2018 

• Shared molecular neuropathology across major psychiatric disorders 
parallels polygenic overlap. Science. 

Michael J. Gandal, Jillian R. Haney, …, Daniel H. Geschwind. 

February 2018 

• Autism and Turner's Syndrome: A Review. UCLA Undergraduate Science 
Journal. 

Jillian R. Haney and Andrew Shaner. 

June 2014 



1 
 

 
 

 
 

 

CHAPTER ONE 
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1.1: Introduction 

         Psychiatric disorders are broadly defined as mental health conditions influencing mood, 

cognition, emotion, and behavior (DSM-5).1 Many distinct disorders fall under this definition, and 

each is considerably heterogeneous in presentation and severity across individuals. For many 

‘adult onset disorders’, symptoms present during adulthood or late adolescence are adult mental 

illnesses, such as major depressive disorder, schizophrenia, and bipolar disorder. In contrast, 

neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention-deficit 

hyperactivity disorder (ADHD) are present during childhood. In the United States, approximately 

18.9% of adults meet criteria for a psychiatric disorder,2 while approximately 7% of children are 

afflicted with developmental disorders.3 

All psychiatric disorders are diagnosed and characterized by behavioral symptoms.1 For 

example, an ASD diagnosis is made if an individual displays persistent deficits in social 

communication and interaction in addition to restricted and repetitive behaviors.1 This reliance on 

descriptive behavioral symptoms creates challenges for both diagnosis and treatment. 

Differentiating and characterizing distinct disorders is inherently difficult, since behavioral 

symptoms often fluctuate, overlap across many distinct disorders, and vary widely across 

individuals.1 Additionally, the lack of a clear biological understanding of psychiatric disease 

pathophysiology greatly hinders our ability to develop novel therapeutic interventions. Identifying 

such neurobiological mechanisms in psychiatric disorders has the potential to address both of 

these challenges, facilitating the identification of diagnostic biomarkers and the development of 

effective targeted therapeutics.  

         Hundreds of genetic risk variants have now been linked to different psychiatric disorders.4 

Environmental risk factors, such as maternal immune activation and stress, have also been 

associated with psychiatric disorders.5 Discovering how, when, and where neural cell-types, 

biological processes, and systems are impacted by these risk variants and environmental 

https://paperpile.com/c/PTbgY8/GAwm
https://paperpile.com/c/PTbgY8/9DAw
https://paperpile.com/c/PTbgY8/R2LR
https://paperpile.com/c/PTbgY8/GAwm
https://paperpile.com/c/PTbgY8/GAwm
https://paperpile.com/c/PTbgY8/GAwm
https://paperpile.com/c/PTbgY8/9TUZ
https://paperpile.com/c/PTbgY8/45Lo
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influences is a critical next step towards identifying psychiatric neuropathological mechanisms. In 

other words, we must determine how these genetic variants and environmental exposures act 

across the ‘levels of neuroscience’ (Figure 1.1a) to contribute to the development of psychiatric 

disorders. While psychiatric behaviors and, more recently, genetic risk variants for psychiatric 

disorders have been extensively characterized,4 whether there is an underlying, convergent brain-

level molecular pathology has been – until recently – largely unknown. This is due to many 

reasons, with some of the key difficulties being the complexity of the human brain, the 

heterogeneity of psychiatric disorders, and challenges in developing psychiatric in vivo and in vitro 

models. 

While there are many approaches for addressing these challenges, in this chapter I will 

discuss just one particularly effective and valuable methodology – transcriptomic analyses 

through RNA-sequencing (RNA-seq). The utility of high-throughput next generation sequencing 

methods such as RNA-seq is well known, and as such countless articles, websites, tutorials, 

blogs, and reviews exist that detail the intricacies of RNA-seq. But strategies and guidance for 

implementing this approach specifically in psychiatric disorder research are not as well 

established. This is problematic, since transcriptomics is capable of addressing many of the 

challenges that face psychiatric disorder research. In particular, RNA-seq analysis can reveal 

disrupted cell-types and biological processes in sequenced samples, making it a powerful tool for 

identifying molecular pathology in the brain. Therefore, in this chapter I will focus exclusively on 

the application of transcriptomic profiling in psychiatric disorder research. I will discuss different 

motivations for using RNA-seq, best practices for experimental design, main data processing and 

analytic steps, foundational guiding concepts, useful references and resources, and helpful 

workflows. This chapter will function as an approachable introductory overview of how RNA-seq 

can be applied effectively in psychiatric disorder research, where I will ultimately demonstrate 

https://paperpile.com/c/PTbgY8/9TUZ
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how the strategic implementation of RNA-seq can substantially advance our understanding of 

psychiatric disorder mechanisms. 

 

Figure 1.1: The value of RNA-seq analysis in psychiatric research. a. Hierarchical framework for 
understanding genomic relations in the context of neuroscience, highlighting where RNA falls in the 
progression from DNA to behavior. b. RNA profiling provides a snapshot of cell reactivity, enabling RNA-
seq analysis to probe how neural systems are acting in sequenced samples. c. Summary of how RNA-
seq can be applied in specific areas of psychiatric disorder research. 

1.2: Applications of RNA-seq in psychiatric disorder research 

         One of the main functions of RNA in biological systems is to translate genetic information 

into proteins that participate in molecular pathways and create structures in cells. RNA also can 

play a regulatory role, influencing the activity of genes during neurodevelopment and after 

exposure to different extra-cellular and environmental stimuli. Following the central dogma of 

biology, genes are transcribed into RNA molecules, which in the case of protein-coding genes are 
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then translated into proteins, or alternatively, non-coding genes are transcribed into a host of 

regulatory RNAs, including ribosomal RNAs, long-noncoding RNAs (lncRNAs), small nuceolar 

RNAs (snoRNAs), or microRNAs (miRNAs), among others.  Each class of non-coding RNAs has 

distinct regulatory functions, such as the formation of ribosomal subunits for protein translation in 

the case of rRNA, the regulation of alternative mRNA splicing in the case of snoRNAs, or the 

modification of transcript abundance by miRNAs, especially for gene silencing purposes. In 

general, these regulatory RNAs either promote transcription that will ultimately create needed 

proteins, or inhibit transcription to reduce the amount of undesired proteins. Accordingly, RNA is 

constantly being synthesized (transcribed), modified (spliced, capped, polyadenylated), exported 

from the nucleus, trafficked to ribosomes, and translated. As single stranded mRNAs are 

inherently unstable, they are constantly undergoing degradation via ribonucleases (RNases) 

present within cells. RNA synthesis and degradation are dynamic processes, that can occur at 

either steady state or in transcriptional ‘bursts’ in response to different cellular stimuli. 

Together, all of the classes of RNA comprise the complete transcriptome of a given cell 

or sample, making this RNA makeup a representation of all of the current reactive biological 

pathways in that sample. Therefore, through profiling the entire transcriptome with RNA-seq, we 

obtain a ‘snapshot’ - a single picture of a single moment in time - of how cells and biological 

processes are reacting in sequenced samples (Figure 1.1b). Importantly, this is distinct from 

surveying all proteins in a sample (the ‘proteome’) - while proteins represent cells as they are, 

RNA represents how cells seek to change (or remain at steady-state). In psychiatric disorder 

research, understanding how biological systems are being regulated (or dysregulated) across a 

set of samples is often a major aim, making RNA-seq an incredibly valuable tool in many distinct 

applications (Figure 1.1c). 

 The main application of RNA-seq in psychiatric disorder research, extending across all 

types of analyses and experiments, is the comparison of RNA differences across conditions of 
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interest to biological functions (also referred to as differential expression). Tying gene expression 

differences in psychiatric patient samples or psychiatric experimental models to cell-types and 

biological processes provides concrete targets for follow-up experiments to validate and advance 

our understanding of psychiatric disorders.6-8 Using RNA-seq to hone in on dysregulated 

biological pathways has already proven highly effective for work with human postmortem tissue 

donated from psychiatric patients. For example, analysis of postmortem tissue from subjects with 

ASD identified increased expression of astrocyte and microglial cell-type marker genes across 

the cerebral cortex, and that neuronal and synaptic genes are downregulated across the cerebral 

cortex in ASD.6,7 In frontal cortex tissue from subjects with schizophrenia, neuronal synaptic 

vesicle cycle pathways and NFkB signaling pathways are both increased compared to 

neurotypical controls.8 These results narrow in on distinct cell-types and signaling pathways that 

can be further investigated in psychiatric and neurodevelopmental model systems, bringing 

psychiatric disorder research one step closer to establishing concrete neuropathology in these 

disorders.           

While the direct characterization of human postmortem brain tissue from psychiatric 

patients is one valuable application of RNA-seq, understanding RNA differences in model 

systems is equally as important. Human tissue can only be collected postmortem from 

heterogeneous patient populations, making the controlled study of prenatal timepoints and 

specific genetic or environmental risk factors for these disorders impossible with human tissue. 

This necessitates the use of model systems such as mice, cell cultures, and more recently neural 

spheroids to better understand psychiatric disorder mechanisms. However, developing these 

model systems has proven to be challenging - which is understandable considering the complexity 

of neural development - leading us to another effective application of RNA-seq in psychiatric 

disorder research: to validate psychiatric disorder model systems. Through comparing and 

contrasting the gene expression of new psychiatric disorder models with benchmark RNA-seq 

https://paperpile.com/c/PTbgY8/BJff+ok72
https://paperpile.com/c/PTbgY8/biAC
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datasets - such as human postmortem tissue RNA-seq from the Allen Brain Atlas9 and 

PsychENCODE,8 and previously established in vivo and in vitro experimental models - these 

newer models can be improved and refined. RNA-seq can also be used to to compare different 

variations of a new model system (eg. different culture conditions, different mouse strains) in order 

to select a model which best achieves desired outcomes. 

Understanding and evaluating transcriptomic dysregulation in model systems is a key 

approach for investigating psychiatric molecular pathology. Once a psychiatric behavior or 

biomarker is established in these model systems, RNA-seq can lend itself to a new application - 

evaluating potential therapeutic treatments. For high-throughput drug screening approaches, or 

for treatments precisely designed to target specific dysregulated biological pathways in psychiatric 

disorders, RNA-seq can reveal how treatments are impacting biological systems in models (for 

example, RNA-seq with a dementia iPSC in vitro model system revealed how 

suberanilohydroxamic acid can correct miR-203 induced dysregulated gene expression).102 This 

knowledge can guide further development of treatments, indicating if a treatment approach is 

effective and/or if the treatment has any unintended effects. Additionally, for successful 

treatments, RNA-seq can reveal which disrupted biological systems are impacted by treatment, 

helping to pinpoint which aspects of molecular pathology may reflect pathogenic disease 

mechanisms. In summary, rather than running a vast array of screening experiments when 

evaluating a new treatment in a model system, performing a single RNA-seq experiment can 

provide an overview of how treatments are acting in these models, helping to inform decisions 

regarding how to proceed with putative psychiatric treatments. 

 Another advantageous application of RNA-seq is to identify specific marker genes that 

represent, and possibly regulate, the disrupted biological pathways implicated by transcriptomic 

analysis. Genes with the greatest differential gene expression signatures, genes with high 

connectivity in gene co-expression network modules dysregulated in psychiatric conditions (‘hub’ 

https://paperpile.com/c/PTbgY8/NtGo
https://paperpile.com/c/PTbgY8/biAC
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genes), and risk genes known a priori that exhibit transcriptomic dysregulation in a particular 

experiment could all be considered interesting marker genes in RNA-seq experiments. One of the 

best justifications for identifying and evaluating single marker genes is that they streamline 

experiments performed to validate the existence of dysregulated biological pathways implicated 

by RNA-seq. For example, performing an RNA FISH experiment with a hub gene from a highly 

dysregulated co-expression module in a psychiatric model system sample will confirm if this gene 

is differentially expressed compared to controls, support that the biological pathways associated 

with this gene’s module may be altered in the psychiatric model, and localize this gene’s RNA in 

cells - all of these results could further advance understanding of psychiatric molecular pathology. 

Investigating specific marker genes individually is also an effective approach, especially for hub 

genes from co-expression modules, as they may play a driving regulatory role in driving 

psychiatric molecular pathology.106-107 For example, for a substantially dysregulated gene co-

expression module in a model mouse system, it may be advantageous to create a new model 

mouse with that module’s hub gene knocked out, and to evaluate psychiatric-linked behaviors in 

this new model mouse to predict if the dysregulation of this gene is causal or likely a consequence 

of psychiatric pathology - again, either of these results could advance our understanding of 

psychiatric disorders. 

To conclude, RNA-seq is an effective tool with many distinct applications that can hone in 

on changes in biological pathways in psychiatric disorders. RNA-seq offers a distinct advantage 

over methods that can only investigate single facets of biological systems in psychiatric patient 

tissue and experimental models, considering that RNA-seq enables the implementation of 

transcriptomic analyses that empirically evaluate entire biological samples. Through taking this 

data-driven approach, RNA-seq analysis can pinpoint specific disrupted cell-types and biological 

processes as well as marker genes that can be used for validating the existence of implicated 

dysregulation. When used for this purpose, to prioritize specific cell-types and biological 
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processes for investigation in psychiatric patient tissue samples and experimental models, RNA-

seq - applied with effective experimental designs - is a powerful approach that can profoundly 

advance psychiatric disorder research. 

1.3: Effective experimental design for RNA-seq 

 

 Some of the key advantages of an RNA-seq experiment are that it is high-throughput, fast, 

efficient, customizable, relatively easy to perform, and dependably capable of producing high-

quality data. All of these factors help to ensure that resources spent on RNA-seq provide a 

significant return for laboratories. However, experimental design - one of the most critical aspects 

of any scientific experiment - usually influences outcomes far more than these other factors. If 

samples and RNA-seq parameters are not considered carefully, an RNA-seq experiment can lose 

a significant amount of value, even if the sequencing itself was of high-quality. To avoid this, it is 

advisable to spend a considerable amount of time and effort planning your RNA-seq experiment 

before executing it. Of the utmost importance, designing an experiment that clearly addresses 

your specific research goals is crucial. There are many factors to consider, primarily sample 

selection, type of RNA-seq (eg. bulk v. single-cell), sample library preparation for sequencing, 

depth and length of sequencing, and assignment of samples to sequencing batches. Explicitly 

defining how sample and sequencing choices will address your underlying questions and 

motivations for performing the experiment is helpful for deciding on these factors. For example, if 

interested in understanding how neurodevelopmental mechanisms contribute to psychiatric 

disorders, in vivo or in vitro model organisms carrying a psychiatric risk mutation may be suitable 

sample selections. And, while longer RNA reads are better for isoform-level quantifications, if 

studying a new model organism where very little is known, then shorter reads that can still reliably 

provide gene-level quantifications - which are still informative, albeit not as informative as isoform-

level quantifications - may suffice for your purposes, especially if cost is an important deciding 
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factor. These examples begin to illustrate how many distinct factors can guide experimental 

design, and how complicated it can get. Indeed, there are countless examples with a vast array 

of justifications for selecting sample types and customizing RNA-seq. To reduce this complexity, 

in this section I will review fundamental vocabulary (Table 1.1) and summarize some of the main 

considerations that guide experimental design for most psychiatric RNA-seq experiments, 

focusing on the core concepts (Figure 1.2). 

 

 

Figure 1.2: Basic workflow for RNA-seq experiments. The main steps of an RNA-seq experiment are 
separated into three major phases, with extra considerations and illustrations for shaded steps. 
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Term Definition Relevance 

Transcriptome RNA (gene expression) across 
the entire genome 

Profiling the transcriptome with RNA-seq provides a comprehensive 
overview of active biological processes and cell-types in biological 
samples of interest. 

Read Depth The number of reads obtained 
for each sample in an RNA-seq 
experiment. 

Greater read depth will better capture lowly expressed genes. 
However, relatively smaller read depths are suitable for many 
purposes (eg. identifying distinct cell-types with scRNA-seq). 

Whole Gene 
Quantification 

Quantifying RNA across entire 
genes – all exons, and possibly 
all introns and UTRs 

Whole gene quantification captures all reads aligning to a certain 
gene, but loses isoform resolution. 

Isoform 
(transcript) 
Quantification 

Quantifying RNA for specific 
gene isoforms – specific exons 

Isoform quantification estimates how many reads align to distinct 
isoforms, but is limited to annotated isoforms. 

Genome All genes within an organism, 
encoded by DNA 

While genetics is focused on the study of single genes, in an RNA-
seq experiment we profile how the entire genome effects the 
transcriptome. 

Epigenome All epigenetic modifications 
within an organism, such as 
DNA methylation and histone 
acetylation 

The epigenome influences the genome, which in turn effects the 
transcriptome that we measure with RNA-seq. 

Proteome All proteins that can be present 
within an organism 

The transcriptome produces the proteome, in addition to regulatory 
noncoding RNAs. 

Bulk Tissue 
RNA-seq 

RNA-seq with whole tissue 
samples 

Profiled RNA is a mixture from many distinct cell-types within tissue 
samples. However, compared to other approaches, more distinct 
samples can be profiled with greater read depth. 

Single cell RNA-
seq (scRNA-
seq)/ 
Single nucleus 
RNA-seq 
(snRNA-seq) 

RNA-seq with single cells or 
single cell nuclei 

RNA is profiled within specific cell-types, adding cell-type specific 
resolution to downstream functional interpretation. However, 
obtaining many distinct samples and obtaining increased read 
depth for single cells remains challenging. 

Spatial 
Transcriptomics 

RNA-seq across tissue sections, 
enabling RNAs to be mapped to 
specific tissue locations 

Profiled RNA is localized to specific locations on tissue sections, 
adding spatial knowledge to downstream functional interpretation. 
However, cell-type resolution is lost, obtaining many distinct 
samples may be cost prohibitive, and read depth is limited. 

Biological 
Factors 

Biological attributes (metadata) 
of a sample which may 
contribute to gene expression 
diagnosis/condition, age, 
treatment, sex, cell-type 
proportions, etc.) 

These factors are of interest in RNA-seq experiments, and are 
important for making functional inference about interesting genes 
and gene sets. 

Technical 
Factors 

Technical attributes (metadata) 
of a sample which may 
contribute to gene expression 
(sequencing batch, RNA quality, 
etc.) 

These factors are generally not of interest in RNA-seq experiments, 
but often do contribute to gene expression, making it essential to 
control for the contribution of these factors as much as possible. 

Differentially 
Expressed (DE) 
Gene Analysis 

Use of a generalized linear 
model to evaluate gene 
expression in biological factors 

This type of approach will identify all of the genes that vary across 
conditions with detectable statistical significance. 



12 
 

Table 1.1: RNA-seq basic terminology. Overview of fundamental vocabulary for psychiatric 
transcriptomics. 

 
The types of samples selected for an RNA-seq experiment will determine what questions 

can be addressed by the experiment. The first decision is the choice of organism. While human 

samples will directly inform questions regarding psychiatric disorders, the types of human 

samples available are limited to postmortem and ex vivo tissue, and studying specific genetic and 

environmental risk factors with human samples is immensely challenging if not impossible in many 

cases. These risk factors can be better investigated in model systems such as mice, rats, and in 

vitro 2D and 3D cell cultures, but it is important to consider how well these models recapitulate 

psychiatric disorder mechanisms. Model organisms offer the ability to study entire neural systems, 

but the applicability of findings with these models in humans always needs to be verified. With in 

vitro human cell culture models, while cells can be human, these models still do not recapitulate 

complete in vivo neural systems (in general, model systems are simpler and more experimentally 

tractable than true biological systems), making it important to validate results from these models 

as well. Using organisms where the transcriptome is well-defined (such as with human and mouse 

from GENCODE10) is another factor to consider - if an organism does not have an annotated 

transcriptome, experimenters will have to obtain it, adding additional complexity to the experiment. 

After choosing a model system, it is important to consider which types of samples from 

these models can address project goals. Samples can be taken from a single area over a period 

of time, distributed across distinct regions, or span across different conditions. Sampling across 

specific timepoints and ages - also referred to as obtaining temporal or longitudinal resolution in 

Gene Network 
Analysis 

Use of a gene clustering 
approach (eg. hierarchical 
clustering of gene connectivity, 
used in WGCNA) to identify 
groups of related genes 
(modules) 

This approach identifies modules which capture the gene 
expression patterns of cell-types and biological processes in 
sequenced tissue samples. Therefore, identifying modules with 
variable expression across conditions of interest will implicate these 
specific cell-types and biological processes in those conditions. 

Gene Set Two or more genes which are 
similarly differentially expressed 
in one group compared to 
another group 

Groups of differentially expressed genes with increased or 
decreased expression between conditions (eg. case v. control), and 
gene co-expression or correlation modules from a network analysis, 
are examples of gene sets. 

https://paperpile.com/c/PTbgY8/YGWi
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an experiment - is advantageous for understanding how model systems change with age, or 

respond to treatments administered across a period of time. Alternatively, to determine how gene 

expression is changed across different organs or distinct areas in a model organism, it is 

necessary to have sufficient spatial resolution. This type of resolution is important for determining 

if changes seen in one area - such as a brain region - are present across multiple areas, or limited 

to just that single area. Finally, in an experiment geared towards understanding how distinct 

disorders, conditions, or exposures alter a model organism, it is important to obtain sufficient 

resolution across these groups of interest. In general, for every comparison and contrast that one 

seeks to make across groups - whether they be temporal, spatial, disorder, condition, or exposure 

groups - there must be a sufficient amount of samples within each distinct group to make those 

comparisons of interest. Conducting a preliminary power analysis11 is often advisable to 

determine how many samples will most likely be needed. And since it is often challenging to obtain 

enough samples to have complete temporal, spatial, and disorder/condition/exposure resolution 

for an experiment, prioritizing the most important questions and planning experiments that obtain 

sufficient sample resolution for those questions is an effective strategy. 

The type of RNA-seq that you will conduct - bulk, single cell/nucleus, or spatial - should 

also guide choice of samples. With bulk RNA-seq, while profiled RNA is a mixture from many 

distinct samples, it is more cost effective to sequence more samples with greater read depth (total 

number of RNA reads sequenced) than with other methods. Single cell or nucleus RNA-seq does 

provide single cell resolution, but what is gained with this cellular resolution often needs to be 

traded for resolution across distinct samples due to cost. Likewise, there are only a limited number 

of RNA molecules detectable within a given cell, with substantial dropout (genes with 0 counts). 

Substantial cDNA amplification is often required which can lead to PCR artifacts, although 

incorporation of a unique molecular index (UMI) can help to address this challenge.  Read depth 

is also lower with single cell RNA-seq, and RNA extraction is still limited to polyA capture 

https://paperpile.com/c/PTbgY8/WxIU
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approaches, limiting the amount and diversity of RNA that can be collected with this method. 

Spatial RNA-seq provides spatial resolution on a micro-scale across sample slices, localizing 

RNA to specific cellular locations. However, spatial RNA-seq is subject to some of the same 

shortcomings as single cell/nucleus RNA-seq – cost, lower read depth, often a limited number of 

samples, and limited RNA diversity. All of the pros and cons of these different RNA-seq 

approaches should be considered during the experiment planning stage. In general, when 

interested in profiling the cellular diversity of specific samples and understanding how RNA is 

utilized in cells, single cell/nucleus and spatial RNA-seq are ideal choices. However, when 

seeking to profile diverse types of RNA, and/or many samples across time, regions, or conditions, 

bulk RNA-seq may be a more appropriate choice. Ideally, ultimately running multiple RNA-seq 

experiments to understand gene expression changes across time, space, conditions, cell-types, 

subcellular compartments, etc. is desirable. However, in all cases, it is important to think critically 

about how the type of RNA-seq selected will address key questions of interest. While newer and 

advanced techniques are often enticing, sometimes they may be unnecessary or, worse, 

detrimental towards achieving your experimental aims. 

After samples are collected and the type of RNA-seq is chosen, the next task is to decide 

how RNA will be extracted, prepared for sequencing, and quantified in your experiment. Many 

resources exist to assist with making these choices,12–16 and as this step is not necessarily specific 

to psychiatric disorder research I will not cover this topic comprehensively, but I will review some 

of the main considerations. There are many types of RNA that can be selected for - coding 

mRNA’s can be captured via polyA selection, noncoding RNA (such as lncRNAs) can be 

interrogated from total RNA libraries, which usually involve a set that depletes the otherwise very 

abundant levels of rRNA within a cell. Probe-based capture methods have also been developed 

which can enrich for specific genomic targets, as is done for whole exome sequencing, for 

examples. 

https://paperpile.com/c/PTbgY8/ySDl+i2oR+I2hD+VoFH+2UpA
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Reads can be captured in experiments that range between 50 - 150 bp (or even longer) 

RNA reads. Paired and single end sequencing can both capture all of these types of RNA, 

however paired end reads are preferred since genome mapping rates (and consequently, read 

quantification) is improved when both RNA read ends are sequenced. However, when seeking to 

quantify distinct gene isoforms and identify differential RNA splicing and editing across samples, 

it is necessary to select for longer reads (at least 75 bp) and implement paired end RNA-seq. For 

microRNA and other experiments evaluating small noncoding RNAs, shorter read lengths - less 

than 50 bp - must be selected for.  The type of RNA selection method also influences the type of 

RNA that will be sequenced. Poly-A selection methods use oligo-DT priming to generate cDNA 

libraries from mRNA and some pre-mRNA that have undergone poly-adenylation. rRNA depletion 

methods remove rRNA from extracted RNA, retaining all remaining types of RNA - beyond just 

protein coding RNA. In thinking about how to quantify RNA, there are two main choices - RNA 

can be quantified at the whole gene level (the sum of all exons), or the isoform level (estimate 

how reads aligned to the genome are distributed across isoforms). In general, for initial 

experiments which seek to obtain an initial understanding of how biological systems are acting in 

samples, approaches such as polyA RNA extraction with gene level quantifications are often 

sufficient. Alternatively, for experiments seeking to obtain finer, more detailed information about 

how distinct types of RNA are altered across samples where much is already known, it is 

advisable to perform rRNA depletion with longer RNA reads and isoform quantification. In general, 

if cost allows it is advisable to obtain rRNA depleted, longer RNA reads with greater read depth 

since these sample preparation choices offer more options for downstream analysis - but if 

funding is limited, for many types of experiments shorter RNA reads with relatively lower read 

depths can still be quite informative. It is necessary to reflect on experimental aims and choose 

sample preparation steps accordingly. Finally, it is important to evaluate RNA quality (RIN) and 
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other RNA and sample quality metrics (such as postmortem interval with human samples, and 

pH) prior to sequencing, as these factors are known to effect sequencing quality.17  

To end this discussion on effective experimental design, I will emphasize a critical planning 

step: the assignment of samples to RNA-seq batches. Implementing a randomized block design 

for sequencing batches, while seemingly trivial, is one of the most important aspects of RNA-seq 

experimental design. This is because sequencing batch contributes substantially to gene 

expression variance across samples in RNA-seq data, making it critical to account for it when 

conducting differential gene expression analysis. Therefore, it is extremely important to think 

about the comparisons and contrasts that will be made across groups of interest before 

sequencing, and distribute samples within these groups approximately equally across all 

sequencing batches. Ideally, all of your samples can be sequenced in one batch (this can be 

achieved through tagging RNAs from each sample with a specific barcode, a process referred to 

as sample multiplexing) - if this is the case, then there is no need to worry about randomizing 

samples across batches. However, for larger experiments that do require multiple batches, sorting 

approximately equal numbers of samples from each group of interest into each batch is absolutely 

necessary. If this is not done - for example, if all cases are in one sequencing batch and all 

controls are in another batch - then it will be impossible to tell sequencing batch effects and 

biological group effects apart in subsequent differential gene expression analyses, limiting the 

interpretability of the entire RNA-seq experiment. In this case, sequencing batch would be referred 

to as a confounding factor. To prevent this from happening, in addition to distributing equal 

numbers of samples from groups of interest across sequencing batches, it is advisable to run a 

simple chi-square test of independence to verify that groups of interest and sequencing batch are 

truly unassociated. Finally, while carefully planning sequencing batches is important, I note that 

randomizing samples across flow cell lanes is not required, as it has been well-documented that 

there is very little if any contribution of distinct flow cells to RNA-seq gene expression variance.18 

https://paperpile.com/c/PTbgY8/stjN
https://paperpile.com/c/PTbgY8/4Wgb
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1.4: Processing RNA-seq data 

 

 RNA-seq data processing is a rapidly evolving area of research where new tools and 

approaches are developed regularly. While these new tools generally enhance the accuracy and 

capability of RNA-seq analyses, with the vast array of RNA-seq processing pipelines available it 

is often difficult to determine which ones are appropriate for different experiments. To address 

this barrier, this section will focus on reviewing the main steps inherent to every RNA-seq 

processing pipeline (Table 1.2), as well as the justifications for performing these steps in different 

contexts (Figure 1.2-1.3). We will not go into detail comparing and contrasting specific tools, since 

this information is already generally well-documented and not unique to psychiatric disorder 

research. Instead, for help with choosing specific RNA-seq processing tools for your experiment, 

I recommend searching for recent reviews, blogs, and discussion boards that evaluate different 

tools of interest to help inform your decision. Websites such as Biostars19 and SeqAnswers20 are 

often good places to start. Here, I will provide essential knowledge for evaluating both the current 

and future RNA-seq processing tools that are comprehensively described in these other 

resources. Through discussing the concepts behind every main RNA-seq data processing step, 

this section will function as a universal and foundational guide for RNA-seq pipeline design. 

  

https://paperpile.com/c/PTbgY8/nnBq
https://paperpile.com/c/PTbgY8/9GkB
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Figure 1.3: Overview of RNA-seq data processing steps. Depictions of essential RNA-seq data 
processing steps: gene filtering, normalization, outlier removal. Then, processed RNA-seq  
data can be evaluated with a factor analysis to prepare for gene set prioritization analyses. The data 
shown here is randomly generated. 
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Processing 
Step 

Description Purpose Considerations Tools 

RNA Read 
Alignment to 
the Genome 

Match RNA reads 
to probable 
DNA/gene 
sources 

This step is essential for 
variant calling and RNA 
splicing analyses, and is 
also necessary for some 
RNA read quantification 
tools 

Not all RNA reads will align to the 
genome (eg. RNA derives from an 
unannotated genomic region), so 
some reads will be lost at this step 

STAR,21 HISAT2,22  

RNA Read 
Quantification 

Quantify the 
estimated number 
of RNA reads 
matched to each 
gene and/or 
isoform 

Needed for downstream 
quantitative analyses 

Estimated counts are the predicted 
counts of RNA reads, whereas 
TPM and FPKM are adjusted for 
differences in total RNA library size 
and gene length 

Salmon,25 Kallisto,26 
Rsubread,27 RSEM,28, 
featureCounts,29 
HTseq30 

Genomic 
Variant Calling 
from RNA 

Identify SNPs in 
RNA-seq data 

Comparing SNPs from 
RNA-seq data with 
sample genotype data 
(separately collected) 
can be a useful quality 
control measure 

SNP calling from RNA-seq data is 
not as accurate as whole genome 
sequencing or using a genotyping 
chip, and should not be used as the 
primary source of genotype 
information 

GATK31 (for sample 
swap detection, 
ancestry, and sex 
determination), 
https://github.com/bre
ntp/somalier, 
verifyBAMID23  

RNA Splicing 
Analysis 

Identify splice 
sites present in 
RNA 

To determine if there are 
any differentially spliced 
sites in the transcriptome 
across sample groups 

Integration of differentially 
expressed isoforms with 
differentially spliced sites can 
enhance our understanding of 
these isoforms (we can predict if 
differential splicing is likely driving 
differential expression) 

Leafcutter,32 rMATS,33 
MAJIQ34 

Gene Filtering Remove genes 
with near zero 
expression in all 
samples 

Only genes which are 
reasonably expressed 
can be assessed for 
differences across 
groups 

Generally, genes with at least 0.1 
CPM in 50% of samples is a 
reasonable filter; however, it is 
often helpful to evaluate multiple ‘x’ 
CPM in at least ‘y%’ of sample 
thresholds to select the optimal 
thresholds where the number of 
genes kept ‘levels off’ (increasing y 
does not greatly reduce the number 
of genes kept) and is reasonable 
(at least 15,000 genes for most 
experiments) 

DESeq2,35 or simply  
(in R): 
> filt = 
apply(cpm>0.1,1,sum) 
> keep = which(filt > 
0.5*dim(cpm)[2]) 
> cpm_filt = cpm[keep,] 

Normalization Transform gene 
expression so that 
each gene is 
normally 
distributed 

Normalizing enables 
samples to be fairly 
compared with a GLM 

Taking log2 and adjusting for read 
depth variance across samples 
(TMM based size factors) are 
common approaches 

Limma (voom),36 
DESeq2 (VST),35 
edgeR,37 CQN (sqn)38 

Outlier 
Removal 

Remove sample 
outliers from gene 
expression data 

Outliers can skew results 
and conclusions, so it is 
beneficial to remove 
them 

Removing samples 3 standard 
deviations or more away from the 
mean of top PCs from PCA 
(covering 50% or more of 
expression variance) within groups 
contributing substantially to gene 
expression variance (usually 
condition/treatment and 
sequencing batch) is a reasonable 
approach 

PCA, hierarchical 
clustering of samples, 
or with sample 
connectivity (in R with 
WGCNA39): 
> normadj = 
(0.5+0.5*bicor(expr))^2 
> net = 
fundamentalNetworkCon
cepts(normadj) 
> ku = 
netsummary$Connectivit
y 

https://paperpile.com/c/PTbgY8/6wIj
https://paperpile.com/c/PTbgY8/aV7t
https://paperpile.com/c/PTbgY8/Tk4z
https://paperpile.com/c/PTbgY8/AQuA
https://paperpile.com/c/PTbgY8/GjqA
https://paperpile.com/c/PTbgY8/YazK
https://paperpile.com/c/PTbgY8/aISe
https://paperpile.com/c/PTbgY8/1otJ
https://paperpile.com/c/PTbgY8/FOJo
https://github.com/brentp/somalier
https://github.com/brentp/somalier
https://paperpile.com/c/PTbgY8/Fzon
https://paperpile.com/c/PTbgY8/RpSK
https://paperpile.com/c/PTbgY8/KcZM
https://paperpile.com/c/PTbgY8/OZdy
https://paperpile.com/c/PTbgY8/Sod5
https://paperpile.com/c/PTbgY8/OZdy
https://paperpile.com/c/PTbgY8/Q0Ci
https://paperpile.com/c/PTbgY8/xu70
https://paperpile.com/c/PTbgY8/iDKk
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Evaluate RNA-
seq Quality 
Metrics 

Determine how 
RNA-seq quality 
metrics contribute 
to gene 
expression data 

RNA-seq metrics which 
contribute substantially 
to gene expression data 
should be corrected for 
in subsequent analyses, 
as this will help to 
identify biological effects 

One approach for choosing RNA-
seq quality metrics to correct for is 
to generate a heatmap of GLM 
associations (p-values, R2, etc.) 
between expression data top PCs 
from PCA and RNA-seq quality 
metrics, and to correct for the RNA-
seq quality metrics which are 
strongly associated with your top 
PCs 

PicardTools,40 
RSeQC,41 and 
STAR21, QoRTs,24 
and multiQC46 all 
collect RNA-seq 
quality metrics from 
RNA-seq data 

Check for 
Associations 
Within 
Metadata 

Evaluate 
associations 
across both 
biological and 
technical factors 

Any confounds 
(associated factors) 
should be addressed, 
usually through keeping 
only one unique factor 
out of associated groups 

Many RNA-seq quality metrics (and 
possibly biological factors too) will 
usually be associated with each 
other – it is advantageous to just 
select one of these metrics out of 
associated groups when evaluating 
how these metrics impact top 
expression PCs from PCA 

Regression (similar to 
what is described for 
‘Evaluate Quality 
Metrics’) 

Sequencing 
Batch 
Correction 

Account for 
sequencing batch 
in DE gene 
analysis and gene 
network analysis 

Sequencing batch is 
often the largest factor 
contributing to gene 
expression, so it is 
important to account for 
it 

Ideally, all samples can be 
sequenced in one batch, but if not 
make sure to balance sample 
groups of interest across batches 

ComBat,42 Regression 
(select sequencing 
batch as a model 
covariate) 

Table 1.2: Overview of RNA-seq processing steps. Descriptions, justifications, considerations, and 
examples of tools for each main RNA-seq data processing step. 
 
 Raw RNA-seq data is returned in FASTQ files, which contain the sequences of RNA reads 

along with sequencing quality information. Several tools exist for checking the quality of raw RNA-

seq data, with FastQC43 being one of the most widely used. In general, it is advisable to evaluate 

quality metrics at this stage and take note of any irregularities (for example, large numbers of 

RNA read duplicates for some samples), since this information may guide quality control and 

differential gene expression analysis choices later on. After this preliminary quality check, for most 

RNA-seq experiments the objective is to quantify how the RNA reads in these files are distributed 

across genomic regions for downstream quantitative analysis. Genomic variants can be called 

from RNA-seq data, however the reliability of these variant calls is often lower than that of DNA 

sequencing or chip genotyping approaches. This makes RNA-seq variant calling most suitable 

for quality control purposes, such as for validating that RNA-seq and genotype chip data match 

when taken from the same sample (verifying that samples were not accidentally swapped during 

sample prep and/or sequencing). Optionally, it is sometimes advisable to trim sequencing 

adaptors from raw RNA reads, especially if RNA sequencing length was greater than the size of 

https://paperpile.com/c/PTbgY8/CwZx
https://paperpile.com/c/PTbgY8/W98v
https://paperpile.com/c/PTbgY8/6wIj
https://paperpile.com/c/PTbgY8/EKnj
https://paperpile.com/c/PTbgY8/mW01
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selected RNA reads (for example, if 75 bp RNA reads were selected, but sequenced reads are 

100 bp, adaptors should be trimmed). However, it is better to plan your RNA-seq experiment so 

that sequencing length is approximately equivalent with selected read length.  

RNA can be quantified in two main ways: genome alignment dependent, or alignment free. 

In alignment dependent pipelines, RNA must first be mapped to the genome, and then these 

alignments are counted. In general, we expect that approximately >80% or more of reads should 

align to the genome for good quality RNA-seq experiments. When the alignment rate is lower, it 

is advisable to go over the preceding sample preparation and RNA-sequencing steps to determine 

what might be contributing to the low alignment rate - it may be an important quality issue that 

could negatively impact downstream analyses. Aligned RNA (stored in binary BAM files, or 

uncompressed SAM files) is also needed for many quality control metric gathering tools. RNA-

seq quality statistics are valuable for gene set prioritization approaches, as I will discuss in the 

subsequent section. In alignment free approaches, while a transcriptome reference is still needed, 

the alignment stage is skipped and quantification data is obtained directly from FASTQ files. RNA-

seq data can be aligned and quantified with entire genes, from transcription start site to 

transcription end site, or with distinct gene isoforms. Importantly, for short read RNA-seq, isoform 

quantifications are estimates based on the distribution of RNA read alignments across the exons 

of a gene. The longer the RNA read, the more accurate these estimates are, and for long read 

RNA-seq (such as with PacBio or Oxford Nanopore approaches44) complete isoform alignments 

and quantifications can be made, although the read quality is lower. However, long read 

sequencing presents its own challenges, since the processing tools and pipelines for long read 

approaches are not as well established as those for short reads.44 For all types of RNA 

quantification methods, output can be delivered as direct estimates of RNA read counts or values 

scaled for read depth and/or gene/isoform length (examples of scaled output are CPM, TPM, 

FPKM, and RPKM). While it is nearly always necessary to correct for the influences of variable 

https://paperpile.com/c/PTbgY8/YKOR
https://paperpile.com/c/PTbgY8/YKOR
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read depth across samples for RNA quantification estimates, depending on downstream analysis 

steps, corrections for gene/isoform length may be unnecessary. Furthermore, some differential 

gene expression tools require the unscaled estimated counts as input, as these methods conduct 

corrections for the influences of read depth variance and/or gene/isoform length internally. In 

addition to the quantification of complete RNA reads, differential RNA splicing can also be 

quantified and compared across conditions of interest. Splicing analyses are often informative for 

interpreting differential expression results, particularly differentially expressed isoforms.  

RNA-seq processing is generally conducted with a high-performance computing cluster, 

considering that RNA-seq data files are usually quite large (at least 10 gigabytes in size per 

sample, for compressed files). In addition to the advantage of being able to work with larger files, 

working on a computer cluster is advisable because it enables RNA-seq sample processing to be 

performed in parallel. Several strategies exist for how to organize and implement RNA-seq 

processing steps with multiple samples.45 However, all processing pipelines generally end with 

aggregating results across all samples, to create consolidated matrices containing all 

genes/isoforms/features and all samples (for example, quantification data output could be a matrix 

where every row is a gene and every column is a sample, and entries are estimated counts of 

RNA from the genes). MultiQC46 is one commonly used tool for assembling RNA-seq processing 

and quantification output into single files.  Aggregating output in this way is always advisable for 

simplifying downstream processing steps that prepare data for approaches such as differential 

gene expression. In regards to selecting the preceding RNA-seq processing tools (aligner tools, 

quantification tools, etc.) for an RNA-seq pipeline, choices must depend on obtaining speed, a 

small memory footprint, usability, and accuracy. Fast, user friendly tools with a small memory 

footprint that are highly accurate are ideal choices. When forced to choose between tools that 

perform well in all of these areas, choosing the tool that is more established, or even randomly 

choosing between functionally equivalent tools if none are well established, are acceptable 

https://paperpile.com/c/PTbgY8/ik8w
https://paperpile.com/c/PTbgY8/HajC


23 
 

options. Additionally, when not much is known about any tools that are being considered, 

performing a quality analysis with your own data to compare and contrast tool performance is a 

good approach. Lastly, for all of the preceding processing steps discussed so far, it is important 

to always consider how each of these steps advances the RNA-seq experiment closer to 

addressing the motivation for the experiment. Quality control and read quantification are at the 

heart of RNA-seq processing, but additional steps - such as variant calling and RNA splicing 

analysis - may be advantageous for large, complex experiments that seek to characterize DNA 

regulatory relationships of RNA (for example, expression quantitative trait loci (eQTL) or splicing-

QTL analyses). And, conversely, for smaller experiments which are geared towards gaining an 

initial functional understanding of biological systems in sequenced samples, obtaining simple 

gene-level RNA quantification data may be all that is required. 

The following sections will focus on the analysis of RNA quantification data, as this is the 

most common application of RNA-seq, however many resources47,48 exist which further describe 

the analysis of other types of processed RNA-seq data (such as genetic variant data and splicing 

data). With quantified RNA read data (estimated counts, CPM, TPM, etc.) there are three steps 

(Figure 1.3) that commonly take place before (or during) differential gene expression analysis 

and/or gene network analyses; from this point, I will refer to both of these approaches as ‘gene 

prioritization analyses.’ The first task after obtaining gene quantification data is a gene filtering 

step. Genes with zero expression across most samples are uninformative for gene prioritization 

analyses, requiring their removal from subsequent analysis. Next, for downstream approaches 

that utilize generalized linear models (GLMs) and/or gene network analyses, the quantification 

data must be normalized, typically by taking log2 after quantification data is corrected for read 

depth differences across samples. If gene network analysis is being performed, it is also advisable 

to correct for gene length influences on gene expression. Read depth differences can be 

corrected for by obtaining CPM (counts per million), whereas measures such as TPM (transcripts 

https://paperpile.com/c/PTbgY8/7Cac+e0bf
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for million; generally preferred over RPKM/FPKM) can correct for both read depth and gene 

length. Another additional step that accounts for read depth influences on gene expression across 

samples is to correct for with trimmed mean of ‘m’ values (TMM).49 Some differential gene 

expression tools, such DESeq2,35 do not require users to normalize gene expression data prior 

to differential gene expression analysis - instead, DESeq2 integrates these corrections into 

differential gene expression calculations. The last step before gene prioritization steps can be 

implemented is outlier removal. Outliers can skew differential gene expression results and gene 

networks, so it is important to remove them before these steps. Evaluating top principal 

components as well as sample connectivity are both reasonable approaches to outlier removal. 

Additionally for this step, it is important to separately evaluate groups that contribute significantly 

to gene expression variance or are of special interest, such as sequencing batch and 

disorder/condition groups, since samples that appear to be outliers in the full dataset may just be 

a standard deviation away from its respective group mean. This can be especially true when group 

differences are large. Accordingly, when multiple groups contribute substantially to gene 

expression variance, outliers should be evaluated in combinations of groups (for example, all 

cases in sequencing batch 1, all controls in sequencing batch 1, etc.). 

1.5: Gene prioritization with RNA-seq 

 

 To identify interesting genes with the greatest possible accuracy in RNA-seq experiments, 

it is important to understand how different technical and biological factors (also referred to as 

metadata) all contribute to gene expression variance across samples (Table 1.2). Biological 

factors are attributes of biological samples, such as age, bodily region, disorder status, genotype, 

treatment duration, etc. Technical factors are features of an experiment that are unrelated to the 

activity of biological systems in sequenced samples, such as sequencing batch, RIN, sample pH, 

etc. Other technical attributes of samples, such as percent of RNA read duplicates, 5’ end 

https://paperpile.com/c/PTbgY8/RyES
https://paperpile.com/c/PTbgY8/OZdy
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sequencing bias for reads, percent of coding RNA, etc., that can be obtained with QC metric 

acquisition tools also often explain gene expression changes, making it important to obtain these 

metrics during the preceding RNA-processing steps and to evaluate how they impact gene 

expression variance. While biological factor influences are usually what experimental aims are 

focused on, technical factors can have substantial impacts on gene expression variance as well, 

making it important to account for these factors. By including all of these types of factors in 

subsequent gene prioritization analyses, it is more likely that interesting genes can be found. 

Once quantification data is cleaned and processed, then a factor analysis can be 

conducted to identify the factors (or ‘covariates’) that measurably contribute to gene expression 

variance (Figure 1.3). There are many valid approaches for this, and they are all based on 

evaluating covariates in the different types of generalized linear models (GLMs) used for gene 

prioritization analyses. Implementing the likelihood ratio (LR) test, Wald test, or the Lagrange 

multiplier test are all common choices for assessing and selecting GLMs, as they enable the 

comparison and optimization of different GLMs.103 Here, I will describe how to conduct another 

simple approach, which is to visually inspect how covariates (which can include hidden covariates, 

when known covariates do not sufficiently explain gene expression variance)104 contribute to gene 

expression variance as measured by principal component analysis (PCA). The first step is to 

measure the associations between the top principal components (PCs) of the gene expression 

data (the PCs that, together, explain greater than 50% of gene expression variance; or, at least 

the top 10 ranked PCs) and all known biological and technical factors. It is sufficient to conduct a 

simple linear regression for this, comparing every top PC with every known factor. The model 

adjusted R2 is an advisable metric for comparison, since it is a single measure that applies to 

single numeric factors as well as multi-level categorical factors (eg. when three or more brain 

regions are included in an experiment). Importantly, I note that one should assess how correlated 

different factors are in an experiment - among correlated factors, only one should be evaluated 
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for factor analyses. For example, cell line may be correlated with cell bank - in this case, just one 

of these factors (perhaps cell line) should be included for factor analysis. Additionally, factors 

should all be centered and scaled, or else the factors with larger numeric range will dominate PC 

associations. After the top PC associations with all factors are ascertained, it is then useful to 

visualize these associations on a heatmap where factors are hierarchically clustered based on 

top PC associations. With this heatmap, top factor associations with PCs will be clear. Selecting 

the top factor from each covariate cluster with a significant association with any of the topPCS is 

sufficient for choosing covariates for subsequent gene prioritization analyses. Tools such as 

variancePartition50 and MARS51 can be helpful for validating that selected covariates explain gene 

expression variance. Alternatively, these tools can be used independently to select GLM 

covariates that best explain gene expression variance, and then these covariates can be validated 

through measuring top PC associations. 

 Once factors that contribute substantially to gene expression changes are identified, a 

GLM must be designed that can account for these factors in gene prioritization analyses (Figure 

1.4; Table 1.3). For simple experiments, GLM design is trivial, but for complex experiments great 

care must be taken to design GLMs that can best address experimental aims. Therefore, I will 

discuss how different types of covariates commonly present in psychiatric disorder experiments 

can be modeled with a GLM. Binary fixed effects are simple categorical covariates with only two 

choices, some examples being control v. case, frontal cortex v. occipital cortex, untreated v. 

treated, etc. For these types of factors, it is important to remember to set the appropriate reference 

group that will become the model intercept - in a case v. control experiment, for example, the 

reference group will likely be the control group if effects in cases are of interest. Continuous fixed 

effects are, as the name suggests, continuous quantitative measures that can be any value from 

a certain distribution, such as age, RIN, psychiatric diagnostic scores, number of observations of 

a behavior, cell-type proportions (often a major contributing factor to large variance components 

https://paperpile.com/c/PTbgY8/UyD3
https://paperpile.com/c/PTbgY8/kaAb
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in bulk RNA-seq), etc. However, just because a covariate is numeric does not mean it is 

continuous. When discrete numeric values make up a covariate, such as three distinct treatment 

dosages, four possible test results, etc., this is referred to as an ordinal, multi-level covariate. 

Multi-level covariates are generally categorical, but in the case of ordinal factors then each 

category is represented by a number. In general, whenever a covariate has three or more distinct 

groups it is a multi-level factor, and it is especially important to be mindful of which group is set 

as the reference group for these covariates. To make comparisons between two groups within a 

multi-level covariate when neither is the reference group, it is necessary to perform linear 

contrasts. In more complicated cases, sometimes an experiment aims to evaluate more than one 

covariate. There are two main ways to evaluate more than one covariate with a GLM: the first is 

to investigate subsets of factors, such as comparing cases and controls within different brain 

regions, and the second is to explicitly determine how one factor interacts with another, such as 

measuring how sex effects case gene expression. When interested in subsets of factors, it is 

advantageous to combine factors together into these subsets and perform linear contrasts to 

directly address experimental aims. For example, for a schizophrenia postmortem human tissue 

sample from the temporal cortex, one may make a single combined disorder x region covariate 

that is equal to something such as SCZ_temporal for this sample. However, if interested in how 

the temporal cortex changes schizophrenic gene expression patterns in comparison to the frontal 

cortex, constructing an interaction term to capture this effect would be more appropriate. Finally, 

for experiments where multiple samples (at least three) are taken from a single subject - such as 

a longitudinal experiment where many samples are taken at different timepoints - it will likely be 

advantageous to utilize a mixed linear model with a random effect of subject. Since different 

individuals often vary in their baseline gene expression, for many different possible reasons, 

accounting for these differences will improve most GLMs. However, the likelihood ratio test or 
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another model evaluation test can always be implemented to evaluate if a random effect is truly 

necessary. 

  

Figure 1.4: Decision chart for GLM design. Depictions of different factors that often influence gene 
expression variance in psychiatric transcriptomic experiments. Questions regarding how these factors 
effect gene expression guide GLM design. 
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Approach/ 
Term 

Description Strengths Considerations Examples 

Generalized 
Linear Model 
(GLM) 

A linear regression 
where response 
variables can have 
many types of 
statistical distributions 
beyond the normal 
distribution; DE gene 
effects are most 
commonly identified 
with GLMs 

Many distinct types 
of data – particularly 
count data from 
RNA-seq – are 
readily analyzed with 
GLMs (such as with 
the negative binomial 
distribution) 

Many types of GLMs 
can be implemented in 
RNA-seq with different 
tools, but for all 
approaches it is 
important to include 
covariates which 
contribute to gene 
expression variance 

Limma/voom,36 
DESeq2,35 edgeR,37 
Sleuth,52 nlme,53 
lmer,54 the base ‘lm()’ 
function in R 

Choose 
Covariates for 
GLM 

Include model 
covariates which 
explain gene 
expression variance 

Biological effects of 
interest can be better 
detected when gene 
expression data is 
modeled as 
accurately as 
possible 

Factor analysis is useful 
for determining which 
covariates to include in 
your GLM 

MARS (such as with 
the ‘earth’ package in 
R),51 variancePartition 
(in R),50 see ‘Evaluate 
Quality Metrics’ in Box 
2, caret108 

Fixed Effects 
Model 

Binary (such as 
case/control), 
continuous (such as 
age), and multivariate 
(such as three 
sequencing batches) 
covariates in a GLM 

Easily interpretable 
covariates that can 
explain much of gene 
expression variance 

Choice of reference 
group for categorical 
covariates is important 
for drawing inference 
from significant gene 
expression differences 

Diagnosis, treatment, 
sequencing batch, 
genotype, age, 
treatment duration, 
sex, region (of a 
tissue or organ), 
tissue, organ, etc. 

Mixed Effects 
Model 

Often used for 
repeated samples, 
these models set 
different intercepts for 
‘random’ effects 

These models can 
better account for 
pervasive differences 
across sample 
groups 

Sufficient numbers of 
samples (at least three) 
from each random 
effect group is required 

Repeated samples 
from unique 
individuals, technical 
and biological 
replicates, longitudinal 
data, etc. 

Linear 
Contrasts 

Make many 
comparisons across 
and within distinct 
groups 

Contrasts enable 
specific questions to 
be addressed without 
relying on a 
reference group, as 
with fixed effects 

Combining factors 
together – such as 
diagnosis and brain 
region – is often 
advantageous for large 
and complex 
experiments (for 
example, compare 
region 1 in cases to 
region 2 in cases) 

For comparing 
subgroups within 
multivariate factors, 
for comparing 
combinations of 
covariate groups 

Interaction 
Effects 

Determine if the 
interaction of two 
factors leads to an 
effect that differs from 
the effect of each 
factor alone 

Interaction effects 
can reveal how 
covariates within an 
experiment influence 
each other to impact 
gene expression 

Interaction effects work 
best for simple, pointed 
questions – such as 
‘how does sex effect 
case gene 
expression?’; for 
general surveys of 
differences across 
many multivariate 
factors, linear contrasts 
are usually easier to 
interpret 

Should be 
implemented when 
interested in how one 
covariate effects 
another: how 
genotype influences 
case response, how 
age influences 
treatment response, 
etc. 

https://paperpile.com/c/PTbgY8/Sod5
https://paperpile.com/c/PTbgY8/OZdy
https://paperpile.com/c/PTbgY8/Q0Ci
https://paperpile.com/c/PTbgY8/QvnL
https://paperpile.com/c/PTbgY8/rsO2
https://paperpile.com/c/PTbgY8/rBVa
https://paperpile.com/c/PTbgY8/kaAb
https://paperpile.com/c/PTbgY8/UyD3
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Table 1.3: Approaches for identifying DE gene sets. Terms with descriptions, strengths, 
considerations, and examples that contribute to GLM design and DE gene set identification. 
 
 Once a GLM is constructed, a gene prioritization analysis can be performed. The most 

widely implemented of these, performed for nearly every RNA-seq experiment, is differential gene 

expression analysis (DE gene analysis). In this approach, a GLM is applied to every gene present 

in the processed gene expression data, and any gene with an adjusted p-value (corrected for 

multiple comparisons) less than 0.05 for a covariate of interest is deemed ‘differentially expressed’ 

across that covariate. Some of the most commonly used methods for adjusting p-values are the 

Bonferroni correction and the false discovery rate (Benjamini and Hochberg) correction.105 There 

are many tools that implement DE gene analysis with GLMs that are specialized for RNA-seq 

data, most of which are accompanied by detailed instructions, illustrative tutorials, and 

comparative studies (Table 1.3). If time allows, it is advisable to implement at least two of these 

different tools and retain the high-confidence DE genes that are detected by all of the DE gene 

analysis methods implemented. Typically, DE genes are sorted into two groups to form gene sets: 

a group of upregulated genes and a group of downregulated genes. For example, for genes with 

an adjusted p-value less than 0.05 for a case/control covariate where the controls form the 

reference group, genes with a positive effect are increased/upregulated in cases compared to 

controls, whereas genes with a negative effect are decreased/downregulated in cases compared 

to controls. In the next section, I will describe different functional analyses that can reveal how 

biological systems are impacted by these groups of up- and downregulated genes. 

Construct a 
Regressed 
Gene 
Expression 
Dataset 

Remove the effects of 
undesired covariates 
(obtained from a GLM) 
from gene expression 
data 

This is often 
advantageous for 
gene network 
analysis, to keep 
covariates such as 
sequencing batch 
from influencing 
gene network 
construction 

Based on your 
experimental question, 
you may choose to 
remove biological 
covariate effects as well 
as technical covariate 
effects (for example, 
remove sex effects if 
you want a sex neutral 
gene network) 

In R: 
y = gene expression 
y_reg = regressed y 
mod = model matrix 
effect = measured 
effects from GLM with 
model matrix 
> y_reg = y – mod 
%*% effect 
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 Other than DE gene analysis, the other major type of gene prioritization analysis is gene 

network analysis (Table 1.4). For this approach, genes are clustered together into groups (also 

referred to as modules) based on patterns of gene correlation, co-expression, and/or connectivity 

across samples.39 Gene network formation methods differ in how gene connections are precisely 

defined, but all methods endeavor to measure gene relatedness across samples in an RNA-seq 

dataset and use this information to build a network from which modules can be identified. To 

perform gene network analysis, it is usually advantageous to use a regressed gene expression 

dataset (Table 1.3). A regressed dataset has the effects of technical covariates removed so that 

only biological covariates influence gene network formation. Here, I will point out three different 

types of gene network analysis: regulatory network formation, seeded co-expression analysis, 

and unseeded co-expression analysis. Regulatory gene networks (such as those formed with 

ARACNE55) are designed to extract modules containing direct regulatory relationships, whereas 

co-expression clustering approaches such as WGCNA39 are better for identifying more expansive 

modules that can represent the activity of entire biological processes and cell-types. However, 

since regulatory and co-expression gene relationships are often correlated, ARACNE and 

WGCNA are both capable of identifying regulatory and co-expression modules to some extent. A 

seeded analysis only captures correlation patterns with a single gene, whereas unseeded 

approaches evaluate all gene correlation patterns to form modules. The type of gene network 

approach chosen should depend on experimental aims. If interested in identifying regulatory 

relationships, a regulatory network should be used. Or, if interested in generally characterizing a 

disrupted biological system, an unseeded co-expression network analysis may be more 

appropriate. However, for all types of gene networks, it is important to understand how the 

underlying assumptions behind network formation support experimental aims, and to 

systematically evaluate clustering parameters so as to optimize them for your experiment. 

  

https://paperpile.com/c/PTbgY8/rhQs
https://paperpile.com/c/PTbgY8/iDKk
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Table 1.4: Approaches for gene network analysis. Terms with descriptions, strengths, considerations, 
and examples that summarize different types of gene network analysis and core concepts/vocabulary. 
 

Approach/Term Description Strengths Considerations Examples 

Co-expression 
Network Analysis 
(Unseeded) 

Empirical, data-
driven clustering of 
genes based on co-
expression patterns 
across samples 
(connectivity is the 
co-expression 
measure used for 
WGCNA) 

Reduces data 
dimensionality 
(1,000s of genes 
reduced to modules) 
and matches gene 
expression to 
distinct cell-types 
and biological 
processes 

Not all genes are grouped 
into modules, so some DE 
genes may not be 
included in modules 

WGCNA39, 
MEGENA109 

Co-expression 
Network Analysis 
(Seeded) 

Networks are 
formed based on 
association with a 
single ‘seed’ gene, 
producing one 
module of correlated 
genes, and one 
module of anti-
correlated genes 

Determine how the 
entire transcriptome 
is effected by the 
expression of a 
single gene 

Seeded module formation 
is ideal for experiments 
where only a single gene 
is of interest – however, 
since seeded modules are 
designed to capture direct 
effects of the seed gene 
alone, any indirect and/or 
related transcriptomic 
effects will be missed 

Created 
through 
correlation with 
a seed gene 
that passes a 
certain 
threshold 

Regulatory Network Identify genes that 
are in specific, direct 
regulatory networks 
(eg. transcription 
factors that directly 
influence the 
expression of other 
genes) 

Modules represent 
direct regulatory 
relationships, so any 
group differences in 
these modules will 
represent 
dysregulation in 
specific regulatory 
pathways 

Unlike co-expression 
networks, these networks 
will not capture 
transcriptome-wide 
patterns that represent 
activity in biological 
systems – these networks 
are only focused on 
identifying regulatory 
relationships 

ARACNE55 

Module Eigengene The first principal 
component (PC 1) 
of a gene network 
module (can be 
thought of as 
‘average module 
expression’) 

Summarizes module 
gene expression for 
evaluation of the 
module as a whole 

Module eigengenes can 
replace single genes for 
DE gene analysis 
approaches, so that entire 
modules with clear 
functional associations 
can be evaluated across 
sample groups of interest 

All network 
approaches 

Hub Genes Genes to prioritize in 
a module, typically 
which are highly 
significantly 
associated with the 
module eigengene 

These genes help to 
understand the 
function of a module 
better, as they are 
more likely to ‘drive’ 
module function 
than other genes in 
the module – they 
may be transcription 
factors in unseeded 
co-expression 
approaches 

Hub genes can be defined 
in many ways, but they 
are always genes of key 
interest in a module based 
on some statistical 
measure – correlation with 
the seed gene (for seeded 
approaches) and 
increased regulatory 
activity in the module (for 
regulatory networks) may 
also determine which 
module genes are hubs 

All network 
approaches 

https://paperpile.com/c/PTbgY8/iDKk
https://paperpile.com/c/PTbgY8/rhQs
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Once modules are obtained, a key advantage of all types of gene network analysis is that 

modules can be analyzed much like the groups of DE genes previously discussed - but with much 

reduced dimensionality (less than 100 modules typically, compared to thousands of genes). And 

while groups of DE genes are usually quite broad, as they are the summation of all up- and 

downregulated genes, modules are constructed to capture specific biological patterns, making 

their functional interpretation typically more informative. Modules also contain ‘hub’ genes, which 

are those genes that are highly correlated with all other module genes. Hub genes are of particular 

interest, since they are likely to play driving roles in regulating module gene expression, possibly 

as transcription factors or through another biological mechanism.To determine how modules are 

impacted by covariates of interest, the first principal component (or ‘module eigengene’) of 

modules can be treated much like the expression of a single gene and analyzed with a GLM. 

However, while many genes with covariate effects that do not quite pass GLM statistical 

significance thresholds can be rescued by gene network analysis, it is also common for many DE 

genes to not be sorted into modules, making it advantageous to perform a DE gene analysis along 

with a gene network analysis to ensure that all dysregulated genes are identified and evaluated. 

In addition to these considerations, it is important to note that gene network analysis is generally 

harder to implement than DE gene analysis, even though many helpful tutorials56,57 and 

resources58,59 exist. Because of this, experiments with limited time and resources may only be 

able to perform DE gene analysis, which is entirely sufficient for many projects. Additionally, gene 

network analysis still proves to be a challenging and quickly evolving field for single cell/nucleus 

RNA-seq experiments,60 creating another barrier to implementation for these projects. However, 

it is still advisable to use gene network analysis - especially for bulk RNA-seq experiments - if 

time and resources allow, considering that this approach is more specific and oftentimes more 

functionally informative than DE gene analysis. 

https://paperpile.com/c/PTbgY8/AHZ4+neXO
https://paperpile.com/c/PTbgY8/FhQw+Kf1u
https://paperpile.com/c/PTbgY8/Vkf9
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1.6: Integration of RNA-seq results with orthogonal data 

 

 Once an interesting gene set has been identified with DE gene analysis or gene network 

analysis, the next step is to predict what the gene set represents in biological samples. This 

generally involves linking gene sets to the active cell-types and biological processes that likely 

drive gene set expression. To obtain this understanding, it is necessary to integrate gene sets 

with orthogonal biological data sources that can offer functional insights. Here, I will focus on two 

main types of orthogonal data integration approaches: functional enrichment analysis, and the 

evaluation of gene sets in external gene expression datasets (Table 1.5). Choosing which 

orthogonal data integrations to perform for an RNA-seq experiment is at the heart of gene set 

functional characterization, since all of these orthogonal data associations inform each other and, 

ultimately, must all be interpreted jointly to predict how biological systems are effected in 

conditions of interest. I will discuss this topic - the functional interpretation of interesting gene sets 

- in detail in the next section. Here, I will prepare for this discussion by providing an overview of 

orthogonal data integration approaches that are useful in psychiatric disorder research. 

  



35 
 

Does my 
gene set 

contribute 
to… 

Approach Tools and 
Resources 

Orthogonal Data 
Integration 
Category 

Strengths Limitations 

Biological 
processes? 

Gene 
ontology 

enrichment 
  

Tools: 
Metascape,61 
gProfileR,62 
GSEA,63 
PantherDB,64 
Enrichr,65 
topGO,66 
ReactomePA,67 
PathFinder,68 
WebGestalt,69 
DAVID70 
Resources: GO 
Consortium,7171,72 
KEGG,73–75 
Reactome 

Functional 
Enrichment 

Determine if your 
gene set 

significantly 
overlaps with a 

known functional 
category 

·  Any list of 
interesting and 
relevant genes 
(transcription 
factors, 
previously 
identified co-
expression 
modules, etc.) 
can be 
compared to 
your gene set 
using methods 
such as the 
hypergeometric 
test. 

·  Large curated 
lists and 
databases exist 
for functional 
enrichment 
analyses. 

·  These 
approaches can 
be quickly 
implemented to 
gain functional 
insights from 
your gene set. 

·  For genetic 
variant 
enrichments: 
with human 
samples, these 
gene sets are 
more likely to 
contribute to 
causal 
pathology. This 
knowledge 
helps to 
prioritize and 
guide future 
research. 

·  Many of the 
functional 
enrichment 
terms present 
in large 
databases 
may not be 
relevant for 
your sample 
type (eg. a 
‘kidney 
nephron 
development’ 
enrichment is 
largely 
uninformative 
for neural 
tissue derived 
gene sets). 

·  A lack of 
functional 
enrichments 
for your gene 
set does not 
mean there 
are none – 
especially if 
the gene set 
and functional 
enrichment 
terms are 
small. 

·  These 
analyses are 
limited to 
known lists of 
functionally 
related genes. 

·  For genetic 
variant 
enrichments: 
Some genetic 
variant 
databases are 
incomplete or 
underpowered
, especially for 
highly 
heterogeneou
s psychiatric 
disorders, 
possibly 
leading to 
false 
negatives. 

Cell-types? Cell-type 
marker 

enrichment 

Tools: Hyper-
geometric test 
(Fisher’s Exact 
test), pSI,76 
EWCE77 
Resources: 
scRNA-seq,cell-
type specific 
datasets 

Protein-
protein 

interactions 
(PPIs)? 

PPI 
enrichment 

Tools: Dapple,78 
STRING79 
Resources: 
BioGRID,80,81 
InWeb82 

Causal 
pathology? 

Common 
genetic 
variant 

enrichment 

Tools: LDSC,83 
MAGMA84 
Resource: 
GWAS 

Rare genetic 
variant 

enrichment 

Tool: Logistic 
regression 
Resources: 
Databases such 
as SFARI,85 
SCHEMA86 

https://paperpile.com/c/PTbgY8/J49j
https://paperpile.com/c/PTbgY8/fJgh
https://paperpile.com/c/PTbgY8/M6JD
https://paperpile.com/c/PTbgY8/63Nf
https://paperpile.com/c/PTbgY8/E2CF
https://paperpile.com/c/PTbgY8/8b2b
https://paperpile.com/c/PTbgY8/eEvZ
https://paperpile.com/c/PTbgY8/ZETc
https://paperpile.com/c/PTbgY8/FbZa
https://paperpile.com/c/PTbgY8/1WLd
https://paperpile.com/c/PTbgY8/An0n
https://paperpile.com/c/PTbgY8/An0n+aR25
https://paperpile.com/c/PTbgY8/tIwn+6AOl+OUlC
https://paperpile.com/c/PTbgY8/ynB7
https://paperpile.com/c/PTbgY8/3qng
https://paperpile.com/c/PTbgY8/OKl0
https://paperpile.com/c/PTbgY8/5KXJ
https://paperpile.com/c/PTbgY8/LMXd+cCpO
https://paperpile.com/c/PTbgY8/p1aA
https://paperpile.com/c/PTbgY8/hgLd
https://paperpile.com/c/PTbgY8/EKsv
https://paperpile.com/c/PTbgY8/dFit
https://paperpile.com/c/PTbgY8/3dXg
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Neuro-
development

al stages? 

Evaluate 
gene 

expression 
across 

development
al periods 

Resource: Allen 
Developing Brain 
Atlas87 

Evaluate 
Expression 
Patterns in 

External Datasets 
Examine how your 

gene set – using the 
first principal 

component, or top 
ranked genes – is 

expressed in a 
relevant external 
gene expression 
dataset obtained 
from a publicly 

available database 

·  Determine if 
your gene set 
exists, and/or 
exhibits similar 
patterns of 
expression, in 
other related 
studies (is this 
gene set 
robust?). 

·  Obtain greater 
resolution (eg. 
longitudinal) in 
your functional 
understanding 
of your gene set 
(does my gene 
set have 
consistent 
expression over 
time?). 

·  If samples are 
not well-
matched or 
technically 
flawed, 
observed 
patterns may 
not be 
informative for 
your identified 
gene set. 

·  Orthogonal 
publicly 
available 
datasets often 
only contain 
neurotypical 
controls, 
limiting 
interpretations 
to control 
samples. 

Distinct brain 
regions? 

Evaluate 
gene 

expression 
across brain 

regions 

Resource: 
GTEX,88 Allen 
Brain Atlas9 

Human-
specific 

processes? 

Evaluate 
gene 

expression 
in humans 

compared to 
other 

species 

Resource: Allen 
Brain Atlas 
(mouse,  non-
human primate, 
human)89 

Table 1.5: Approaches for orthogonal data integration with interesting gene sets. Terms with 
descriptions, strengths, considerations, and examples that summarize different types of orthogonal data 
integration techniques. 

 Functional enrichment analysis is best suited for categorical types of orthogonal data, 

including gene ontologies, cell-type markers, protein-protein interaction lists, and groups of genes 

linked to genetic risk variants for psychiatric disorders. Many functional enrichment approaches 

employ some variation of the hypergeometric test to determine if an RNA-seq derived gene set 

overlaps with another gene set category more than expected by chance. Significant overlaps 

indicate that the orthogonal gene set category is over-represented in the RNA-seq derived gene 

set. While each approach has its own considerations and accounts for different influencing factors 

(eg. linkage disequilibrium for genetic enrichment analysis), this idea of ‘identifying significant 

overlaps between gene lists’ is behind most enrichment analyses. The implication of a significant 

overlap varies depending on the orthogonal gene set category. Gene ontology term enrichments 

indicate that the RNA-seq derived gene set is likely involved in the biological processes that 

correspond with the gene ontology term. However, it is important to consider how different gene 

ontology terms overlap with each other, and if positive gene ontology enrichments make sense 

for the experimental sample type. For example, a kidney nephron development enrichment with 

https://paperpile.com/c/PTbgY8/pmt7
https://paperpile.com/c/PTbgY8/TV8t
https://paperpile.com/c/PTbgY8/NtGo
https://paperpile.com/c/PTbgY8/7VT0
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a hippocampal sample may indicate that the gene set is simply involved in developmental genes 

that overlap with the kidney nephron development gene ontology list. 

Another type of functional enrichment approach is to examine cell-type marker overlap 

with interesting gene lists. This type of analysis is most applicable to bulk RNA-seq experiments, 

which will contain gene expression from the complete mix of cell-types present in samples. 

Positive enrichments indicate that the overlapping cell-type may be responsible for driving gene 

set expression. However, again it is important to consider how cell-type markers overlap across 

all of the cell-types examined - when this is the case, it is likely that a gene set that is significantly 

enriched for one cell-type will likely be significantly enriched for all other overlapping cell-types 

too. To address this, some approaches constrain cell-type markers to cell-type ‘specificity’ 

markers, which distinguish single cell-types from all other cell-types examined for the enrichment 

analysis. One such method, EWCE,77 even employs a permutation approach - rather than the 

hypergeometric test - to establish cell-type enrichments with cell-type specificity markers. In 

addition to examining cell-type marker overlaps, another informative functional enrichment 

approach is to determine if direct protein-protein interactions are present in a gene list more than 

expected by chance. Positive enrichments imply that a gene list likely serves to produce proteins 

that participate in a biological process, rather than regulatory RNAs. 

The last type of functional enrichment analysis that I will discuss here, which is specifically 

relevant for human postmortem and ex vivo tissue experiments, is genetic variant enrichment with 

gene sets. Both common and rare genetic risk variants can be compared with gene sets to 

determine if genes proximal to these risk variants are significantly over-represented. Positive 

enrichments indicate that this gene set may be causal, or at least contribute to causal processes 

in some way, in disorder pathology. Importantly, for all of the types of functional enrichment 

approaches I have touched on here, functional inference should not be made based on negative 

enrichments (the lack of an enrichment). In this case, it is impossible to know if a lack of statistical 

https://paperpile.com/c/PTbgY8/3qng
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power, or other statistical or experimental influences, prevent a true positive enrichment from 

being discovered. For example, when comparing a small gene set with a small list of cell-type 

markers, even if the gene set is derived from that cell-type a hypergeometric test may not be 

significant due to the small input list sizes. 

 The second major type of orthogonal data integration approach is to evaluate gene set 

expression patterns in external gene expression datasets. These datasets include RNA-seq, and 

possibly gene expression microarray, experiments that capture neurodevelopmental trajectories 

(Table 1.5; Allen Developing Brain Atlas87), span distinct brain regions (Table 1.5; GTEX,88 Allen 

Brain Atlas9), or contain multiple distinct species (Table 1.5; Allen Brain Atlas (mouse,  non-

human primate, human)89). Any external datasets used for this type of analysis should offer 

insights into longitudinal, spatial, and/or species trajectories that are absent from the original RNA-

seq experiment. To evaluate gene sets in these external datasets, the first principal component 

of the gene set can be used, or select genes of particular interest within the gene set (eg. module 

hub genes, top 10 most significantly differentially expressed genes). I will refer to both of these 

as ‘representative’ genes from an interesting gene set. Representative genes can be evaluated 

with GLMs in external datasets. Of course, care should be taken to process these external 

datasets and account for impactful covariates, just as before with the original RNA-seq dataset. 

The objective for analyzing representative genes in orthogonal gene expression data is to 

understand how a gene set may function in contexts beyond that of the RNA-seq experiment the 

gene set was identified in. Examining representative genes in datasets with good longitudinal 

and/or neurodevelopmental resolution can indicate how gene set expression changes over time. 

For example, if gene set expression is low in fetal developmental periods but increases 

continuously after birth, this indicates that the gene set is only active postnatally and becomes 

more active with maturity. Another valuable type of external gene expression dataset, multi-region 

datasets, offer increased spatial resolution that can reveal how a gene set is expressed across 
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many distinct regions. For example, a multi-region RNA-seq dataset containing a span of cortical 

areas may show that a gene set identified in just one of these areas displays increased gene 

expression in anterior regions relative to posterior regions, indicating that this gene is more active 

in the frontal areas. Multi-species gene expression datasets can also help to interpret gene sets, 

especially those identified in a non-human model species. If representative genes for a gene set 

are highly expressed in a certain model system of a disorder, but not differentially expressed in 

samples from the human form of the disorder (where regions and ages are matched as well as 

possible), then the gene set may not be informative for understanding human disorder 

mechanisms. Finally, for modules identified with gene network analysis, module preservation 

analysis can be conducted to see if the correlation patterns that created a module in one RNA-

seq experiment are recapitulated in an external dataset. This type of analysis can be especially 

helpful when comparing species, to determine if a module found in a model system (such as 

mouse) is also present in humans. 

1.7: Functional interpretation of RNA-seq results to advance research 

 

 Three distinct factors contribute to functionally interpreting a gene set: integrations with 

orthogonal biological datasets (as discussed in the preceding section), biological attributes of 

sequenced samples, and the directionality of gene expression changes for biological covariates. 

The descriptive qualities of sequenced samples will determine how gene set integration with 

orthogonal datasets should be carried out and interpreted. For example, for RNA-seq performed 

with human samples, cell-type markers should be defined with human samples that match the 

sequenced brain areas and ages as closely as possible. Additionally, for this example any 

significant enrichments should be interpreted based on the external dataset in which cell-type 

markers were defined. If cell-type markers were defined in parietal cortex samples, then cell-type 

enrichments for gene sets identified in the frontal cortex should be interpreted as enrichments for 
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frontal cell-types resembling parietal cortex cell-types. This example illustrates that the type of 

orthogonal data selected for integrative analyses, and the conclusions made based on significant 

results, both heavily depend on the biological attributes of sequenced samples. In general, 

functional interpretations of RNA-seq gene sets depend heavily on the types of samples 

sequenced - interpretations can only be made based on the temporal, spatial, and species 

contexts in which samples were acquired. For example, if RNA-seq was conducted with juvenile 

mice, then findings cannot be extrapolated to adult mice. The investigation of interesting gene 

sets in a new dataset containing adult mice (possibly an orthogonal gene expression dataset) 

would be the only way to predict how a gene set identified in the original RNA-seq experiment 

may behave in adult mice. 

The other factor that contributes substantially to gene set functional interpretation is the 

directionality of gene expression changes for biological covariates. For example, if a bulk RNA-

seq gene set is upregulated in a disorder group, and astrocyte cell-type markers are enriched in 

that gene set, then we can infer that astrocyte activity and/or cell-type proportion is increased in 

that disorder in the samples that were sequenced; the converse is true for downregulated gene 

sets. This same type of reasoning can be applied for continuous biological covariate associations. 

For example, if this same gene set that is enriched for astrocyte cell-type markers is also positively 

associated with age, this indicates that this gene set is most highly expressed in mature 

astrocytes. Lastly, gene expression effects in all biological covariates should be examined 

together - along with orthogonal data integrations and sample attributes - to ensure that functional 

interpretation is complete, accurate, and informative. For example, consider a spheroid model 

system with multiple different genetic knock-outs, where samples were taken at different 

timepoints. A gene set is identified that is enriched for excitatory neuron cell-type markers and 

neuronal projection gene ontology terms. If this gene set is highly expressed in a single genotype 

at an early developmental time point, the interpretation would be that only this genotype has early 
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increased neuronal projection activity. However, if instead this gene set is equally expressed in 

all genotypes and is highly expressed at the final time point, this would indicate that neuronal 

projection processes are equally active across the genotypes and expressed later in 

development. Evidently, different gene expression effects in distinct covariates can heavily 

influence how a gene set is interpreted, even when orthogonal data integration results are the 

same. And, as this example illustrates, if individual covariates are examined alone then important 

characteristics - such as longitudinal trajectories, specific genotype effects, etc. - that further 

describe a gene set will be missed, leading to incomplete and minimally informative functional 

interpretations. As demonstrated by all of these examples, when functionally interpreting 

interesting gene sets it is advantageous to examine all relevant orthogonal data integrations, 

sample qualities, and covariate effects all together. This comprehensive approach enhances and 

optimizes gene set functional interpretation, leading to stronger and more informative biological 

insights that advance experimental aims. 

 Once gene expression changes in interesting gene sets are identified and linked to 

putative biological functions, the final step in an RNA-seq experiment is to use these functional 

insights to measurably advance project goals (Figure 1.5a). I describe this process with a 

workflow that can be broken down into four major stages. The first is the identification of 

interesting gene sets, which I have described in the preceding sections. The second step is to 

use orthogonal data integration techniques, also described earlier, to determine which features of 

biological systems are functionally associated with interesting gene sets. Third, sample 

characteristics and the directionality of interesting gene set expression changes should be 

integrated with functional associations to predict how biological systems may be altered in 

conditions of interest (such as psychiatric disorder patient groups, model mice for a psychiatric 

disorder, etc.). The last step is to prioritize which predictions are the most interesting and relevant 

in addressing experimental aims, and to then validate these predictions with follow-up 
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experiments. To place this workflow into the context of psychiatric disorder research, consider the 

following example (also depicted in Figure 1.5b, column 1). An RNA-seq experiment is performed 

to understand how biological systems in human postmortem cortical tissue are effected in a 

psychiatric disorder where underlying neuropathology is largely unknown. RNA-seq analysis 

reveals a gene set that is downregulated (step 1) in psychiatric disorder patient cortical samples 

that are enriched for excitatory neuron cell-type markers and presynaptic vesicle release gene 

ontology terms (step 2). One important prediction from these results is that presynaptic vesicle 

release activity may be decreased in these patients (step 3). A validation experiment should then 

be planned to validate this result, such as examining presynaptic vesicle release in a human in 

vitro spheroid model of the psychiatric disorder (step 4). A particularly effective spheroid model 

would have a representative gene from the interesting gene set knocked out so that gene set 

downregulation can be directly compared to any decreases in presynaptic vesicle release. 
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Figure 1.5: Direct applications of RNA-seq in psychiatric research. a. Fundamental workflow for 

interpreting interesting gene sets identified with RNA-seq analysis. b. Hypothetical examples of how this 

workflow can be applied in different areas of psychiatric disorder research to advance our understanding 

of psychiatric disorders. This workflow is explicitly demonstrated in Refs. 6, 8, 90-97. 

 

As this example illustrates, this workflow can accept as input a sample type relevant to 

psychiatric disorder research where little is known and produce precise, data-driven predictions 

regarding how biological systems are altered in conditions of interest. These predictions can be 

tested experimentally, and if predictions are validated our knowledge of psychiatric disorders will 

be measurably expanded and research can move forward. In the case where predictions are 

unsupported, it is important to understand why a prediction turned out to be untrue. Returning to 

each previous RNA-seq analysis step and validating that gene expression dysregulation findings 

and functional interpretations were accurate, as well as evaluating how well the chosen validation 

experiment can test predictions, are just a few approaches that can help to reveal why a prediction 



44 
 

from RNA-seq was inaccurate. The specific factors that contribute to a prediction being 

unvalidated will dictate how experimental results should be interpreted, and will also serve to 

develop and improve RNA-seq analysis methodology for future psychiatric disorder research 

projects. Advancing technical knowledge is just as important as directly expanding biological 

knowledge, since improving technical knowledge will surely enhance our ability to effectively apply 

RNA-seq across many distinct areas of psychiatric disorder research.  

 To further demonstrate how the RNA-seq analysis workflow described in this section can 

advance psychiatric disorder research efforts, I will discuss several examples that illustrate how 

this workflow can be successfully applied in different contexts (Figure 1.5b). One purpose for 

performing an RNA-seq experiment in psychiatric disorder research is to enhance our 

understanding of how biological systems are disrupted in a psychiatric disorder. Through 

sequencing human postmortem samples from psychiatric disorder patients, or samples from 

organisms that model a psychiatric disorder, RNA-seq analysis can identify and implicate different 

cell-types and biological processes in disorder pathology. Validation experiments can then 

confirm if the dysregulation identified with RNA-seq does likely contribute to psychiatric disorder 

mechanisms. To share just one example, RNA-seq analysis with human cortical samples from 

ASD patients has found that neuronal energetic function and synaptic genes are downregulated 

in ASD.6,8 Since these findings, experiments with model mice have validated this result: neuronal 

energetic pathway downregulation was also observed in mouse models harboring human CNVs 

associated with ASD,90 and another ASD model mouse (with the ASD-linked CNTNAP2 mutation 

knocked out) also exhibited decreased prefrontal synaptic activity.91 Both of these experiments 

find that the neuronal and synaptic dysfunction observed with RNA-seq in ASD patient cortical 

samples is recapitulated in ASD model organisms, supporting that neurons play a role in ASD 

pathological mechanisms. Together, these results serve to expand and strengthen our 

understanding of ASD. 

https://paperpile.com/c/PTbgY8/biAC+BJff
https://paperpile.com/c/PTbgY8/LNvX
https://paperpile.com/c/PTbgY8/kTuT
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Another application of this RNA-seq analysis workflow in psychiatric disorder research is 

to validate and strengthen model systems. Using transcriptomic profiles to develop and validate 

model systems is important for ensuring that functional inference can be drawn from these 

models. This approach has proven especially useful for human cortical spheroid models, through 

comparing spheroid transcriptomic profiles with human fetal gene expression.92,93 To share one 

last example, this RNA-seq analysis workflow can also be used to develop psychiatric disorder 

treatments. RNA-seq experiments can already reveal how current treatments effect patients,94–97 

and in the future RNA-seq can be used to evaluate the efficacy of new therapeutics targeting 

underlying causal mechanisms (once they are established). In this case, RNA-seq can reveal if 

transcriptomic pathology is mitigated by a treatment, returning closer to typical expression levels. 

Finally, beyond the examples that I have described here, there are certainly other contexts in 

which this RNA-seq analysis workflow is effective. When the fundamental steps that I have 

discussed in this chapter are followed, an RNA-seq analysis has the potential to substantially 

advance the aims of any psychiatric research project. 

1.8: Discussion 

 In this chapter, I have demonstrated how RNA-seq analysis is a valuable and effective 

methodology for psychiatric disorder research. I provided an overview of how RNA-seq can be 

applied in different areas of psychiatric disorder research and discussed how to design 

experiments that directly address specific aims. Main processing steps for RNA-seq data analysis 

were justified and described, and different types of gene prioritization techniques were compared. 

Finally, I demonstrated how to functionally interpret interesting gene sets and established how 

these interpretations can lead to biological insights that measurably advance psychiatric disorder 

research. Together, all of these sections form an approachable overview of the foundational 

concepts that guide RNA-seq analysis in psychiatric disorder applications. A central theme of this 

chapter is that RNA-seq analysis can streamline and optimize research projects, serving to 

https://paperpile.com/c/PTbgY8/yGAz+8UDb
https://paperpile.com/c/PTbgY8/TIMe+Cg7T+06U7+yk6B
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simplify experiments and highlight relevant cell-types and biological processes for continued 

investigation. These qualities are especially desirable for psychiatric disorder research, 

considering that little is often known about underlying neuropathology. Predetermined biological 

targets are unnecessary for RNA-seq experiments, since they profile the entire transcriptome. 

Functional interpretation analyses can connect gene expression changes to cell-types and 

biological processes, enabling RNA-seq experiments to provide initial characterizations of entire 

biological systems. However, I note that RNA-seq analysis is not entirely data-driven - while all 

gene expression changes are captured by RNA-seq, hypotheses must guide GLM design and 

functional association analyses. Prior knowledge is what enables gene expression changes to be 

identified and interpreted. The spatiotemporal context in which samples were sequenced, 

biological attributes of samples, and technical influences on gene expression also contribute 

critically to RNA-seq analysis. To ensure that an RNA-seq experiment can address experimental 

aims, it is essential to carefully design experiments with all of these contributing factors in mind. 

 In the following chapters, I will show how the concepts and workflows established here 

enabled me to refine our understanding of psychiatric disorders.  In chapter two, I will demonstrate 

how the integration of gene expression microarray data and RNA-seq data across different 

psychiatric disorder experiments enhanced our understanding of how distinct psychiatric 

disorders compare to each other. In chapter three, I will build off of these findings and implement 

more advanced transcriptomic analyses such as isoform analysis, splicing analysis, polygenic risk 

score analysis, and TWAS to obtain a deeper understanding of transcriptomic similarities and 

differences across psychiatric disorders. Finally, in chapter four, I will show how a multi-regional 

transcriptomic study of the ASD cerebral cortex revealed widespread gene expression changes 

that heavily implicate neuronal synaptic plasticity processes in ASD disorder mechanisms. 

Together, all of these chapters will continuously demonstrate how the guidelines and strategies 
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emphasized in this initial chapter can lead to robust and impactful advances in psychiatric disorder 

research. 
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2.1: Contributing authors 

All of the work presented in this chapter was published in Science in February of 2018, in 

a research article entitled “Shared molecular neuropathology across major psychiatric disorders 

parallels polygenic overlap” (volume 359, pages 693–697). Michael Gandal was the primary 

author of this work and completed all major analyses, such as the expression microarray mega-

analysis. I, as the second author, conducted the RNA-seq validation analyses, calculated 

partitioned heritability scores for the identified gene co-expression modules, and generally 

supported all analyses and interpretation of results. Other co-authors included Neelroop N. 

Parikshak, Virpi Leppa, Gokul Ramaswami, Chris Hartl, Andrew J. Schork, Vivek Appadurai, 

Alfonso Buil, Thomas M. Werge, Chunyu Liu, Kevin P. White, and Steve Horvath. They all 

contributed to supporting analyses and interpretation of results, providing essential contributions 

for the publication. Daniel Geschwind was the senior author and project director. This work was 

associated with the PsychENCODE Consortium and iPSYCH-BROAD Working Group.  

2.2: Experimental rationale and overlapping psychiatric cortical gene expression 

Despite remarkable success identifying genetic risk factors for major psychiatric 

disorders, it remains unknown how genetic variants interact with environmental and epigenetic 

risk factors in the brain to impart risk for clinically distinct disorders (1, 2). We reasoned that 

brain transcriptomes, a quantitative, genome-wide molecular phenotype (3), would allow us to 

determine whether disease-related signatures are shared across major neuropsychiatric 

disorders with distinct symptoms and whether these patterns reflect genetic risk.  

We first analyzed published gene-expression microarray studies of cerebral cortex 

across five major neuropsychiatric disorders (3-11) using 700 cerebral cortical samples from 

subjects with ASD (n=50 samples), SCZ (n=159), BD (n= 94), MDD (n=87), AAD (n=17), and 

matched controls (n=293) (12). These disorders are prevalent and disabling, contributing 
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substantially to global disease burden. Inflammatory bowel disease (IBD, n=197) was included 

as a non-neural comparison.  

Individual datasets underwent stringent quality control and normalization (Fig. 2.1; (12)), 

including re-balancing to alleviate confounding between diagnosis and biological (e.g., age, sex) 

or technical (e.g., post-mortem interval, pH, RIN, batch, 3’ bias) covariates (Figs. A1.1, A1.2). 

Transcriptome summary statistics for each disorder were computed with a linear mixed-effects 

model to account for any sample overlap across studies (12). Comparison of differential gene 

expression (DGE) log2 fold change (log2FC) signatures revealed a significant overlap among 

ASD, SCZ, and BD and SCZ, BD, and MDD (Fig. 2.2A; all Spearman’s r ≥ 0.23, P < 0.05, 

40,000 permutations). The regression slopes between ASD, BD, and MDD log2-FC effect sizes 

compared to SCZ (5.08, 0.99, and 0.37) indicate a gradient of transcriptomic severity with ASD 

> SCZ ≈ BD > MDD (Fig. 2.2B). To ensure robustness, we compared multiple methods for 

batch correction, probe summarization, and feature selection, including use of integrative 

correlations, none of which changed the qualitative observations (Fig. A1.3; (12)). Results were 

also unaltered after first regressing gene-level RNA degradation metrics, suggesting that 

systematic sample quality issues were unlikely to drive these correlations (Fig. A1.3). Further, 

the lack of (or negative) overlap between AAD and other disorders suggests that similarities are 

less likely due to comorbid substance abuse, poor overall general health, or general brain-

related post-mortem artefacts. 
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Fig. 2.1: Experimental rationale and design. (A) Model of psychiatric disease pathogenesis. (B)  
Flowchart of the cross-disorder transcriptome analysis pipeline (12). Cortical gene expression datasets 
were compiled from cases of ASD (n=50 samples), SCZ (n=159), BD (n=94), MDD (n=87), AAD (n=17), 
and matched non-psychiatric controls (n=293) (12) (see Table A1.1). 
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Fig. 2.2: Cortical gene expression patterns overlap. Cortical gene expression patterns overlap. (A) 

Rank order of microarray transcriptome similarity for all disease pairs, as measured by Spearman’s 

correlation of differential expression log2FC values. (B) Comparison of the slopes among significantly 

associated disease pairs indicates a gradient of transcriptomic severity, with ASD > SCZ ~ BD > MDD. 

(C) Overlapping gene expression patterns across diseases are correlated with shared common genetic 

variation, as measured by SNP co-heritability (22). The Y-axis shows transcriptome correlations using 

microarray-based (discovery, red) and RNAseq (replication, blue) datasets. (D) RNAseq across all cortical 

lobes in ASD replicates microarray results and demonstrates a consistent transcriptomic pattern. 

Spearman’s  is shown for comparison between microarray and region-specific RNAseq replication 

datasets (all P’s < 10-14). Plots show mean +/- SEM.  *P < 0.05, **P < 0.01, ***P < 0.001. 
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Disease-specific DGE summary statistics (Data Table A1.1) provide human in vivo 

benchmarks for determining the relevance of model organisms, in vitro systems, or drug effects 

(13, 14). We identified a set of concordantly down- and upregulated genes across disorders 

(Fig. A1.4), as well as those with more specific effects. Complement component 4A (C4A), the 

top GWAS-implicated SCZ disease gene (15), was significantly upregulated in SCZ 

(log2FC=0.23, P=6.9x10-6) and in ASD (RNAseq; log2FC=0.91, P=0.014; Data Table A1.1) but 

not BD, MDD, or AAD. To investigate potential confounding by psychiatric medications, we 

compared disease signatures with those from non-human primates treated with acute or chronic 

dosing of antipsychotic medications. Significant negative overlap (Fig. A1.5; (12)) was 

observed, indicating that antipsychotics are unlikely to drive, but rather may partially normalize, 

these transcriptomic alterations, whereas the psychotomimetic PCP partially recapitulates 

disease signatures.  

To validate that these transcriptomic relationships are generalizable, we generated 

independent RNAseq datasets for replication for 3 out of the 5 disorders (Fig. A1.6; (12)). We 

identify 1099 genes whose DGE is replicated in ASD (OR 6.4, P=3.3x10-236, Fisher’s exact test; 

Table A1.2), 890 genes for SCZ (BrainGVEX; OR 4.5, P=7.6x10-155), and 112 genes for BD 

(BrainGVEX; OR 3.9, P=4.6x10-26), which is likely due to the relatively smaller RNAseq sample 

size for BD (12). We observed similarly high levels of transcriptomic overlap among ASD, SCZ, 

and BD, and a similar gradient of transcriptomic severity (Figs. 2.2C; A1.7). The SCZ and BD 

patterns were further replicated in the CommonMind dataset, although gene-level overlap was 

lower (12, 16) (Fig. A1.7). The ASD signature was largely consistent across the four major 

cortical lobules, indicating that this pattern is not caused by regional differences (Fig. 2.2D). 
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2.3: Gene network analysis maps psychiatric gene expression to biological systems 

To more specifically characterize the biological pathways involved, we performed robust 

weighted gene co-expression network analysis (rWGCNA; (12, 17)), identifying several shared 

and disorder-specific co-expression modules (Fig. 2.3). Modules were stable (Fig. A1.8), 

showed greater association with disease than other biological or technical covariates (Fig. 

A1.9), and were not dependent on corrections for covariates or batch effects (Fig. A1.10). 

Moreover, each module was enriched for protein-protein interactions (Fig. A1.8) and brain 

enhancer-RNA co-regulation (Fig. A1.11) derived from independent data, which provides 

anchors for dissecting protein complexes and regulatory relationships. 
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Fig. 2.3. Network analysis identifies modules of co-expressed genes across disease. (A) Network 

dendrogram from co-expression topological overlap of genes across disorders. Color bars show 

correlation of gene expression with disease status, biological, and technical covariates. (B) 

Multidimensional scaling plot demonstrates relationship between modules and clustering by cell-type -

relationship. (C) Module-level differential expression is perturbed across disease states. Plots show beta 

values from linear mixed-effect model of module eigengene association with disease status (FDR-

corrected #P<0.1, *P<0.05, **P<0.01, ***P<0.001). D) The top twenty hub genes are plotted for modules 

most disrupted in disease. See Data Table A1.2 for a complete list of genes’ module membership (kME). 

Edges are weighted by the strength of correlation between genes. Modules are characterized by (E) 

Gene Ontology enrichment (top two pathways shown for each module) and (F) cell-type specificity, on the 

basis of RNAseq of purified cell populations from healthy human brain samples (25). 

 

An astrocyte-specific module (CD4, hubs GJA1, SOX9) was broadly upregulated in ASD, 

BD, and SCZ (FDR-corrected P’s < 0.05, Fig. 2.3C, Data Table A1.2; (12)) and enriched for 

glial cell differentiation and fatty-acid metabolism pathways. In contrast, a module strongly 

enriched for microglial markers (CD11) was upregulated specifically in ASD (two-sided t-test, 

FDR-corrected P=4×10-9). Hubs include canonical microglial markers (HLA-DRA, AIF1), major 

components of the complement system (C1QA, C1QB) and TYROBP, a microglial signalling 

adapter protein (18). Results fit with convergent evidence for microglial upregulation in ASD and 

an emerging understanding that microglia play a critical role regulating synaptic function during 

neurodevelopment (19).  

One module was upregulated specifically in MDD (CD2, FDR-corrected P=0.009; Data 

Table A1.2) and was enriched for G-protein coupled receptors, cytokine-cytokine interactions, 

and hormone activity pathways, suggesting a link between inflammation and dysregulation of 

the hypothalamic-pituitary (HPA) axis, consistent with current models of MDD pathophysiology 

(20). Several modules annotated as neuronal/mitochondrial were downregulated across ASD, 

SCZ, and BD (CD1, CD10, CD13; Fig. 2.3C, Data Table A1.2; (12)). The overlap of  CD10 with 

a mitochondrial gene-enriched module previously associated with neuronal firing rate (21) links 

energetic balance, synaptic transmission, and psychiatric disease (Data Table A1.2). 

2.4: Down-regulated neuronal modules are enriched for psychiatric genetic risk factors 
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The transcriptome may reflect the cause or the consequence of a disorder. To refine 

potential causal links, we compared SNP-based genetic correlations between disease pairs (22) 

with their corresponding transcriptome overlap. SNP co-heritability was significantly correlated 

with transcriptome overlap across the same disease pairs (Fig. 2.2C, Spearman’s r=0.79, 95% 

confidence interval [0.43–0.93], P=0.0013), suggesting that a major component of these gene-

expression patterns reflects biological processes coupled to underlying genetic variation.   

To determine how disease-associated variants may influence specific biological processes, 

we investigated whether any modules harbor genetic susceptibility for specific disorders or for 

relevant cognitive or behavioral traits (12). We identified significant enrichment among several 

of the downregulated, neuronal co-expression modules (CD1, CD10, CD13) for GWAS signal 

from SCZ and BD, as well as for educational attainment and neuroticism (Fig. 2.4A; FDR-

corrected P’s < 0.05, Spearman; (12)). We also observe enrichment for the three downregulated 

neuronal co-expression modules in the iPSYCH Consortium (23) ASD GWAS cohort (Fig 2.4A; 

Table A1.3; (12)). In contrast, these modules showed no enrichment for MDD, AAD, or IBD. 

Further, none of the microglial- or astrocyte-specific modules showed psychiatric GWAS 

enrichment. Extending this analysis to disease-associated rare variants (Data Table A1.3; (2, 

12)), we found that the CD1 neuronal module was enriched for genes harbouring rare, non-

synonymous de novo mutations identified in ASD (OR 1.36, FDR-corrected P=0.03, logistic 

regression) and SCZ cases (OR 1.82, FDR-corrected P=0.014) but not unaffected controls (Fig. 

2.4B). A similar CD1-enrichment was observed for genes affected by rare, recurrent copy-

number variation (CNV) in ASD (OR 2.52, FDR-corrected P=0.008) and SCZ (OR 2.46, FDR-

corrected P=0.014). These results suggest convergence of common and rare genetic variation 

acting to downregulate synaptic function in ASD and SCZ.  
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Fig. 2.4. Downregulated neuronal modules are enriched for common and rare genetic risk factors. 

(A) Significant enrichment is observed for SCZ-, ASD-, and BD-associated common variants from GWAS 

among neuron/synapse & mitochondrial modules (12). GWAS datasets are listed in Table A1.3. (B) The 

CD1 neuronal module shows significant enrichment for ASD- and SCZ-associated non-synonymous de 

novo variants from whole exome sequencing. The number of genes affected by different classes of rare 

variants is shown in parentheses. Significance was calculated using logistic regression, correcting for 

gene length. P-values are FDR corrected. (C) Total SNP-based heritability (liability scale for psychiatric 

diagnoses) calculated from GWAS using LD-score regression. (D) Proportion of heritability for each 

disorder or trait that can be attributed to individual co-expression modules. Significance (FDR-corrected 

*P<0.05, **P<0.01, ***P<0.001) is from enrichment statistics comparing the proportion of SNP heritability 

within the module divided by the proportion of total SNPs represented. The CD1 module shows significant 

enrichment in SCZ, BD, and educational attainment. 

 

We next used LD score regression (24) to partition GWAS heritability (Fig. 2.4C; Data Table 

A1.4) into the contribution from SNPs located within genes from each module ((12); Fig. 2.4D). 

CD1 again showed significant enrichment for SCZ (2.5 fold, FDR-corrected P=8.9x10-11), BD 

(3.9 fold, FDR-corrected P<0.014), and educational attainment (1.9 fold, FDR-corrected 

P<0.0008; 𝜒2) GWAS, accounting for ~10% of SNP-based heritability within each dataset, 

despite containing only 3% of the SNPs. This illustrates how gene network analysis can begin to 
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parse complex patterns of common variants, each of small effect size, to implicate specific 

biological roles for common variant risk across neuropsychiatric disorders.  

2.5: Discussion 

These data provide a quantitative, genome-wide characterization of the cortical pathology 

across five major neuropsychiatric disorders, providing a framework for identifying the 

responsible molecular signalling pathways and interpreting genetic variants implicated in 

neuropsychiatric disease risk. We observe a gradient of synaptic gene down-regulation, with 

ASD > SZ ≈ BD. BD and SCZ appear most similar in terms of synaptic dysfunction and 

astroglial gene up-regulation, which may represent astrocytosis, activation, or both. ASD, an 

early-onset disorder, shows a distinct upregulated microglial signature, which may reflect the 

role for microglia in regulation of synaptic connectivity during neurodevelopment (19). MDD 

shows neither the synaptic nor astroglial pathology, but does exhibit dysregulation of HPA-axis 

and hormonal signalling not observed in the other disorders.  

Our data suggest that shared genetic factors underlie a substantial proportion of cross 

disorder expression overlap. Given that a minority of these relationships represent eQTL (Fig. 

A1.12), most of the genetic effects are likely acting indirectly, through a cascade of 

developmental and cell-cell signalling events rooted in genetic risk. Genetic variation is also not 

the only driver of expression variation; there is undoubtedly a contribution from environmental 

effects. Hidden confounders could introduce a correlation structure that matches SNP-level 

genetic correlations, but parsimony and hidden covariate correction suggests that this is 

unlikely. Diagnostic misclassification could artificially elevate shared signals, but the results are 

robust to disorder removal (Fig. A1.13), and misclassification would not account for the 

substantial overlap we observe with ASD, which has a highly distinct phenotypic trajectory from 

later onset disorders.  Finally, we have replicated broad transcriptomic and cell-type specific 

patterns independently for ASD, SCZ and BD, providing an organizing pathological framework 
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for future investigation of the mechanisms underlying specific gene and isoform-level 

transcriptomic alterations in psychiatric disease. 

2.6: Materials and Methods 

Please see the Appendix (section A1.1) for all materials and methods. 
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CHAPTER THREE 

Polygenic risk scores are associated with transcriptomic changes in ASD, schizophrenia, and 

bipolar disorder 
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3.1: Introduction and contributing authors 

Understanding of the pathophysiology of psychiatric disorders, including autism spectrum 

disorder (ASD), schizophrenia (SCZ), and bipolar disorder (BD), lags behind most other fields of 

medicine. In the absence of clearly defined pathology, the diagnosis and study of psychiatric 

disorders are dependent on behavioral, symptomatic characterization. Defining genetic 

contributions to disease risk provides a substantial foothold for biological understanding. But, 

leveraging genetic risk to infer disease mechanisms is challenged by substantial genetic 

complexity and polygenicity, and the lack of a cohesive neurobiological model through which to 

interpret genetic findings. Recent work demonstrates that the transcriptome represents a 

quantitative phenotype that provides biological context for understanding the molecular pathways 

disrupted in major psychiatric disorders (1, 2). RNA sequencing (RNA-Seq) in a large cohort of 

cases and controls could substantially advance knowledge of the biology disrupted in each 

disorder and provide a foundational resource for integration with other genomic and genetic data. 

Therefore, other researchers and I sought to integrate genotype and RNA-sequencing in brain 

samples from 1,695 subjects with autism (ASD), schizophrenia (SCZ), bipolar disorder (BD) and 

controls, to identify putative genetic drivers of psychiatric transcriptomic dysregulation. This 

massive project characterized molecular pathology across three major psychiatric disorders and 

provides a comprehensive resource for mechanistic insight and therapeutic development. 

In this chapter, I present one of my contributions to this project: the generation of 

psychiatric polygenic risk scores, and the comparison of these polygenic risk scores with 

psychiatric gene expression. Michael Gandal was the primary author of this work. As a co-author, 

in addition to generating and analyzing polygenic risk scores for the psychiatric disorders we 

investigated, I conducted transcriptomic analyses that examined the effects of anti-psychotic 

drugs in primate neural tissue (also mentioned in this chapter), and assisted with the interpretation 

and communication of results. Other co-authors included Pan Zhang, Evi Hadjimichael, Rebecca 

https://paperpile.com/c/KM4a4R/gJII+kbUP
https://paperpile.com/c/KM4a4R/gJII+kbUP
https://paperpile.com/c/KM4a4R/gJII+kbUP
https://paperpile.com/c/KM4a4R/gJII+kbUP
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Walker, Chao Chen, Shuang Liu, Hyejung Won, Harm van Bakel, Merina Varghese, Yongjun 

Wang, Annie W. Shieh, Sepideh Parhami, Judson Belmont, Minsoo Kim, Patricia Moran Losada, 

Zenab Khan, Justyna Mleczko, Yan Xia, Rujia Dai, Daifeng Wang, Yucheng T. Yang, Min Xu, 

Kenneth Fish, Patrick R. Hof, Jonathan Warrell, Dominic Fitzgerald, Andrew E. Jaffe, Kevin White, 

Mette A. Peters, Mark Gerstein, Chunyu Liu, Lilia M. Iakoucheva, and Dalila Pinto. Daniel 

Geschwind was the senior author and main project director. All of these co-authors contributed to 

major and minor analyses for this project, and helped write, edit, and review the resulting 

manuscript. This work was associated with the PsychENCODE Consortium. Additional results for 

this extensive project are included in the appendix (section A2). Supporting materials for both this 

chapter and for appendix A2 are also included in the appendix (section A3). 

3.2: Project summary: psychiatric cross-disorder transcriptome-wide analysis 

In this project, we integrated genotype and RNA-sequencing in brain samples from 1695 

subjects with autism, schizophrenia, bipolar disorder and controls. Analysis of multiple levels of 

transcriptomic organization – gene expression, local splicing, transcript isoform expression, and 

co-expression networks for both protein-coding and non-coding genes – provided an in-depth 

view of ASD, BD, and SCZ molecular pathology. Over 25% of the transcriptome exhibits 

differential splicing (DS) or expression (DE) in at least one disorder, including 916 non-coding 

RNAs (ncRNAs), most of which have unexplored functions, and as a group are under increased 

constraint in humans relative to ncRNA genome-wide. Local splicing analysis permitted 

identification of genes exhibiting isoform switching across disorders and cell types. Changes at 

the isoform-level, rather than gene-level, showed the largest effect sizes, genetic enrichment, and 

greatest disease specificity. We identified 61 co-expression modules associated with at least one 

disorder, the majority of which show enrichment for cell type-specific marker genes, with 5 

modules significantly dysregulated across all three disorders. These modules allow parsing of 

previously shared downregulated neuronal and synaptic components into a variety of cell type- 
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and disease-specific signals, including multiple excitatory neuron and distinct interneuron 

modules with differential patterns of disease association. We also refined the glial-immune signal, 

demonstrating shared disruption of the blood-brain-barrier and upregulation of NFkB-associated 

genes, as well as disease-specific alterations in microglial, astrocyte and interferon-response 

modules. To identify candidate causal drivers, we integrated polygenic risk scores (PRS) and 

performed a transcriptome-wide association study (TWAS). Dozens of genes are significantly 

associated with PRS, and TWAS prioritizes novel candidate risk genes likely mediated by cis-

effects on brain expression, including 12 in BD, 5 in ASD, and 107 in SCZ. 

By integrating RNA-sequencing and genetic data in an unprecedented cohort to refine the 

shared and distinct molecular pathology of ASD, BD, and SCZ, we provided a quantitative, 

genome-wide resource for mechanistic insight and therapeutic development. These data inform 

the molecular pathways and cell types involved in these psychiatric disorders, emphasizing the 

importance of local splicing and isoform-level gene regulatory mechanisms in defining cell type 

and disease specificity and - when integrated with GWAS - permit the discovery of new candidate 

risk genes. 

3.3: Identifying genetic drivers of transcriptomic dysregulation 

We sought to determine whether changes observed across multiple levels of 

transcriptomic organization in post mortem brain from patients who were diagnosed with three 

major psychiatric disorders (ASD, SCZ, and BD) are reflective of the same, or distinct, underlying 

biological processes. Furthermore, such transcriptomic changes may represent a causal 

pathophysiology or may be a consequence of disease. To begin to address this, we assessed the 

relationships among transcriptomic features with polygenic risk scores (PRS) for disease, which 

provide a causal genetic anchor (Fig 3.1A). Across all three disorders, there was strong 

concordance among differential gene, isoform, and ncRNA signals, as summarized by their first 
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principal component (Fig 3.1A). Notably, differential splicing shows greatest overlap with the 

ncRNA signal, suggesting a role for non-coding genes in regulating local splicing events.  

Significant associations with PRS were observed for DGE and DTE signal in SCZ, with 

greater polygenic association at the isoform level in accordance with the larger transcript isoform 

effect sizes observed. Concordantly, transcript-level differential expression also showed the most 

significant enrichment for SCZ SNP-heritability, as measured by stratified LD score regression 

(21, 39) (Fig 3.1B). The overall magnitude of genetic enrichment was modest, however, 

suggesting that most observed transcriptomic alterations are less a proximal effect of genetic 

variation and more likely the consequence of a downstream cascade of biological events following 

earlier acting genetic risk factors. 

 We were also interested to determine the degree to which genes showed increases in the 

magnitude of DE over the duration of illness, as a positive relationship would be expected if age-

related cumulative exposures (e.g. drugs, smoking) were driving these changes. To assess this, 

we fit local regression models to case and control sample-level expression measurements as a 

function of age and computed age-specific DE effect-sizes (Fig A3.10). Of 4821 DE genes in 

SCZ, only 143 showed even nominal association (p < 0.05, uncorrected for multiple comparisons) 

between effect size magnitude and age. Similar associations were seen in 29 of 1119 DE genes 

in BD and 85 of 1611 DE genes in ASD. Consequently, this would not support substantial age-

related environmental exposures as the mechanism for the vast majority of differentially 

expressed genes.  

Using gene expression data from animal models, we investigated whether exposure to 

commonly used psychiatric medications could recapitulate observed gene expression changes in 

disease (Fig A3.11). Overall, with the exception of lithium, chronic exposure to medications 

including antipsychotics (clozapine, haloperidol), mood stabilizers (lamotrigine), and 

antidepressants had a minimal effect on the transcriptome, in most cases with no differentially 

https://paperpile.com/c/KM4a4R/MfoY+8vmq
https://paperpile.com/c/KM4a4R/MfoY+8vmq
https://paperpile.com/c/KM4a4R/MfoY+8vmq
https://paperpile.com/c/KM4a4R/MfoY+8vmq
https://paperpile.com/c/KM4a4R/MfoY+8vmq
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expressed genes at traditional FDR thresholds (21). Even at more liberal thresholds, the overlap 

between medication-driven and disease signal remains sparse. One notable exception was a 

module that reflects major components of a well-described (40) neural activity-dependent gene 

expression program, whose disease relationships are refined in the network analysis section 

below. Finally, we do note that there are other factors that were not measured that can potentially 

contribute to gene expression variation in post-mortem tissue, including agonal events and pH 

(22, 41, 42) in addition to those measured and used as covariates, such as RNA integrity and 

post mortem interval (PMI). We used surrogate variable correction in our analyses to account for 

such unmeasured confounders (43), which is a standard approach (44). 

\ 

 

Figure 3.1. Overlaps and genetic enrichment among dysregulated transcriptomic features. A) 
Scatterplots demonstrate overlap among dysregulated transcriptomic features, summarized by their first 
principle component across case and control subjects (R2 values; *P<0.05). Polygenic risk shows greatest 
association with differential transcript signal in SCZ, although the magnitude is small . B) Stratified LD-
score regression identifies enrichment of GWAS SNP-heritability in SCZ among multiple differentially 
expressed transcriptomic features, with downregulated isoforms showing must substantial association. C) 
Polygenic risk scores created separately for each disorder are significantly (FDR<0.05) associated with 
expression for multiple individual genes and isoforms. Plots are split between upregulated and 
downregulated associations with increasing PRS. Several associations with SCZ PRS are located within 
the MHC region of the genome, which harbors the largest GWAS association signal but also highly complex 
LD structure.  

https://paperpile.com/c/KM4a4R/8vmq
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We next sought to leverage this transcriptome-wide dataset to prioritize potential risk 

genes whose brain expression may be altered by disease-associated genetic variation. We first 

assessed whether gene or isoform level expression measures were significantly associated with 

PRS for each disorder (21), identifying 45 genes or isoforms whose expression was significantly 

associated with PRS (FDR < 0.05), including 32 in ASD, 2 in BD, and 11 in SCZ (Fig 3.1C; Table 

A3.4). In ASD, the majority of associations map to 17q21.31, which harbors a known common 

inversion polymorphism and rare deleterious structural variants associated with intellectual 

disability (45). PRS for BD was associated with isoforms of the neuronal calcium sensor NCALD 

and SNF8, an endosomal sorting protein. In SCZ, we identify upregulation of the established risk 

gene C4A as the most significant PRS association (5). Concordantly, we find a strong positive 

correlation between C4A expression and genetically imputed C4A copy number (R=0.25, P=7x10-

14), as well as with imputed number of C4-HERV elements (R=0.24, P=1.2x10-12), but not C4B 

copy number (R=0.006, P=0.85) (21). Additional associations with PRS were observed in the 

MHC region in SCZ, which harbors the largest GWAS association comprised of multiple 

independent signals (5), but is difficult to parse due to complex patterns of LD. These included 

two lncRNAs, HCG17 and HCG23, as well as the MHC class I heavy chain receptor HLA-C. 

However, expression of all three of these genes were also significantly (P<0.05) correlated with 

C4A copy number, indicating a need for further validation given the complex LD structure in this 

region. Together, these results point to specific genes that exhibit increasing gene expression 

dysregulation with increasing psychiatric polygenic risk, indicating that these genes may be 

convergent targets of psychiatric genetic risk variants. Determining how the transcriptomic 

dysregulation of these genes may contribute to psychiatric disorder mechanisms will continue to 

enhance our understanding of how psychiatric genetic risk variants induce psychiatric 

neuropathology. 
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3.4: Materials and Methods 

Please see the appendix (section A3.1) for all materials and methods. 
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CHAPTER FOUR 

Broad transcriptomic dysregulation across the cerebral cortex in ASD 
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4.1: Abstract 

Classically, psychiatric disorders have been considered to lack defining pathology, but 

recent work has demonstrated consistent disruption at the molecular level, characterized by 

transcriptomic and epigenetic alterations.1–3 In ASD, upregulation of microglial, astrocyte, and 

immune signaling genes, downregulation of specific synaptic genes, and attenuation of regional 

gene expression differences are observed.1,2,4–6 However, whether these changes are limited to 

the few cortical regions profiled is unknown. Here, we perform RNA-sequencing (RNA-seq) on 

725 brain samples spanning 11 distinct cortical areas in 112 ASD cases and neurotypical 

controls. We identify substantially more genes and isoforms that differentiate ASD from controls 

than previously observed. These alterations are pervasive and cortex-wide, but vary in 

magnitude across regions, roughly showing an anterior to posterior gradient, with the strongest 

signal in visual cortex, followed by parietal cortex and the temporal lobe. We find a notable 

enrichment of ASD genetic risk variants among cortex-wide downregulated synaptic plasticity 

genes and upregulated protein folding gene isoforms. Finally, using snRNA-seq we determine 

that regional variation in the magnitude of transcriptomic dysregulation reflects changes in 

cellular proportion and cell-type-specific gene expression, particularly impacting L3/4 excitatory 

neurons. These results highlight widespread, genetically-driven neuronal dysfunction as a major 

component of ASD pathology in the cerebral cortex, extending beyond association cortices to 

involve primary sensory regions. 

4.2: Transcriptomic changes across the cerebral cortex in ASD 

 

Similar to other neuropsychiatric disorders, the risk for autism spectrum disorder (ASD) 

involves substantial genetic liability, which is profoundly complex and heterogeneous.7,8 Despite 

this causal heterogeneity, molecular profiling studies consistently show common patterns of 

shared transcriptomic and epigenetic dysregulation in the majority of ASD cases.1–3,5 But, whether 

https://paperpile.com/c/GaGm1R/nqa4+u5sx
https://paperpile.com/c/GaGm1R/XcB4+2cBf+zpgg+lRVX


92 
 

this represents focal, regional, or more generalized dysfunction is not known. To address this 

question cortex-wide, we conducted strand-specific RNA-sequencing (RNA-seq) to identify gene 

and isoform (transcriptomic) changes in 725 samples across 11 brain regions spanning all four 

cortical lobules (frontal, parietal, temporal, and occipital), from 49 subjects with idiopathic ASD 

and 54 matched neurotypical controls (Fig. 4.1a, Methods, Table A4.1, and Fig. A4.1-3). 

Previous work using gene expression microarrays and RNA-seq identified gene co-expression 

modules representing specific pathways differentially expressed in ASD frontal and temporal 

cortices.4,5 The number of samples profiled here is more than five times greater than these prior 

studies, so we first used this multi-region RNA-seq resource to replicate and extend these 

previous findings. We observed widespread dysregulation across all 11 cortical regions that 

replicated the previously identified patterns of dysregulation in temporal and frontal cortices (Fig. 

4.1b, Methods, Table A4.2, Fig. A4.3). However, the magnitude of effect varied across regions, 

with the primary visual cortex (V1; Brodmann Area (BA) 17) exhibiting the greatest degree of 

dysregulation, followed by parietal cortex (BA7) and posterior superior temporal gyrus (BA 

41/42/22) in terms of fold changes and the number of genes differentially expressed (Fig. 4.1b, 

Fig. A4.3). To show that this was not due to regional variation in sample sizes, we performed 

permutation testing, which indicated that this increased signal was not biased by regional sample 

size differences (Methods, Table A4.2). 

 

https://paperpile.com/c/GaGm1R/r95n+XcB4
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Figure 4.1 | ASD transcriptomic differences across 11 cortical regions. a. Human cortical Brodmann 
Areas (BA) with cortical lobules indicated. Cortical lobule colors are consistent throughout the figure. b. 
Dysregulation of previously identified co-expressed gene modules (Study 1: Voineagu et al., Nature 2011; 
Study 2: Parikshak et al., Nature 2016)4-5 across cortical regions. Red dashed line marks FDR < 0.05. c. 
Unique subjects by region and diagnosis (left), with number of differentially expressed (DE; linear mixed 
model FDR < 0.05) genes and isoforms (right) across the whole cortex (top) or within individual regions 
(bottom). Gene and isoform colors are consistent throughout this figure. d. log2 fold change (FC) of 
individual regions compared to the whole cortex log2 FC for the 4,223 whole cortex DE genes. Slope (S, 
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with 95% confidence interval in brackets) is calculated with principal components regression. e. For the 
whole cortex DE isoforms, a histogram of all isoforms DE across the whole cortex in ASD with their matched 
genes. f. Left: venn diagrams depicting the number of genes and isoforms DE across the whole cortex in 
dup15q samples compared to idoipathic ASD samples. Right: for the ASD whole cortex DE genes (left) and 
isoforms (right), the idiopathic ASD whole cortex log2 FC compared to the dup15q whole cortex log2 FC. 
Slope (S) is calculated with principal components regression. 

 
Given that qualitatively similar transcriptomic changes were observed across regions (Fig. 

4.1b), we next combined all regions to increase our statistical power to detect previously 

unrecognized differentially expressed (DE) genes and isoforms. We used a linear mixed model 

framework to control for individual effects and identify changes across all 11 regions examined 

as well as within individual regions, separately (Fig. 4.1c, Methods, Table A4.3, Fig A4.4). We 

found 4,223 genes and 9,474 isoforms (FDR < 0.05) DE across all cortical regions, a notable 

increase compared to previous analyses (Fig. 4.1c, Fig. A4.3). We again observed the greatest 

signal in BA17, and 59% of DE genes in BA17 alone overlapped with what was observed globally 

(A4.2, Fig. A4.4). Additionally, DE gene effect sizes in BA17 and BA7 were the highest in 

magnitude, more than other regions assessed (Fig. 4.1d, Methods). In comparing DE genes and 

isoforms across all regions, we found both conserved and distinct dysregulation (Fig. A4.4, Table 

A4.2). Notably, as previously observed in frontal and temporal cortex1 we observed that DE 

isoforms exhibited greater effect size changes in ASD than their matched genes (Fig. 4.1e, Table 

A4.2, Fig. A4.4). 

We next evaluated differential gene and isoform expression in an additional 83 pan-

cortical samples from 9 subjects with dup15q syndrome, a rare genetic disorder with high 

penetrance for ASD, which previously was shown to strongly parallel changes in idiopathic ASD 

in frontal and temporal cortex, but with greater magnitude of effect.5 We replicated these previous 

results broadly across the cortical regions examined, finding substantial overlap in transcriptomic 

changes between dup15q and idiopathic ASD and with dup15q exhibiting a greater magnitude of 

dysregulation overall (Fig. 4.1f, Table A4.2, Fig. A4.4). BA17 also exhibited the greatest number 

of DE genes in dup15q (Fig. A4.4). These results demonstrate that the molecular pathology 

https://paperpile.com/c/GaGm1R/2cBf
https://paperpile.com/c/GaGm1R/XcB4
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shared by this genetic form of ASD and idiopathic ASD is widespread across distinct regions of 

the cortex, and that some commonalities in regional variance of effect exist. 

4.3: Broad attenuation of transcriptomic regional identity 

 

 We previously observed an attenuation of typical gene expression differences between 

two regions, frontal and temporal lobe in ASD,4,5 which we refer to here as an “Attenuation of 

Transcriptomic Regional Identity” (ARI). To assess whether this was a broader phenomenon, we 

systematically contrasted all unique pairs of 11 cortical regions (55 comparisons in all) using a 

conservative statistical approach to account for differences in sample size across regions, while 

correcting stringently for multiple comparisons (Fig. 4.2a, Methods). We further validated the 

identified transcriptomic regional identity patterns in our control samples with those from an 

external data source, the Allen Brain Atlas9 (Table A4.4, Fig. A4.5, Methods). Ten pairs of 

regions exhibited significantly greater ARI patterns in ASD compared to controls, with an 

additional 31 out of the 55 pairs of regions exhibiting a trend towards attenuation in ASD (Fig. 

4.2b, Table A4.4, Fig. A4.5, Methods). These results provide evidence in support of widespread 

ARI across the cerebral cortex in ASD for the first time, across both gene and isoform levels (Fig. 

A4.5). Additionally, we observed a regional anterior - posterior gradient, with nine of the ten region 

pairs exhibiting significant ARI in ASD containing either BA17 or BA39-40 (Fig. 4.2c-d). Notably, 

BA17 was also one of the regions with the largest case-control differences in gene expression. 

To determine how gene expression changes were dispersed across regions in these pairs, we 

used a conservative filtering process to identify individual genes exhibiting ARI (Methods, Table 

A4.4). Although these genes were widely dysregulated, the posterior regions BA17 and BA39-40 

exhibited the greatest changes (Fig. 4.2c-d, Fig. A4.6). ARI genes were also comparably 

disrupted in the dup15q samples (Fig. A4.6), suggesting that transcriptomic regional identity 

attenuation in the cerebral cortex is shared across heterogenous forms of ASD. 

https://paperpile.com/c/GaGm1R/XcB4+r95n
https://paperpile.com/c/GaGm1R/ixCf
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Figure 4.2 | Transcriptomic regional identity attenuation in ASD. a. Methods overview for identifying 
differences in transcriptomic regional identity in ASD. The regional comparison of BA17 v. BA41-42-22 is 
used here as an example. Number of DE genes between regions is calculated in controls and ASD samples 
(left). A permuted null distribution is then used to determine the significance of the difference in DE genes 
between controls and ASD samples (right). b. Regional comparisons with attenuation of transcriptomic 
regional identity in ASD with p < 0.05 are connected with a bar. Attenuated regional identity (ARI) genes 
are extracted from these regional comparisons (Methods). Cortical lobules are also depicted. c-d. Overview 
of ARI downregulated (c.) and upregulated (d.) genes. Top left, select attenuated transcription factors in 
BA17 and BA4-6. Lines link paired samples from the same subject, and the paired Wilcoxon signed-rank 
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test p-value is plotted above boxplots. Top right, PC 1 of ARI genes across all regions. Bottom left and 
bottom center, gene ontology and cell-type enrichment, respectively. Bottom right, top 10 attenuated 
transcription factors (TFs), where FDR is representative of how well these TFs distinguish BA17 and BA39-
40 from the other nine cortical regions assessed here in controls (Methods). Enrichment for transcription 
factor binding sites is also depicted (Bonferroni-corrected p-value < 0.05 required for enrichment). 

 
To identify the biological processes contributing to ARI gene dysregulation in ASD, we 

grouped together all of the ARI genes that were either downregulated (1,881 genes) or 

upregulated (1,695 genes) with a pronounced posterior effect in ASD (Methods). The 

downregulated set of ARI genes showed broad enrichment for neuronal cell-type-specific markers 

and RNA processing pathways, and contained many transcription factors (Fig. 4.2c, Table A4.4). 

The upregulated ARI genes also contained many transcription factors, and were enriched for 

oligodendrocyte progenitor cell (OPC) and astrocyte cell-type markers along with metabolic and 

development pathways. ARI gene dysregulation was further characterized by subsequent co-

expression network analysis, which further refined the topology and pathways involved. 

4.4: Refining disrupted gene co-expression networks in ASD 

 

We next used weighted gene correlation network analysis (WGCNA)10 across all samples 

to partition genes into co-expression modules capturing potentially shared biological functions or 

regulation (Methods). We identified a total of 35 gene modules, of which 9 were downregulated 

and 15 were upregulated in ASD (Table A4.5-6, Fig. A4.7). We further generated networks using 

isoform-level quantifications, identifying 61 isoform modules. Of these, 39 were distinct from the 

gene modules, with 5 downregulated and 9 upregulated in ASD (Table A4.5-6, Fig. A4.8). In 

total, 38 gene and isoform modules were dysregulated in at least one region in ASD. These fell 

into two broad groups - either dysregulated (1) cortex-wide with comparable magnitude across 

regions, or (2) with significantly variable magnitude across regions. Again, dup15q effects were 

similar to ASD effects, but were greater in magnitude (Fig. A4.7-8, Table A4.6). 

https://paperpile.com/c/GaGm1R/hdrr
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4.4.1: Cortex-wide dysregulation observed for ASD risk genes 

Thirty-five gene and isoform modules exhibited a consistent pattern of dysregulation in 

ASD across all cortical regions assessed (linear mixed model, FDR < 0.05; Fig. 4.3a, Fig. A4.7-

8, Table A4.6). These include GeneM9, an upregulated neuronal module with a significant 

enrichment for non-coding genes; GeneM32, a strongly upregulated reactive astrocyte module 

with the greatest overall magnitude of dysregulation; and GeneM24, a downregulated module 

enriched for endothelial and pericyte marker genes which are involved in blood-brain-barrier 

functions (Fig. 4.3b, Fig. A4.7, Table A4.6). These modules replicate previous findings of 

neuronal upregulation, astrocyte reactivity, and BBB disruption in ASD,1,4–6 but extend these 

findings by demonstrating that these processes are widespread across the cerebral cortex. 

https://paperpile.com/c/GaGm1R/r95n+XcB4+w8Xg+2cBf


99 
 

 

Figure 4.3 | Co-expression network analysis characterizes cortex-wide dysregulation of ASD risk 
genes. a. Average linkage hierarchical clustering of the biweight midcorrelation of the top 5 most 
dysregulated gene and isoform co-expression module eigengenes (first principal component of the module) 
with regionally-consistent patterns of ASD dysregulation. The module eigengene ASD effect is indicated for 
each cortical region examined (Methods). b. -log10(FDR) for cell-type, GWAS, rare variant, and protein-
protein interaction (PPI) enrichment for the modules depicted in a. ‘*’ indicates a significant enrichment 
(FDR < 0.05 for cell-type, rare variant, and PPI enrichment, and FDR < 0.1 for GWAS enrichment). ‘n’ 
indicates the number of genes/isoforms in each module. c-d. For ASD GWAS enriched modules Isoform 
M37 (c) and GeneM5 (d), top gene ontology terms (left) and hub genes (module genes within the top 20 
genes with the highest correlation with the module’s eigengene) that participate in a protein-protein 
interaction (PPI) with any other module gene are depicted along with their PPI partners (right). Node color 
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is the signed -log10(FDR) of the whole cortex ASD effect, edges denote direct PPIs, and hub genes are 
indicated with a black outline. SFARI database14 gene names are in bold italic. 

 
Two other modules  - GeneM5 and IsoM37 - demonstrated cortex-wide dysregulation 

along with significant enrichment for ASD-associated common genetic variation (Fig. 4.3b-d).11 

GeneM5 is down-regulated in ASD, contains many neuronal genes involved in synaptic plasticity, 

and significantly overlaps with the synaptic module CTX.M16 previously identified by Parikshak 

et al.5 (Fig. 4.3a, Fig. 4.3d, Table A4.5-6). GeneM5 is also significantly enriched for genes 

containing rare de novo protein altering mutations associated with ASD, including the high-

confidence risk genes GRIN2A, MYO5A, and BTRC12 (Table A4.5-6, Methods). This 

demonstrates convergence of rare and common risk variants on shared biological processes in 

ASD. GeneM5 is enriched in cortical lower layer 4-6 excitatory neuron cell-type markers (Fig. 

A4.7),13 identifying them as a point of convergence for rare and common genetic risk in ASD. 

Finally, IsoM37 is enriched for ASD common genetic risk variants (but not rare mutations), is 

upregulated in ASD, and contains genes involved in protein folding (Fig. 4.3a, Fig. 4.3c, Table 

A4.6). To our knowledge, this is the first report of an upregulated ASD transcriptomic signature 

that is associated with known ASD risk variants.  

4.4.2: Magnitude of effect parallels anterior-posterior gradients 

 In addition to observing profound cortex-wide dysregulation in ASD, we found 13 modules 

that exhibited their most pronounced ASD effect in BA17, as measured against a permuted 

distribution containing all regions (Fig. A4.7, Table A4.6, Methods). Of these, 12 showed 

significant enrichment for ARI genes (half up-regulated and half down-regulated in ASD) and all 

13 had anterior - posterior gradients of expression in neurotypical samples, indicating that these 

modules contribute to transcriptomic regional identities that are observed in neurotypical controls, 

but attenuated in ASD (Fig. A4.7, Table A4.6). Six of these modules were more highly expressed 

in posterior regions in neurotypical subjects and were observed to be downregulated in ASD 

https://paperpile.com/c/GaGm1R/vLSu
https://paperpile.com/c/GaGm1R/XcB4
https://paperpile.com/c/GaGm1R/9KzN
https://paperpile.com/c/GaGm1R/qeW6
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across the cortex (Fig. 4.4a, Fig. A4.7, Table A4.6). These include GeneM23, an 

oligodendrocyte-specific module consisting of genes important for organelle regulation and 

intracellular restructuring; GeneM14, a neuronal module that contains genes involved in neurite 

morphogenesis and is also strongly downregulated in BA41-42-22; and GeneM3, a neuronal 

module enriched for energy generation and neuronal processes that are highly energy dependent, 

such as vesicle transport (Fig. 4.4b-c, Table A4.5-6). GeneM3 is also significantly enriched for 

cell-type markers specific to layer 4-5 excitatory neurons (Fig. A4.7).13 The other six modules that 

were more highly expressed in anterior regions in neurotypical subjects exhibited cortex-wide 

upregulation in ASD (Fig. 4.4a, Fig. A4.7, Table A4.6). These include GeneM8, a microglial 

module containing genes involved in immune signaling and phagocytosis; and GeneM7, an 

immune response module containing genes such as NF-kB and interferon response pathways 

(Fig. 4.4b, Table A4.5-6). Although neuronal and oligodendrocyte downregulation along with 

immune and microglia upregulation have been previously reported in ASD,1,4–6 these findings 

indicate that this dysregulation is widespread across the cerebral cortex, with increased 

magnitude in posterior regions, a pattern most pronounced in BA17. 

https://paperpile.com/c/GaGm1R/qeW6
https://paperpile.com/c/GaGm1R/w8Xg+2cBf+XcB4+r95n
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Figure 4 | Functional Characterization of Regionally-variable Transcriptomic Dysregulation in ASD. 
a. Average linkage hierarchical clustering of the biweight midcorrelation of the top 6 most dysregulated 
gene co-expression module eigengenes (ME; first principal component of the module) with regionally-
variable patterns of dysregulation. The median of the ME, stratified by diagnosis, is depicted for each 
cortical region examined. Significant region-specific dysregulation in ASD is marked with ‘*’, and regions 
with a significantly increased magnitude of effect compared to the whole cortex effect is marked with ‘**’ 
(Methods). b. Left and center, signed -log10(FDR) for cell-type enrichment (left) and whole cortex ASD 
effect for the modules depicted in a (center). ‘*’ indicates a significant enrichment (FDR < 0.05).  Right, 
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regions marked with ‘**’ in a are listed. Red text indicates upregulation and blue text indicates 
downregulation in ASD. ‘n’ is the number of genes in each module. c. Median regressed gene expression 
for the top three hub genes for GeneM4 (top) and GeneM3 (bottom). d. UMAP plot for snRNA-seq, 
containing matched ASD and neurotypical control samples from both the frontal (BA9 and BA4_6; ASD: 4, 
Control: 2) and occipital (BA17; ASD:2, Control: 2) cortical lobules. e. Predicted neural cell-type proportions 
obtained from cell-type deconvolution with bulk RNA-seq samples, using snRNA-seq cell-type markers. 
Cell-types with significant proportion differences in ASD are shown, with significant ASD changes marked 
with ‘*’. f. DE genes identified with snRNA-seq. Total number of down-regulated (bottom) and up-regulated 
(top) genes in ASD samples compared to controls is shown (the sum of all cell subtype DE genes within 
each broad cell-type). 
 

One neuronal module, GeneM4, was observed to be significantly upregulated in ASD only 

in BA17. GeneM4 contains many genes important for various intracellular signaling and 

maturation processes, such as SCN9A (Fig. 4.4a-c, Table A4.5-6). Additionally, GeneM4 is 

significantly enriched for lincRNAs and for previously reported gene modules associated with 

upregulated pathways related to development5 and signaling1,6 in ASD, although we observe this 

effect in BA17 for the first time (Fig. A4.7). We also identified two modules exhibiting strong 

region-specific dysregulation in regions other than BA17 (Fig. A4.7). For example, the module 

GeneM34, which contains genes involved in cellular stress response regulatory processes, is 

upregulated with the greatest magnitude in BA4-6 and shows no significant effect in BA17 (Fig. 

A4.7, Table A4.5-6). None of the gene modules with regionally-variable magnitudes of ASD effect 

were significantly enriched for known ASD genetic risk variants. 

4.4.3: Cell-type changes mirror regional variation 

We finally sought to determine what might be driving the observed changes in magnitude 

of ASD effect across regions. It is well established that BA17 is the most neuronally dense region 

in the human brain, with a notable expansion in the thickness of L3/4, compared with other cortical 

regions.18 Likewise, there is somewhat of an anterior-posterior gradient in neuronal density 

observed in mice and primates.14–17 As such, we posited that regional variation in cell density 

could be contributing to regional differences in magnitude of ASD effect. Regional neuronal 

density across multiple brain regions has not been quantitatively studied in the human brain, but 

https://paperpile.com/c/GaGm1R/XcB4
https://paperpile.com/c/GaGm1R/2cBf+w8Xg
https://paperpile.com/c/GaGm1R/O1nF+M1Fi+zHNM+OX81
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such gradients have been established across some regions in non-human primates.15,16 

Therefore, we compared the region-specific ASD effect size changes in our gene modules to 

regional neuronal nuclei density measured in primates15 for 6 matched regions across species. 

We observed a significant association between neuronal density and the effect sizes for several 

modules dysregulated in ASD (seven with FDR < 0.05, and an additional eight with FDR < 0.1, 

Fig. A4.9, Table A4.7). Further, L3/4 thickness was also associated with the region-specific ASD 

effect sizes in dysregulated modules (Table A4.7). 

These observations motivated us to perform single-nucleus RNA sequencing (snRNA-

seq) in a small cohort of individuals to help evaluate how distinct neural cell-types could be 

contributing to the regional variance in ASD transcriptomic dysregulation identified with bulk RNA-

seq (Fig. 4.4d, Fig. A4.9, Table A4.7, Methods). We sequenced over 150,000 nuclei from ASD 

and control samples across frontal and occipital cortices with matching bulk RNA-seq. From these 

data, we identified 35 distinct cell clusters and 4,953 cell-type-specific DE genes in ASD subjects 

in the frontal and occipital cortex. The vast majority of these were DE in excitatory neurons in both 

regions, and exhibited larger effects overall in the occipital lobe (Fig. 4.4f). While statistical power 

limited our ability to detect significant cell-type proportion differences between regions or 

diagnoses (Methods), we do observe that excitatory neurons are increased in proportion by ~5% 

in BA17 across both control and ASD subjects compared to frontal regions (Fig. A4.9), 

corresponding with the primate neuronal density measurements. To predict how cell-type 

proportions may vary across our entire bulk RNA-seq dataset, next we utilized cell-type markers 

from our snRNA-seq to perform cell-type deconvolution in all samples (Methods). We identified 

11 significant cell subtype proportion changes present across six different regions in ASD, 

characterized by neuronal decreases and astrocyte and microglia increases (Fig. 4.4e, Fig. A4.9, 

Table A4.7). We also found many anterior-posterior cell-type proportion gradients in control 

https://paperpile.com/c/GaGm1R/M1Fi+zHNM
https://paperpile.com/c/GaGm1R/M1Fi
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subjects that are attenuated in ASD (Fig. A4.9, Table A4.7), mirroring patterns observed with our 

bulk RNA-seq transcriptomic regional identity analysis.  

When directly comparing cell-type-specific DE and deconvolved proportional changes in 

ASD with regional variability in the larger bulk transcriptome sample, we observed a convergent 

signal within excitatory neurons – in particular, those in L3/4 (ExNeuron4; Fig. 4.4e-f, Fig. A4.9).  

Recapitulating the known increase in thickness of L3/4 in BA17 compared with other cortical 

regions18, we observed a significant increase in the estimated proportion of the ExNeuron4_L3/4 

cluster in posterior regions, peaking in BA17 (Fig. 4.4e; Fig. A4.9g). This regional pattern was 

significantly attenuated in ASD, with a ~2-fold median reduction in estimated Ex4 neuronal 

proportion in BA17 compared with controls. This cell cluster, with marker genes RORB, PCP4, 

CUX2, PHACTR2, and EYA4, also exhibited substantially greater cell-type-specific DE in snRNA-

seq profiling from BA17 compared with frontal cortex (90 vs 0 DE genes, respectively; Fig. A4.9d). 

Similarly, BA17 shows a substantially greater upregulation of inhibitory neuron genes in the single 

cell data, consistent with the observed greater up-regulation of GeneM4 (interneuron) in BA17 

(Fig. 4.4f). Substantial changes in gene expression are also evident in other cell subtypes (Fig. 

A4.9, Table A4.7), such as microglia_2, which shows a strong and specific increase in DE genes 

in ASD BA17 compared to frontal regions. These observed intracellular/cell-type changes in 

neuronal and microglial gene expression are further supported by another snRNA-seq dataset 

containing a small ASD cohort, which assessed a single region.19 Here, through performing multi-

region snRNA-seq and cell-type deconvolution, we show that predicted cell-type proportions as 

well as cell-type-specific gene expression profiles are impacted across the ASD cerebral cortex. 

Importantly, we see increased cell-type-specific transcriptomic dysregulation and lowered 

neuronal proportions with a notable convergence within L3/4 excitatory neurons in ASD BA17, a 

region where neuronal proportions are neurotypically abundant. These changes likely contribute 

to the pronounced ASD effect we observe with bulk RNA-seq in this region. 

https://paperpile.com/c/GaGm1R/DWdP


106 
 

4.5: Discussion 

 

Overall, the findings presented here substantially expand our understanding of ASD 

pathology beyond the previously established ‘downregulated neuron’ and ‘upregulated 

glia/immune’ functional categories observed in frontal and temporal lobe. We identify gene and 

isoform expression changes in ASD that extend across the cerebral cortex, many neural cell-

types, and specific biological processes (Fig. A4.10).1,4–6 We find that the recently observed 

reactive astrocyte upregulation and blood-brain barrier membrane transport downregulation1 is 

extended cortex-wide in ASD. Furthermore, we find that other dysregulated pathways observed 

before in ASD - particularly upregulated immune response and reactive microglia genes, along 

with downregulated neurite morphogenesis and neuronal energy pathway genes - are not only 

impacted cortex-wide in ASD, but impacted in a regional gradient that reflects fundamental 

elements of cortical cytoarchitecture, such as neuronal density. It is also notable that the 

magnitude of region-level differences in ASD parallels regional variance in attenuation of 

transcriptomic identity, suggesting that they reflect related processes. That the gradient of region-

specific changes between ASD and controls coincides with both neuronal proportion differences 

and cell-type-specific transcriptomic dysregulation further suggests that the interplay of 

cytoarchitecture and cell-type gene expression, rather than a single one of these features, 

influences our ability to observe transcriptomic changes in bulk tissue. Given the connection 

between regional cytoarchitecture, local circuits and long-range brain connectivity,20,21 parsimony 

suggests that in addition to developmental patterning contributions,5,22 the diminution of 

transcriptomic regional identity reflects changes in local neuronal circuit dysfunction and deficits 

in synaptic plasticity and homeostasis that are widely propagated.20 This is supported by our 

observation that the gene co-expression module representing synaptic plasticity genes is 

downregulated cortex-wide and is significantly enriched with common and rare ASD genetic risk 

variants, further emphasizing that synaptic plasticity is a convergent pathway in ASD. Given this 

https://paperpile.com/c/GaGm1R/XcB4+w8Xg+r95n+2cBf
https://paperpile.com/c/GaGm1R/2cBf
https://paperpile.com/c/GaGm1R/40S4+Lw6y
https://paperpile.com/c/GaGm1R/DxJz+XcB4
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result, along with our observations of profound neuronal dysregulation present throughout the 

ASD cortex, future work should determine which specific aspects of synaptic plasticity may 

contribute to causal mechanisms in the disorder across specific brain regions and developmental 

timepoints. 

 Several additional factors should guide the interpretation of these results. The samples 

utilized in this work were obtained from heterogeneous postmortem cortical tissue, meaning that 

the results reported here are broadly applicable to the postnatal ASD cortex across both sexes 

and a span of ages from two to 68 years old, and they should be interpreted in this context. 

Rigorous methodology was utilized at every step to account for biological and technical variability, 

ensuring that the results reported here are conservative and widely applicable. Additionally, bulk 

tissue RNA-seq, in contrast to single cell and nucleus RNA-seq, does not have the cellular 

resolution to assess dissection variability across cortical regions and cell-type specificity of 

transcriptomic changes. We addressed this by performing snRNA-seq, which significantly 

enhanced our understanding of regional variation in ASD transcriptomic dysregulation. However, 

snRNA-seq also has its own limitations. While snRNA-seq can profile tens of thousands of cells, 

snRNA-seq experiments typically have fewer unique samples than bulk RNA-seq experiments, 

and the comparability of snRNA-seq cell-type proportions to true sample cell-type proportions is 

currently unclear.23 It is also challenging to estimate isoform quantifications with single cell RNA-

seq approaches, whereas this remains a strength of bulk tissue RNA-seq.24 Leveraging this, we 

subsequently identified an upregulated isoform-specific co-expression module enriched with ASD 

GWAS variants, implicating increased protein folding dysfunction for the first time as a putative 

pathway contributing to ASD causal mechanisms. Interestingly, upregulated proteostasis is also 

implicated in Down’s Syndrome,25,26 supporting that protein folding machinery may be an affected 

biological process in multiple neurodevelopmental disorders. The utilization of methods that have 

greater cellular resolution is necessary for the improved and continued mapping of the results 

https://paperpile.com/c/GaGm1R/RRhd
https://paperpile.com/c/GaGm1R/SFlY
https://paperpile.com/c/GaGm1R/HmYn+lkL5


108 
 

presented here to specific cortical cell-types. As we seek to gain a complete understanding of 

ASD neural pathology, future approaches which integrate different sources of biological data - 

including this cortex-wide transcriptomic resource - to determine how ASD risk genes are acting 

in the brain will be essential. 

4.6: Materials and Methods 

Sample Acquisition and Preparation for RNA-seq 

Postmortem cortical brain samples were acquired from the Harvard Brain Bank as 

part of the Autism BrainNet project (formerly the Autism Tissue Project, ATP) and the University 

of Maryland Brain Banks (UMDB). A total of 842 samples from subjects with ASD, dup15q 

syndrome, and non-psychiatric controls (112 unique subjects) across 11 cortical regions 

encompassing all major cortical lobes – frontal: BA4/6, BA9, BA44/45, BA24; temporal: BA38, 

BA41/42/22, BA20/37; parietal: BA3/1/2/5, BA7, BA39/40; and occipital, BA17 - were acquired. 

These included 253 samples previously published in Parikshak et al., Nature 20165 from BA9 and 

BA41/42/22 and/or Gandal et al., Science 2018b1,5 from BA9, BA4/6, and BA41/42/22.  An ASD 

diagnosis was confirmed by the Autism Diagnostic Interview-Revised (ADIR) in 30 of the subjects. 

In the remaining 19 subjects, diagnosis was supported by clinical history. Frozen brain samples 

were stored at -80 deg C. To extract RNA from these samples, first approximately 50-100mg of 

tissue were dissected from the cortical regions of interest on dry ice in a dehydrated dissection 

chamber to reduce degradation effects from sample thawing or humidity. Then, RNA was isolated 

from each sample using the miRNeasy kit with no modifications (Qiagen). For each RNA sample, 

RNA quality was quantified using the RNA Integrity Number (RIN) on an Agilent Bioanalyzer.  

 

RNA-seq and RNA Data Processing 

Initial sequencing in BA9 and BA41/42/22 was performed in three batches as 

published by Parikshak et al., Nature 2016.5 The remaining regions, along with additional BA9 

https://paperpile.com/c/GaGm1R/XcB4
https://paperpile.com/c/GaGm1R/XcB4+2cBf
https://paperpile.com/c/GaGm1R/XcB4
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and BA41/42/22 samples, were sequenced across three new batches. For all of these batches, 

strand-specific RNA-seq libraries were prepared. For the first two batches, the TruSeq Stranded 

Total RNA sample prep kit with RiboZero Gold (Illumina) was used to obtain rRNA-depleted 

libraries. The remaining batch was prepared with the TruSeq RNA Exome sample prep kit 

(formerly the TruSeq RNA Access sample prep kit; Illumina). All libraries were randomly pooled 

to multiplex 24 samples per lane using Illumina TruSeq barcodes. Each lane was sequenced five 

times on an Illumina HiSeq 2500 or 4000 instrument using high output mode with standard 

chemistry and protocols for 50, 69, or 100 bp paired-end reads (read length varied by batch) to 

achieve a target depth of 70 million reads. 

After sequencing, the resulting sample FASTQ files from all batches (including the 

Parikshak et al.5 samples) were subjected to the same processing pipeline. First, FASTQ files 

were assessed with FastQC27 (v0.11.2) to verify that quality was sufficient for further processing. 

FASTQ files were then aligned to the human reference genome (GRCh3728 Ensembl v75) with 

STAR29 (v2.5.2b). Picard tools30 (v2.5.0) was used with the resulting BAM files to collect various 

read quality measures, in addition to the quality measures collected by STAR. verifyBAMID31 was 

also used with these BAM files along with known sample genotypes from Parikshak et al.5 to 

validate that sample identity was correct for all BAM files. Additionally, the expression of XIST (a 

female-specific gene) was assessed to contribute to sample identity verification. Finally, RSEM32 

(v1.3.0) was used for quantification (Gencode33 release 25lift37) to obtain expected read counts 

at the gene and isoform levels. 

Expected gene and isoform read counts were then subjected to several processing 

steps in preparation for downstream analysis, mainly using R.34 First, Counts Per Million (CPM) 

were obtained from counts for gene and isoform filtering purposes. Genes and isoforms were 

filtered such that genes/isoforms with a CPM > 0.1 in at least 30% of samples were retained. 

Genes/isoforms were also removed which had an effective length (measured by RSEM) of less 

https://paperpile.com/c/GaGm1R/XcB4
https://paperpile.com/c/GaGm1R/NYtS
https://paperpile.com/c/GaGm1R/I9Oq
https://paperpile.com/c/GaGm1R/5mYY
https://paperpile.com/c/GaGm1R/7p6D
https://paperpile.com/c/GaGm1R/XcB4
https://paperpile.com/c/GaGm1R/QUpg
https://paperpile.com/c/GaGm1R/y5rB
https://paperpile.com/c/GaGm1R/nl2u
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than 15 bp. Isoforms were additionally filtered such that all isoforms corresponded with genes in 

the gene-level analysis. The counts for the remaining genes (24,836) and isoforms (99,819) 

passing these filters were normalized using the limma-trend approach in the limma35 R package. 

Briefly, the limma-trend approach obtains normalized expression data through taking the 

log2(CPM) of read counts with an adjustment for sample read depth variance. An offset value 

calculated with CQN36 accounting for GC content bias and gene/isoform effective length bias in 

read quantification was also incorporated during the normalization process. With this normalized 

expression data, sample outliers were identified in each sequencing batch by cortical lobe (frontal, 

parietal, temporal, and occipital) group that had both (1) an absolute z-score greater than 3 for 

any of the top 10 expression principal components (PCs) and (2) a sample connectivity score less 

than -2. Sample connectivity was calculated using the fundamentalNetworkConcepts function in 

the WGCNA10 R package, with the signed adjacency matrix (soft power of 2) of the sample 

biweight midcorrelation as input. This process identified 34 outliers, resulting in a final total of 808 

samples (341=Control, 384=ASD, 83=dup15q) which were carried forward for analysis. 

 

Evaluating Previous Co-Expression Modules and ASD DE Genes/Isoforms Cortex-wide 

Linear models for all subsequent analyses are described in the Appendix 

(Extended Methods, section A4.1). 

To determine how gene co-expression modules previously identified in Parikshak 

et al.5,35 and Voineagu et al.4 were effected across distinct cortical regions, we first created a 

regressed gene expression dataset that only contained the effects of biological covariates 

(subject, diagnosis, region, sequencing batch, sex, ancestry, age, and age2). This regressed 

dataset was created with the ‘lmerTest’37 package in R through subtracting the effects of technical 

covariates from each gene, leaving only the random intercept, biological covariate effects, and 

the residual. ASD-associated module eigengene region-specific ASD effects were identified using 

https://paperpile.com/c/GaGm1R/c7XW
https://paperpile.com/c/GaGm1R/nHzI
https://paperpile.com/c/GaGm1R/hdrr
https://paperpile.com/c/GaGm1R/c7XW+XcB4
https://paperpile.com/c/GaGm1R/r95n
https://paperpile.com/c/GaGm1R/Ddfy
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contrasts (eg. Control_BA17 - ASD_BA17) with the limma34 R package with this regressed 

expression dataset, accounting for all biological covariates. Region-specific contrasts with a p-

value < 0.05 were considered significant (FDR-correction was unwarranted since only eight 

module eigengenes were examined). 

To identify genes and isoforms dysregulated in ASD both within specific regions 

and cortex-wide, the limma35 R package was applied with the gene and isoform expression data 

using our full gene and isoform models (both biological and technical covariates). The standard 

limma35 workflow was implemented as recommended for linear mixed models. Region-specific 

dysregulation was identified as described above for the Parikshak et al.5 and Voineagu et al.4 

modules. Whole cortex dysregulation was established through subtracting the sum of the ASD 

region-specific effects from the sum of the Control region-specific effects. For both region-specific 

and whole cortex effects, genes and isoforms with an FDR-corrected p-value < 0.05 were 

considered significantly dysregulated. dup15q region-specific and whole cortex dysregulation was 

also established in this manner. The fixed effects of sex, age, and age2 were also acquired (shared 

in Table A4.3) using the full gene and isoform models. 

The methodology used to evaluate region-specific ASD effects compared to whole 

cortex ASD effects is described in the Appendix (Extended Methods, section A4.1) Methods. 

 

Transcriptomic Regional Identity Analysis 

To identify differentially expressed genes and isoforms between all 55 pairs of 

cortical regions, a regressed gene expression dataset containing only the random effect of subject 

and the fixed effects of diagnosis and region (along with the model residual) was used. Regression 

was performed as described for evaluation of previously identified co-expression modules. 

Significant attenuation of DE genes between each pair of regions (a reduction in transcriptomic 

regional identity differences) in ASD was established through the following process. (1) ASD and 

https://paperpile.com/c/GaGm1R/c7XW
https://paperpile.com/c/GaGm1R/c7XW
https://paperpile.com/c/GaGm1R/c7XW
https://paperpile.com/c/GaGm1R/XcB4
https://paperpile.com/c/GaGm1R/r95n
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Control subjects containing each region in the regional pair were extracted for use in the analysis. 

(2) Separately in ASD and Control subjects, the number of DE genes between regions was 

calculated using the paired Wilcoxon signed-rank test. Genes with an FDR-corrected p-value < 

0.05 were considered DE. (3) The difference in the number of DE genes between regions for ASD 

v Control subjects was calculated (the ‘true’ difference). (4) A permuted distribution of the 

difference in DE genes between regions for ASD v Control subjects was generated to test the 

‘true’ difference. Each permutation (10,000 in total) randomly assigned ‘ASD’ and ‘Control’ status 

to subjects, but kept the number of ASD and Control subjects consistent with the true number of 

ASD and Control subjects. (5) A two-tailed p-value was obtained from testing the ‘true’ difference 

against the permuted distribution. If the regional comparison p-value < 0.05, with the number of 

DE genes between regions in ASD less than that in Controls, then the regional comparison was 

considered significantly attenuated in ASD. Otherwise, the regional comparison was considered 

over-patterned in ASD. This procedure was repeated with isoform level regressed gene 

expression data (similarly, only containing the random effect of subject and the fixed effects of 

diagnosis and region, along with the model residual) to identify altered transcriptomic identities in 

ASD at the isoform-level.  

The previously described permutation approach was designed to identify 

differences in transcriptomic regional identity in ASD. Importantly, this method is not appropriate 

for assessing variance in expected numbers of DE genes between regions across regional pairs 

and diagnoses, since the number of ASD and Control subjects varied across regional pairs. To 

examine this, for each regional comparison we subset to 10 pairs of ASD and Control subjects 

(10 was selected since every regional comparison had at least this many subjects). When 

subsetting, subjects were removed such that the remaining subjects were closest in age to the 

median age of the available samples for that regional comparison. A bootstrap approach was then 

used to calculate the number of DE genes (p-value < 0.05) between regions separately in Control 
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and ASD subjects through sampling subjects with replacement (mean taken across 10,000 

bootstraps). The same regressed expression dataset used for the permutation approach was 

utilized for this bootstrap analysis. Any regional comparison in which the number of DE genes 

between regions was less in ASD than in Control subjects was considered trending towards 

attenuation in ASD. 

To validate our bootstrapped estimates for the number of DE genes between pairs 

of regions in Controls, we compared these estimates to those of the Allen Brain Atlas9, which is 

the best publicly available work for comparison. Allen Brain Atlas regions were matched to 

Brodmann regions (Table A4.4) and matching regional pairs were extracted for comparison with 

this work. When the Allen Brain Atlas had two or more regional pairs matching one regional pair 

in this work, the mean was taken across the Allen Brain Atlas regional pairs. A p-value for the 

association of the number of DE genes between regions in Controls obtained in this work 

compared to the Allen Brain Atlas was calculated from a linear model (cortex-wide bootstrap mean 

~ allen brain atlas mean). 

We applied a stringent filtering process to identify high-confidence attenuated 

regional identity (ARI) genes from each significantly attenuated regional comparison identified 

with the permutation procedure described above. First, for each of the attenuated regional 

comparisons, we extracted the genes which were identified as DE between regions in subjects 

labeled as Controls in each of the 10,000 permutations. Then, we calculated how many times 

each of the genes truly DE between pairs of regions in the Control subjects were present in their 

respective permuted groups (ranging from a possible 0 to 10,000 occurrences). Those ‘true’ DE 

genes which were present in less than 95% of their respective permutations were retained as ARI 

genes for each attenuated regional comparison. For each set of ARI genes (ten total), each gene 

was matched to the region in which it had higher expression in Control subjects. The paired 

https://paperpile.com/c/GaGm1R/ixCf
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Wilcoxon signed-rank p-values identified for these genes in Controls (those subjects used for the 

permutation analysis) were also extracted and are shared in Table A4.4. 

ARI gene groups (ARI downregulated genes, those highly expressed in BA17 and 

BA39-40 relative to other regions in Controls; ARI upregulated genes, those lowly expressed in 

BA17 and BA39-40 relative to other regions in Controls) were created through taking the union 

(without duplicates) across all ten identified ASD-attenuated regional comparisons, and sorting 

genes into the two groups based on gene expression profiles across regions. The details of this 

process are described in the Appendix (Extended Methods, section A4.1), along with functional 

annotation procedures. 

 

Network-Based Functional Characterization 

Standard workflows, as previously described in Parikshak et al.5 and Gandal et 

al.,1 were followed (with minor modifications) to identify gene and isoform co-expression modules 

using Weighted Gene Co-Expression Network Analysis (WGCNA).10 Details regarding network 

formation, module identification, and module functional characterization are described in the 

Appendix (Extended Methods, section A4.1). 

 

snRNA-seq and Cell-type Deconvolution 

Cell types were annotated based on expression of known marker genes visualized on the 

UMAP plot, violin plots, and by performing unbiased gene marker analysis. To gain insight into 

the regional enrichment or diagnostic enrichment of cell types, the relative proportion of the 

number of nuclei in each cell type was normalized to the total number of nuclei captured from 

each library. Average cell-type proportions and standard errors (across libraries) were scaled 

such that each Lobule x Diagnosis group sums to 100%, so that cell-type proportions in these 

groups could be fairly compared across all cell-types. To determine if any changes in cell-type 

https://paperpile.com/c/GaGm1R/XcB4
https://paperpile.com/c/GaGm1R/2cBf
https://paperpile.com/c/GaGm1R/hdrr
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proportion were statistically significant, we implemented scDC38 to bootstrap proportion 

estimates for our samples (Table A4.7). We employed a linear mixed model (random effect of 

subject) to determine if any changes in cell-type proportion were present across regions and 

diagnoses. None of the model covariates were statistically significant (p > 0.05 for all model 

covariates). However, we did find several significantly different predicted cell-type proportions in 

ASD with cell-type deconvolution analysis. We describe methods for cell-type deconvolution in 

detail in the Supplementary Methods (Extended Methods, section A4.1). To identify genes 

differentially expressed in ASD compared to control in each cell type, the non-parametric 

Wilcoxon rank sum test was applied including gene detection rate and sequencing depth within 

the model. We compared frontal cortex ASD cells to frontal cortex control cells within each 

cluster and likewise for the occipital cortical cells. The bars in Figure 4.4e are the summation of 

all differentially expressed genes identified in each cell subtype for the broader cell-type (eg. all 

excitatory neuron subtype DE genes are summed to obtain the number of DE genes in the 

broad excitatory neuron cell class). Further details regarding the snRNA-seq analysis are 

included in the Supplementary Methods (Extended Methods, section A4.1). 
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5.1: Conclusions 

 In this work, I demonstrated how transcriptomic analyses can measurably advance 

psychiatric disorder research. In both cross-disorder studies (Chapters 2 and 3), shared and 

distinct gene expression changes across disorders are connected to psychiatric genetic risk 

variants and signatures of specific cell-types and biological processes. We find a broad disruption 

of neuronal and synaptic processes as well as upregulation of astrocyte-specific transcriptional 

programs. In contrast, microglia cell-type markers are distinctly upregulated in ASD, differentiating 

it from the other psychiatric disorders surveyed. Integrating genomic and transcriptomic data 

further refines our understanding of multiple psychiatric disorders, as this approach narrows in on 

genetic variants contributing to observed molecular pathology in the brain. Finally, I show how 

multi-region transcriptomic analyses in ASD uncovered shared molecular disruptions that extend 

across the cerebral cortex, and that these changes strongly implicate disrupted neuronal synaptic 

plasticity mechanisms in ASD. All of these transcriptomic experiments exemplify how core 

concepts and approaches in psychiatric neurogenetics – strategic experimental design with robust 

statistical control, dimensionality reduction and feature selection through integration of orthogonal 

biological datasets, and unbiased interrogation of gene expression changes within a cellular and 

molecular neuroscience framework – can substantially enhance our understanding of psychiatric 

disorders. 

 Strategic experimental design enables transcriptomic experiments to profile different axes 

of biological variation relevant to psychiatric disorder research. In the work presented here, 

samples were selected to expand our understanding of psychiatric disorders across two major 

axes of biological variation: a cross-disorder axis, and a spatial/regional axis. Interrogating how 

the transcriptome varies across these axes both enhanced our ability to interpret previous findings 

and revealed new psychiatric molecular pathology, leading to valuable biological insights. For 

example, in chapter four we saw that previously observed decreased neuronal gene expression 
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in ASD was expanded across the cerebral cortex, and also found that this effect was greatest in 

the occipital cortical lobule. The occipital cortical lobule is the most neuronally dense region in the 

brain, with a prominent expansion of Layer 3/4 neurons compared with other regions of the 

cortex.1-5 These results emphasized that neuronal dysregulation is a core component of ASD 

pathology. The cross-disorder experiments in chapters two and three also enhanced and 

expanded our knowledge of multiple psychiatric disorders through comparing gene expression 

changes across these disorders. All of these works show that characterizing psychiatric 

transcriptomic pathology across orthogonal axes of biological variation – such as the 

neurodevelopmental/temporal, spatial/regional, cross-disorder, and cellular axes – substantially 

improves our understanding of psychiatric disorders. Through profiling every facet of the 

psychiatric transcriptome, we enhance our ability to draw meaningful functional insights from gene 

expression changes and narrow in on relevant psychiatric disorder mechanisms. Data-driven, 

empirical analyses that continue to survey the transcriptome across spatiotemporal, multi-

disorder, and cellular axes will surely continue to empower psychiatric disorder research. 

    The work presented here also relied on the integration of different bioinformatic 

techniques, datasets, and approaches to obtain a fuller picture of how cell-types and biological 

processes are altered in psychiatric disorders. While transcriptomic analyses are informative, they 

are restricted to quantifying a single molecular feature, RNA, and therefore do not capture the 

entire landscape of molecular changes occurring in samples, limiting how much we can learn 

about biological systems with this approach. Combining transcriptomic profiles with genomic, 

epigenomic, proteomic, and other empirical biological assays refines our understanding of how 

entire biological systems are impacted by psychiatric disorders. For example, in chapter three 

genomic data is combined with transcriptomic data to predict how genetic variants may contribute 

to psychiatric gene expression dysregulation. Polygenic risk score comparisons connect common 

genetic variants with genes exhibiting psychiatric transcriptomic dysregulation, highlighting 
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specific regulatory mechanisms that may contribute to causal pathology in psychiatric disorders. 

In addition to these findings, we see that other integrative ‘omics analyses also advance 

experimental aims in other chapters. In chapter two, primary findings made with a gene 

expression microarray metanalysis were validated with RNA-seq analysis, supporting the 

robustness of those findings. Additionally, in chapter four, the integration of single nucleus RNA-

seq with bulk RNA-seq showed that increased gene expression dysregulation in the occipital 

cortical lobule was associated with differential gene expression increases in occipital cell-types 

relative to frontal region cell-types. Across all of these experiments, we see that integrating 

different types of data and methodologies provides a deeper understanding of biological systems, 

enabling these analyses to hone in on major components of psychiatric disorder mechanisms. 

   Reflecting on the main results of the work presented here, it is evident that combining 

data-driven analyses with hypotheses rooted in prior knowledge was essential for elucidating 

major findings. To emphasize a key finding, in chapters two and four we see that neuronal 

downregulation and astrocyte upregulation across ASD, schizophrenia, and bipolar disorder is 

apparent, along with a distinct microglial upregulation signature in ASD. In ASD, we find that these 

effects are present cortex-wide, with a general increase in magnitude of effect in the occipital 

cortical lobule relative to all other regions examined. 

In further analyzing patterns of neuronal gene downregulation across the cerebral cortex 

in ASD, we find that some of these genes are involved in synaptic plasticity processes, and that 

common and rare genetic risk variants for ASD (such as GRIN2A, MYO5A, and BTRC) converge 

on these specific genes. Additionally, we find that many downregulated neuronal genes, including 

several involved in neuronal energetic pathways, exhibit the greatest ASD gene expression 

effects in the occipital region. With the knowledge that this region is one of the most neuronally 

dense in the brain, we find that the magnitude of region-specific ASD neuronal gene expression 

is positively associated with regional neuronal density, and additionally with single nucleus RNA-
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seq we find that occipital cell-types are particularly severely dysregulated compared to frontal 

regions. Through integrating differential gene expression, ASD GWAS and rare variants, and 

measures of neuronal density and cell-type-specific transcriptomic dysregulation, we gain a fuller 

picture of the ASD brain, and hone in on neurons (and synaptic plasticity regulation in particular, 

as ASD risk variants converge on genes associated with this biological process) as a critical cell-

type in ASD disorder mechanisms.  

Finally, to review upregulated gene expression signatures, we find that NF-kB 

pathways, particularly in astrocytes, along with interferon pathways are strongly upregulated in 

ASD and schizophrenia, with ASD showing the greatest dysregulation signature. This shows that 

immune reactivity pathways and astrocytes contribute strongly to psychiatric disorder 

mechanisms. Additionally, the robust observation of microglial activation in ASD alone implicates 

this cell-type in pathological processes specific to ASD. Together, all of these major findings 

demonstrate how empirical transcriptomic methodologies guided by prior knowledge of 

neurodevelopment, psychiatric genetics, and neural cytoarchitecture have significantly advanced 

our understanding of psychiatric disorders.     

5.2: Future directions 

 As we seek to continually improve our understanding of psychiatric disorders and 

elucidate the core components of psychiatric neuropathology, the refinement and improvement 

of methodologies for assaying different types of biological data will be essential. The 

development of long read RNA-sequencing8 methods will enhance isoform and differential 

splicing quantification methods, improving our ability to identify transcriptomic dysregulation in 

psychiatric disorders, as evidenced extensively in chapter three. For single cell and nucleus 

RNA-seq, as well as the newer spatial RNA-seq9 technology that can localize RNA in 

histological slices, increasing read depth and expanding RNA capture beyond poly-A reads will 

allow for single cell, nucleus, and spatial RNA-seq methods to capture the diversity of the 



124 
 

transcriptome and provide increasingly specific insights into psychiatric transcriptomic 

pathology. For psychiatric GWAS, and for ASD GWAS in particular, greater sample sizes are 

needed to identify missing heritability and better assign psychiatric risk to genetic variants. This 

will not only improve our basic understanding of psychiatric genomics, but will also improve the 

accuracy of bioinformatic integrative analyses that utilize GWAS results. Improved phenotyping 

for GWAS, and generally for all biological data assays, will enable us to investigate how the 

genome may contribute to distinct phenotypes within psychiatric disorders, improving our ability 

to understand how molecular pathology and resultant behaviors may vary across these distinct 

psychiatric phenotypes. Expanding the types of empirical biological assays at our disposal, 

while challenging, will also enhance our ability to perform integrative bioinformatic analyses. As I 

have demonstrated here, these analyses can greatly improve our ability to understand 

psychiatric disorder mechanisms. Thus, expanding access to different types of biological assays 

– such as empirical proteomic assays – will support these efforts. Finally, improving 

methodologies for integrating genomic, transcriptomic, epigenomic, etc. data together will also 

serve to refine psychiatric bioinformatics experiments and provide fuller pictures of psychiatric 

biological systems. 

 In addition to bioinformatics method development, improved experimental and model 

systems are needed to investigate the genes, cell-types, and biological pathways implicated in 

psychiatric disorder mechanisms with analyses such as those presented in this work. To 

support the development of all psychiatric model organisms and systems, we must enhance our 

understanding of human neurodevelopment. Only with a thorough understanding of human 

neurodevelopment will we be capable of comprehensively evaluating how psychiatric genetic 

risk variants contribute to psychiatric disorders. Continued experiments and bioinformatic 

analyses utilizing human fetal tissue and in vitro models utilizing hESCs and iPSCs, such as 3D 

neural spheroids,10 will ultimately achieve this objective. Refining in vitro models to replicate 
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typical neurodevelopment as closely as possible will not only directly improve our understanding 

of neurodevelopment, but it will also provide a suitable model system for evaluating genes, cell-

types, and biological processes implicated in psychiatric molecular pathology. Work 

incorporating glial cell-types and vasculature into 3D neural spheroid models is particularly 

promising,6,7 as these models will better replicate true human neural systems. Mice and other 

model organisms that can be evaluated in vivo will also contribute to improving our 

understanding of psychiatric disorder mechanisms, especially for efforts to understand complete 

neural systems and altered brain connectivity. Continuing efforts to compare and contrast 

different aspects of the human brain with that of these model organisms – through 

transcriptomic experiments and other means – will be essential for planning experiments in 

these organisms that can truly recapitulate relevant characteristics of human psychiatric 

disorders. Efforts to find human brain imaging correlates of underlying psychiatric disorder 

mechanisms, such as with fMRI techniques,11 will also advance our understanding of psychiatric 

disorders at the level of whole brain connectivity. Overall, refining experimental model systems, 

improving technologies for investigating those models, and evaluating how well these 

technologies capture true underlying biology will all support the advancement of psychiatric 

disorder research.  
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A1: Supplementary Materials for Chapter 2  

A1.1: Extended Materials and Methods 

 

Raw Data 

Raw microarray gene expression data from 700 post-mortem cortical brain samples across 14 

studies of multiple neuropsychiatric disorders was obtained from the Gene Expression Omnibus 

(GEO), ArrayExpress, or from the study authors directly (see Table A1.1; (3-11, 75, 81-82)). 

Each study was processed separately and analyzed according to the general workflow as 

described below. Only data from cortical samples was used (except in Inflammatory Bowel 

Disease datasets). 

Quality Control and Normalization 

Illumina microarrays were log2 transformed and quantile normalized using the lumi package in R 

(26). Affymetrix microarrays were RMA normalized (background correction, log2 transformation, 

quantile normalization, and probe summarization) using the affy package in R (27).  Agilent 

microarrays were normalized using the limma package in R (read.maimages, 

backgroundCorrect, normalizeWithinArrays, normalizeBetweenArrays, getEAWP functions) 

(28). Strict care was taken to ensure data integrity. All efforts were made to integrate available 

biological (e.g., sex, age, brain region) and technical covariates (e.g., experimental batch, RIN, 

post-mortem interval, pH) for each study from GEO, the study supplement, or directly from the 

authors (see Fig. A1.1). For Affymetrix microarrays, chip scan date was used as a surrogate for 

experimental batch, extracted from the metadata. Normalized 5’/3’ bias, a measure strongly 

influenced by RNA degradation, was calculated for Affymetrix arrays using the AffyRNAdeg 

function. This was not available to calculate for Illumina arrays due to probe design and location. 

Correlation panel plots were created to assess the influence of each covariate on gene 
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expression, as summarized by its first 5 principal components (see Fig. 2.1; Fig. A1.2). We 

balanced case/control status across available biological and technical covariates such that for 

each study, case/control status was not significantly associated with any measured covariate (p 

> 0.05). This included removing all singular batches and experimental batches confounded with 

case/control status (see Fig. 2.1). 

Outliers were defined as samples with standardized sample network connectivity Z scores < -2, 

as described (29), and were removed (see Supplemental Text “Description of Datasets”). Batch 

effects were corrected with the ComBat function of the sva package in R (30). Similar results 

were achieved using alternative batch correction methods, such as linear regression or 

including batch in the final mixed effect model (Fig. A1.3). 

To provide a systematic nomenclature for assessment of gene expression across platforms, 

microarray probes were re-mapped to Ensembl gene IDs (v75; Feb 2014 data freeze) using the 

biomaRt package in R (31), taking the maximum mean signal across all probes available for 

each gene, using the collapseRows function. The collapseRows MaxMean function was 

explicitly developed to perform cross-platform microarray meta-analysis and has been 

extensively validated in its ability to increase between-study consistency and enhance 

reproducibility (32). We note that choosing the 3’-most probe for each gene leads to similar 

results (Fig. A1.3). 

Finally, all available biological and technical covariates except for diagnostic group were 

regressed from each individual expression dataset prior to differential gene expression (DGE) 

meta-analysis. 

Differential Gene Expression (DGE) 

DGE was calculated using a linear mixed-effects model using the nlme package in R, with fixed 

effects of diagnostic group and study and a random effect for unique subject. This statistical 
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framework enabled calculation of meta-analytic log2 fold-change values (log2FC) for each gene 

and disease, collapsing results from multiple studies while accounting for any subjects 

overlapping between studies with a random effect term. Genes were then filtered to include only 

those that were present across all studies (11,245 Ensembl gene IDs; listed in Data Table 

A1.1). Spearman’s r was used to compare DGE meta-analysis log2FC signatures across all 

disease pairs, as shown in Fig. 2.2A.  

Significance thresholds were determined using permutation testing to account for any study-

specific factors that could potentially bias results. Within each individual study, we randomly 

permuted case/control status 40,000 times and repeated the linear mixed-effect model meta-

analysis as described in the previous section. This generated log2FC summary statistics for 

each of the six “disease” groups. We then assessed transcriptome overlap between each 

“disease” pair using Spearman’s correlation and recorded the resulting test statistics (r values). 

This process was repeated to generate a null distribution of 40,000 r values. 

  

Gene Co-Expression Network Mega-Analysis 

To place results from individual genes within their systems-level network architecture, we 

performed Weighted Gene Co-Expression Network Analysis (WGCNA).  Individual (covariate-

regressed) expression datasets were combined together using the 11,245 genes present across 

all studies. ComBat was used to mitigate batch effects (30), as shown in Fig. A1.2. This 

normalized mega-analysis expression set was then used for all downstream network analyses.  

Network analysis was performed with the WGCNA package (17) using signed networks. A soft-

threshold power of 9 was used for all studies to achieve approximate scale-free topology 

(R2>0.8). Networks were constructed using the blockwiseModules function. The network 

dendrogram was created using average linkage hierarchical clustering of the topological overlap 
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dissimilarity matrix (1-TOM). Modules were defined as branches of the dendrogram using the 

hybrid dynamic tree-cutting method (33). Modules were summarized by their first principal 

component (ME, module eigengene) and modules with eigengene correlations of >0.9 were 

merged together.  A robust version of WGNCA (rWGCNA) was run to reduce the influence of 

potential outlier samples on network architecture (34). Module robustness was ensured by 

randomly resampling (2/3 of the total) from the initial set of samples 100 times followed by 

consensus network analysis, a meta-analytic approach, to define modules using a consensus 

quantile threshold of 0.2.  Modules were defined using biweight midcorrelation (bicor), with a 

minimum module size of 50, deepsplit of 4, merge threshold of 0.1, and negative pamStage. 

Modules are labelled by a number CD# and color for illustration purposes. Genes that did not 

fall within a specific module are assigned the color grey (CD0).  

Dynamic tree cut methods and signed networks were used as they have been shown to be 

more biologically meaningful, compared to static tree cut methods and unsigned networks (33, 

35). Soft threshold power was chosen to be the smallest value such that approximate scale-free 

topology was achieved, defined as R2 > 0.8 for the frequency distribution of network connectivity 

on a log scale as described (13). We chose a minimum module size of 50, as modules with 

smaller sizes are more likely to capture noise. A deep split parameter of 4 creates more specific 

modules, which is enabled by the large sample size employed in this study. In general, we have 

found that with large sample sizes, WGCNA is robust to changes in module parameters (Fig. 

A1.8). 

Module (eigengene)-disease associations were evaluated using a linear mixed-effects model, 

using a random effect of subject, to account for any subject overlap across initial datasets. We 

also used linear regression to test for association between module eigengenes and several 

covariates or confounders (sex, age, PMI, pH, RIN, normalized 5’/3’ bias). Significance values 
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were FDR-corrected to account for multiple comparisons. Results from module-eigengene 

association tests are reported in Data Table A1.2 and shown in Fig. A1.9. 

Genes within each module were prioritized based on their module membership (kME), defined 

as correlation to the module eigengene. The top 20 hub genes for seven of the modules are 

shown in Fig. 2.3D, with top connections plotted.  

Gene Set Enrichment 

Functional enrichment of Gene Ontology pathways was assessed with GO-Elite v1.2.5 (36) as 

well as using the gProfiler (37) R package, using GO and KEGG databases. Only pathways 

containing between 10 and 2000 genes were used. For gProfiler, “moderate” hierarchical 

filtering was used. A custom background set consisted of the (11,245) genes present across all 

studies and microarray platforms. The top pathways reaching significance with FDR-adjusted P 

< 0.05 are shown in Fig. 2.3E and Data Table A1.2. The two methods had highly concordant 

results. Enrichment for putative transcription factor binding sites (TFBSs) within the promoters of 

genes from each co-expression module was performed using the gProfileR package, which 

integrates annotations from the TRANSFAC database. Default parameters were used. Results 

are compiled in Data Table A1.2. 

Cell-type specific expression analysis of genes within each module was performed using the pSI 

package (specificity index; http://genetics.wustl.edu/jdlab/psi_package/) in R (38, 39). Cell-type 

specific gene expression data was obtained from an RNAseq study of purified populations of 

neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells derived from adult 

human cerebral cortex (25).  Raw data (FPKM) was downloaded from GEO (GSE73721). Gene 

symbols were mapped to Ensembl gene identifiers using the biomaRt R package. Expression 

values were log2 normalized and averaged across cell-type replicates. Specificity for the five 

CNS cell types was calculated with the specificity.index function. Significance was assessed 

http://genetics.wustl.edu/jdlab/psi_package/)
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using Fisher’s exact test with a pSI threshold set to 0.05, followed by FDR-correction of p 

values. 

Transcriptome “Severity” Measures 

The transcriptome overlap between disease pairs was assessed using Spearman’s correlation 

of log2FC values, as described above. As a global measure of the severity of the transcriptomic 

phenotype, we sought to compute the slope of the linear regression of log2FC values between 

disease pairs (Fig 2.2B). However, the linear regression slope is dependent on the (arbitrary) 

ordering of the response (Y) and predictor (X) variables, and we found that in practice the slope 

can change considerably according to this order. To circumvent this issue, we used principal 

component regression (a linear case of “orthogonal regression” or “total least squares”) which 

provides an estimate of slope that is invariant to the choice of predictor and response variables.  

GWAS Enrichment 

We compiled a set of GWAS summary statistics for several neuropsychiatric disorders, 

cognitive, and behavioral traits (Table A1.3; (40-47)). Summary statistics from GWAS meta-

analyses of ASD, schizophrenia, bipolar disorder, and major depression were downloaded from 

the PGC website (https://www.med.unc.edu/pgc/downloads). Results from GWAS studies of 

alcoholism, inflammatory bowel disease, educational attainment, depressive symptoms, and 

neuroticism were obtained from the respective studies (Table A1.3). Given the relatively small 

sample size for the PGC ASD GWAS, we performed a new ASD GWAS using samples from the 

iPSYCH Consortium, described in the next section. Gene-level analysis of GWAS results was 

performed by MAGMA v1.04, a gene-set annotation framework that accounts for linkage 

disequilibrium (LD) between SNPs (48). LD was calculated using the 1000 Genomes European 

ancestry reference dataset. An annotation step was performed first in which SNPs were 

mapped to genes (either hg18 or hg19 genome build, depending on the study) based on the 

https://www.med.unc.edu/pgc/downloads)
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presence of a SNP in the region between a gene’s start and stop sites. Gene-level analysis was 

then performed to create aggregate statistics for each gene.  

To quantify enrichment of GWAS signal within each gene co-expression module, we calculated 

Spearman’s correlation between the module membership (kME) of each gene and the –log10 p-

value for that gene for each GWAS study. kME is a measure between 0 and 1 of the centrality 

of a gene within a module; “hub genes” have kME values approaching 1, whereas genes that 

are not present in a module generally have kME less than 0.5. This process was performed for 

all module x GWAS combinations, and p values were FDR-corrected.  

ASD iPSYCH GWAS 

The iPSYCH Autism sample is part of the larger iPSYCH Danish Case-Cohort Study 

(iDCCS2012; http://ipsych.au.dk/; (23)) consisting of 86,189 individuals (57,377 psychiatric 

cases) born in Denmark between 1981 and 2005.  The 86,189 represent all individuals in the 

population birth cohort (N=1,472,762) with an ICD record of ADHD, affective disorder, anorexia, 

autism, bipolar disorder, or schizophrenia in the Danish Psychiatric Research Register (49) as 

of 2012 plus 30,000 randomly sampled individuals as representative controls.  More details on 

the register-based phenotyping can be found in (50) which defines the aggregation used here.  

DNA was extracted and amplified from dried neonatal bloodspots stored in the Danish Neonatal 

Screening Biobank and then genotyped in 23 waves using the Illumina Infinium PsychArray 

v1.0.  SNP genotypes underwent extensive quality control both by individual (>99% call rate, 

concordant genotype and recorded sex, typical levels of heterozygosity, non-duplicated 

samples) and by SNP (good clustering, >97.5% call rate, Hardy-Weinberg equilibrium, no 

association with genotyping wave).  Data from all genotyping waves were merged together, 

phased using SHAPEIT3 

(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html), imputed to the 1000 

http://ipsych.au.dk/
https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html)
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Genomes phase 3 reference haplotypes using Impute2 (51, 52) and cleaned again (info score > 

0.2, MAF > 0.001, good and comparable quality in cases and controls) resulting in 11,600,723 

estimated SNP dosages for analysis.  We used principal component analysis implemented in 

Eigensoft (smartPCA; (53)) to select individuals with homogenous genetic ancestry and 

estimated pairwise relatedness with KING (54), removing individuals to ensure no pair was 

related closer than 2nd degree relatives, leaving 65,534 individuals. We defined cases as the 

subset of the remaining cohort with autism as the only ascertained diagnosis (N=8,605 of 

12,371 possible autism cases; ICD codes F84.0, F84.1, F84.5, F84.8 and/or F84.9), while our 

controls (N=19,526) were the subset of the random cohort with no diagnoses in the Danish 

Psychiatry Research Register, ascertained or otherwise (ICD F00-F99). GWAS summary 

statistics were generated using logistic regression in plink v1.9 (55) including age, sex and ten 

genetic ancestry PCs as covariates. Summary statistics are available at 

https://github.com/mgandal/Shared-molecular-neuropathology-across-major-psychiatric-

disorders-parallels-polygenic-overlap/tree/master/raw_data/GWAS 

Rare Variant Enrichment 

A composite list of rare de novo variants (RDNVs) was compiled from several recent whole-

exome sequencing (WES) studies of trios (parents & proband) or quads (parents, proband, and 

unaffected sibling) affected by ASD, schizophrenia, or intellectual disability (ID), summarized in 

the Data Table A1.3 (56-67). Unaffected siblings were used as controls. RDNVs were 

categorized as non-synonymous (amino acid change) or silent. Enrichment of RDNVs among 

genes within each co-expression module was assessed using logistic regression controlling for 

gene length (68), an important potential confounding variable, as gene length is known to be 

strongly correlated with mutation rate (61). Odds ratios (OR) were calculated as ln(beta) from 

the regression model and P-values were FDR-corrected for multiple comparisons. Only 

https://github.com/mgandal/Shared-molecular-neuropathology-across-major-psychiatric-disorders-parallels-polygenic-overlap/tree/master/raw_data/GWAS
https://github.com/mgandal/Shared-molecular-neuropathology-across-major-psychiatric-disorders-parallels-polygenic-overlap/tree/master/raw_data/GWAS
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significant enrichments (FDR corrected P<0.05) with an odds-ratios >1 (e.g., over-

representation) are shown in Fig. 2.4.  

To investigate the potential contribution of CNV-affected genes on transcriptome modules, we 

searched for syndromic CNVs for neuropsychiatric disorders using PubMed and Google 

Scholar. Search terms were: CNV, deletion, duplication, and disorder name. CNVs that were 

identified in at least two studies with a p<0.01 or passed p-value threshold of 10-6 in one study 

were included. We filtered to only include studies with adequate power and sample size (>500 

subjects per group). Only one high-confidence CNV was identified in each of depression and 

bipolar disorder studies. As such, these disorders were excluded in downstream analysis. 

Genes for the regions were retrieved from RefGene (UCSC download, hg19) using either 

maximal regions provided by the publications in question, or from recent autism publications 

(69, 70). If the borders were reported in hg18, we used the UCSC LiftOver tool to convert them 

to hg19. Enrichment of CNV affected genes was computing using logistic regression, as above, 

including gene length as a covariate. See Data Table A1.3 for a compilation of CNVs.  

LD Score Regression 

To further dissect the relationship between transcriptome alterations and disease-associated 

genetic variants, we used stratified LD score regression to partition disease heritability within 

functional categories represented by gene co-expression modules (24, 71). Using GWAS 

summary statistics and LD explicitly modelled from ancestry-matched 1000 Genomes reference 

panel, this method calculates the proportion of genome-wide SNP-based heritability that can be 

attributed to SNPs within explicitly defined functional categories (see 

https://github.com/bulik/ldsc/). Functional categories for each module were defined by taking all 

SNPs within gene-body annotation (transcription start to stop sites) for all genes within the 

module. To improve model accuracy, these categories were added to the ‘full baseline model’ 

https://github.com/bulik/ldsc/)
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which included 53 functional categories capturing a broad set of functional elements, as defined 

in (24).  

Enrichment is defined as the proportion of SNP-heritability accounted for by each module 

divided by the proportion of total SNPs within the module. Significance is assessed using a 

block jacknife procedure, as described (24), followed by FDR-correction of p-values. Modules 

with FDR-corrected enrichment p-values of less than 0.05 were considered significant 

heritability contributors. See Data Table A1.4 for proportion of heritability and enrichment along 

with other relevant statistics for each module and GWAS. 

Psychencode BrainGVEX RNAseq Replication 

RNAseq data was newly generated from 153 postmortem frontal cortex brain samples from 

subjects with schizophrenia (n=53), bipolar disorder (n=47), and non-psychiatric controls (n=53), 

as part of the BrainGVEX study (Synapse accession doi:10.7303/syn4590909) within the 

PsychEncode Consortium (https://www.synapse.org/pec) (72). Brain samples were collected as 

part of the “Array Collection” and the “New Collection” from the Stanley Medical Research 

Institute (SMRI). Protocols for RNA extraction and sequencing can be found on the Sage 

Synapse website (https://www.synapse.org/#!Synapse:syn4616686; 

https://www.synapse.org/#!Synapse:syn4640744).  Briefly, 50-60mg of fresh-frozen brain tissue 

was dissected on dry ice.   Total RNA was extracted using trizol/chloroform and purified by 

isopropanol precipitation. RNA quality (RIN) was measured using an Agilent Bioanalyzer. 

Strand-specific, rRNA-depleted RNAseq libraries were prepared using TruSeq Stranded Total 

RNA sample prep kit with RiboZero Gold HMR (Illumina) kits. Libraries were multiplexed (3 per 

lane) and sequenced with 100 bp paired end reads on Illumina HiSeq2000 with read depth >70 

million reads on average.  

https://www.synapse.org/pec)
https://www.synapse.org/#!Synapse:syn4616686
https://www.synapse.org/#!Synapse:syn4640744
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FastQC was used for initial quality control. Reads were mapped to the hg19 human genome 

build with Ensembl v75 annotations using STAR RNAseq aligner v2.5.0a. Aligned reads were 

coordinate-sorted and read pairs mapping to different chromosomes were removed from the 

BAM file using the samtools view –f 0x0002 command. BAM files for the same sample were 

merged across sequencing runs using samtools. Quality control after read alignment was 

performed using Picard Tools v1.131 (CollectAlignmentSummaryMetrics, CollectRNA-

seqMetrics, CollectGcBiasMetrics, MarkDuplicates). To control for differences in RNA quality, 

read depth and other sequencing-related technical artifacts across subjects, we created a matrix 

of “sequencing statistics” corresponding to the aggregate of above Picard Tools metrics. Two 

sequencing statistics, seqPC1 and seqPC2, were calculated as the first and second principal 

components of this matrix. These sequencing statistics were used as covariates in downstream 

analyses. 

Aligned reads were quantified using HTSeq Counts (v0.6.0) in union exon mode. Counts were 

normalized for read-depth, GC content, and gene length and log2-transformed using the cqn 

package in R (73). Genes were filtered to include only those with at least log2(FPKM) of 1 in 

50% of samples. 

Outliers were detected by calculating standardized sample network connectivity Z scores, and 

samples with Z < -2 were removed from downstream analysis as described above for 

microarray studies. Library preparation date was used to denote experimental batches. Singular 

batches were removed and groups were then balanced such that case/control status was not 

significantly associated with any measured covariate (p > 0.05).  

Correction for library batch (which was collinear with brain bank) was performed using the 

ComBat function from the sva package in R. Finally, differential gene expression of 

log2(normalized FPKM) expression values was calculated using limma with empiric Bayes 
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moderated t-statistics, including the following covariates: diagnosis, age, sex, RIN, RIN2, 

ethnicity, PMI, pH, seqPC1, and seqPC2. Regression coefficients (log2FC beta values) for each 

gene were calculated for each group (BD and SCZ) and Spearman’s correlation used to assess 

global transcriptome overlap, as above. Data QC are shown in Fig. A1.6, results are shown in 

Fig. A1.7, and summary statistics are included in Data Table A1.1. 

ASD Pan-Cortical RNAseq Replication 

RNAseq data for replication was newly generated from 88 postmortem cortex brain samples 

from subjects with ASD (53 samples from 24 subjects) and non-psychiatric controls (35 samples 

from 17 subjects), across four cortical regions encompassing all major cortical lobes – frontal, 

BA4/6; temporal, BA38; parietal, BA7; and occipital, BA17, as part of the UCLA-ASD study 

(Synapse accession doi:10.7303/syn4587609) within the PsychEncode Consortium 

(https://www.synapse.org/pec) (72). Brain samples were obtained from the Harvard Brain Bank 

as part of the Autism Tissue Project (ATP). An ASD diagnosis was confirmed by the Autism 

Diagnostic Interview-Revised (ADIR) in 22 of the subjects. In the remaining two subjects, 

diagnosis was supported by clinical history.  Frozen brain regions were dissected on dry ice in a 

dehydrated dissection chamber to reduce degradation effects from sample thawing or humidity. 

Approximately 50-100mg of tissue across the cortical region of interest was isolated from each 

sample using the miRNeasy kit with no modifications (Qiagen). For each RNA sample, RNA 

quality was quantified using the RNA Integrity Number (RIN) on an Agilent Bioanalyzer. Strand-

specific, rRNA-depleted RNAseq libraries were prepared using TruSeq Stranded Total RNA 

sample prep kit with RiboZero Gold (Illumnia) kits. Libraries were randomly pooled to multiplex 

24 samples per lane using Illumina TruSeq barcodes. Each lane was sequenced five times on 

an Illumina HiSeq 2500 instrument using high output mode with standard chemistry and 

protocols for 50 bp paired-end reads to achieve a target depth of 70 million reads.  

https://www.synapse.org/pec)
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FastQC was used for initial quality control. Aligned reads were coordinate sorted and read pairs 

mapping to different chromosomes were removed from the BAM file using the samtools view –f 

0x0002 command. BAM files for the same sample were merged across sequencing runs using 

samtools. Quality control after read alignment was performed using Picard Tools v1.131 

(CollectAlignmentSummaryMetrics, CollectRNA-seqMetrics, CollectGcBiasMetrics, 

MarkDuplicates). To control for differences in RNA quality, read depth and other sequencing-

related technical artifacts across subjects, we created a matrix of “sequencing statistics” 

corresponding to the aggregate of above Picard Tools metrics. Two sequencing statistics, 

seqPC1 and seqPC2, were calculated as the first and second principal components of this 

matrix. These sequencing statistics were used as covariates in downstream analyses.  

Aligned reads were quantified using HTSeq Counts (v0.6.0) in union exon mode. Counts were 

normalized for read-depth, GC content, and gene length and log2-transformed using the cqn 

package in R (73). Genes were filtered to include only those with at least log2(FPKM) of 1 in 

50% of samples. Outliers were detected by calculating standardized sample network 

connectivity Z scores, and samples with Z < -2 were removed from downstream analysis as 

described above for microarray studies. Library preparation date was used to denote 

experimental batches, which was the same for all samples. Groups were balanced such that 

case/control status was not significantly associated with any measured covariate (p > 0.05). 

Finally, differential gene expression of log2(normalized FPKM) expression values was calculated 

using limma with empiric Bayes moderated t-statistics, including the following covariates: 

diagnosis, age, sex, RIN, RIN2, PMI, BrainRegion, seqPC1, and seqPC2. The 

limma::duplicateCorrelation function was used to account for the non-independence of samples 

derived from the same subject across multiple brain regions. Regression coefficients (log2FC 

beta values) for each gene were assessed for global transcriptome overall via Spearman’s 
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correlation as above. Data QC are shown in Fig. A1.6, results are shown in Fig. A1.7, and 

summary statistics are included in Data Table A1.1. 

CommonMind RNAseq Analysis 

RNAseq data from 604 total human postmortem dorsolateral prefrontal cortex (DLPFC) brain 

samples were obtained from subjects with schizophrenia (n=262), bipolar disorder (n=47), major 

depression, and neurotypical controls (n=295), as part of the CommonMind Consortium 

available through dbGap and Sage Synapse (https://www.synapse.org/cmc; 

doi:10.7303/syn2759792) as recently published (16). Details of sample collection and 

processing are described here (https://www.synapse.org/#!Synapse:syn2759792/wiki/194729). 

Briefly, samples were acquired through brain banks at three institutions, Mount Sinai, University 

of Pennsylvania, and University of Pittsburgh. Total RNA was extracted from 50 mg of 

homogenized DLPFC brain tissue using RNeasy kit. Samples with RIN < 5.5 (n=51) were 

excluded. RNAseq library preparation was performed using ribosomal RNA depletion, with the 

Ribozero Magnetic Gold Kit. Samples were barcoded, multiplexed (n=10/lane), and 100 bp 

paired end sequencing was performed on Illumina HiSeq 2500 with an average of 85 million 

reads.  

Reads were mapped to human genome build hg19 with Ensembl v70 annotations using TopHat 

version 2.0.9. Quantification was performed using HTSeq-Counts v0.6.0 in intersection-strict 

mode. The resulting count level data was made available for downstream analysis through Sage 

Synapse. Available metadata included demographics as well as ancestry PCs, experimental 

batches, and sequencing statistics calculated with RNA-SeQC (mapped reads, exonic rate, 

intronic rate, intergenic rate, genes detected, transcripts detected, expression profiling 

efficiency, rRNA rate, total reads, percent aligned). Quality control after read alignment was also 

performed using Picard Tools v1.131 (CollectAlignmentSummaryMetrics, CollectRNA-

https://www.synapse.org/cmc
https://www.synapse.org/#!Synapse:syn2759792/wiki/194729)
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seqMetrics, CollectGcBiasMetrics, MarkDuplicates). To control for differences in RNA quality, 

read depth and other sequencing-related technical artifacts across subjects, we created a matrix 

of “sequencing statistics” corresponding to the aggregate of above Picard Tools and RNA-SeQC 

metrics. Two sequencing statistics, seqPC1 and seqPC2, were calculated as the first and 

second principal components of this matrix. These sequencing statistics were used as 

covariates in downstream analyses. 

Read counts were normalized for read-depth, GC content, and gene length and log2-

transformed using the cqn package in R (73). Genes were filtered to include only those with at 

least log2(FPKM) of 1 in 50% of samples. Batch correction was performed for sequencing library 

batches using the ComBat function from the sva package in R. Outliers were detected by 

calculating standardized sample network connectivity Z scores, and samples with Z < -2 were 

removed from downstream analysis as described above for microarray studies. Groups were 

then balanced such that case/control status was not significantly associated with any measured 

covariate (p > 0.05). Given a substantial age difference between BD and SCZ samples, we split 

the dataset into two case/control subsets matched for demographics as shown in Fig. A1.6. 

Finally, differential gene expression of log2(normalized FPKM) expression values was 

calculated using limma with empiric Bayes moderated t-statistics, including the following 

covariates: diagnosis, age, sex, institution, RIN, RIN2, PMI, seqPC1, seqPC2 and top 5 ancestry 

PCs. Regression coefficients (log2FC beta values) for each gene were calculated for each group 

(BD and SCZ) and Spearman’s correlation used to assess global transcriptome overlap, as 

above. Data QC are shown in Fig. A1.6, results are shown in Fig. A1.7, and summary statistics 

are included in Data Table A1.1. 

qSVA Assessment 
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We performed qSVA analyses to mitigate the impact of potential differences in RNA quality 

across case and control groups on cross disorder transcriptomic similarity measures (74). qSVA 

is based on experimentally defined genomic regions susceptible to RNA degradation in brain, 

specific to the method of RNAseq library preparation. As all RNAseq datasets in this study used 

RiboZero library preparation, we counted paired end reads uniquely mapped to RiboZero-based 

RNA degradation regions using featureCounts. Counts were normalized by read depth and 

interval length to yield FPK80M values (fragments per kilobase 80 million reads mapped) and 

were log2 transformed with an offset of 1. Principal component analysis was then performed on 

this normalized degradation matrix and qSVs were defined as the top n principal components, 

where n is calculated using the method of Buja and Eyuboglu with 100 permutations. These n 

qSVs were then included as covariates in downstream differential expression analyses, shown 

in Fig. A1.7. The number of qSVs for each dataset were: 5 for ASD-pancortical, 11 for 

BrainGVEX, 6 for CommonMind SCZ-matched subset, and 4 for CommonMind BD-matched 

subset. 

A1.2: Extended Text 

 

Description of Datasets 

A. Voineagu et al, [GSE28521] 

This dataset initially included 58 brain samples from frontal and temporal cortex from subjects 

with ASD (n=29) and controls (n=29) (3). Samples were run on Illumina HumanRef-8 v3.0 

expression beadchip arrays. The data was log2-transformed and quantile normalized. Three 

outlier samples were identified and removed. Two singular or imbalanced batches were 

removed. Two samples were removed due to covariate confounding, for a final cohort of 48 

samples. Batch effects were corrected with ComBat. Probes were reannotated and collapsed to 
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Ensembl v75 gene definitions. The following covariates were then regressed: Brain Region, 

Sex, Age, RIN, and PMI. See Fig. A1.1A. 

 

B. Chen et al., [GSE35978]  

The initial dataset consisted of 160 parietal cortex brain samples from subjects with MDD 

(n=14), BD (n=45), SCZ (n=51), and controls (N=50) (6). Samples were run on Affymetrix 

Human Gene 1.0 ST microarrays. Due to significant covariate confounding, MDD samples were 

removed from the analysis.  Data were RMA normalized and log2 transformed using the Affy 

package in R.  RNA 3’ bias was extracted from the slope of the AffyRNAdeg function. Chip scan 

date was extracted as a proxy for microarray batch. One singular batch was removed. There 

were 7 outlier samples identified and removed. 14 samples were removed due to covariate 

confounding, for a final cohort of 124 samples. Batch effects were corrected with ComBat. 

Probes were reannotated and collapsed to Ensembl v75 gene definitions. The following 

covariates were then regressed: Sex, Age, PMI, pH, RNA 5’/3’ Bias. See Fig. A1.1B. 

C. Garbett et al, 2008 

The initial dataset consisted of 12 samples from temporal cortex from subjects with ASD and 

controls, which were all used in this analysis (4). Samples were run on Affymetrix Human 

Genome 133 plus 2 microarrays. Data were RMA normalized and log2 transformed using the 

Affy package in R.  RNA 3’ bias was extracted from the slope of the AffyRNAdeg function. Chip 

scan date was extracted as a proxy for microarray batch. One singular batch was removed, for 

a final cohort of 11 samples. Batch effects were corrected with ComBat. Probes were 

reannotated and collapsed to Ensembl v75 gene definitions. The following covariates were then 

regressed: Sex, Age, PMI, RIN, Normalized 5’/3’ Bias. See Fig. A1.1C. 

D. Lanz et al., [GSE53987]  
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The initial dataset consisted of 68 PFC brain samples from subjects with SCZ (n=15), BD 

(n=17), MDD (n=17), and controls (n=19) (75). Two outlier samples were identified and 

removed. One sample was removed due to covariate confounding, for a final count of 65 

samples. Data were RMA normalized and log2 tranformed using the Affy package in R.  RNA 3’ 

bias was extracted from the slope of the AffyRNAdeg function. Chip scan date was extracted as 

a proxy for microarray batch. See Fig. A1.1D. 

E. Chow et al., [GSE28475]  

The initial dataset consisted of 33 samples from frontal cortex from male subjects with autism 

and controls (5). Samples were run on Illumina HumanRef-8 v3.0 expression beadchip. Data 

were log2 transformed and quantile normalized using the R lumi package and downloaded from 

GEO. Two samples had missing RIN values, which were imputed from the group mean. Three 

outlier samples were removed for a final cohort of 30 samples. Batch effects were corrected 

with ComBat. Probes were reannotated and collapsed to Ensembl v75 gene definitions. The 

following covariates were then regressed: Age, PMI, RIN. See Fig. A1.1E. 

 

F. Iwamoto et al., [GSE12649]  

The initial dataset consisted of 101 samples from frontal cortex (BA46) from subjects with SCZ 

(n=35), BD (n=32), and controls (n=34) (8). Samples were run on Affymetrix Human Genome 

U133A Arrays. Data were RMA normalized and log2 transformed using the Affy package in R.  

RNA 3’ bias was extracted from the slope of the AffyRNAdeg function and used as a measure of 

RNA quality. Chip scan date was extracted as a proxy for microarray batch. One singular batch 

was removed as were 4 outlier samples. Ten samples were removed due to covariate 

confounding, leaving 86 arrays in the final analysis. Batch effects were corrected with ComBat. 

Probes were reannotated and collapsed to Ensembl v75 gene definitions. The following 

covariates were then regressed: Sex, Age, PMI, pH, RNA quality. See Fig. A1.1F. 
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G.  Maycox et al., [GSE17612]  

The initial dataset consisted of 51 prefrontal cortex (BA10) brain samples from subjects with 

SCZ (n=28) and controls (n=23) (7).  Samples were run on Affymetrix Human Genome U133 

Plus 2.0 Arrays. Data were RMA normalized and log2 transformed using the Affy package in R.  

RNA 3’ bias was extracted from the slope of the AffyRNAdeg function. Chip scan date was 

extracted as a proxy for microarray batch. There were no singular or confounded batches. 

Individual sample RIN values were not available although all samples were noted to have RIN 

>6. RNA 5’/3’ bias did not differ between groups and was included as a measure of RNA quality. 

There were 5 outlier samples identified and removed, leading to 46 in the final cohort.  Batch 

effects were corrected with ComBat. Probes were reannotated and collapsed to Ensembl v75 

gene definitions. The following covariates were then regressed: Sex, Age, PMI, RNA 5’/3’ Bias. 

Of note, pH was not included as a covariate as there was concern regarding the rigorousness of 

the pH measurements. See Fig. A1.1G. 

 

H. Sibille et al., [GSE54567, GSE54568, GSE54571, GSE54572].  

The initial dataset consisted of 140 samples across five matched cohorts from anterior cingulate 

cortex (BA25) and prefrontal cortex (BA9) from subjects with MDD (n=70) and controls (n=70) 

(10). All samples were run on Affymetrix Human Genome U133 Plus 2.0 Arrays. Data were 

normalized and log2 transformed using the Affy::RMA function in R. RNA 3’ bias was extracted 

from the slope of the AffyRNAdeg function. Chip scan date was extracted as a proxy for 

microarray batch. One singular batch was removed as were 6 outlier samples, for a final count 

of 133. Batch effects were corrected with ComBat. Probes were reannotated and collapsed to 

Ensembl v75 gene definitions. The following covariates were then regressed: Brain Region, 

Sex, Age, Race, PMI, pH, RIN, RNA quality (5’/3’ bias).  See Fig. A1.1H. 
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I. Mayfield et al., [GSE29555].  

The initial dataset initially consisted of 32 superior frontal cortex from subjects with alcoholism 

and match controls (11). All samples were run on Illumina HumanHT-12 V3.0 expression 

beadchip arrays. Data was quantile normalized and log2 transformed using the Lumi::LumiN 

package in R. There were no singular batches and 2 samples were marked as outliers, leading 

to a final cohort of 30. Probes were reannotated and collapsed to Ensembl v75 gene definitions. 

The following covariates were then regressed: Age, Sex, PMI, pH, and RIN. See Fig. A1.1I. 

 

J. Narayan et al., [GSE21138] 

The initial dataset consisted of 59 frontal cortex samples (BA46) from subjects with SCZ and 

controls (9). Samples were run on Affymetrix Human Genome U133 Plus 2.0 Arrays. Data were 

RMA normalized and log2 transformed using the Affy package in R.  RNA 3’ bias was extracted 

from the slope of the AffyRNAdeg function. Individual sample RIN values were not available 

although RNA 5’/3’ bias was used a measure of RNA quality.  Chip scan date was extracted as 

a proxy for microarray batch. One singular batch was removed as were two outlier samples. 

Five samples were removed due to covariate confounding, leading to 51 final remaining 

samples. Batch effects were corrected with ComBat. Probes were reannotated and collapsed to 

Ensembl v75 gene definitions. The following covariates were then regressed: Sex, Age, PMI, 

pH, RNA quality.  See Fig. A1.1J.  

 

Assessment of Statistical Robustness 

We performed extensive exploratory data analysis to assess the factors contributing most 

substantially to the variance in gene expression across studies and disorders in our final mega-

analytic dataset. Fig. A1.2 shows the correlation between the top 5 principal components of 
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gene expression and several biological and technical factors known to influence gene 

expression. As demonstrated, while many factors are associated with these top 5 expression 

PCs, diagnostic group has the highest loading across all 5 PC’s compared with other covariates. 

Additionally, we show that gene co-expression modules are largely stable across individual 

datasets (Fig. A1.10). Finally, we plot the association between gene co-expression module 

eigengenes and biological and technical covariates (Fig. A1.9). Similar to the top 5 expression 

PCs, diagnostic group shows the largest association with module eigengene values compared 

with other biological and technical covariates.  

We have performed extensive assessment of the methods employed to validate that 

results are robust regardless of specific methodological details. We compared multiple batch 

correction methods, including ComBat (original), linear regression, and including batch in the 

final mixed effect model (Fig. A1.3, A-C). As demonstrated, the choice of batch correction 

method does not appreciably alter results. This applies to the co-expression modules which 

show a stable pattern in individual datasets, with or without any batch correction procedure (Fig. 

A1.10). We assessed two methods for summarization of gene expression values from 

microarray probes, including the collapseRows function (maxMean summarization) as well as 

selection of the 3’ most probe for each gene. Again, there were no qualitative differences 

between these methods (Fig. A1.3D). When measuring cross disorder transcriptome overlap, 

we used all genes measured across all the different datasets. However, some gene features 

may be more influenced by platform-specific technical factors than others and therefore be less 

reliable when aggregating across studies. To address this, we performed an analysis using 

integrative correlations, selecting gene features based on cross-study replicability. Using the 

MergeMaid and metaArray packages in R (76, 77), we selected only those genes whose 

average integrative correlation across studies is >0.95 quantile of the null distribution. 
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Repeating our transcriptome overlap analyses using these genes does not alter the results, and 

in fact, increases the magnitude of cross disorder correlations (Fig. A1.3E).  

To ensure that results were not being driven by one specific disease population, we 

repeated our comparison between transcriptome and genetic similarity after systematically 

removing one disorder (Fig. A1.13). Some of the datasets investigating SCZ and BD had an 

overlapping set of controls, which might increase the biological signal we detect for SCZ-BD 

relative to other disease pairs. To ensure that the strong SCZ-BD transcriptome overlap was not 

being driven by these shared controls, we recomputed the relationship after randomly splitting 

the controls. There was a slight reduction in the SCZ-BD transcriptome overlap, but the 

relationship remains highly significant and qualitatively the same (r=0.60, P<0.001).  

Jaffe and colleagues have recently generated a dataset of postmortem human control brain 

samples allowed to degrade for set intervals to define the susceptibility of each genomic region 

to RNA degradation (74). We compared the RNA degradation T-statistics for each gene with 

disease differential gene expression effect sizes in this study and, with the exception of the 

alcoholism disease signature, find negligible overlap between these measures. Furthermore, the 

cross disorder transcriptome overlaps remain robust even after first regressing out these 

degradation statistics (Fig. A1.3F). Finally, we employed full qSVA correction using RiboZero-

based degradation features on RNAseq data as shown in Fig. A1.7. These different methods 

for normalization and correction of potential confounders did not lead to qualitatively distinct 

results from the primary analysis. 

 

Gene-Level RNAseq Replication 

This global view of transcriptome-wide replication does not focus on individual genes. 

Here, we look at the degree to which genes identified as differentially expressed in the 

discovery (microarray) datasets (FDR < 0.05) are replicated in the RNAseq data (P < 0.05 with 
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concordant direction of effects), as shown in Table A1.2. For comparability, we restricted our 

background to the 8874 genes present across all microarray and RNAseq datasets (listed in 

Data Table A1.1). Among these 8874 genes, Table A1.2 shows the number of genes identified 

as differentially expressed in the discovery (microarray) dataset at FDR < 0.05. Among these 

discovery DGE genes, we identify the number that replicate in RNAseq datasets, at P<0.05 and 

with a concordant direction of effect. We used Fisher’s exact test to calculate odds ratios and 

the statistical significance of overlap between microarray DGE genes and the RNAseq 

replication set (all genes with P<0.05 and concordant direction). Finally, we define the 

replication rate as the percentage of discovery DGE genes replicated in a given RNAseq 

dataset. BD shows less overlap than ASD or SCZ (although still highly significant) likely due to 

the relatively small RNAseq sample size.  

 

A1.3: Extended Figures 
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Fig. A1.1. 

For each microarray dataset, we show several quality control plots including expression boxplot and 

histograms. Outlier detection was determined based on standardized network connectivity z-scores. 
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Multidimensional scaling (MDS) plots show sample clustering by the first two expression principal 

components. Groups were balanced by available covariates and potential confounding factors.  
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Fig. A1.2 

Gene expression principal component loadings. Spearman’s correlation (absolute value) is shown for the 
top 5 expression principal components with biological and technical covariates in the combined mega-
analysis. Diagnostic group shows the highest loading on expression compared with other known 
covariates, including study/batch. 
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Fig. A1.3 

Transcriptome overlap across disorders is robust to methodology of batch correction, gene/probe 
summarization, and gene filtering. We demonstrate stability of transcriptome overlap results correcting for 
batch using several different methods, namely (a) ComBat, (b) including batch as a covariate in the final 
mixed-effect model, or (c) linear regression. In (d), we show that transcriptome overlap is largely 
unchanged using the 3’ most probe for each gene rather than collapseRows/maxMean summarization. In 
(e), genes are first filtered by integrative correlations (>0.95 quantile of the null distribution), which 
significantly increases transcriptome overlap across disorders. f) Transcriptome overlap is shown after 
first regressing RNA degradation T-statistics (74). 
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Fig. A1.4 

Top 50 most differentially expressed genes across disorders, based on log2FC. Colors indicate signed 
log10(FDR corrected p-values). Text shows effect size (log2FC). 
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Fig. A1.5 

Acute or chronic administration of antipsychotic medications to non-human primates (NHP) does not 
recapitulate disease specific transcriptome signatures. As described by Martin and colleagues (78), NHPs 
(n=7/group) were administered vehicle, acute haloperidol (8 mg/kg), acute olanzapine (3 mg/kg), chronic 
haloperidol (1.5 mg/kg BID x 4 weeks), chronic olanzapine (0.75 mg/kg BID x 4 weeks), or chronic PCP 
(1-2 mg/kg/day x 6 weeks). Gene expression results were obtained from (78), in which Affymetrix 
microarrays were used to profile anterior frontal cortex samples. Medication-induced gene expression 
changes (log2FC) were compared with disease-specific signatures using Spearman’s correlation. Acute or 
chronic antipsychotic exposure shows significant negative correlation with ASD, BD, and SCZ, suggesting 
that disease-specific signatures are not caused by these psychiatric medications. Plot shows FDR-
corrected p-values. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Fig. A1.6 

QC plots are shown for RNAseq replication datasets. (A) The BrainGVEX cohort analyzed in this study 
(synapse accession syn4590909) consisted of frontal cortex brain samples from subjects with SCZ 
(n=53), BD (n=47), and matched controls (n=53). One singular batch was removed. 7 samples were 
removed as outliers and 23 were removed due to covariate confounding to yield a final cohort of 122 
samples. (B) The “ASD-pancortical” replication dataset (synapse accession syn4587609) consisted of 
brain samples across all four major cortical lobes from subjects with ASD (n=53) and matched controls 
(n=35 samples). Two samples were removed due to covariate confounding and 5 samples were removed 
as outliers, to yield a final cohort of 81. The CommonMind Consortium (synapse accession syn2759792) 
dataset consisted of dorsolateral prefrontal cortex brain samples from subjects with SCZ (n=262), BD 
(n=47), and controls (n=293). 27 samples were removed as outliers. To balance groups on demographic 
characteristics and other experimental covariates, we split the dataset into (C) SCZ matched (n=131 
cases, n=166 controls) and (D) BD matched subsets (n=35 cases, n=65 controls).  
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Fig. A1.7 

Multiple RNAseq datasets were used for replication, including “BrainGVEX” (SCZ and BD) and “ASD-
pancortical” (ASD) datasets through the PsychEncode Consortium. RNAseq results from subjects with 
SCZ, BD, and matched controls were obtained from the CommonMind Consortium. Data was processed 
using a standardized pipeline (see Methods) and log2FC estimates were calculated for each brain 
expressed gene. (A) RNAseq results replicate the gradient of transcriptomic severity observed from 
microarray data, as measured by the regression slope, with ASD >> SCZ ~ BD. This pattern was 
consistent across both BrainGVEX and CommonMind datasets. (B) qSVA-corrected RNAseq data show 
cross disorder transcriptomic overlap. (C) For each disorder, RNAseq results recapitulate the 
corresponding transcriptomic signature from microarray (FDR<0.05 genes). Spearman’s correction, all 
P’s<10-14. 
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Fig. A1.8 

A number of steps were taken to ensure the robustness of the gene co-expression networks. (A) Robust, 
boostrapped version of WGCNA (rWGNCA) was used to reduce potential influence of outlier samples on 
network structure. We performed 100 iterations in which networks were created after first randomly 
subsetting 2/3 of the total samples. The resulting 100 networks were merged into one large, final 
consensus network. The individual sub-networks show highly consistent structure with each other and the 
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final network. (B) MDD is the least heritable psychiatric disorder included in this analysis and shows 
significant clinical heterogeneity. To determine the specific influence of MDD samples on network 
architecture, we recreated co-expression networks after removing MDD samples. The resulting network 
structure is highly consistent, suggesting that MDD samples were not the major driver of observed results. 
(C) To determine the degree to which co-expression networks were contingent on the set of WGCNA 
parameters used, we systematically recreated networks using different parameter sets. The disease-
associated modules reported in this study are preserved throughout the majority of this parameter search 
space. (D) To provide independent confirmation of the biological relevance of gene co-expression 
networks, we used DAPPLE to investigate the enrichment of protein-protein interactions (PPI) within each 
module. All disease-associated modules were enriched for PPI compared with a permuted null 
distribution, providing further evidence for a coherent biological role. (E) Finally, we assessed the 
influence of gene or sample-level variability on transcriptome overlap results. We used Bartlett’s test to 
identify genes with significant within-group differences in expression variability (1354 genes at P<0.05, 
uncorrected). We then removed these 1354 genes and repeated our transcriptome overlap analyses 
between disease pairs. This had no appreciable effect on our results.   *P<0.05, **P<0.001, ***P<0.001. 

  



163 
 

 

 

Fig. A1.9 

Linear regression adjusted R2 values are shown for each individual module eigengene-covariate 
association. * indicates nominal significance (ANOVA P<0.05, uncorrected for multiple comparisons). 
Disease status explains substantially more variance in module eigengene expression than for other 
biological or technical covariates. RNAdeg refers to 5’/3’ bias. Full results are provided in Data Table 
A1.2. 
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Fig. A1.10 

Module stability across individual studies. A) Disease-associated modules are plotted for each individual 
study. Module eigengenes were calculated using covariate- and batch corrected data. (B) Disease-
associated modules are shown without batch- or covariate correction.  
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Fig. A1.11 

Co-expression Enrichment for Brain Enhancer Regulation. A recent resource from Yao et al. (79) 
identified a set of robust enhancer RNAs (eRNA) expressed across human fetal and adult brain samples 
and used WGCNA to identify modules of eRNAs co-expressed with potential target genes. Here, we use 
Fisher’s exact test to calculate the overlap between these eRNA-gene co-expression modules with cross 
disorder transcriptome modules. We find robust enrichment (FDR-corrected P<0.05) of putative eRNA 
regulation among all cross-disorder co-expression modules. Interestingly, no cross disorder modules 
showed overlap with M1 or M3, which were reported to represent fetal brain and cerebellum, respectively 
(79). Yet, all neuronal cross-disorder modules showed strong overlap with M5, which was found to be 
enriched for eRNA regulation in cerebral cortex. 
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Fig. A1.12 

Cerebral cortex eQTL summary statistics (all SNP-gene p-values) were downloaded from the GTEx (80) 
data browser (V6; http://www.gtexportal.org/home/). Disease GWAS summary statistics were used as 
listed (Table A1.3). We calculated an empiric p-value for enrichment of eQTL SNPs associated with 
genes in a co-expression module and their significance in a GWAS dataset. For all genes in a co-
expression module, we generated a list of eSNPs by choosing the most significant SNP in the eQTL 
summary statistics for each gene. Using this list of eSNPs, we obtained a p-value distribution in each 
GWAS dataset. These p-values were transformed into Z-scores using the qnorm function in R. We tested 
whether this Z-score distribution had a mean that was significantly lower than zero using a one sample t-
test in R: t.test(Z-scores, alternative=“less”). The t.test p-values for all combinations of co-expression 
modules and GWAS datasets were then FDR corrected. Results demonstrate that SCZ GWAS results are 
enriched for known brain eQTLs that regulate genes within turquoise and green (neuronal) modules.   

http://www.gtexportal.org/home/)
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Fig. A1.13 

Correlation between transcriptome similarity and genetic overlap after removing one disorder. 

 

 
 
 
 
 
 
 
 

A1.4: Extended Tables 

 

Table A1.1 

Gene expression microarray datasets included in this study (3-11, 75, 81-82). 
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Disease 

# Samples Brain 

Region 
Platform Study 

Data 

Source 
Ref 

Cases Controls 

ASD 

29 29 
BA9, 

BA41 
Illumina Ref8 v3 Voineagu GSE28521 (3) 

15 18 BA9/46 Illumina Ref8 v3 Chow GSE28475 (5) 

6 6 BA41/42 
Affy HG-U133 

plus2 
Garbett 

mirnicslab.

org 
(4) 

SCZ 

51 50 
Parietal 

cortex 

Affy HuGene 1.0 

ST 
Chen GSE35978 (6) 

15 19 BA46 
Affy HG-U133 

plus2 
Lanz GSE53987 (75) 

28 23 BA10 
Affy HG-U133 

plus2 
Maycox GSE17612 (7) 

35 34 BA46 Affy HG-U133A Iwamoto GSE12649 (8) 

30 29 BA46 
Affy HG-U133 

plus2 
Narayan GSE21138 (9) 

BD 

45 

Included 

above 

(50) 

Parietal 

cortex 

Affy HuGene 1.0 

ST 
Chen GSE35978 (6) 

17 

Included 

above 

(19) 

BA46 
Affy HG-U133 

plus2 
Lanz GSE53987 (75) 

32 

Included 

above 

(34) 

BA46 Affy HG-U133A Iwamoto GSE12649 (8) 

MDD 

17 

Included 

above 

(19) 

BA46 
Affy HG-U133 

plus2 
Lanz GSE53987 (75) 

70 70 
BA9, 

BA25 

Affy HG-U133 

plus2 
Sibille 

GSE54567 

(10) 
GSE54568 

GSE54571 

GSE54572 

AAD 17 15 

Superior 

frontal 

cortex 

Illumina 

HumanHT-12 V3 
Mayfield GSE29555 (11) 

TOTAL 407 293      

        

Inflammatory Bowel Disease (Non-Brain) Comparison Datasets  

IBD 

69 123 
Colon punch 

biopsy 

Illumina 

Human

HT-12 

V3 

Granlund 
E-MTAB-

184 
(81) 

128 73 Colon Biopsy 
Agilent 

G4112A 
Noble GSE11223 (82) 
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Table A1.2 

RNAseq replication of differential gene expression.  

 

Disease 

# DGE Genes 

(Microarray  

Discovery, FDR 

< 0.05) 

RNAseq 

Replication 

Dataset 

# DGE Genes 

Replicated in 

RNAseq (P<0.05, 

concordant 

direction) 

Gene 

Replication  

Rate (%) 

Overlap 

Odds  

Ratio 

Overlap P 

ASD 1679 
ASD-

Pancortical 
1099 65.5% 6.4 3.3x10-236 

SCZ 1805 

BrainGVEX 890 49.3% 4.5 7.6x10-155 

CommonMind 520 28.8% 2.5 1.8x10-46 

BD 475 

BrainGVEX 112 23.6% 3.9 4.6x10-26 

CommonMind 118 24.8% 3.6 1.5x10-24 
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Table A1.3 

GWAS summary statistics used in this study.  

 
Disorder / 

Trait 
Consortium Dataset Date 

Total Sample  

Size (Cases) 
Ref 

SCZ PGC SCZ2.snp.results.txt.gz  2014 
82,315 

(35,476) 
(40) 

BD PGC pgc.bip.2012-04.zip 2012 
16,731 

(7,481) 
(41) 

MDD PGC pgc.mdd.2012-04.zip 2012 
18,759 

(9,240) 
(42) 

ASD iPSYCH Data Table S5 2017 
28,131 

(8,605) 

This 

study 

ASD PGC PGC.ASD.euro.all.25Mar2015.txt.gz  2015 
10,610 

(5305) 
(43) 

AAD AlcGen Obtained directly from study authors 2011 
23,347  

(NA) 
(44) 

IBD IIBDGC EUR.IBD.gwas.assoc.txt 2015 
34,652 

(12,882) 
(45) 

Educational 

Attainment 
SSGAC EduYears_Main.txt.gz 2016 328,917 (47) 

Subjective 

Well Being 

SSGAC 

SWB_Full.txt.gz  

2016 

298,420 

(46) Neuroticism Neuroticism_Full.txt.gz 170,911 

Depressive 

Symptoms 
DS_Full.txt.gz  161,460 

 

Please see the electronic tables associated with this document for additional data tables (Tables 

A1.1-5). Descriptions for these tables follow: 

 
Additional Data Table A1.1 (separate file) 

Differential gene expression summary statistics from microarray meta-analysis and 

RNAseq replication datasets.  

 

Additional Data Table A1.2 (separate file) 

Gene co-expression module data, including module-trait association statistics, module 

membership (kME) table, and enrichments for CNS cell-type markers, gene ontology 

https://www.med.unc.edu/pgc/files/resultfiles/scz2.snp.results.txt.gz
https://www.med.unc.edu/pgc/files/resultfiles/pgc.bip.2012-04.zip
https://www.med.unc.edu/pgc/files/resultfiles/pgc.mdd.2012-04.zip
https://www.med.unc.edu/pgc/files/resultfiles/pgcasdeuro.gz
http://ssgac.org/documents/EduYears_Main.txt.gz
http://ssgac.org/documents/SWB_Full.txt.gz
http://ssgac.org/documents/Neuroticism_Full.txt.gz
http://ssgac.org/documents/DS_Full.txt.gz
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pathways (gProlifeR and GO-Elite), transcription factor binding sites (TFBS), and 

transcription factor hub genes. 

 

Additional Data Table A1.3 (separate file) 

Compilation of genes affected by recurrent CNVs or rare, de novo variants 

(nonsynonymous vs silent) in ASD, SCZ, and control subjects.  

 

Additional Data Table A1.4 (separate file) 

Full results from LD score regression-based partitioned heritability analyses. 

 

Additional Data Table A1.5 (separate file) 

Summary statistics for the ASD GWAS performed on data from the iPSYCH consortium. 

 

A1.5: Extended Bibliography 

 

The bibliography/references for the appendix correspond with the bibliography for Chapter 2 

(Section 2.6). 
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A2: Additional Results Accompanying Chapter 3 

 

In this section of the appendix, I present additional results that accompany the work 

presented in chapter three. Everything included in this appendix section (A2) and chapter three 

was published in Science, in December 2018, with the title “Transcriptome-wide isoform-level 

dysregulation in ASD, schizophrenia, and bipolar disorder” (volume 362, no page numbers). 

Michael Gandal was the primary author for all of this work. As a co-author, in addition to my work 

presented in chapter three, I assisted with the interpretation and communication of results. Other 

co-authors included Pan Zhang, Evi Hadjimichael, Rebecca Walker, Chao Chen, Shuang Liu, 

Hyejung Won, Harm van Bakel, Merina Varghese, Yongjun Wang, Annie W. Shieh, Sepideh 

Parhami, Judson Belmont, Minsoo Kim, Patricia Moran Losada, Zenab Khan, Justyna Mleczko, 

Yan Xia, Rujia Dai, Daifeng Wang, Yucheng T. Yang, Min Xu, Kenneth Fish, Patrick R. Hof, 

Jonathan Warrell, Dominic Fitzgerald, Andrew E. Jaffe, Kevin White, Mette A. Peters, Mark 

Gerstein, Chunyu Liu, Lilia M. Iakoucheva, and Dalila Pinto. Daniel Geschwind was the senior 

author and main project director. All of these co-authors contributed to major and minor analyses 

for this project, and helped write, edit, and review the resulting manuscript. This work was 

associated with the PsychENCODE Consortium. 

A2.1: Introduction 

 

Developing more effective treatments for autism (ASD), schizophrenia (SCZ), and bipolar 

disorder (BD), three common psychiatric disorders that confer lifelong disability, is a major 

international public health priority (3). Studies have identified hundreds of causal genetic variants 

robustly associated with these disorders, and thousands more that likely contribute to their 

pathogenesis (4). However, the neurobiological mechanisms through which genetic variation 

imparts risk, both individually and in aggregate, are still largely unknown (4–6). 

https://paperpile.com/c/KM4a4R/Enj6
https://paperpile.com/c/KM4a4R/Enj6
https://paperpile.com/c/KM4a4R/Enj6
https://paperpile.com/c/KM4a4R/Hv2m
https://paperpile.com/c/KM4a4R/Hv2m
https://paperpile.com/c/KM4a4R/Hv2m
https://paperpile.com/c/KM4a4R/Hv2m+X1ia+TdPK
https://paperpile.com/c/KM4a4R/Hv2m+X1ia+TdPK
https://paperpile.com/c/KM4a4R/Hv2m+X1ia+TdPK
https://paperpile.com/c/KM4a4R/Hv2m+X1ia+TdPK
https://paperpile.com/c/KM4a4R/Hv2m+X1ia+TdPK
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The majority of disease-associated genetic variation lies in non-coding regions (7) 

enriched for non-coding RNAs and cis regulatory elements that regulate gene expression and 

splicing of their cognate coding gene targets (8, 9). Such regulatory relationships show substantial 

heterogeneity across human cell types, tissues, and developmental stages (10), and are often 

highly species-specific (11). Recognizing the importance of understanding transcriptional 

regulation and non-coding genome function, several consortia (10, 12–14) have undertaken large-

scale efforts to provide maps of the transcriptome and its genetic and epigenetic regulation across 

human tissues. Although some have included CNS tissues, a more comprehensive analysis 

focusing on the brain in both healthy and disease states is necessary to accelerate our 

understanding of the molecular mechanisms of these disorders (1, 15–17). 

We present results of the analysis of RNA-sequencing (RNA-Seq) data from the 

PsychENCODE Consortium (17), integrating genetic and genomic data from over 2000 well-

curated, high-quality post-mortem brain samples from individuals with SCZ, BD, ASD, and 

controls (18). We provide a comprehensive resource of disease-relevant gene expression 

changes and transcriptional networks in the postnatal human brain (see 

Resource.PsychENCODE.org for raw data and annotations). Data was generated across eight 

studies (2, 19, 20), uniformly processed, and combined through a consolidated genomic data 

processing pipeline ((21); Fig A3.1), yielding a total of 2188 samples passing quality control (QC) 

for this analysis, representing frontal and temporal cerebral cortex from 1695 unique subjects 

across the lifespan, including 279 technical replicates (Fig A3.2). Extensive quality control steps 

were taken within and across individual studies resulting in the detection of 16,541 protein-coding 

and 9,233 non-coding genes with the Gencode v19 annotations ((21); Fig A3.3). There was 

substantial heterogeneity in RNA-Seq methodologies across cohorts, which we accounted for by 

including 28 surrogate variables and aggregate sequencing metrics as covariates in downstream 

analyses of differential expression (DE) at gene, isoform, and local splicing levels (21). Differential 

https://paperpile.com/c/KM4a4R/2iQC
https://paperpile.com/c/KM4a4R/2iQC
https://paperpile.com/c/KM4a4R/2iQC
https://paperpile.com/c/KM4a4R/V3qG+c12E
https://paperpile.com/c/KM4a4R/V3qG+c12E
https://paperpile.com/c/KM4a4R/V3qG+c12E
https://paperpile.com/c/KM4a4R/V3qG+c12E
https://paperpile.com/c/KM4a4R/V3qG+c12E
https://paperpile.com/c/KM4a4R/hnS7
https://paperpile.com/c/KM4a4R/hnS7
https://paperpile.com/c/KM4a4R/hnS7
https://paperpile.com/c/KM4a4R/4X5X
https://paperpile.com/c/KM4a4R/4X5X
https://paperpile.com/c/KM4a4R/4X5X
https://paperpile.com/c/KM4a4R/hnS7+vmlO+KDjx+3AYB
https://paperpile.com/c/KM4a4R/hnS7+vmlO+KDjx+3AYB
https://paperpile.com/c/KM4a4R/hnS7+vmlO+KDjx+3AYB
https://paperpile.com/c/KM4a4R/hnS7+vmlO+KDjx+3AYB
https://paperpile.com/c/KM4a4R/hnS7+vmlO+KDjx+3AYB
https://paperpile.com/c/KM4a4R/hnS7+vmlO+KDjx+3AYB
https://paperpile.com/c/KM4a4R/hnS7+vmlO+KDjx+3AYB
https://paperpile.com/c/KM4a4R/KuI9+Ywks+gJII+NFXX
https://paperpile.com/c/KM4a4R/KuI9+Ywks+gJII+NFXX
https://paperpile.com/c/KM4a4R/KuI9+Ywks+gJII+NFXX
https://paperpile.com/c/KM4a4R/KuI9+Ywks+gJII+NFXX
https://paperpile.com/c/KM4a4R/KuI9+Ywks+gJII+NFXX
https://paperpile.com/c/KM4a4R/KuI9+Ywks+gJII+NFXX
https://paperpile.com/c/KM4a4R/KuI9+Ywks+gJII+NFXX
https://paperpile.com/c/KM4a4R/NFXX
https://paperpile.com/c/KM4a4R/NFXX
https://paperpile.com/c/KM4a4R/NFXX
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/20aw+kbUP+Z2Au
https://paperpile.com/c/KM4a4R/20aw+kbUP+Z2Au
https://paperpile.com/c/KM4a4R/20aw+kbUP+Z2Au
https://paperpile.com/c/KM4a4R/20aw+kbUP+Z2Au
https://paperpile.com/c/KM4a4R/20aw+kbUP+Z2Au
https://paperpile.com/c/KM4a4R/20aw+kbUP+Z2Au
https://paperpile.com/c/KM4a4R/20aw+kbUP+Z2Au
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
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expression did not overlap with experimentally defined RNA degradation metrics in brain, 

indicating that results were not driven by RNA-quality confounds (Fig A3.4) (22). 

To provide a comprehensive view of the transcriptomic architecture of these disorders, we 

characterize several levels of transcriptomic organization – gene-level, transcript isoform, local 

splicing, and co-expression networks – for both protein-coding and non-coding gene biotypes. 

We integrate results with common genetic variation and disease GWAS to identify putative 

regulatory targets of genetic risk variants. Although each level provides important disease-specific 

and shared molecular pathology that we highlight below, we find that isoform-level changes show 

the largest effects in disease brain, are most reflective of genetic risk, and provide the greatest 

disease specificity when assembled into co-expression networks.  

We recognize that these analyses involve a variety of steps and data types and are 

necessarily multifaceted and complex. We have therefore organized the work into two major 

sections. The first is at the level of individual genes and gene products, starting with gene level 

transcriptomic analyses, isoform and splicing analyses, followed by identification of potential 

genetic drivers. The second section is anchored in gene network analysis, where we identify 

coexpression modules at both gene and isoform levels and assess their relationship to genetic 

risk. As these networks reveal many layers of biology, we provide an interactive web-browser to 

permit their in depth exploration (Resource.PsychENCODE.org). 

https://paperpile.com/c/KM4a4R/tKLC
https://paperpile.com/c/KM4a4R/tKLC
https://paperpile.com/c/KM4a4R/tKLC
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Figure A2.1. Gene and isoform expression dysregulation in psychiatric brain. A) Differential 
expression effect size (|log2FC|) histograms are shown for protein-coding, lncRNA, and pseudogene 
biotypes up or downregulated (FDR<0.05) in disease. Isoform-level changes (DTE; blue) show larger effect 
sizes than at gene level (DGE; red), particularly for protein-coding biotypes in ASD and SCZ. B) A literature-
based comparison shows that the number of DE genes detected is dependent on study sample size for 
each disorder. C) Venn diagrams depict overlap among up or downregulated genes and isoforms across 
disorders. D) Gene ontology enrichments are shown for differentially expressed genes or isoforms. The top 
5 pathways are shown for each disorder. E) Heatmap depicting cell type specificity of enrichment signals. 
Differentially expressed features show substantial enrichment for known CNS cell type markers, defined at 
the gene level from single cell RNA-Seq. F) Annotation of 944 unique non-coding RNAs DE in at least one 
disorder. From left to right: Sequence-based characterization of ncRNAs for measures of human selective 
constraint; brain developmental expression trajectory are similar across each disorder (colored lines 
represent mean trajectory across disorders); tissue, and CNS cell type expression patterns. 
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A2.2: Gene and isoform expression alterations in disease 

RNA-Seq based quantifications enabled assessment of coding and non-coding genes and 

transcript isoforms, imputed using RSEM guided by Gencode v19 annotations (21, 23). In 

accordance with previous results (1), we observed pervasive differential gene expression (DGE) 

in ASD, SCZ, and BD (n=1611, 4821, and 1119 genes at FDR<0.05, respectively; Fig A2.1A; 

Table A3.1). There was substantial cross-disorder sharing of this DE signal and a gradient of 

transcriptomic severity with the largest changes in ASD compared with SCZ or BD (ASD vs SCZ, 

mean |log2FC| 0.26 vs 0.10, P<2x10-16, Kolmogorov-Smirnov (K-S) test; ASD vs BD, mean 

|log2FC| 0.26 vs 0.15, P<2x10-16, K-S test), as observed previously (1). Altogether, over a quarter 

of the brain transcriptome was affected in at least one disorder (Fig A2.1A-C; complete gene list, 

Table A3.1).  

DGE results were highly concordant with previously published datasets for all three 

disorders, although some had overlapping samples (Fig A3.4). We observed significant 

concordance of DGE effect sizes with those from a microarray meta-analysis of each disorder 

(ASD: ⍴=0.8, SCZ: ⍴=0.78, BD: ⍴=0.64, Spearman ⍴ of log2FC, all P’s<10-16, (1)) and with 

previous RNA-Seq studies of individual disorders (ASD: ⍴=0.96, ref (19); SCZ ⍴=0.78, ref (2); 

SCZ ⍴=0.80, ref (24); BD ⍴=0.85, ref (1); Spearman ⍴ of log2FC, all P’s<10-16). These DE genes 

exhibited substantial enrichment for known pathways and cell type specific markers derived from 

single nucleus RNA-Seq in human brain (Fig A2.1D-E) (21), consistent with previously observed 

patterns (1, 19). 

Expanding these analyses to the transcript isoform-level, we observe widespread 

differential transcript expression (DTE) across ASD, SCZ, and BD (n=767, 3803, and 248 

isoforms at FDR<0.05, respectively; Table A3.1). Notably, at the DTE level, the cross-disorder 

overlap was significantly attenuated (Fig A2.1C), suggesting that alternative transcript usage 

and/or splicing confers a substantial portion of disease specificity. In addition to greater disease 
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specificity, isoform-level alterations in disease exhibited substantially larger effect sizes compared 

with gene-level changes (mean |log2FC| 0.25 vs 0.14, P<2x10-16, K-S test), particularly for protein 

coding biotypes (Fig A2.1A), consistent with recent work demonstrating the importance of splicing 

dysregulation in disease pathogenesis (25). Furthermore, although isoform and gene-level 

changes were overall similar in terms of pathways and cell types affected (e.g. Fig A2.1D-E), 

isoform-level analysis identified DE transcripts that did not show DGE (‘isoform-only DE’), 

including 811 in SCZ, 294 in ASD, and 60 in BD. These isoform-only DE genes were more likely 

to be downregulated than upregulated in disease (one sample t-test, P<10-16), were most 

significantly enriched in excitatory neuron clusters (OR’s > 4, Fisher’s exact test, FDR’s<10-10), 

and showed significant enrichment for neuron projection development, mRNA metabolism, and 

synaptic pathways (FDR<3x10-3; Table A3.1). To validate DTE results, we performed PCR on 

several selected transcripts in a subset of ASD, SCZ and control samples (21), and find significant 

concordance in fold-changes compared with those from RNA-Seq data (Fig A3.5A-B). Together, 

these results suggest that isoform-level changes are most reflective of neuronal and synaptic 

dysfunction characteristic of each disorder.  

Though there are multiple shared pathways at the levels of DGE or DTE across disorders, 

there are also several distinctive features (Fig A3.1D-E). Disorder-specific pathway enrichments 

include decreased transmembrane transport, synapse and synaptic components, with increases 

in innate immune response genes in ASD; decreased chemokine signaling, regulation of 

lymphocyte regulated immunity and natural killer cell chemotaxis in BD; and decreased signaling 

receptor and transmembrane receptor activity with increases in genes involved in the 

inflammatory response in SCZ. With regards to cell type enrichments (Fig A2.1E), although there 

was substantial downregulation of neuronal synaptic and signaling genes, only SCZ and BD also 

showed increases in the expression of a distinct subset of excitatory and inhibitory neuronal 
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genes, whereas SCZ and ASD showed upregulation of genes expressed in astrocytes. ASD was 

the only disorder with enrichment of microglia among upregulated features.  

A2.3: Differential expression of the non-coding transcriptome  

 

Non-coding RNAs (ncRNAs) represent the largest class of transcripts in the human 

genome and are associated with complex phenotypes (26). However, most have limited functional 

annotation, particularly in human brain and have not been studied in psychiatric disease. Based 

on Gencode annotations, we identify 944 ncRNAs exhibiting gene- or isoform-level DE in at least 

one disorder (herein referred to as ‘neuropsychiatric (NP) ncRNAs’ (21)), 693 of which were DE 

in SCZ, 178 in ASD, and 174 in BD, of which 208, 60, and 52 are annotated as intergenic long 

non-coding RNAs (lincRNAs), in each disorder, respectively. To place these NPncRNAs within a 

functional context, we examined expression patterns across human tissues, cell types, and 

developmental time periods, as well as sequence characteristics including evolutionary 

conservation, selection, and constraint. We highlight several noncoding genes exhibiting DE 

across multiple disorders (Fig A3.6) and provide comprehensive annotations for each NPncRNA 

(Table A3.2), including cell type specificity, developmental trajectory, and constraint, to permit 

placement of these NPncRNAs within a functional context in human brain. 

As a class, NPncRNAs were under greater selective constraint compared to all Gencode 

annotated ncRNAs (Fig A2.1F), consistent with the observed increased purifying selection in 

brain-expressed genes (27). We identify 74 NPncRNAs (~8%) under purifying selection in 

humans, with average exon-level context-dependent tolerance scores (CDTS) below the 10th 

percentile (21). Of the 944 NP ncRNAs, 212 exhibited broad and non-specific expression patterns 

across cell types, whereas 66 showed specific expression within a single cell type class (Table 

A3.2). These data provide a foundation for understanding cell type specific, circuit level aspects 

of lncRNA function in neuropsychiatric disease. Two notable examples are, LINC00996, which is 
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downregulated in SCZ (log2FC -0.71, FDR<5x10-11) and BD (log2FC -0.45, FDR=0.02) and 

restricted to microglia in brain (Fig A3.6), and LINC00343, expressed in excitatory neurons, and 

downregulated in BD (log2FC -0.33, FDR=0.012) with a trend in SCZ (log2FC -0.15, FDR 0.065).  

A2.4: Local splicing dysregulation in disease 

 

Isoform-level diversity is achieved by combinatorial use of alternative transcription start 

sites, polyadenylation, and splicing (28). We next used LeafCutter (29) to assess local differential 

splicing (DS) differences in ASD, SCZ and BD using de novo aligned RNA-seq reads, controlling 

for the same covariates as DGE/DTE (Fig A3.7). This approach complements DTE by considering 

aggregate changes in intron usage affecting exons that may be shared by multiple transcripts and 

thus, is not restricted to the specified genome annotation (21). Previous studies have highlighted 

the contribution of local DS events in ASD (19, 30) and in smaller cohorts in SCZ (2, 24) and BD 

(31). 

We identified 515 DS intron clusters in 472 genes across all disorders (FDR<0.1), 117 of 

which (25%) contained one or more novel exons (Table A3.3; Fig A2.2A). Validation of DS 

changes for 9 genes in a subset of cases and controls (n= 5-10 in each group) by semiquantitative 

RT-PCR showed percent spliced-in (PSI) changes consistent with those reported by LeafCutter 

(Fig A3.5C-E). The most commonly observed local splicing change was exon skipping (41-60%), 

followed by alternative 5’ exon inclusion (e.g. due to alternative promoter usage; 11-21%) and 

alternative 3’ splice site usage (5-18%) (Table A3.3; Fig A3.8A). DS genes overlapped 

significantly with DTE results for ASD and SCZ (Fig A3.8B), but not BD, which likely still remains 

underpowered. There was significant cross-disorder correlation in PSI changes (Spearman’s 

⍴=0.59 SCZ-BD, ⍴=0.52 SCZ-ASD, all P<10-4) and subsequently, overlap among DS genes (Fig 

A2.2A-B), although the majority of splicing changes still are disorder specific. Only two genes, 

DTNA and AHCYL1, were significantly DS in all three disorders (Fig A3.9). DS genes showed 
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significant (FDR<0.05) enrichment for signaling, cell communication, actin cytoskeleton, synapse, 

and neuronal development pathways across disorders (Figs A2.2C, A3.8C), and were 

predominantly expressed in neuronal cell types, astrocytes (in ASD, SCZ), microglia and 

oligodendrocytes (in SCZ) (Fig A2.2D). Disorder specific pathways implicated by splicing 

dysfunction include plasma membrane receptor complex, endocytic vesicle, regulation of cell 

growth and cytoskeletal protein binding in ASD; angiotensin receptor signaling in BD; and GTPase 

receptor activity, neuron development and actin cytoskeleton in SCZ. We also find significant 

enrichment of splicing changes in targets of two RNA binding proteins that regulate synaptic 

transmission and whose targets are implicated in both ASD and SCZ, the neuronal splicing 

regulator RBFOX1 (FDR=5.16x10-11) (32) and the fragile X mental retardation protein (FMRP) 

(FDR=3.10x10-21) (33). Notably, 48 DS genes (10%; FDR=8.8x10-4) encode RNA binding proteins 

or splicing factors (34), with at least six splicing factors also showing DTE in ASD (MATR3), SCZ 

(QKI, RBM3, SRRM2, U2AF1) or both (SRSF11). 

Many differential splicing events show predictable functional consequences on protein 

isoforms. Notable examples include GRIN1 and NRXN1, which are known risk loci for 

neurodevelopmental disorders (35, 36). GRIN1 encodes the obligatory subunit of the NMDA-type 

glutamate ionotropic receptors, is upregulated in SCZ and BD and shows increased skipping of 

exon 4 in both ASD and SCZ that impacts its extracellular ligand-binding domain (Fig A2.2E-G). 

NRXN1 is a heterotypic, presynaptic cell adhesion molecule that undergoes extensive alternative 

splicing and plays a key role in the maturation and function of synapses (35, 37). We observed 

various DS and/or differential transcript usage (DTU) changes in NRXN1 in ASD, SCZ and/or BD 

(Fig A2.2H-K). An exon skipping event in ASD disrupts a laminin domain in NRXN1 (Fig 3.2I-J), 

while the isoform expression switch affects the expression of laminin, neurexin-like and EGF-like 

domains; changes which are predicted to have major effects on its function (Fig A2.2H). Another 

example is CADPS, which is located within an ASD GWAS risk locus and supported by Hi-C 
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defined chromatin interactions as a putative target gene (38) and manifests multiple isoform and 

splice alterations in ASD (Fig A3.9; Tables A3.1 and A3.3).  

We found significant overlap (42%, P=3.42x10-27; Fisher’s exact test) of the ASD DS intron 

clusters and splicing changes identified in a previous study (19) that used a different method and 

only a subset of the samples in our ASD and control cohorts (Table A3.3). Overall, this 

examination of local splicing across three major neuropsychiatric disorders, coupled with the 

analysis of isoform-level regulation, emphasizes the need to understand the regulation and 

function of transcript isoforms at a cell type specific level in the human nervous system. 

 

Figure A2.2.  Aberrant local splicing and isoform usage in ASD, SCZ and BD. A) Venn diagram 
showing cross-disorder overlap for 472 genes with significant differentially spliced (DS) intron clusters 
(FDR< 10%) identified by LeafCutter. P values for hypergeometric tests of pairwise overlaps between each 
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disorder are shown at the bottom.  B) Scatter plots comparing percent spliced-in (PSI) changes for all 1,287 
introns in 515 significant DS clusters in at least one disorder, for significant disease pairs SCZ vs ASD and 
SCZ vs BD (Spearman’s ⍴=0.52 and ⍴=0.59, respectively). Principal component regression lines are shown 
in red, with regressions slopes for ASD and BD delta PSI compared to SCZ in the top-left corner.  C) Top 
10 gene ontology (GO) enrichments for DS genes in each disorder (see also Fig A3.8C).  D) Significant 
enrichment for neuronal and astrocyte markers (ASD and SCZ), as well as oligodendrocyte and microglia 
(SCZ) cell type markers in DS genes. *Odds Ratio (OR) is given only for FDR< 5% and OR> 1. Oligo - 
oligodendrocytes; OPC - oligodendrocyte progenitor cells. E) A significant DS intron cluster in GRIN1 
(clu_35560; chr9:140,040,354-140,043,461) showing increased exon 4 (E4) skipping in both ASD and SCZ. 
Increased or decreased intron usage in ASD/SCZ cases compared to controls are highlighted in red and 
blue, respectively. Protein domains are annotationed as ANF_receptor - Extracellular receptor family ligand 
binding domain; Lig_chan - Ionotropic glutamate receptor; Lig_chan-Glu_bd - Ligated ion channel L-
glutamate- and glycine-binding site; CaM_bdg_C0 - Calmodulin-binding domain C0 of NMDA receptor NR1 
subunit.  Visualization of splicing events in cluster clu_35560 with the change in PSI (ΔPSI) for ASD (left) 
and SCZ (right) group comparisons. FDR-corrected p-values (q) are indicated for each comparison. 
Covariate-adjusted average PSI levels in ASD or SCZ (red) vs CTL (blue) are indicated at each intron.  F) 
Violin-plots with the distribution of covariate-adjusted PSI per sample for the intron skipping E4 are shown 
for each disease group comparison.  G) DGE for GRIN1 in each disorder (*FDR< 5%).  H) Whole-gene 
view of NRXN1 highlighting (dashed lines) the intron cluster with significant DS in ASD (clu_28264; 
chr2:50,847,321-50,850,452), as well as transcripts NRXN1-004 and NRXN1-012 that show significant 
DTU in SCZ and/or BD. Protein domain mappings are shown in purple. DM - Protein domains; Tx - 
Transcripts. ConA-like_dom_sf - Concanavalin A-like lectin/glucanase domain. EGF-like - Epidermal 
growth factor-like domain; Laminin_G - Laminin G domain; Neurexin-like - Neurexin/syndecan/glycophorin 
C domain.  I) Left: close-up of exons and protein domains mapped onto the DS cluster, and FDR-corrected 
p-value (q). Right: visualization of introns in cluster clu_28264 with their change in percent spliced in (ΔPSI). 
Covariate-adjusted average PSI levels in ASD (red) vs CTL (blue) are indicated for each intron.  J) Violin-
plots with the distribution of covariate-adjusted PSI per sample for the largest intron skipping exon 8 (E8).  
K) Bar plots for changes in gene expression and transcript usage for NRXN1-004 and NRXN1-012 (*FDR< 
5%). 

 

A2.5: Transcriptome-wide association 

 

Seeking to integrate genetic information with gene expression data, we performed a formal 

transcriptome-wide association study (TWAS; (46)) to directly identify those genes whose cis-

regulated expression is associated with disease (21). Compared with the PRS-based approach, 

TWAS is restricted to cis effects on expression and genes with evidence of heritable expression 

patterns in our dataset. TWAS and related methods have the advantage of collapsing signals onto 

specific genes, reducing multiple comparisons and increasing power for association testing (46, 

47). Further, by imputing the cis-regulated heritable component of brain gene expression into the 

association cohort, TWAS enables direct prediction of the transcriptomic effects of disease-

associated genetic variation, identifying potential mechanisms through which variants may impart 
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risk. However, the limited size of brain eQTL datasets to date has necessitated use of non-CNS 

tissues to define TWAS weights (46), limiting identification of brain relevant genetic regulation. 

Given the substantial enrichment of psychiatric GWAS signal within CNS expressed regulatory 

elements (39), we reasoned that our dataset would provide substantial increased power and 

specificity.  

We identify 14,750 genes with heritable cis-regulated expression in brain in the 

PsychENCODE cohort, enabling increased transcriptomic coverage for detection of association 

signal (Fig A2.3). In ASD, TWAS prioritizes 12 genes across 3 genomic loci (Bonferroni-corrected 

P<0.05; Fig A2.3). This includes the 17q21.31 region, which showed multiple PRS associations 

as described above, but did not reach genome-wide significance in the largest GWAS to date 

(38), highlighting the complementarity of the TWAS approach. Of the seven TWAS-significant 

genes at 17q21, conditional analysis prioritizes one – LRRC37A, which is further supported by a 

Hi-C interaction in fetal brain (38). LRRC37A is intriguing due to its primate-specific evolutionary 

expansion, loss-of-function intolerance, and expression patterns in brain and testis (45). However, 

it is also possible that common variants in GWAS are indirectly tagging the known common 

inversions or other recurrent structural variants previously identified at this locus (45). TWAS 

additionally prioritizes XKR6 and PINX1 as well as PLK1S1 and NKX2-2 at ASD loci on 

chromosomes 8 and 20, respectively (Fig A2.3; Table A3.4; (21)). 

In BD, TWAS prioritizes 17 genes across 14 distinct loci (Bonferroni-corrected P<0.05; 

Fig A2.3; Table A3.4), none of which were DE. These included VPS45, TMEM258, CKMT1A, 

HLF, ILF3, LMAN2L, DCLK3, BMPR1B, SNAP91, and SYS1-DBNDD2. At loci with multiple hits, 

we applied conditional and colocalization analyses (21) to further finemap these regions, 

permitting prioritization of single top candidate genes – CDKN2C, UBE2Q2L, and HAPLN4. The 

two isoforms showing PRS associations in BD (NCALD, SNF8) were not significant in TWAS, 
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likely due to lack of a nearby genome-wide significant locus, or due to isoform-specific regulation, 

suggesting those expression changes may be driven by trans-acting factors.  

Finally, TWAS identifies 193 genes in SCZ, of which 107 remain significant following 

conditional analysis at each gene within multi-hit loci. Excluding the MHC region, there remained 

164 significant genes representing 78 genome-wide significant GWAS loci (Fig A2.3; Table 

A3.4). A previous TWAS study in SCZ primarily based on non-neural tissue prioritized 157 genes, 

of which 37 coincide with the current results, a highly significant overlap (OR 60.7, p<10-42, 

Fisher's exact test). Moreover, 60 TWAS prioritized genes overlapped with the list of 321 ‘high 

confidence’ SCZ risk genes identified in the companion manuscript (18), identified using gene 

regulatory networks and a deep learning approach (OR 34.7, p<10-60, Fisher’s exact test). Twenty 

one genes prioritized by TWAS were also concordantly DE in SCZ brain in the same direction as 

predicted by TWAS (Table A3.4).  

Overall, these analyses prioritize 125 candidate risk genes whose cis expression 

regulation is associated with disease. Most genes show disease-specific effects, as only three 

genes showed overlap between SCZ and BD TWAS, including VPS45, SNAP91, DCLK3, while 

none overlapped with ASD. Considering genes independently identified by each method 

separately at genome-wide significance, only 2 genes are identified by both PRS association and 

TWAS, 1 in ASD (LRRC37A) and 1 in SCZ (LRRC37A2), which may represent structural variation 

at this locus (45). When we restrict our analysis to those genes that are captured by TWAS and 

replicated by association with the PRS (Likelihood Ratio Test; p <0.01), 11 genes are identified 

in SCZ (JKAMP, SETD6, TMEM214, FTSJ2, BTN2A2, CLEC18B, CACNA1D, HIST1H4L, HLA-

DOA, TRIM27, LRRC37A2, RP11-350N15.5), and one, the LRRC37A locus, for ASD.   
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Figure A2.3. Transcriptome-wide association. Results from TWAS prioritize genes whose cis-regulated 
expression in brain is associated with disease. Plots show conditionally-independent TWAS prioritized 
genes, with lighter shade depicting marginal associations. The sign of TWAS Z-scores indicates predicted 
direction of effect. Genes significantly up or downregulated in disease brain are shown with arrows, 
indicating directionality. A) In SCZ, 193 genes (164 outside of MHC) are prioritized by TWAS at Bonferroni-
corrected P<0.05, including 107 genes with conditionally independent signals. Of these, 23 are also 
differentially expressed in SCZ brain with 11 in the same direction as predicted. B) Seventeen genes are 
prioritized in BD, of which 15 are conditionally independent. Three TWAS associations overlap between 
SCZ and BD: SNAP91, DCLK3, VPS45. C) In ASD, TWAS prioritizes 12 genes, of which 5 are conditionally 
independent. 

 

A2.6: Co-expression networks refine shared cross-disorder signals 

 

To place transcriptomic changes within a systems-level context and more fully interrogate 

the specific molecular neuropathology of these disorders, we performed weighted gene 

correlation network analysis (WGCNA) to create independent gene and isoform-level networks 
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(15, 48, 49), which we then assessed for disease association and GWAS enrichment using 

stratified LD score regression ((21); see Resource.PsychENCODE.org for interactive 

visualization). Although calculated separately, gene and isoform-level networks generally reflect 

equivalent biological processes, as demonstrated by hierarchical clustering (Fig A2.4A). 

However, the isoform-level networks captured greater detail and a larger proportion were 

associated with disease GWAS than gene-level networks (61% vs 41% with nominal GWAS 

enrichment, P=0.07, 𝛘2; Fig A2.4A). Consistent with expectations, modules showed enrichment 

for gene ontology pathways and we identified modules strongly and selectively enriched for 

markers of all major CNS cell types (Fig A2.4A-B; Fig A3.12), facilitating computational 

deconvolution of cell type specific signatures (15, 48, 50). For ease of subsequent presentation, 

we group gene-isoform module pairs that co-cluster, have overlapping parent genes, and 

represent the same biological processes. 

The large sample sizes, coupled with the specificity of isoform-level quantifications, 

enabled refinement of previously identified gene networks related to ASD, BD and SCZ (1, 2, 15, 

16, 19, 51). Of a combined 90 modules, including 34 gene- (geneM) and 56 isoform-level (isoM) 

modules, 61 (68%) showed significant association with at least one disorder, demonstrating the 

pervasive nature of transcriptome dysregulation in psychiatric disease. Five modules are shared 

across all three disorders, 3 up and two downregulated; 22 modules are shared by 2 of the 3 

disorders, and 36 demonstrate more specific patterns of dysregulation in either ASD, SCZ or BD 

(Fig A2.4; Table A3.5). It is notable that of these 61 co-expression modules with a disease-

association, 41 demonstrate cell type enrichments, consistent with the strong cell type disease-

related signal observed using both supervised and unsupervised methods in our companion 

paper (18). This demonstrates the importance of cell type specific changes in the molecular 

pathology of these major psychiatric disorders; the cell type relationships defined by the disease 

modules substantially enhance our knowledge of these processes, as we outline below.   
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The five modules shared between ASD, BD and SCZ can be summarized to represent 3 

distinct biological processes. Two of these processes are upregulated, including an inflammatory 

NFkB signaling module pair (geneM5/isoM5; further discussed in neural-immune section below), 

and a module (geneM31) enriched primarily for genes with roles in the postsynaptic density, 

dendritic compartments, and receptor mediated presynaptic signaling that are expressed in 

excitatory neurons, and to a lesser extent, inhibitory neurons (Fig A2.4C). Remarkably, DCLK3, 

one of the hubs of geneM31, is a genome-wide significant TWAS hit in both SCZ and BD. The 

third biological process, geneM26/isoM22 (Fig A2.4C), is downregulated, and enriched for 

endothelial and pericyte genes, with hubs that represent markers of the blood-brain barrier, 

including ITIH5, SLC38A5, ABCB1, and GPR124, a critical regulator of brain-specific 

angiogenesis (52, 53). This highlights specific, shared alterations in neuronal-glial-endothelial 

interactions across these neuropsychiatric disorders.  

In contrast to individual genes or isoforms, no modules were significantly associated with 

PRS scores after multiple-testing correction. However, 19 modules were significantly (FDR < 

0.05) enriched for SNP-heritability based on published GWAS ((21); Fig A2.4A; Fig A3.13). A 

notable example is geneM2/isoM13, which is enriched for oligodendrocyte markers and neuron 

projection developmental pathways and is downregulated in ASD and SCZ, with a trend in BD 

(Fig A2.4C). This module pair showed the greatest overall significance of enrichment for SCZ 

and educational attainment GWAS, and was also enriched in BD GWAS to a lesser degree, 

suggesting that the processes represented by geneM2/isoM13 genes play a causal role in SCZ 

and BD disease risk. As additional causal evidence, this module is enriched for genes harboring 

ultra-rare variants identified in SCZ (54) (Fig A3.13). Finally, we also observe pervasive and 

distinct enrichments for syndromic genes and rare variants identified through whole exome 

sequencing in individuals with neurodevelopmental disorders (Table A3.5; Fig A3.13). 

https://paperpile.com/c/KM4a4R/raFA+r7mu
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/V5zH
https://paperpile.com/c/KM4a4R/V5zH
https://paperpile.com/c/KM4a4R/V5zH


188 
 

 

Figure A2.4. Gene and isoform co-expression networks capture shared and disease-specific cellular 
processes and interactions. A) Gene and isoform co-expression networks demonstrate pervasive 
dysregulation across psychiatric disorders. Hierarchical clustering shows that separate gene- and isoform-
based networks are highly overlapping, with greater specificity conferred at the isoform level. Disease 
associations are shown for each module (linear regression β value, * FDR<0.05, – P<0.05). Module cell 
type enrichments (*FDR < 0.05) are shown for major CNS cell types defined from PsychENCODE UMI 
single cell clusters. Enrichments are shown for GWAS results from SCZ (58), BD (90), and ASD (38), using 
stratified LD score regression (* FDR<0.05, – P<0.05). B) Co-expression modules capture specific cellular 
identities and biological pathways. Colored circles represent module differential expression effect size in 
disease, with red outline representing GWAS enrichment in that disorder.  Modules are organized and 
labeled based on CNS cell type and top-gene ontology enrichments. However, we recognize that these 
annotations are imprecise with respect to complex neurobiological processes, such as those dysregulated 
in disease. C) Examples of specific modules dysregulated across disorders, with top 25 hub genes shown. 
Edges represent co-expression (Pearson correlation > 0.5) and known protein-protein interactions. Nodes 
are colored to represent disorders in which that gene is differentially expressed (*FDR<0.05). 
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A2.7: Neuronal isoform networks capture disease specificity 

 

Multiple neuronal and synaptic signaling pathways have been previously demonstrated to 

be downregulated in a diminishing gradient across ASD, SCZ, and BD brains without identification 

of clear disease-specific signals for these neuronal-synaptic gene sets (1, 2, 16, 19, 55, 56). We 

do observe neuronal modules broadly dysregulated across multiple disorders, including a 

neuronal/synaptic module (isoM18) with multiple isoforms of the known ASD risk gene, ANK2, as 

hubs. However, the large sample size, coupled with the specificity of isoform-level qualifications, 

enabled us to identify synaptic modules containing unique isoforms with distinct disease 

associations and to separate distinct signals from excitatory and inhibitory neurons (Fig A2.4B).  

A particularly salient example of differential module membership and disease association 

of transcript isoforms is RBFOX1, a major neuronal splicing regulator implicated across multiple 

neurodevelopmental and psychiatric disorders (16, 32, 57, 58). Previous work has identified 

downregulated neuronal modules in ASD and SCZ containing RBFOX1 as a hub (1, 16). Here, 

we identify two neuronal modules with distinct RBFOX1 isoforms as hub genes (Fig A2.5A). The 

module pair geneM1/isoM2, downregulated only in ASD (Fig A2.5B), contains the predominant 

brain-expressed RBFOX1 isoform (44) and includes several cation channels (e.g., HCN1, 

SCN8A).  The second most abundant RBFOX1 isoform is in another module, isoM17, which is 

downregulated in both ASD and SCZ (Fig A2.5B). Experiments in mouse indicate that RBFOX1 

has distinct nuclear and cytoplasmic isoforms with differing functions, the nuclear isoform primarily 

regulating pre-mRNA alternative splicing, and the cytoplasmic isoform binding to the 3’ UTR to 

stabilize target transcripts involved in regulation of neuronal excitability (28, 32, 57, 59). Here, we 

find that isoM17 shows greater enrichment for nuclear RBFOX1 targets (Fig A2.5C), whereas 

isoM2 shows stronger overlap with cytoplasmic targets (32). Consistent with a predicted splicing-

regulatory effect, isoM17 shows greater enrichment for genes exhibiting DS in ASD and SCZ (Fig 

A2.5D). In accordance with a predicted role in regulating excitability, isoM2 shows strong and 

https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/gJII+Ywks+20aw+kbUP+VmG9+5CoQ
https://paperpile.com/c/KM4a4R/Ywks+ZEo4+FlDg+FFdb
https://paperpile.com/c/KM4a4R/Ywks+ZEo4+FlDg+FFdb
https://paperpile.com/c/KM4a4R/Ywks+ZEo4+FlDg+FFdb
https://paperpile.com/c/KM4a4R/Ywks+ZEo4+FlDg+FFdb
https://paperpile.com/c/KM4a4R/Ywks+ZEo4+FlDg+FFdb
https://paperpile.com/c/KM4a4R/Ywks+ZEo4+FlDg+FFdb
https://paperpile.com/c/KM4a4R/Ywks+ZEo4+FlDg+FFdb
https://paperpile.com/c/KM4a4R/Ywks+ZEo4+FlDg+FFdb
https://paperpile.com/c/KM4a4R/Ywks+ZEo4+FlDg+FFdb
https://paperpile.com/c/KM4a4R/Ywks+gJII
https://paperpile.com/c/KM4a4R/Ywks+gJII
https://paperpile.com/c/KM4a4R/Ywks+gJII
https://paperpile.com/c/KM4a4R/Ywks+gJII
https://paperpile.com/c/KM4a4R/Ywks+gJII
https://paperpile.com/c/KM4a4R/QFS0
https://paperpile.com/c/KM4a4R/QFS0
https://paperpile.com/c/KM4a4R/QFS0
https://paperpile.com/c/KM4a4R/ZEo4+X2Nw+FlDg+tZxa
https://paperpile.com/c/KM4a4R/ZEo4+X2Nw+FlDg+tZxa
https://paperpile.com/c/KM4a4R/ZEo4+X2Nw+FlDg+tZxa
https://paperpile.com/c/KM4a4R/ZEo4+X2Nw+FlDg+tZxa
https://paperpile.com/c/KM4a4R/ZEo4+X2Nw+FlDg+tZxa
https://paperpile.com/c/KM4a4R/ZEo4+X2Nw+FlDg+tZxa
https://paperpile.com/c/KM4a4R/ZEo4+X2Nw+FlDg+tZxa
https://paperpile.com/c/KM4a4R/ZEo4+X2Nw+FlDg+tZxa
https://paperpile.com/c/KM4a4R/ZEo4+X2Nw+FlDg+tZxa
https://paperpile.com/c/KM4a4R/ZEo4
https://paperpile.com/c/KM4a4R/ZEo4
https://paperpile.com/c/KM4a4R/ZEo4


190 
 

selective enrichment for epilepsy risk genes (Fig A2.5E). Moreover, the two modules show 

differential association with common genetic risk (Fig A2.5E), with isoM2 exhibiting GWA signal 

enrichment across SCZ, BD, and MDD. This widespread enrichment of neurodevelopmental and 

psychiatric disease risk factors -- from rare variants in epilepsy to common variants in BD, SCZ, 

and MDD – is consistent with a model where broad neuropsychiatric liability emanates from 

myriad forms of dysregulation in neuronal excitability, all linked via RBFOX1. These results 

highlight the importance of further studies focused on understanding the relationship between 

human RBFOX1 transcript diversity and functional divergence, as most of what is known is based 

on mouse, and the human shows far greater transcript diversity (32, 57, 60). 

Previous transcriptional networks related to ASD, BD and SCZ did not separate inhibitory 

and excitatory neuron signals (1). The increased resolution here allowed us to identify several 

modules enriched in inhibitory interneuron markers (Fig A2.4B), including geneM23/isoM19, 

which is downregulated in ASD and SCZ, with a trend toward downregulation observed in BD; 

downsampling in the SCZ dataset suggests that the lack of significance in BD may be due to 

smaller sample size (Fig A3.14). This module pair contained as hubs the two major GABA 

synthesizing enzymes (GAD1, GAD2), multiple GABA transporters (SLC6A1, SLC24A3), many 

other known interneuron markers (RELN, VIP), as well as DLX1 and the lncRNA DLX6-AS1, both 

critical known regulators of inhibitory neuron development (61). This inhibitory neuron-related 

module is not enriched for common or rare genetic disease-associated variation, although other 

studies have found enrichment for SCZ GWAS signal among interneuron markers defined in other 

ways (62). 

Several neuronal modules that distinguish between the disorders differentiate BD and 

SCZ from ASD, including the module pair geneM21/isoM30 (Fig A2.4C), which captures known 

elements of activity-dependent neuronal gene regulation, whose hubs include classic early-

response (ARC, EGR1, NPAS4, NR4A1) and late-response genes (BDNF, HOMER1) (40). 
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Although these modules were not significantly downregulated in ASD, subsampling indicates that 

the differences between disorders could be driven by sample size (Fig A3.14). These genes play 

critical roles in regulating synaptic plasticity and the balance of excitatory and inhibitory synapses 

(40). Remarkably, a nearly identical module was recently identified as a sex-specific 

transcriptional signature of major depression and stress susceptibility (63). Since psychiatric drug 

use is more prevalent in SCZ and BD than ASD, and the geneM21/isoM30 module pair are altered 

more substantially in these disorders, we explored whether these modules may be affected by 

medication exposure. Indeed, geneM21/isoM30 was associated with genes downregulated by 

chronic high-doses (but not low-doses) of haloperidol, as well as genes upregulated by the 

antidepressant fluoxetine (Fig A3.11A). Furthermore, geneM21/isoM30 expression was 

negatively correlated with the degree of lifetime antipsychotic exposure in the subset of patients 

for whom these data were available (P=0.001, Pearson; Fig A3.11B). As such, it will be 

worthwhile to determine whether this module is a core driver of the therapeutic response, as has 

been suggested (64). Other neuronal modules distinguished SCZ and BD from ASD (Fig A2.4B), 

including geneM7, enriched for synaptic and metabolic processes with the splicing regulator 

NOVA2 (Fig A2.4C). This neuronal module was significantly enriched for both BD and SCZ 

GWAS signals, supporting a causal role for this module. 
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Figure A2.5. Two RBFOX1 isoform modules capture distinct biological and disease associations. 
A) Previous studies have identified RBFOX1 as a critical hub of neuronal and synaptic modules 
downregulated across multiple psychiatric disorders (1, 16, 19, 32). Here, we identify two pairs of modules 
with distinct RBFOX1 isoforms as hub genes. Plots show the top 25 hub genes of modules isoM2 and 
isoM17, following the same coloring scheme as Fig A2.4C. B) Distinct module-eigengene trait associations 
are observed for isoM2 (downregulated in ASD only) compared with isoM17, which is downregulated in 
ASD and SCZ. C) Modules show distinct enrichments for nuclear and cytoplasmic RBFOX1 targets, defined 
experimentally in mouse (32). D) Genes harboring differential splicing events observed in ASD and SCZ 
show greater overlap with isoM17, consistent with its association with nuclear RBFOX1 targets. E) Modules 
show distinct patterns of genetic association. isoM2 exhibits broad enrichment for GWAS signal in SCZ, 
BD, and MDD, as well as for epilepsy risk genes, whereas isoM17 shows no apparent genetic enrichment. 
GWAS enrichments show FDR-corrected P-values calculated using stratified-LDSC, and rare-variant 
associations were calculated using logistic regression, controlling for gene length and GC content (21). 

 

A2.8: Distinct trajectories of neural-immune dysregulation 

 

Previous work has identified differential activation of glial and neural-immune processes 

in brain from patients with psychiatric disorders (16, 51, 56, 65–68), including upregulation of 

astrocytes in SCZ and BD (1, 56) and both microglia and astrocytes in ASD (19, 69). Evidence 

supports hyperactive complement-mediated synaptic pruning in SCZ pathophysiology, 

presumably through microglia (5), although post-mortem microglial upregulation was observed 

only in ASD (19, 69). We examined whether our large cohort including ~1000 control brains, 

capturing an age range from birth to 90 years, would enable refinement of the nature and timing 

of this neuroinflammatory signal and potential relationship to disease pathogenesis (Fig A2.6A). 

https://paperpile.com/c/KM4a4R/Ywks+20aw+gJII+ZEo4
https://paperpile.com/c/KM4a4R/Ywks+20aw+gJII+ZEo4
https://paperpile.com/c/KM4a4R/Ywks+20aw+gJII+ZEo4
https://paperpile.com/c/KM4a4R/Ywks+20aw+gJII+ZEo4
https://paperpile.com/c/KM4a4R/Ywks+20aw+gJII+ZEo4
https://paperpile.com/c/KM4a4R/Ywks+20aw+gJII+ZEo4
https://paperpile.com/c/KM4a4R/Ywks+20aw+gJII+ZEo4
https://paperpile.com/c/KM4a4R/Ywks+20aw+gJII+ZEo4
https://paperpile.com/c/KM4a4R/Ywks+20aw+gJII+ZEo4
https://paperpile.com/c/KM4a4R/ZEo4
https://paperpile.com/c/KM4a4R/ZEo4
https://paperpile.com/c/KM4a4R/ZEo4
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/hNia+WqDq+jONd+ZCtP+5CoQ+Ywks+L1U2
https://paperpile.com/c/KM4a4R/gJII+5CoQ
https://paperpile.com/c/KM4a4R/gJII+5CoQ
https://paperpile.com/c/KM4a4R/gJII+5CoQ
https://paperpile.com/c/KM4a4R/gJII+5CoQ
https://paperpile.com/c/KM4a4R/gJII+5CoQ
https://paperpile.com/c/KM4a4R/20aw+5GeX
https://paperpile.com/c/KM4a4R/20aw+5GeX
https://paperpile.com/c/KM4a4R/20aw+5GeX
https://paperpile.com/c/KM4a4R/20aw+5GeX
https://paperpile.com/c/KM4a4R/20aw+5GeX
https://paperpile.com/c/KM4a4R/X1ia
https://paperpile.com/c/KM4a4R/X1ia
https://paperpile.com/c/KM4a4R/X1ia
https://paperpile.com/c/KM4a4R/20aw+5GeX
https://paperpile.com/c/KM4a4R/20aw+5GeX
https://paperpile.com/c/KM4a4R/20aw+5GeX
https://paperpile.com/c/KM4a4R/20aw+5GeX
https://paperpile.com/c/KM4a4R/20aw+5GeX


193 
 

Four modules were directly related to neural-immune processes (Fig A2.6A-C), two of which are 

gene/isoform module pairs that correspond clearly to cell type specific gene expression; one 

representing microglia (geneM6/isoM15) and the other astrocytes (geneM3/isoM1), as they are 

strongly and selectively enriched for canonical cell type specific marker genes (Fig A2.6C-E). 

Two additional immune-related modules appear to represent more broadly expressed signaling 

pathways: interferon response (geneM32) and NFkB (geneM5/isoM5). The interferon response 

module (geneM32) contains critical components of the IFN-stimulated gene factor 3 (ISGF3) 

complex that activates the transcription of downstream interferon-stimulated genes (ISGs), which 

comprise a striking 59 of the 61 genes in this module (70). The NFkB module pair (geneM5/isoM5) 

includes four out of five of the NFkB family members (NFkB1, NFkB2, REL, RELA), as well as 

many downstream transcription factor targets and upstream activators of this pathway.  

The dynamic trajectories of these processes in cases with respect to controls reveal 

distinct patterns across disorders that coincide with disease course (Fig A2.6F). The IFN-

response and microglial modules are most strongly upregulated in ASD, peaking during early 

development, coincident with clinical onset. In contrast, in SCZ and BD, the microglial module is 

actually downregulated and driven by a later dynamic decrease, dropping below controls after 

age 30. The NFkB module, which is upregulated across all three disorders, maximally diverges 

from controls during early adulthood, coincident with typical disease onset in SCZ and BD (~25). 

Accordingly, this NFkB module contained C4A – the top GWAS-supported, and strongly 

upregulated, risk gene for SCZ (5). This pattern is clearly distinct from ASD, which shows a 

dynamic trajectory, but remains upregulated throughout (Fig A2.6F).  
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Figure A2.6. Distinct neural-immune trajectories in disease. A) Coexpression networks provide 
substantial refinement of the neuro-immune/inflammatory processes upregulated in ASD, SCZ, and BD. 
Previous work has identified specific contributions to this signal from astrocyte and microglial populations 
(1, 19). Here, we further identify additional, distinct interferon (IFN)-response and NFkB signaling modules. 
B) Eigengene-disease associations are shown for each of 4 identified neural-immune module pairs. The 
astrocyte and IFN-response modules are upregulated in ASD and SCZ. NFkB signaling is elevated across 
all three disorders. The microglial module is upregulated in ASD and downregulated in SCZ and BD. C) 
Top hub genes for each module are shown, along with edges supported by co-expression (light grey; 
Pearson correlation > 0.5) and known protein-protein interactions (dark lines). Nodes follow same coloring 
scheme as in Fig 5C. Hubs in the astrocyte module (geneM3/isoM1) include several canonical, specific 
astrocyte markers, including SOX9, GJA1, SPON1, and NOTCH2.  Microglial module hub genes include 
canonical, specific microglial markers, including AIF1, CSF1R, TYROBP, TMEM119. The NFkB module 
includes many known downstream transcription factor targets (JAK3, STAT3, JUNB, FOS) and upstream 
activators (IL1R1, 9 TNF receptor superfamily members) of this pathway. D) The top 4 GO enrichments are 
shown for each module. E) Module enrichment for known cell type-specific marker genes, collated from 
sequencing studies of neural-immune cell types (91–95). F) Module eigengene expression across age 
demonstrates distinct and dynamic neural-immune trajectories for each disorder. 

 

A2.9: Non-coding modules and lncRNA regulatory relationships 

 

Given that many lncRNAs are predicted to have transcriptional regulatory roles, we next 

assessed whether mRNA-based co-expression networks could provide additional functional 

annotation for ncRNAs. As a subset of lncRNAs are thought to function by repressing mRNA 

targets (71), we applied csuWGCNA (72) to identify potential regulatory relationships (21). We 
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identified 39 modules (csuM) using csuWGCNA, all preserved in the signed networks with strong 

cell type and GWAS enrichments, which captured 7186 negatively correlated lncRNA-mRNA 

pairs within the same module (Fig A3.15). We provide a table of putative mRNA targets for 

thesebrain expressed lncRNAs, including 209 exhibiting DE in ASD, 122 in BD and 241 in SCZ 

(Table A3.6). 

A salient example of the power of this approach for functional annotation is LINC00473, a 

hub of the neuronal activity dependent gene regulation module (geneM21/isoM30; Fig A2.4C). 

Expressed in excitatory neurons and downregulated in SCZ (log2FC -0.16, FDR<0.002), 

LINC00473 is regulated by synaptic activity and downregulates immediate early gene expression 

(73), consistent with its hub status in this module. Similarly, we identify the lncRNA DLX6-AS1, a 

known development regulator of interneuron specification (61), as the most central hub gene in 

the interneuron module (geneM23/isoM19), which is downregulated in ASD and SCZ. This 

interneuron module also contains LINC00643 and LINC01166, two poorly annotated, brain 

enriched lncRNAs. LINC00643 is downregulated in SCZ (log2FC -0.06, FDR=0.04) whereas 

LINC01166 is significantly downregulated in BD (log2FC -0.17, FDR<0.05) with trends in ASD and 

SCZ (FDR’s < 0.1). Our data suggest a role for these lncRNAs in interneuron development, 

making them intriguing candidates for follow-up studies. Using fluorescence in situ hybridization 

(FISH), we confirmed that both LINC00643 and LINC1166 are expressed in GAD1+ GABAergic 

neurons in area 9 of adult brain, present both in the cell nucleus and cytoplasm (Fig A2.7A; Fig 

A3.16), although expression was also detected in other non GAD1+ neurons as well. 

Multiple ncRNAs including SOX2-OT, MIAT, and MEG3 are enriched in oligodendrocyte 

modules (geneM2/isoM13/csuM1; Fig A2.4C) that are downregulated in both SCZ and ASD. 

SOX2-OT is a heavily spliced, evolutionarily-conserved lncRNA exhibiting predominant brain 

expression and a hub of these oligodendrocyte modules, without previous mechanistic links to 

myelination (74, 75). The lncRNAs MIAT and MEG3 are negatively correlated with most of the 
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hubs in this module, including SOX2-OT (Fig A3.15). MIAT is also known to interact with QKI, an 

established regulator of oligodendrocyte-gene splicing also located in this module (76, 77). These 

analyses predict critical roles for these or these often overlooked non-coding genes in 

oligodendrocyte function (76, 77) and potentially in psychiatric conditions. 

 

Figure 3.7. LncRNA annotation, ANK2 isoform switching & micro-exon enrichment. A) FISH images 
demonstrate interneuron expression for two poorly annotated lincRNAs –  LINC00643 and LINC01166 – in 
area 9 of adult human prefrontal cortex. Sections were labeled with GAD1 probe (green) to indicate 
GABAergic neurons and lncRNA (magenta) probes for LINC00643 (left) or for LINC01166 (right). All 
sections were counterstained with DAPI (blue) to reveal cell nuclei. Lipofuscin autofluorescence is visible 
in both the green and red channels and appears yellow/orange. Scale bar, 10 µm. FISH was repeated at 
least twice on independent samples (Table A3.9 (21)) with similar results (see also Fig A3.16). B) ANK2 
isoforms ANK2-006 and ANK2-013 show significant DTU in SCZ and ASD, respectively (*FDR<0.05). C) 
Exon structure of ANK2 highlighting (dashed lines) the ANK2-006 and ANK2-013 isoforms. Inset, these 
isoforms have different protein domains and carry different microexons. ANK2-006 is hit by multiple ASD 
DNMs while ANK2-013 could be entirely eliminated by a de novo CNV deletion in ASD.  D) Disease-specific 
co-expressed PPI network. Both ANK2-006 and ANK2-013 interact with NRCAM. The ASD-associated 
isoform ANK2-013 has two additional interacting partners, SCN4B and TAF9.  E)  As a class, switch 
isoforms are significantly enriched in microexon(s). In contrast, exons of average length are not enriched 
among switch isoforms. Y-axis displays odds ratio on log2 scale. P-values are calculated using logistic 
regression and corrected for multiple comparisons.  F) Enrichment of 64 genes with switch isoforms in: 
ASD risk loci (80); CHD8 targets (96); FMRP targets (33); Mutationally constraint genes (97); Syndromic 
and highly ranked (1 and 2) genes from SFARI Gene database; Vulnerable ASD genes (98); Genes with 
probability of loss-of-function intolerance (pLI) > 0.99 as reported by the Exome Aggregation Consortium 
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(99); Genes with likely-gene-disruption (LGD) or LGD plus missense de novo mutations (DNMs) found in 
patients with neurodevelopmental disorders (21). 

 

A2.10: Isoform network specificity and switching 

 

To more comprehensively assess whether aspects of disease specificity are conferred by 

alternative transcript usage or splicing, versus DE, we surveyed genes exhibiting DTU across 

disorders (21). We identified 134 such ‘switch isoforms’, corresponding to 64 genes displaying 

different DTU between ASD and SCZ (Table A3.7). As an example, isoforms of SMARCA2, a 

member of the BAF-complex strongly implicated in several neurodevelopmental disorders 

including ASD (78), are up and downregulated in ASD and SCZ, respectively (Fig A3.17). 

Conversely, the isoforms of NIPBL, a gene associated with Cornelia de Lange Syndrome (79) are 

down and upregulated in ASD and SCZ, respectively (Fig A3.17). Such opposing changes in 

isoform expression of various genes may represent differences in disease progression or 

symptom manifestation in diseases as ASD and SCZ, mediated by genetic risk variants that 

create subtle differences in isoforms within the same gene that exhibit distinct biological effects 

in each disorder. A remarkable example is the ASD risk gene ANK2 (80), whose two alternatively 

spliced isoforms, ANK2-006 and ANK2-013, are differentially regulated in SCZ and ASD (Fig 

A2.7B). These switch isoforms show markedly different expression patterns, belonging to 

different co-expression modules, geneM3/isoM1 (Fig A2.6C) and isoM18, which are enriched in 

astrocyte and neuronal cell types, respectively (Fig A2.4A; Fig A3.12). The protein domain 

structure of these transcripts is also non-overlapping, with ANK2-006 carrying exclusively ZU5 

and DEATH domains, and ANK2-013 carrying exclusively ankyrin repeat domains (Fig A2.7C). 

Both isoforms are impacted by a de novo ASD CNV, and ANK-006 also carries de novo mutations 

from neurodevelopmental disorders. Both isoforms bind to the neuronal cell adhesion molecular 

NRCAM, but ANK2-013 has two additional, unique partners – TAF9 and SCN4B (Fig A2.7D), 
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likely cell type specific interactions that suggest distinct functions of the isoforms of this genes in 

different neural cell types and diseases. 

Several studies have demonstrated that genes carrying microexons are preferentially 

expressed in brain and their splicing is dysregulated in ASD (30, 81, 82). This PsychENCODE 

sample provided the opportunity to assess the role of microexons in a far larger cohort and across 

several disorders. Indeed, we find that switch isoforms with microexons (3-27 bp) are significantly 

enriched in both ASD (FDR=0.03) and SCZ (FDR=0.03, logistic regression) (Fig A2.7E; (21)). 

Genes with switch isoforms are also enriched for the regulatory targets of two ASD risk genes, 

CHD8 and FMRP, as well as highly mutationally constrained genes (pLI>0.99), syndromic ASD 

genes, and in genes with de novo exonic mutations in ASD, SCZ and BD (Fig A2.7F; Table A3.7; 

(21)). These data confirm the importance of microexon regulation in neuropsychiatric disorders 

beyond ASD, and their potential role in distinguishing among biological pathways differentially 

affected across conditions. This role for microexons further highlights local splicing regulation as 

a potential mechanism conferring key aspects of disease specificity, extending the larger disease 

signal observed at the isoform-level in co-expression and differential expression analyses. 

A2.11: Discussion 

 

We present a large-scale RNA-Seq analysis of the cerebral cortex across three major 

psychiatric disorders, including extensive analyses of the non-coding and alternatively spliced 

transcriptome, as well as gene- and isoform-level co-expression networks. The scope and 

complexity of these data do not immediately lend themselves to simple mechanistic reduction. 

Nevertheless, at each level of analysis, we present concrete examples that provide proofs-of-

principle and starting points for investigations targeting shared and distinct disease mechanisms 

to connect causal disease drivers with brain-level perturbations.  
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Broadly, we find that isoform-level changes exhibit the largest effect sizes in disease brain, 

are most enriched for genetic risk, and provide the greatest disease specificity when assembled 

into co-expression networks. Remarkably, disturbances in the expression of distinct isoforms of 

more than 50 genes are differentially observed in SCZ and ASD, which in the case of the ASD 

risk gene ANK2, is predicted to affect different cell types in each disorder. Moreover, we observe 

disease-associated changes in the splicing of dozens of RNA-binding proteins and splicing 

factors, most of whose targets and functions are unknown. Similarly, nearly 1000 ncRNAs are 

dysregulated in at least one disorder and most of these ncRNAs show significant CNS 

enrichment, but until now, have limited functional annotation.  

As with any case/control association study, multiple potential factors contribute to gene 

expression changes in post-mortem human brain, many of which may represent reactive 

processes. At each step of analysis, we have attempted to mitigate the contribution of these 

factors through known and hidden covariate correction, assessment of age trajectories, and via 

enrichment for causal genetic variation. Supporting the generalizability of our findings, we find 

highly significant correlations of the log2FC between randomly split halves of the data (Fig A3.3). 

This likely varies by transcript class, and some of the modest correlations are likely due to low 

abundance genes, such as ncRNAs, which we prefer to include, while recognizing the inherent 

tension between expression level and measurement accuracy. We provide access to this 

extensive resource, both in terms of raw and processed data and as browsable network modules 

(Resource.PsychENCODE.org).  

Several broad shared patterns of gene expression dysregulation have been observed in 

post mortem brain in previous studies, most prominently, a gradient of downregulation of neuronal 

and synaptic signaling genes, and upregulation of glial-immune or neuroinflammatory signals. 

Here, we are able to substantially refine these signals, by distinguishing both up and 

downregulated neuron-related processes that are differentially altered across these three 
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disorders. Furthermore, we extend previous work that identified broad neuroinflammatory 

dysregulation in SCZ, ASD, and BD, by identifying specific pathways involving IFN-response, 

NFkB, astrocytes and microglia that manifest distinct temporal patterns across conditions. A 

module enriched for microglial-associated genes, for example, shows a clear distinction between 

disorders, with strong upregulation observed on ASD and significant downregulation in SCZ and 

BD. Overall, these results provide substantially increased specificity to the observations that ASD, 

BD, and SCZ are associated with elevated neuroinflammatory processes (68, 83–85).  

This work highlights isoform-level dysregulation as a critical, and relatively underexplored, 

proximal mechanism linking genetic risk factors with psychiatric disease pathophysiology. In 

contrast to local splicing changes, isoform-level quantifications require imputation from short-read 

RNA-Seq data guided by existing genomic annotations. Consequently, the accuracy of these 

estimates is hindered by incomplete annotations, as well as by limitations of short-read 

sequencing, coverage, and genomic biases like GC content (86, 87). This may be particularly 

problematic in brain where alternative splicing patterns are more distinct than in other organ 

systems (81). We present experimental validations for several specific isoforms, but try to focus 

on the class of dysregulated isoforms, and the modules and biologically processes they represent, 

rather than individual cases which may be more susceptible to bias. Longer read sequencing, 

which provides a more precise means for isoform quantification, will be of great utility as it 

becomes more feasible at scale.  

By integrating transcriptomic data with genetic variation, we identify multiple disease-

associated co-expression modules enriched for causal variation, as well as new mechanisms 

potentially underlying specific disease loci in each of the diseases. In parallel, by performing a 

well-powered brain-relevant TWAS in SCZ, and to a lesser extent in BD and ASD, we are further 

able to elucidate candidate molecular mechanisms through which disease-associated variants 

may act. TWAS prioritizes dozens of new candidate disease genes, including many dysregulated 
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in disease brain. Similar to the eQTLs identified in the companion paper (18), the majority of these 

new loci do not overlap with disease GWAS association signals. Rather, most are outside of the 

LD block and quite distal to the original association signal, highlighting the importance of 

orthogonal functional data types, such as transcriptome or epigenetic data (17, 47, 81, 88, 89), in 

deciphering the underlying mechanisms of disease-associated genetic effects. 

A large proportion of disease-associated co-expression modules are enriched for cell type 

specific markers, as is overall disease DE signal, indicating that transcriptomic alterations in 

disease are likely driven substantially by (even subtle) shifts in cell type proportions, or cell type 

specific pathways, consistent with our previous observations (1) and those in the companion 

PsychENCODE manuscript (18). Functional genomic studies often remove such cell type-specific 

signals, through use of large numbers of expression-derived principle components or surrogate 

variables as covariates, to remove unwanted sources of variation and maximize detection of cis 

eQTLs (44). We retain the cell type-specific signals as much as possible, reasoning that cell type-

related alterations may directly inform the molecular pathology of disease in psychiatric disorders, 

in which there is no known microscopic or macroscopic pathology. This rationale is supported by 

the consistent observation of the dynamic and disease-specific microglial upregulation observed 

in ASD, and the shared astrocyte upregulation in SCZ and ASD. This approach, however, reduces 

the ability to detect genetic enrichment from GWAS, as current methods predominately capture 

cis-acting regulatory effects. The modesty of genetic enrichments among disease-associated 

transcriptomic alterations may also indicate that gene expression changes reflect an indirect 

cascade of molecular events triggered by environmental as well as genetic factors, or that genetic 

factors may act earlier such as during development. 

Finally, these data, while providing a unique, large-scale resource for the field, also 

suggest that profiling additional brains, especially from other implicated brain regions from 

patients will continue to be informative. Similarly, these data suggest that isoform level analyses 
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https://paperpile.com/c/KM4a4R/KWFk+fnsD+lMtz+Ftpp+NFXX
https://paperpile.com/c/KM4a4R/gJII
https://paperpile.com/c/KM4a4R/gJII
https://paperpile.com/c/KM4a4R/gJII
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/QFS0
https://paperpile.com/c/KM4a4R/QFS0
https://paperpile.com/c/KM4a4R/QFS0
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including the identification of isoform-specific PPI and cell type specificity, while posing major 

challenges for high-throughput studies, are likely to add substantial value to understanding brain 

function and neuropsychiatric disorders. Finally, as GWAS studies in ASD and BD increase in 

size and subsequently in power, their continued integration with these transcriptome data will 

likely prove critical in identifying the functional impact of disease-associated genetic variation.  

A2.12: Materials and Methods 

 

Please see the Appendix (section A3.1) for all materials and methods. 

 

A2.14: Bibliography 

 

The bibliography/references for the appendix sections A2 and A3 correspond with the 

bibliography for Chapter 3 (Section 3.4). 
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A3: Supplementary Materials for Chapter 3 and Appendix Section A2 

A3.1: Extended Materials and Methods 

 

Data Generation 

The data generated for this manuscript represent Freeze 1 and 2 of the PsychENCODE 

consortium dataset. Post-mortem human brain samples were collected as part of eight studies, 

detailed below and in Fig A3.1. RNA-Seq and genotype array data was generated by each site 

and then processed together through a unified pipeline by a central data analysis core. For this 

capstone analysis, we restricted analysis to frontal and temporal cortex brain samples from 

postnatal timepoints. We provide a description of each individual study below, derived from the 

PsychENCODE website. All data are available at doi.org/10.7303/syn12080241.  

 

Study 1 - BrainGVEX 

For the BrainGVEX study, RNA-Seq data was generated from 427 post-mortem prefrontal 

cortex samples from subjects with schizophrenia (n=95), bipolar disorder (n=73), and non-

psychiatric controls (n=259). RNA samples were collected from the Stanley Medical Research 

Institute (SMRI) as part of the “Array Collection”, “Consortium Collection”, “New Collection” and 

”Extra Collection”. Array collection and consortium collection samples were from the superior 

frontal gyrus (Brodmann’s area (BA) 9) whereas those from extra and new collections were from 

the mid frontal gyrus (BA46). Another 184 controls were obtained as fresh-frozen brain tissue 

from the Banner Sun Health Research Institute (BSHRI). All BSHRI samples were from the frontal 

cortex. RNA was extracted from BSHRI samples by first homogenizing 20-50 mg of tissue in 

QIAzol (Qiagen) using the Lysin Matrix D and FastPrep-24 system (MPBiomedicals). Total RNA 

were then isolated using the miRNeasy Kit (Qiagen) according to manufacturer’s instructions. 

RNA integrity was assessed with Agilent Technologies RNA 600 nano kit. Samples with RNA 

https://doi.org/10.7303/syn12080241
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Integrity Number (RIN) lower than 5.5 were excluded from the study. RNA sequencing libraries 

were prepared using TruSeq Stranded Total RNA sample prep kit with RiboZero Gold HMR 

(Illumina). Libraries were multiplexed (3 per lane) for paired-end 100 bp sequencing on Illumina 

HiSeq2000 with read depth >70 million reads on average. Genotyping was performed using two 

different platforms. 144 samples (SMRI Consortium and Array Collections) were genotyped using 

the Affymetrix GeneChip Mapping 5.0K Array. Genotypes were called with the BRLMM-p 

algorithm (Affymetrix) on all arrays simultaneously (100). The remaining samples (SMRI New and 

Extra Collection, and BSHRI samples) were genotyped on the Human PsychChip platform, which 

is a custom version of the Illumina Infinium CoreExome-24 v1.1 BeadChip (#WG-331-1111). 

However, PsychChip data were not yet available for this study.  

 

Study 2 - BrainSpan 

For the BrainSpan study, RNA-Seq data was generated from 606 brain samples from 41 

unique individuals. RNA was extracted using RNeasy Plus Mini Kit (Qiagen) for mRNA. Either 

approximately 30 mg of pulverized tissue (12 PCW – 40 Y specimens) or entire amount of 

dissected brain piece (8 – 9 PCW, smaller than 30 mg) was processed. Tissue was pulverized 

with liquid nitrogen in a chilled mortar and pestle and transferred to a chilled safe-lock 

microcentrifuge tube (Eppendorf). Per tissue mass, equal mass of chilled stainless steel beads 

(Next Advance, cat# SSB14B) along with two volumes of lysis buffer were added. Tissue was 

homogenized for 1 min in Bullet Blender (Next Advance # SSB14B) at speed 6 and incubated at 

37°C for 5 min. Lysis buffer up to 0.6 ml was again added, tissue homogenized for 1 min and 

incubated at 37°C for 1 min. Extraction was further carried out according to manufacturer’s 

protocol. Genomic DNA was removed by a proprietary column provided in RNeasy Plus Mini Kit 

(Qiagen) or by DNase treatment using TURBO DNA-free Kit (Ambion/ Life technologies). 

260:A280 ratio and RNA Integrity Number (RIN) were determined for each sample with NanoDrop 

https://paperpile.com/c/KM4a4R/DUyh
https://paperpile.com/c/KM4a4R/DUyh
https://paperpile.com/c/KM4a4R/DUyh
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(Thermo Fisher Scientific) and Agilent 2100 Bioanalyzer system, respectively. The mRNA-

sequencing (mRNA-Seq) sample preparation Kit (Illumina) was used to prepare cDNA libraries 

per manufacturer instructions with some modifications. Briefly, polyA RNA was purified from 1 to 

5 µg of total RNA using Oligo (dT) beads. Quaint-IT RiboGreen RNA Assay Kit (Invitrogen) was 

used to quantitate purified mRNA with the NanoDrop 3300. Following mRNA quantitation, 2.5 µl 

spike-in master mixes, containing five different types of RNA molecules at varying amounts (2.5 

× 10-7 to 2.5 × 10-14 mol), were added per 100 ng of mRNA. Spike-in RNAs were synthesized 

by the External RNA Control Consortium (ERCC) by in vitro transcription of de novo DNA 

sequences or DNA derived from B. subtilis or the deep-sea vent microbe M. jannaschii and were 

a generous gift of Dr. Mark Salit at The National Institute of Standards and Technology (NIST). 

Each sample was tagged by adding two spike-in RNAs unique to the region from which the sample 

was taken. Further, three common spike-in RNAs with gradient concentrations were added to 

each sample, to enable the assessment of sequencing quality. Spike-in sequences are available 

at http://archive.gersteinlab.org/proj/brainseq/spike_in/spike_in.fa. The mixture of mRNA and 

spike-in RNAs was subjected to fragmentation, reverse transcription, end repair, 3’ end 

adenylation, and adapter ligation to generate libraries of short cDNA molecules, followed by PCR 

amplification. The PCR enriched product was assessed for its size distribution and concentration 

using Bioanalyzer DNA 1000 Kit. Genotype data were not used in this study.  

 

Study 3 - CommonMind 

Full details of the CommonMind study have been published (2), although the data here 

were processed separately according to the uniform RNA-Seq pipeline described below. Samples 

were acquired through brain banks at three institutions:The Mount Sinai NIH Brain Bank and 

Tissue Repository, University of Pennsylvania Brain Bank of Psychiatric illnesses and Alzheimer’s 

Disease Core Center, and the University of Pittsburgh NIH NeuroBioBank Brain and Tissue 

https://paperpile.com/c/KM4a4R/kbUP
https://paperpile.com/c/KM4a4R/kbUP
https://paperpile.com/c/KM4a4R/kbUP
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Repository. Details about brain banks, inclusion/exclusion criteria, and sample collection and 

processing have been previously described 

(https://www.synapse.org/#!Synapse:syn2759792/wiki/71104). RNA-Seq data from 613 total 

human post-mortem dorsolateral prefrontal cortex (DLPFC) brain samples were obtained from 

603 subjects with schizophrenia (n=263), bipolar disorder (n=47), affective disorder (8), and 

neurotypical controls (n=285), where 10 neurotypical controls were sequenced as technical 

replicates. Subjects with affective disorder were not used in this study. Total RNA was extracted 

from 50 mg of homogenized dorsolateral prefrontal cortex tissue using RNeasy kit. Samples with 

RIN < 5.5 (n=51) were excluded. The remaining samples had a mean RIN of 7.7. RNA-Seq library 

preparation was performed using ribosomal RNA depletion, with the RiboZero Magnetic Gold Kit. 

Samples were barcoded, multiplexed (n=10/lane), and sequenced across two lanes as 100 bp 

paired end sequencing  on the Illumina HiSeq 2500 with an average of 85 million reads. Data are 

provided for those samples that passed all of the following QC filters: samples were required to 

have had a minimum of 50 million total reads and less than 5% rRNA alignment. For genotyping, 

DNA was isolated from approximately 10 mg dry homogenized tissue coming from the same 

dissected samples as the RNA isolation using the Qiagen DNeasy Blood and Tissue Kit according 

to manufacturer’s protocol. Genotyping was performed using the Illumina Infinium 

HumanOmniExpressExome platform (Catalog #: WG-351-2301). All data were checked for 

discordance between nominal and genetically-inferred sex using Plink software to calculate the 

mean homozygosity rate across X-chromosome markers and to evaluate the presence or 

absence of Y-chromosome markers. In addition, pairwise comparison of samples across all 

genotypes was done to identify potentially duplicate samples (genotypes > 99% concordant) or 

related individuals using Plink. 

 

 

https://www.synapse.org/#!Synapse:syn2759792/wiki/71104
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Study 4 - Yale-ASD 

For the Yale-ASD study, RNA-Seq data was generated from 45 brain samples from 37 

unique individuals, including 9 with ASD and 28 controls. Total RNA was extracted using mirVana 

kit (Ambion) with some modifications to the manufacturer’s protocol. Approximately 60 mg of 

tissue was pulverized with liquid nitrogen in a pre-chilled mortar and pestle and transferred to a 

chilled safe-lock microcentrifuge tube (Eppendorf). Per tissue mass, equal mass of chilled 

stainless steel beads (Next Advance, catalog # SSB14B) along with one volume of lysis/binding 

buffer were added. Tissue was homogenized for 1 min in Bullet Blender (Next Advance) and 

incubated at 37°C for 1 min. Another nine volumes of the lysis/binding buffer were added, 

homogenized for 1 min, and incubated at 37°C for 2 min. One-tenth volume of miRNA 

Homogenate Additive was added and extraction was carried out according to the manufacturer’s 

protocol. RNA was treated with DNase using TURBO DNA-free Kit (Ambion/ Life Technologies) 

and RNA integrity was measured using Agilent 2200 TapeStation System. Barcoded libraries for 

RNA-Seq were prepared with 5 ng of RNA using TruSeq Stranded Total RNA with Ribo-Zero Gold 

kit (Illumina) per manufacturer’s protocol. Paired-end sequencing (100bp x 2) was performed on 

HiSeq 2000 sequencers (Illumina) at Yale Center for Genome Analysis. Genotype data was not 

yet available as part of Freeze 1 or 2 of the PsychENCODE dataset.  

 

Study 5 - UCLA-ASD 

For the UCLA-ASD study, RNA-Seq data was generated from 253 brain samples from 97 

unique individuals,  across prefrontal cortex (BA9/46), temporal cortex (BA41/42/22), and 

cerebellum. Full details of the UCLA-ASD study have been published (19). Brain samples were 

obtained from the Harvard Brain Bank as part of the Autism Tissue Project (ATP). Frozen brain 

regions were dissected on dry ice in a dehydrated dissection chamber to reduce degradation 

effects from sample thawing or humidity. Approximately 50-100 mg of tissue across the cortical 

https://paperpile.com/c/KM4a4R/20aw
https://paperpile.com/c/KM4a4R/20aw
https://paperpile.com/c/KM4a4R/20aw
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region of interest was isolated from each sample using the miRNeasy kit with no modifications 

(Qiagen). For each RNA sample, RNA quality was quantified using the RNA Integrity Number 

(RIN) on an Agilent Bioanalyzer. Strand-specific, rRNA-depleted RNA-Seq libraries were 

prepared using TruSeq Stranded Total RNA sample prep kit with RiboZero Gold (Illumina) kits. 

Libraries were randomly pooled to multiplex 24 samples per lane using Illumina TruSeq barcodes. 

Each lane was sequenced five times on an Illumina HiSeq 2500 instrument using high output 

mode with standard chemistry and protocols for 50 bp paired-end reads to achieve a target depth 

of 70 million reads.  Genotyping data was generated at the UCLA Neurogenomics Core (UNGC) 

on the Illumina Omni 2.5 8v1 platform (Human Exome). Illumina Genome Studio files were 

clustered using Illumina’s standard HapMap cluster file. SNP genotypes were exported from the 

Illumina GenomeStudio Software as forward strand in PLINK format. SNP marker names were 

updated with a conversion file from Illumina which converts local marker name to rsID (plink --

update-map --update-name). All quality filtering was performed using PLINK v1.07. SNPs missing 

more than 99.99% data were excluded (--geno 0.9999). Individuals missing > 5% data, SNPs 

missing > 5% data, and SNPs with HW p<0.0000001 were also excluded. The order of filtering 

was performed according to PLINK default procedures (plink --mind 0.05 --geno 0.05 --hwe 

0.0000001).  

 

Study 6 - CMC_HBCC 

Brain specimens for the CMC_HBCC study were  obtained from the the NIMH Human 

Brain Collection Core (HBCC; https://www.nimh.nih.gov/labs-at-nimh/research-areas/research-

support-services/hbcc/human-brain-collection-core-hbcc.shtml) under protocols approved by the 

CNS IRB (NCT00001260), with the permission of the next-of-kin through the Offices of the Chief 

Medical Examiners in the District of Columbia, Northern Virginia, and Central Virginia. All 

specimens were characterized neuropathologically, clinically and toxicologically. A clinical 

https://www.nimh.nih.gov/labs-at-nimh/research-areas/research-support-services/hbcc/human-brain-collection-core-hbcc.shtml
https://www.nimh.nih.gov/labs-at-nimh/research-areas/research-support-services/hbcc/human-brain-collection-core-hbcc.shtml


209 
 

diagnosis was obtained through family interviews and review of medical records by two 

psychiatrists based on DSM-IV criteria. Non-psychiatric controls were defined as having no history 

of a psychiatric condition or substance use disorder. Brain samples were dissected at the NIMH 

Human Brain Collection Core and shipped to Icahn School of Medicine at Mount Sinai (ISMMS) 

for sample preparation and RNA-sequencing. Samples for the study were dissected from either 

the left or right hemisphere of fresh frozen coronal slabs cut at autopsy from the dorsolateral 

prefrontal cortex. Total RNA from 468 HBCC samples was isolated from approximately 100 mg 

homogenized tissue from each sample by TRIzol/chloroform extraction and purification with the 

Qiagen RNeasy kit (Cat#74106) according to manufacturer’s protocol. Samples were processed 

in randomized batches of 12. The order of extraction was assigned randomly with respect to 

diagnosis and all other sample characteristics. The mean total RNA yield was 24.2 ug. The RNA 

Integrity Number (RIN) was determined by fractionating RNA samples on the 4200 Agilent 

TapeStation System. Sixty nine samples with RIN <5.5 were excluded from the study. An 

additional 12 samples were removed post sequencing due to evidence of sample swap or 

contamination, resulting in a final dataset of 387 samples (70 BD, 97 SCZ, 220 neurotypical 

controls) with a mean RIN of 7.5 and a mean ratio of 260/280 of 2.0.  RNA sequencing raw and 

quantified expression data is provided for these 387 samples from 387 unique individuals. Data 

was generated, QCed, processed and quantified as follows:  All samples submitted to the New 

York Genome Center for RNA-Seq were prepared for sequencing in randomized batches of 94. 

The sequencing libraries were prepared using the KAPA Stranded RNA-Seq Kit with RiboErase 

(KAPA Biosystems). rRNA was depleted from 1ug of RNA using the KAPA RiboErase protocol 

that is integrated into the KAPA Stranded RNA-Seq Kit. The insert size and DNA concentration 

of the sequencing library was determined on Fragment Analyzer Automated CE System 

(Advanced Analytical) and Quant-iT PicoGreen (Thermo Fisher Scientific) respectively. A pool of 

10 barcoded libraries were layered on a random selection of two of the eight lanes of the Illumina 
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flow cell at appropriate concentration and bridge amplified to ~ 250 million raw clusters. One-

hundred base pair paired end reads were obtained on a HiSeq 2500. Genotyping was performed 

using Illumina_1M, Illumina_h650, and Illumina_Omni5 platforms.  

 

Studies 7+8 - BipSeq & LIBD_szControl 

Post-mortem tissue homogenates of dorsolateral prefrontal cortex (DLPFC) 

approximating BA46/9 in postnatal samples and the corresponding region of PFC in fetal samples 

were obtained from all subjects. Total RNA was extracted from ~100 mg of tissue using the 

RNeasy kit (Qiagen) according to the manufacturer’s protocol. The poly-A containing RNA 

molecules were purified from 1 µg DNAse treated total RNA and sequencing libraries were 

constructed using the Illumina TruSeq© RNA Sample Preparation v2 kit. Sequencing 

indices/barcodes were inserted into Illumina adapters allowing samples to be multiplexed across 

lanes in each flow cell. These products were then purified and enriched with PCR to create the 

final cDNA library for high throughput sequencing using an Illumina HiSeq 2000 with paired end 

2x100bp reads. Further details are available in (101). SNP genotyping with HumanHap650Y_V3, 

Human 1M-Duo_V3, and Omni5 BeadChips (Illumina, San Diego, CA) was carried out according 

to the manufacturer’s instructions with DNA extracted from cerebellar tissue. Genotype data were 

processed and normalized with the crlmm R/Bioconductor package separately by platform.  

 

RNA-sequencing Data Processing Pipeline 

All sample FASTQ files were run through a unified RNA-Seq processing pipeline (Fig 

A2.1) run at the University of Chicago on an OpenStack cloud system and modeled after the long-

rna-seq-pipeline used by the ENCODE Consortium. Fastqs were trimmed for adapter sequence 

and low base call quality (Phred score < 30 at ends) using cutadapt (v1.12). Trimmed reads were 

then aligned to the GRCH37.p13 (hg19) reference genome via STAR (2.4.2a) using 

https://paperpile.com/c/KM4a4R/pzXl
https://paperpile.com/c/KM4a4R/pzXl
https://paperpile.com/c/KM4a4R/pzXl
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comprehensive gene annotations from Gencode (v19). BAM files were produced in both genomic 

and transcriptome coordinates and sorted using samtools (v1.3). Gene and isoform-level 

quantifications were calculated using RSEM (v1.2.29). Quality control metrics were calculated 

using RNA-SeQC (v1.1.8), featureCounts (v1.5.1), PicardTools (v1.128), and Samtools (v1.3.1). 

Pipeline source code can be found on Synapse at doi:10.7303/syn12026837. RNA-Seq data was 

processed in two batches: Freeze 1 consisted of re-processed RNA-Seq data from the following 

studies: BrainGVEX, BrainSpan, CMC, UCLA-ASD, Yale-ASD, iPSC; Freeze 2 consisted of 

BipSeq, LIBD_szControl, CMC_HBCC, EpiGABA. Data from EpiGABA and iPSC studies was not 

used in this Capstone project.  

 

Genotyping and QTL Pipeline 

Genotype calls were generated at each data production site separately, as described 

above, and centralized for imputation. Genotype imputation and QTL analyses were performed 

as described in our companion manuscript (18) and on the PsychENCODE website using a 

uniform genotype QC and imputation pipeline for all studies. To generate high-quality observed 

genotypes (removing low quality and rare variants), initial QC was performed using Plink to 

remove SNPs with zero alternate alleles, MAF <1%, genotyping call rate < 0.95, Hardy-Weinberg 

p-value < 1x10-6, individuals with genotyping call rate < 0.95, and to correct strand flips. Parallel 

haplotype pre-phasing and imputation were done using Beagle2, Minimac3 with the HRC 

reference panel for imputation. Calculation of gene-level expression QTLs (eQTL) and isoform-

level expression QTLs (isoQTL) was done using QTLtools, as described in our companion 

manuscript (18). Imputation of C4A structural variation for each genotyped sample of European 

ancestry was performed using Beagle5 with a custom HapMap3 CEU reference panel as 

described (5). Inferred copy number of C4 structural elements (C4A, C4B, C4L, and C4S) based 

https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
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on the imputed C4 alleles was then associated with normalized C4A expression using a linear 

model. 

 

RNA-Seq Quality Control and Normalization 

Expected counts were compiled from gene and isoform-level RSEM quantifications and 

imported into R for downstream analyses. Genes were filtered to include those with TPM > 0.1 in 

at least 25% of samples. We removed all transcripts derived from mitochondrial DNA and Y-

chromosome pseudoautosomal regions (“ENSR”) as well as transcripts with immunoglobulin (IG 

or TR) biotypes or those shorter than 250 bp. Downstream analyses were performed on the 

resulting 25,774 transcribed genes based on GENCODE V19 annotations. We restricted our 

analysis to frontal and temporal cortex brain samples obtained from subjects at postnatal time 

points (Fig A3.2). We removed samples with an ambiguous diagnosis or a diagnostic label other 

than ASD, SCZ, BD, or CTL (n=11). We removed samples with unspecified or ambiguous age 

(n=2), or sex (n=2) as well as samples with less than 10 million total reads. Each individual study 

was then assessed for outlier samples (Fig A3.2C), defined as those with standardized sample 

network connectivity Z scores < -2, as published, which were removed (102). We further removed 

8 samples whose documented sex was discordant from that predicted by gene expression, based 

on hierarchical clustering of samples using expression of XIST and the first principal component 

of genes on the Y chromosome. 

 

Covariate Selection 

We compiled a set of 187 RNA-Seq quality control metrics as the aggregate sample-level 

outputs from RNA-SeQC, cutadapt, featureCounts, PicardTools 

(CollectAlignmentSummaryMetrics, CollectInsertSizeMetrics, CollectRnaSeqMetrics, 

MarkDuplicates), and STAR (Fig A3.2). As many of these metrics were highly overlapping, we 

https://paperpile.com/c/KM4a4R/a7en
https://paperpile.com/c/KM4a4R/a7en
https://paperpile.com/c/KM4a4R/a7en
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summarized these measures by the top 29 principal components which collectively explained 

99% of the total variance. To determine which covariates to include in the final differential 

expression model, we performed multivariate adaptive regression as implemented in the earth 

package in R. This builds a model in two phases using a forward pass to capture maximal amount 

of variance explained by an underlying set of covariates, followed by a backward (pruning) pass 

to remove potential redundant terms.  The superset of potential covariates available for all 

samples included: diagnosis, age, study/batch, sex, PMI, RIN, libraryPrep, sequencing platform, 

strand specificity, brain bank, brain region, ethnicity, along with all 29 seqPCs. For continuous 

variables, we also included squared terms. These covariates with input into the earth model along 

with gene expression data (limma voom normalized, centered, and scaled). The model was run 

using linear predictors and otherwise default parameters. As the model fits a maximum of 1000 

features (genes) simultaneously, we performed 1000 permutations randomly subsetting 1000 

genes at a time. From this, we chose as a set of known covariates those present in at least half 

of the resulting pruned models, which consisted of:  diagnosis, age, age2, study/batch, sex, PMI, 

RIN, RIN2, brain bank, brain region, seqPCs (1-3, 5-8, 10-14, 16, 18-25, 27-29) and seqPC32.   

The above set contained known covariates (or those derived from known sequencing 

quality metrics) that contributed uniquely to variance in gene expression. However, these do not 

capture potential underlying hidden factors or confounders that may also influence gene 

expression. To ensure that DGE signal is not being driven by such hidden confounding factors, 

we performed surrogate variable analysis (SVA) on gene expression measurements (43). To 

determine the optimal number of SVs to include in our final model, we randomly split our dataset 

into equal halves and calculated differential expression for each gene and disorder using a fixed 

number of SVs (Fig A3.3A). We then compared the replicability of differential expression (log2FC) 

effect sizes between the two split halves of the dataset, quantified using spearman’s correlation. 

This analysis was repeated 1000 times each for a fixed number of SVs increasing from 0 to 25. 

https://paperpile.com/c/KM4a4R/CKGz
https://paperpile.com/c/KM4a4R/CKGz
https://paperpile.com/c/KM4a4R/CKGz
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We found that including 4 SVs in addition to the final set of known covariates above maximized 

this split-dataset replicability (Fig A3.3). As such, our final model used for all differential gene 

expression, isoform expression, and splicing analyses consisted of: diagnosis, age, age2, 

study/batch, sex, PMI, RIN, RIN2, brain bank, brain region, seqPCs (1-3, 5-8, 10-14, 16, 18-25, 

27-29), seqPC32, and SVs (1-4).  

 

Differential Gene and Transcript Expression/Usage 

Count level quantifications were corrected for library size using TMM normalization in 

edgeR and were transformed as log2(CPM+0.5). DGE was then calculated using a linear mixed-

effects model using the nlme package in R. The covariates specified in the previous section were 

included as fixed effects in the model. In addition, we included a random effect term for each 

unique subject to account for subject overlap across sequencing studies. Resulting P-values were 

FDR-corrected using the Benjamini-Hochberg method, to control for multiple comparisons. 

Differential transcript expression (DTE) was calculated similarly as for DGE except that the 

transcript-level quantifications from RSEM were used as inputs for the linear mixed-effects model. 

Finally, differential transcript usage (DTU) was calculated similarly as for DGE except that isoform 

percentage data reported by RSEM was used as inputs for the linear mixed-effects model.  

To ensure the robustness of DGE results, we compared log2FC effect size measurements 

for genes identified as significantly differentially expressed in several previous studies profiling 

gene expression using cortical brain samples from ASD, SCZ, and BD (Fig A3.4A-D). Finally, to 

ensure that differential gene expression in disease was not being driven by subtle differences in 

RNA quality or degradation, we compared differential expression T-statistics with those 

experimentally derived from brain tissue samples allowed to degrade for fixed intervals of time 

(Fig A3.4E) (22). We did not observe substantial concordance between these RNA degradation 

metrics and psychiatric disease DGE summary statistics.  

https://paperpile.com/c/KM4a4R/tKLC
https://paperpile.com/c/KM4a4R/tKLC
https://paperpile.com/c/KM4a4R/tKLC
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Enrichment Analysis of Gene Sets 

Enrichment for Gene Ontology (GO; biological process, molecular function and cellular 

component) and KEGG pathways was performed using the gProfileR R v0.6.4 package (103). 

Only pathways containing less than 1000 genes were assessed. Background was restricted to 

brain expressed genes. An ordered query was used, ranking genes by log2FC for DE analyses or 

by kME for coexpression module enrichment analyses. P-values were FDR corrected to account 

for multiple comparisons.  

Enrichment analyses were also performed using several established, hypothesis-driven 

gene sets including: high confidence ASD risk loci (80); CHD8 targets (96); FMRP targets (33); 

mutationally constrained genes (97); syndromic and highly ranked (1 and 2) genes from the 

SFARI GENE database; ‘vulnerable’ ASD genes (98); genes with probability of loss-of-function 

intolerance (pLI) > 0.99 as reported by the Exome Aggregation Consortium (104). Statistical 

enrichment analyses were performed using logistic regression, correcting for both gene length 

and GC content. All results were FDR-corrected for multiple comparisons. 

 

Cell Type Enrichment Analyses 

Cell type enrichment analyses were performed using uniformly processed human brain 

single-cell RNA-Seq datasets, compiled by the companion manuscript (18) which combined 

multiple published datasets (91, 105, 106) with newly generated data from PsychENCODE. 

Clustering was performed separately for single-cell datasets using TPM and UMI quantifications. 

See (18) for further details. Enrichment was performed for cell type specific marker genes using 

Fisher’s exact test, followed by FDR-correction for multiple testing.  

For neural-immune modules (Fig A2.6), we additionally assessed several mouse 

experimentally derived cell type specific expression datasets. These included: a translating 

https://paperpile.com/c/KM4a4R/PzIP
https://paperpile.com/c/KM4a4R/PzIP
https://paperpile.com/c/KM4a4R/PzIP
https://paperpile.com/c/KM4a4R/mrMI
https://paperpile.com/c/KM4a4R/mrMI
https://paperpile.com/c/KM4a4R/mrMI
https://paperpile.com/c/KM4a4R/pczD
https://paperpile.com/c/KM4a4R/pczD
https://paperpile.com/c/KM4a4R/pczD
https://paperpile.com/c/KM4a4R/i3qy
https://paperpile.com/c/KM4a4R/i3qy
https://paperpile.com/c/KM4a4R/i3qy
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ribosome affinity purification (TRAP) dataset profiling 24 genetically identified populations of CNS 

cell types in mouse using microarray (107); a large-scale single-cell RNA-Seq dataset of mouse 

somatosensory cortex and hippocampus (94); a MARS-seq dataset of FACS-sorted CD45+ cells 

from mouse brain tissue, representing the major CNS immune cell populations (93); and a single 

cell RNA-Seq dataset of cells derived from meninges and choroid plexus in mouse (92). 

 

Differential Local Splicing (DS) analysis 

Local splicing analysis used LeafCutter (29), which detects splicing variation using the 

sequencing reads that span an intron (or spliced reads) to quantify intron usage across samples, 

without relying on existing reference annotations and without estimation of isoform abundance or 

exon inclusion levels. The same BAM alignment files to the hg19 genome assembly produced by 

STAR (version 2.4.2a) (108) for the DGE/DTE analyses were used as input for leafcutter intron 

clustering. The BAM files included the XS strand tags to all canonically spliced alignments based 

on their intron motifs (parameters: alignSJoverhangMin =8, outSAMstrandField =intronMotif). We 

used LeafCutter to first call clusters of variable spliced introns across all our samples and then to 

identify differential splicing between each disorder (ASD, SCZ, and BD) and the control (CTL) 

group by jointly modeling intron clusters using the Dirichlet-Multinomial generalized linear model 

(GLM) (29). We controlled for the same technical, biological covariates and hidden confounds as 

described above in the DGE/ DTE analyses, except that we did not incorporate a random term 

for individuals (random effects are not supported by the Dirichlet-Multinomial GLM). Accordingly, 

we also removed tissue sample replicates that were sequenced in more than one study, randomly 

retaining only one sample in our analysis. The dataset for LeafCutter analysis numbered 944 

controls, 79 ASD, 531 SCZ and 217 BD samples (1,771 total). 

We used LeafCutter to call intron clusters as follows: overlapping introns, defined as 

spliced reads, were clustered and filtered to keep intron clusters supported by at least 50 split 
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reads across all 1,771 samples, retaining introns of up to 100 kb and accounting for at least 1% 

of the total number of reads in the entire cluster. This yielded 37,215 clusters encompassing 

120,921 introns in 17,342 genes that were used for further analysis. This intron count file was 

then used in the differential splicing (DS) analysis. 

DS intron clusters were identified in pairwise analyses comparing each psychiatric disorder (ASD, 

BD, SCZ) to the common set of 944 control samples. After discarding introns that were not 

supported by at least one read in 5 or more samples, clusters were analyzed for DS if at least 3 

samples in each comparison group (i.e. cases or controls) had an overall coverage of 20 or more 

reads. P-values were corrected for multiple testing using the Benjamini-Hochberg (BH) method 

and used to select clusters with significant splicing differences (FDR q< 0.1). 

Percent-spliced-in (PSI) values were corrected for covariates using the quantify_PSI 

function provided in the LeafCutter psi branch (https://github.com/davidaknowles/ 

leafcutter/tree/psi). Violin plots of intron PSI values were prepared using ggplot2. Principal 

component analysis (PCA) plots were evaluated before and after covariate-correction (Fig A3.6). 

Schematic visualization of significant intron clusters was done using the leafviz R shiny package 

[https://davidaknowles.github.io/leafcutter/articles/Visualization.html]. All DS events were further 

annotated using leafviz and custom R code, manually inspected, and classified into single- or 

multi-exon skipping events (changes in cassette splicing), alternative 5’ and 3’ exon usage, and 

alternative 5’ (donor) or 3’ (acceptor) splice site usage. Intron clusters that did not match any of 

these categories were classified as complex events involving multiple changes. DS intron clusters 

were mapped onto transcripts using gViz (v3.7) (109) and ensembldb (v3.7) 

(https://github.com/jotsetung/ensembldb) bioconductor R packages. SMART (110) and PFAM 

(111) protein domains were mapped onto transcript structures using the proteinToGenome 

function of ensembldb. 
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DeltaPSI (∆PSI) Correlation Across Disorders 

To determine significance for the correlation of ∆PSI across disorders for significant intron 

clusters identified by LeafCutter, we permuted the case/control status within each disorder 3,000 

times and repeated the LeafCutter analysis with the same GLM described above. In each 

permutation we assessed the ∆PSI correlation between disorders using Spearman’s correlation 

(ρ) to yield a null distribution of ρ values that was used to assess the significance of the observed 

correlations. 

 

Cross-disorder DS Overlaps 

For cross-disorder DS overlaps we selected all genes associated with significant intron 

clusters identified by LeafCutter at FDR <10%. Venn diagrams area-proportional to the number 

of genes with significant DS clusters in each disorder were then created using the eulerr R 

package. Hypergeometric p-values for pairwise overlaps between disorders were calculated 

using the phyper function in R and setting the size of the ‘universe’ to all genes with intron clusters 

meeting the LeafCutter clustering criteria. 

 

Functional Enrichment of DS Genes 

Gene set enrichment for Gene Ontology (GO) biological process, molecular function and 

cellular component aspects was performed using the gProfileR v0.6.4 package in R (103) with 

moderate hierarchical filtering and using an ordered query, after ranking genes in increasing order 

of the LeafCutter p-value (i.e. most significant at the top). In case a gene had multiple significant 

intron clusters, the most significant cluster was used for the ranking. The custom background set 

for each disorder consisted of all 10,677 genes with intron clusters that were evaluated in pairwise 

LeafCutter analyses between each disorder and control groups, as described above. Visualization 

of enriched GO terms used custom ggplot2 functions. 
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Gene-set enrichment for RBFOX1 targets (32), FMRP targets (33), and a curated list of 

genes coding for RNA binding proteins (RBPs) (34), used the same custom background of genes 

with LeafCutter intron clusters as in the GO enrichment analysis, and was assessed using Fisher’s 

exact test and correcting for multiple testing by FDR. The curated list of RBP genes included 

those with high confidence for RNA binding (112–114) and those annotated as RNA-binding in 

Ensembl including known and potentially auxiliary splice factors (34). 

The comparison of LeafCutter DS events with Parishak et al. 2016 (19) MATS events was 

based on genomic coordinates overlap using BEDtools, irrespective of the event type assigned 

by each algorithm. 

 

Microexon Enrichment 

Transcripts that carry at least one exon of 3-27 nucleotides in length (i.e. microexon) (30) 

were extracted from the Gencode V19 database. Statistical enrichment analyses were performed 

using logistic regression, correcting for both gene and transcript length on linear and log10 scales. 

As an additional control, transcripts that carry exon(s) of average length (143±5% nucleotides) 

were also extracted and their overlap with switch transcripts was also tested with logistic 

regression. All results were FDR-corrected for multiple comparisons by the Benjamini-Hochberg 

method. 

 

Construction of Disease-specific Isoform-level Co-expressed PPI Networks 

Pairwise spearman correlation coefficients (SCC) between transcript of interest and all 

other transcripts were calculated using either ASD samples or SCZ samples. To obtain age-

balanced datasets, only samples from donors of age 17-67 years old were used.  A cutoff of SCC 

> 0.5 was used to filter for the co-expressed partners of the transcript of interest in either ASD 

samples or SCZ samples. PPI data was compiled from well-characterized PPI databases, 

https://paperpile.com/c/KM4a4R/ZEo4
https://paperpile.com/c/KM4a4R/ZEo4
https://paperpile.com/c/KM4a4R/ZEo4
https://paperpile.com/c/KM4a4R/i3qy
https://paperpile.com/c/KM4a4R/i3qy
https://paperpile.com/c/KM4a4R/i3qy
https://paperpile.com/c/KM4a4R/8hdT
https://paperpile.com/c/KM4a4R/8hdT
https://paperpile.com/c/KM4a4R/8hdT
https://paperpile.com/c/KM4a4R/4Wsc+dTPn+PmbW
https://paperpile.com/c/KM4a4R/4Wsc+dTPn+PmbW
https://paperpile.com/c/KM4a4R/4Wsc+dTPn+PmbW
https://paperpile.com/c/KM4a4R/4Wsc+dTPn+PmbW
https://paperpile.com/c/KM4a4R/4Wsc+dTPn+PmbW
https://paperpile.com/c/KM4a4R/8hdT
https://paperpile.com/c/KM4a4R/8hdT
https://paperpile.com/c/KM4a4R/8hdT
https://paperpile.com/c/KM4a4R/20aw
https://paperpile.com/c/KM4a4R/20aw
https://paperpile.com/c/KM4a4R/20aw
https://paperpile.com/c/KM4a4R/4Lmc
https://paperpile.com/c/KM4a4R/4Lmc
https://paperpile.com/c/KM4a4R/4Lmc


220 
 

including Bioplex (115), HPRD (116), Inweb (117), HINT (118), Biogrid (119), GeneMANIA (120), 

STRING (121) and CORUM (122). Only physical interactions and co-complex associations were 

kept. Co-expressed partners which are also supported by PPI were used to construct the co-

expressed PPI network. 

 

ncRNA Annotation 

To identify ncRNAs that may be relevant to neuropsychiatric disorders, we compiled a list 

of non-protein-coding genes exhibiting differential gene (DGE) or transcript expression (DTE) at 

FDR < 0.05 in at least one disorder (Table A3.2). As ncRNA designation can change based on 

genomic annotation, we filtered out genes that were designated as protein coding in the most 

recent version of Gencode v27, yielding a total of 944 unique ncRNAs, many of which were 

differentially expressed across more than one disorder or at both gene and transcript-level 

features.  Differentially expressed ncRNAs were annotated according to sequence and 

expression characteristics. Human tissue-specific expression was assessed using data from 

GTEX v6. Median RPKM values per tissue were obtained and averaged into broad categories 

(Fig A2.1F). To identify ncRNAs broadly expressed across human tissues, we ran an ANOVA on 

log2(RPKM +1) values across tissues, and selected those with uncorrected P > 0.05. Brain-

specific expression was defined as RPKMbrain / sum(RPKMall tisues) > 0.8.  CNS cell type specificity 

was assessed in a similar fashion using single-nucleus RNA-Seq from the Lake dataset (91). 

Expression counts were CPM normalized and then averaged together across defined cell 

clusters. We ran an ANOVA on log2(CPM + 1) values across cell clusters, and report those 

ncRNAs with P>0.05 as “broadly expressed” with regard to cell type. Cell type specificity was 

quantified by CPMmax cluster / sum(CPMall cell clusters) > 0.8.  

Evolutionary conservation was assessed using phastCons and phyloP scores (123, 124). Both 

methods assign a score to each base in the human genome, quantifying its degree of 

https://paperpile.com/c/KM4a4R/d0Oy
https://paperpile.com/c/KM4a4R/d0Oy
https://paperpile.com/c/KM4a4R/d0Oy
https://paperpile.com/c/KM4a4R/dTdj
https://paperpile.com/c/KM4a4R/dTdj
https://paperpile.com/c/KM4a4R/dTdj
https://paperpile.com/c/KM4a4R/HOnX
https://paperpile.com/c/KM4a4R/HOnX
https://paperpile.com/c/KM4a4R/HOnX
https://paperpile.com/c/KM4a4R/00Dk
https://paperpile.com/c/KM4a4R/00Dk
https://paperpile.com/c/KM4a4R/00Dk
https://paperpile.com/c/KM4a4R/CUEC
https://paperpile.com/c/KM4a4R/CUEC
https://paperpile.com/c/KM4a4R/CUEC
https://paperpile.com/c/KM4a4R/ap2A
https://paperpile.com/c/KM4a4R/ap2A
https://paperpile.com/c/KM4a4R/ap2A
https://paperpile.com/c/KM4a4R/I5tG
https://paperpile.com/c/KM4a4R/I5tG
https://paperpile.com/c/KM4a4R/I5tG
https://paperpile.com/c/KM4a4R/bqlA
https://paperpile.com/c/KM4a4R/bqlA
https://paperpile.com/c/KM4a4R/bqlA
https://paperpile.com/c/KM4a4R/8nUF
https://paperpile.com/c/KM4a4R/8nUF
https://paperpile.com/c/KM4a4R/8nUF
https://paperpile.com/c/KM4a4R/pBvy+moVG
https://paperpile.com/c/KM4a4R/pBvy+moVG
https://paperpile.com/c/KM4a4R/pBvy+moVG
https://paperpile.com/c/KM4a4R/pBvy+moVG
https://paperpile.com/c/KM4a4R/pBvy+moVG


221 
 

conservation across selected species. Whereas phastCons base scores are smoothed according 

to scores of neighboring bases, phyloP evaluates each base independently. We downloaded 

phastCons and phyloP per-base scores for hg19 from UCSC, computed from 17-way (primate), 

30-way (mammalian), and 100-way (vertebrate) Multiz alignments, to calculate a mean base 

score for each ncRNA across 1) the gene, and 2) its exonic regions only. The per-exon scores 

were averaged over all exons belonging to a gene to produce a more robust metric for gene 

conservation. 

Context-dependent tolerance (CDTS) scores were used to quantify patterns of human 

selective constraint (27). CDTS scores are computed for each 10bp window in high-confidence 

regions of the genome, which we intersected with exonic coordinates for ncRNAs using Bedtools 

(125). To produce a per-gene score, we first computed the mean across all 10bp windows 

intersecting a single exon, then averaged the mean exon scores across all exons for a gene.  

 

Signed Gene and Isoform Co-Expression Network Analysis      

To place results from individual genes within their systems-level network architecture, we 

performed Weighted Gene Co-Expression Network Analysis (WGCNA) separately for gene- and 

isoform-level quantifications (49). All covariates except for diagnostic group were first regressed 

from our expression dataset. Network analysis was performed with the WGCNA package using 

signed networks. A soft-threshold power of 7 was used for all studies to achieve approximate 

scale-free topology (R2>0.8). Networks were constructed using the blockwiseModules function. 

The network dendrogram was created using average linkage hierarchical clustering of the 

topological overlap dissimilarity matrix (1-TOM). Modules were defined as branches of the 

dendrogram using the hybrid dynamic tree-cutting method. Modules were summarized by their 

first principal component (ME, module eigengene) and modules with eigengene correlations of 

>0.9 were merged together. A robust version of WGCNA (rWGCNA) was run to reduce the 
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influence of potential outlier samples on network architecture (126). Module robustness was 

ensured by randomly resampling (2/3 of the total) from the initial set of samples 100 times followed 

by consensus network analysis, a meta-analytic approach, to define modules using a consensus 

quantile threshold of 0.2. Modules were defined using biweight midcorrelation (bicor), with a 

minimum module size of 50, deepsplit of 4, merge threshold of 0.1, and negative pamStage. 

Module (eigengene)-disease associations were evaluated using a linear mixed-effects model, 

using a random effect of subject, to account for subject overlap across datasets. Significance 

values were FDR-corrected to account for multiple comparisons. Results from module-eigengene 

association tests are shown in Fig A2.4. Genes within each module were prioritized based on 

their module membership (kME), defined as correlation to the module eigengene. The top ‘hub’ 

genes for several of the modules are shown in Figs A2.4-A2.6 and through an interactive portal 

on our companion website (Resource.PsychENCODE.org). 

The robustness of all network modules were tested as described previously (48). In brief, 

each module’s density (defined as the average intramodular topological overlap) was compared 

to the density of modules of equivalent size selected randomly from the same network (n = 5,000 

permutations). Density p-values were determined for each initial module by calculating the 

percentage of trials in which the density of the "random" modules exceeded the density of the 

initial module. All modules have density p-values less than 0.05. 

 

csuWGCNA 

We also used a modified version of WGCNA named Combination of Signed and Unsigned 

WGCNA (csuWGCNA), which captures strong and moderate negative correlations in the 

coexpression network (72). Current versions of WGCNA allow unsigned, signed and signed 

hybrid options for network types, but have disadvantages when trying to capture moderate 

negatively correlated features such as lncRNA-mRNA regulatory relationships. Signed and 
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signed hybrid networks down-weight negatively correlated pairs in network. Unsigned networks 

highlight strong positive and negative correlations, but has worse performance on identifying 

functionally-related gene pathways than its signed counterparts (127). To address these 

limitations, we modified two functions for picking soft thresholding power and calculating the 

network adjacency. The core modification of csuWGCNA is in its definition of adjacency, aij =  ((1 

+ |cor(xi , xj )|)/2)β , which integrates the advantages of signed networks (aij = |(1 + cor(xi , xj ))/2|β 

) and unsigned networks (aij = |cor(xi , xj )|β ). Using this adjacency function, csuWGCNA then 

constructs a topological overlap matrix (TOM) and follows the procedure described above for 

clustering, tree cutting, and network module detection. Using this method, csuWGCNA can detect 

modules containing genes with negative correlations, which may be more useful when lncRNAs 

and miRNAs are included in the network (Fig A3.14). 

 

Assessment of Psychiatric Medications 

To assess the potential impact of medications on differential expression and co-

expression results, we analyzed several published datasets of animal models exposed to multiple 

classes of psychiatric medications. These included: 1) a published RNA-Seq dataset of the 

DLPFC from non-human primates exposed for six months to haloperidol, clozapine, or placebo 

(2); 2) a published microarray dataset (GSE66276) of cortex from mice exposed to the SSRI 

fluoxetine for 21 days (128); 3) a microarray dataset (GSE66276) of rats exposed lithium, 

lamotrigine or placebo for 21 days. All datasets were reprocessed and analyzed as described 

below.  

The antipsychotic dataset consisted of ~6 year old rhesus macaques treated with 

medications or placebo orally for six months, including high doses of haloperidol (4 mg/kg/d; n=7), 

low doses of haloperidol (0.14 mg/kg/d; n=10), clozapine (5.2 mg/kg/d; n=9), or vehicle (n=8). 

DLPFC tissue was extracted and RNA-Seq was run using rRNA-depleted libraries. Genes were 
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kept that had expression greater than 0.1 cpm (counts per million) in at least half of samples. 

Limma voom normalization using TMM normalization factors was used for subsequent differential 

gene expression analysis, including the covariates: age, sex, sequencing batch factors, RNA 

quality statistics (RIN and RNA concentration) and sequencing statistics. In accordance with 

results from (2), none of the groups (clozapine, haloperidol_low_dose, and 

haloperidol_high_dose) had any genes significantly differentially expressed from placebo after 

FDR-correcting for multiple comparisons. We therefore used an unadjusted p-value threshold of 

0.01 for downstream analyses, resulting in 133, 120, and 188 genes for clozapine, 

haloperidol_low_dose, and haloperidol_high_dose, respectively. Genes were grouped based on 

direction of effect (up or downregulated) and mapped to human orthologues using Ensembl.  

Overlap with PsychENCODE disease gene sets (DE and DS genes, gene and isoform-level 

coexpression modules) was assessed using Fisher’s exact test followed by FDR correction. 

Although some gene sets showed nominal overlap with antipsychotic genes, no enrichments were 

significant after correction for multiple comparisons (Fig A3.11).  

In the SSRI dataset, thirty mouse strains were treated for 21 days with fluoxetine (18 mg/kg 

per day) or vehicle, cortical RNA was extracted and profiled with an Affymetrix expression 

microarray (GeneChip Mouse Genome 430 2.0 array). Raw microarray data was normalized 

using the RMA function from the ‘affy’ package in R. Batch correction was performed using 

ComBat, and differential expression was detected using the lmFit and eBayes functions from the 

‘limma’ R package (covariates for the linear model: fluoxetine treatment, strain, and RNA 

degradation score). In our analysis, only two genes were found to be significantly differentially 

expressed (downregulated) in the fluoxetine group after correction for multiple comparisons (FDR 

p-value < 0.05): SST, a hormone regulating factor, and FDFT1, an enzyme involved in cholesterol 

biosynthesis.  For downstream enrichment analyses, we used the relaxed threshold of p < 0.01 

(uncorrected), corresponding to 558 genes.  
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In the third dataset, rats (n=5 per group) were administered lithium in chow (0.2%) or 

lamotrigine via subcutaneous injection (30 mg/kg) and compared to a vehicle chow group or 

vehicle injection group. All regimens were administered once daily for 21 days and tissues were 

collected from frontal cortex, striatum, and hippocampus for analysis via an Affymetrix expression 

microarray (Affymetrix Rat Genome 230 2.0 Array). Differential expression analysis was 

performed as described above. For lamotrigine, no genes were differentially expressed following 

FDR-correction, so for downstream enrichment analyses we used the relaxed threshold of p < 

0.01 corresponding to 121 genes. For lithium, 2338 genes at FDR-corrected p < 0.05 were used 

for downstream enrichment analyses.  

 

Assessment of Non-linear Age Effects 

 To assess the influence of age on the magnitude of differential expression, and to account 

for potentially non-linear effects of age, we performed a local regression analysis using the locfit 

package in R. For each gene expression measure, a local regression function was fit to model 

the effect of age on expression in control samples, as follows: fit = locfit(Expr ~ Age, 

data=df[df$Group=="CTL",]) 

For each non-control sample, expression was then converted to a z-score using the interpolated 

mean expression in controls at the same age. We then assessed the correlation between z-

transformed expression and age within each disease group (ASD, SCZ, BD) separately, to identify 

those genes whose magnitude of differential expression was associated with age. Several 

examples are shown in Fig A3.10.   

GWAS Datasets 

 We performed a number of GWAS enrichment analyses as described in the following 

sections. In each analysis, we used summary statistics from the largest publicly available GWAS 

in SCZ (58), ASD (38), and BD (90). Additional secondary analyses were performed using a 
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variety of relevant traits, including major depressive disorder (MDD; ref (129)), neuroticism (130), 

educational attainment (131), diabetes (132), as well as previous GWA studies of SCZ (133), ASD 

(134), and BD (135). 

 

GWAS Enrichment in DE Genes and Modules 

We used stratified LD score regression (s-LDSR) (39) to investigate whether differentially 

expressed or spliced genes, and/or co-expression modules, are enriched for disease-associated 

genetic variation using the summary statistics described above. SNPs were assigned to these 

custom gene categories if they fell within ±10 kb of a gene in the set. These categories were 

added to a ‘full baseline model’ that includes 53 functional categories capturing a broad set of 

genomic annotations, as published (39). Enrichment was calculated as the proportion of SNP 

heritability accounted for by each module divided by the proportion of total SNPs within the 

module. Significance was assessed using a block jackknife procedure, followed by FDR 

correction of P values.  

 

Polygenic Risk Score Calculation 

Polygenic risk scores (PRS) were calculated using the same GWAS summary statistics 

as above, for SCZ (58), BD (90) and ASD datasets (38). Samples were restricted to those of 

European ancestry based on clustering with samples from HapMap3 (136). Genotypes were 

additionally filtered as follows, using plink:  plink --bfile PECDC_EUR --geno 0 --maf 0.05 --hardy 

--hwe 1e-40 --make-bed –out PECDC_EUR_PRSfilter. To calculate PRS, we used LDpred (137) 

with the 1000 Genomes phase 3 European subset as a reference panel. The first five genotype 

principal components (gPC1-5, as calculated with plink) were included in the PRS calculation, to 

account for ancestry and technical effects. We then compared PRS for each diagnostic group 
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with the strict set of non-psychiatric controls, contrasting baseline and full models. PRS 

significance was measured with a likelihood ratio test and Nagelkerke’s pseudo-R2.  

 

mod.baseline=glm(dx~study+sex+age+gPC1+gPC2+gPC3+gPC4+gPC5,family=binomial) 

mod.full=glm(dx~PRS+study+sex+age+gPC1+gPC2+gPC3+gPC4+gPC5,family=binomial) 

adjustedR2=NagelkerkeR2(mod.full)$R2-NagelkerkeR2(mod.baseline)$R2 

prs.significance=lrtest(mod.baseline, mod.full) 

 

The default LDpred GWAS p-value thresholds were used (.001, .003, .01, .03, .1, .3, 1, 

and Inf). Maximal Nagelkerke pseudo-R2 values were achieved for prediction of psychiatric 

diagnosis using thresholds of 0.001 for ASD, 0.01 for BD, and 1 for SCZ. 

Association between PRS and measures of gene, isoform, or module (eigengene) 

expression was performed as described above, except using linear regression analogs. 

Associations were repeated for each p-value threshold in the 3 GWAS studies and the resulting 

association p-values were then FDR-corrected for multiple testing. Full results are compiled in 

Table A3.4. 

 

Transcriptome-wide Association Study (TWAS) 

To identify genes whose cis-regulated expression is associated with disease, we 

performed a transcriptome wide association study (TWAS) to identify putative molecular (e.g., cis-

eQTL) phenotypes in brain underlying disease GWAS associations (46). TWAS was implemented 

using the fusion package (https://github.com/gusevlab/fusion_twas; (46)) with custom SNP-

expression weights generated from brain using our dataset of 1321 unique individuals of 

European ancestry with imputed genotypes. Using the AI-REML algorithm implemented in GCTA 

(138) by the fusion package, we first identified the subset (n=14,750) of total expressed genes 
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found to have significant cis SNP-heritability in our dataset (cis- h2
g  P<0.05 within 1 Mb window 

around the gene body). SNP-expression weights were calculated in a 1Mb region around all 

heritable genes using expression measurements adjusted for diagnosis, study, age, age2, RIN, 

RIN2, sex, tissue, PMI, 20 ancestry PCs, and 100 hidden covariates (139). Accuracy of five 

expression prediction models were tested (best cis-eQTL, best linear unbiased predictor, 

Bayesian linear mixed model, Elastic-net regression, LASSO regression) using the most accurate 

model for final weight calculations as implemented in fusion. TWAS disease-association statistics 

were computed using these custom weights, LD structure calculated from our PsychENCODE 

samples’ genotypes, and disease GWAS summary statistics described above. For each disease, 

TWAS association statistics were Bonferroni-corrected for multiple comparisons. Full results are 

compiled in Table A3.4. 

 

Rare Variant Enrichment Analyses 

 Gene and isoform co-expression modules were also assessed for enrichment of rare 

variants identified in disease, compiled from several datasets. These included: 71 risk loci 

harboring rare de novo variants associated with ASD through the transmission and de novo 

association test (TADA) (80); Syndromic and highly ranked (1 and 2) genes from SFARI Gene 

database; genes harboring recurrent de novo copy-number variants associated with ASD or SCZ, 

as defined in (1); genes harboring an excess of rare exonic variants in ASD, SCZ, intellectual 

disability (ID), developmental delay (DD), and epilepsy as assessment through an extended 

version of TADA (extTADA) (140); genes harboring disruptive and damaging ultra-rare variants 

(dURVs) in SCZ (54); a list of high confidence epilepsy risk genes, compiled in (141). For binary 

gene sets, enrichment among gene and isoform modules was calculated using logistic regression, 

correcting for linear- and log-transformed gene and transcript lengths as well as GC content. For 

dURVs, a two step procedure was used, first creating a logistic regression model for dURV genes 
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identified in controls and a second model for those affected in cases and controls. A likelihood 

ratio test was used to calculate significance. Finally, for the extTADA datasets, the posterior-

probability (PP) was used in the logistic regression model in place of a binary annotation. P-values 

were FDR-corrected for multiple comparisons. Results are shown in Fig A3.13 and compiled in 

Table A3.5. 

 

Experimental Validation 

Initial optimization of the PCR conditions for all splicing and isoform primers used cDNA 

samples derived from total brain or cortex RNA (Clontech), and were performed on a Mastercycler 

Nexus Gradient Thermal Cycler (Eppendorf) and amplicons resolved on precast 96-well 2% 

agarose E-Gels (Invitrogen) stained with SYBR safe. 

 

Splicing validation 

For differential splicing (DS) analysis, selected exon-skipping events were validated by 

semiquantitative RT–PCR in ASD, BD, SCZ, and control samples. Total RNA (1-2 µg) was treated 

with 1 unit of Baseline-ZERO DNase (Lucigen), cleaned up with 1.8x AMPure XP (Beckman 

Coulter), and reverse-transcribed using SuperScript III reverse transcriptase and random 

hexamer primers (Invitrogen). After clean-up with 1.8x AMPure XP, DS events were PCR 

amplified from 20 ng of cDNA for 30 cycles in 25 μl volume containing exon-specific primers at a 

concentration 0.5 μM each, and ChoiceTaq Blue MasterMix (Denville) according to manufacturer 

instructions. Exon-specific PCR primers (Table A3.8) were designed in the flanking exons of each 

skipping event using Primer3 (142) and BLAST (143). PCR products were cleaned up with 1.8x 

AMPure XP (Beckman Coulter) and analyzed on DNA 1000 chips on an Agilent 2100 Bioanalyzer 

system. Peaks corresponding to the amplicon including or excluding the skipped exon were 

quantified using the Bioanalyzer Expert software, and percent spliced in (PSI) ratios were 

https://paperpile.com/c/KM4a4R/etee
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calculated by dividing the molarity of the lower band (exon skipped) by the sum of the molarity of 

the lower and upper band (exon included). The ΔPSI between cases and control for each event 

was calculated as the difference between the average PSI in cases and average PSI in controls. 

Sample details and primers are reported in Table A3.8. 

 

Isoform Validation 

For DTE analysis, selected isoforms were validated by semiquantitative RT–PCR using a 

similar approach as for DS. Each isoform was PCR amplified from 20 or 40 ng of cDNA for 30 or 

35 cycles in a 25 µL volume containing isoform-specific primers at a concentration 0.5 µM each 

and ChoiceTaq Blue MasterMix with DNA polymerase (Denville), or 0.4 µM each and LongAmp 

Hot Start Taq DNA polymerase (New England Biolabs) (Table A3.8), according to manufacturer 

instructions. Isoform-specific PCR primers (Table A3.8) were designed using Primer3 (142) and 

BLAST (143), and based on GENCODE v19 annotations. PCR products were resolved on 1.5 or 

2% agarose gels, counterstained with GelStar Nucleic Acid Gel Stain (Lonza) for visualization, 

and GAPDH and ACTB were used as loading controls. Gels were quantified using ImageLab 

(BioRad). The intensity of each isoform was first normalized to the average expression levels of 

GAPDH and ACTB in each sample. The intensity ratio between cases and controls for each 

isoform was then calculated by dividing the average intensity of cases by the average intensity of 

controls. The log2 intensity ratios were then compared to the log2 ratio differences from the DTE 

analysis. Sample details and primers are reported in Table A3.8. 

 

Fluorescent in situ hybridization (FISH) 

Fresh-frozen tissue blocks from the Brodmann’s area 9 of the prefrontal cortex of five 

neurologically normal control donors were obtained from the Mount Sinai Neuropathology 

Research Core and Brain Bank and stored at -80ºC. Clinical information on the subjects is 

https://paperpile.com/c/KM4a4R/etee
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summarized in Table A3.9A. The blocks were embedded in O.C.T. compound, frozen at -20ºC, 

10 µm-thick sections were cut using a cryostat (Leica), and the sections were collected onto 

Superfrost Plus slides. The slides were stored in an airtight box at -80ºC until FISH was 

conducted. 

The in situ hybridization probes for detecting human GAD1, LINC00643, and LINC01166 

as well as the positive and negative control probes were designed by Advanced Cell Diagnostics 

(ACD; see Table A3.9B for RNAscope probe information). For the assay, we used RNAscope 

Multiplex Fluorescent Reagent Kit v2 (ACD), that provided the hydrogen peroxide, protease IV, 

amplification reagents (Amp1-3), HRP reagents, and wash buffer for probe hybridization. DAPI, 

TSA buffer (ACD) and TSA Plus fluorophores (PerkinElmer) were used for detection of the signal. 

We used a modified version of the manufacturer’s protocol for sample preparation, probe 

hybridization, and signal detection. Briefly, the fresh frozen sections on slides were retrieved from 

-80ºC and immediately fixed by immersion in freshly prepared cold 4% paraformaldehyde for 2 h. 

After fixation, the sections were rinsed briefly with phosphate buffered saline (PBS) and then 

dehydrated in an ethanol series (5 min each in 50%, 70%, and two changes of 100% ethanol) at 

room temperature (RT). The sections were air-dried for 5 min and a hydrophobic barrier was 

created around the section using an Immedge pen (Vector Laboratories). After the barrier had 

completely dried, the sections were treated with hydrogen peroxide for 10 min at RT, washed 

twice with PBS, treated with protease IV for 15 min at RT, and washed twice with PBS. The LINC-

C2 or LINC-C3 probes for detecting lncRNAs were diluted at 1:50 in the GAD1-C1 probe. The 

sections were then hybridized with the probes at 40ºC for 2 h in the HybEZ Hybridization System 

(ACD), washed twice with wash buffer, and stored overnight at RT in 5x SSC buffer. The next 

day, the slides were rinsed twice with wash buffer, followed by the three amplification steps (AMP 

1, AMP 2, and AMP 3 at 40ºC for 30, 30, and 15 min respectively, with two washes of 2 min each 

with wash buffer after each amplification step). The signal was developed by treating the sections 



232 
 

in sequence with the HRP reagent corresponding to each channel (e.g. HRP-C1) at 40ºC for 15 

min, followed by the TSA Plus fluorophore assigned to the probe channel (fluorescein for GAD1-

C1 probe and cyanine 5 or Cy5 for LINC-C3 probes, prepared at a dilution of 1:750) at 40ºC for 

30 min, and HRP blocker at 40ºC for 15 min, again with two wash steps after each of the 

incubation steps. As autofluorescence due to lipofuscin was detected in both the green and the 

red channels whereas the far red channel was relatively free of background, the highly expressed 

GAD1-C1 probe was assigned to the green fluorescein channel, the red cyanine 3 channel was 

left empty and the lncRNAs were probed on separate sections in the far red Cy5 channel. The 

sections were treated with TrueBlack Lipofuscin Autofluorescence Quencher (Biotium) for 30 s, 

rinsed twice with PBS, counterstained with DAPI for 30 s, mounted using ProLong Gold mounting 

medium (Thermo Fisher Scientific) and slides were stored at 4 ºC until ready for imaging. Two 

experiments were performed with two to three biological replicates each, and using positive and 

negative control probes to test for RNA quality and background signal respectively. 

Layer III of area 9 was identified using a 5x/0.16 N.A. objective and the sections were imaged 

using a 63x/1.4 N.A. or 100x/1.4 N.A. oil DIC Plan Apochromat objectives on an AxioImager.M2 

microscope (Carl Zeiss), equipped with a motorized stage (MBF Biosciences) and an Orca-R2 

digital camera (Hamamatsu), and operated using Neurolucida software (version 11.11.3 64-bit, 

MBF Biosciences). Camera exposure times were set for each of the four channels (red for 

lipofuscin, blue for DAPI, green for fluorescein, and magenta for Cy5) and were kept similar 

among the cases imaged in each experiment in order to enable comparison. The images at 100x 

magnification were presented as maximum intensity projections of Z-stacks imaged at 0.5 µm 

intervals. Adobe Photoshop was used for adjusting brightness/contrast and sharpness of the 

images. 
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A3.2: Extended Figures 

 

 
Fig. A3.1. Dataset composition, analysis and integration pipeline 
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A) Description of individual studies contributing to this PsychENCODE analysis. B) Analysis pipeline 
through which all samples were uniformly processed. C) Comparison of samples overlapping between this 
manuscript and our companion paper (18). 
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Fig. A3.2. Dataset demographics and quality control 

A) Sample information, subject demographics, and sequencing characteristics are shown for each group. 
This study only used frontal and temporal cortex samples from subjects at postnatal time points. B) 
Spearman’s ρ values are shown for correlations between dataset covariates with the top 20 expression 
PCs. C) Sample outlier removal was performed individually for each study before combining data, based 
on Z-scores of standardized network connectivity (Methods). D) Sequencing surrogate variables 
(‘seqPCs’) were calculated as the top 29 principal components of the matrix of sequencing QC metrics. 
Loadings are shown between seqPCs and individual metrics, colored by the source of the QC metrics. 
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Fig. A3.3. Selection of Covariates 

To capture the full range of factors influencing gene expression in our dataset, the final differential 
expression model included known covariates, aggregate sequencing metrics (seqPCs), and surrogate 
variables (SVs) calculated using SVA to correct for unmeasured sources of variation. A) To determine the 
appropriate number of SVs to use, we randomly split our dataset into two halves and calculated differential 
gene expression for each disorder using a fixed number of SVs ranging from 0 to 25. We compared DGE 
for each disorder between the split datasets using spearman’s correlation of log2FC effect sizes for all brain-
expressed genes (N=25,774 genes). We then repeated this analysis 1000 times and compared results 
across the range of SVs included. Addition of 4 SVs yielded the greatest cross-dataset replicability. B) Here, 
we plot the number of genes considered differentially expressed as a function of the number of SVs included 
in the differential expression model. C) DE results from this study are compared with published microarray 
datasets for each disorder (1) as a function of the number of SVs included. Spearman’s correlation is shown 
for DGE log2FC effect sizes for genes previously identified as DE (FDR<0.05) in the microarray dataset, as 
described in Fig A3.4. D) Multidimensional scaling plots are shown for the top 3 PC’s of the covariate-
corrected dataset, colored by study/batch and diagnosis.  
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Fig. A3.4. Validation of DGE Results 

Differential gene expression results from this study were compared with several published microarray and 
RNA-Seq datasets. A) Log2FC effect sizes are plotted in comparison to a microarray meta-analysis of ASD, 
SCZ, and BD for genes identified as DGE (FDR<0.05) (1). We see substantial concordance of gene-level 
effect sizes across studies and platforms. Similar concordance is observed in comparison to results from 
RNA-Seq studies in B) ASD (19), C) SCZ (2), and D) BD (1). There is some overlap in samples across 
studies, due to the limited availability of post-mortem brain tissue from subjects with psychiatric disease. E) 
To ensure that differential gene expression in disease was not being driven by differences in RNA quality 
or degradation, we compared differential expression T-statistics with those experimentally derived from 
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brain tissue samples allowed to degrade for fixed intervals of time (22). We did not observe substantial 
concordance between these RNA degradation metrics and psychiatric disease DGE summary statistics. F) 
Age balancing of case-control comparisons (0-40 years for ASD/CTL; 18-90 years for SCZ/CTL; 18-75 
years for BD/CTL) does not substantially alter disease DGE signal.  

https://paperpile.com/c/KM4a4R/tKLC
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Fig. A3.5. Validation of differential transcript expression and differential splicing 

A) Comparison of fold changes obtained from RSEM-based isoform quantification of RNA-Seq data (21) to 
semiquantitative PCR results for 10 isoforms tested in ASD and control samples (left) and 13 isoforms 
tested in SCZ and control samples (right). Fold changes were calculated between cases and control 
samples. B) Representative 1.5 to 2% agarose gel images obtained for isoform validation. C) Scatter plots 
comparing the average percent spliced-in (PSI) of exon-skipping events called by LeafCutter from RNA-
Seq data (21) to semi-quantitative PCR. A total of 9 genes were tested in 5 cases and 5 controls in ASD, 
BD and SCZ. An additional 5 cases and 5 controls were tested for FAM13A and SYNE1 in BD and SCZ to 
resolve outliers. D) Same as C, but now comparing the change in average PSI (∆PSI) between cases and 
controls in each disorder. E) Representative Agilent 2100 Bioanalyzer gel images (DNA 1000 chips) 
obtained for splicing validation. A-E) Gene or isoform names are indicated at each point. Regression lines 
with 95% confidence intervals are shown in blue and grey, respectively and the corresponding R2 values 
are shown at the top-left in each plot. 
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Fig. A3.6. Annotation of individual ncRNAs  

We highlight several individual ncRNAs differentially expressed in psychiatric disease or identified as hubs 
of relevant co-expression modules. A) We show differential gene expression (DGE; top) and differential 
transcript expression (DTE; bottom) in SCZ, BD, and ASD. *FDR<0.05, -- FDR<0.1. B) Human brain cell 
type expression patterns are shown for each ncRNA using data from Ref (91). Plots show mean expression 
for cells identified in specific clusters. C) Developmental expression trajectory is shown for each ncRNA 
using data from BrainSpan (144). Plots show expression as a function of age (days post-conception) on a 
log10 scale, with the dotted line denoting birth. D) Human tissue-specific expression levels are shown for 
each ncRNA using data from GTEX (81).  
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Fig. A3.7. Covariate correction of DS 

Top two principal components (PCs) of percent spliced-in (PSI) values are shown before (left) and after 
(right) covariate correction for the ASD, BD and SCZ datasets. Points are colored according to study origin 
and shape denotes disorder (circle) or control (CTL) status (triangle). See inset legends for further details. 
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Fig. A3.8. Annotation of DS events, Cross data DGE-DTE-DS overlaps 

A) Pie charts with breakdown of DS event types identified in each disorder. B) Venn diagrams showing 
overlaps between genes with significant DGE, DTE or DS changes for each disorder. P values for 
hypergeometric tests of pairwise overlaps between data types are shown at the bottom of the venn 
diagrams for each disorder. C) Top 20 gene ontology (GO) enrichments for DS genes in each disorder. 
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Fig. A3.9. Additional differential local splicing examples  

A) Top: Significant differentially spliced (DS) intron clusters in DTNA for ASD, SCZ and BD. Increased or 
decreased intron usage in cases compared to controls (CTL) are shown in red and blue, respectively. 
Bottom: Overview of known isoforms (GENCODE v19) and protein domains for DTNA. Locations of 
significant DS clusters are indicated by dotted lines. Protein domains (purple) are annotationed as 
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EF_hand_2 - EF hand domain 2; EF_hand_3 - EF hand domain 3; ZnF_ZZ - Zinc-binding domain, present 
in Dystrophin, CREB-binding protein. B) Violin-plots with the distribution of covariate-adjusted percent 
spliced in (PSI) per sample for the intron with the maximum change in PSI for each cluster and disorder. C) 
Visualization of introns in each significant cluster for each disorder, with their change in PSI (PSI). 
Covariate-adjusted average PSI levels in disorder vs CTL are indicated for each intron. D) Same as A), but 
for CADPS. Protein domains (purple) are annotated as PH - Pleckstrin homology domain; CaLB - C2 
domain (Calcium/lipid-binding domain, CaLB) superfamily; DUF1041 - Domain of unknown function. E) 
Same as B), but for CADPS. F) Same as C, but for CADPS. 
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Fig. A3.10. Age effects on differential gene expression  

Examples are shown for genes whose magnitude of differential expression in a given disorder is 
significantly associated with age.  For each gene, a local regression function was fit to model the effect of 
age on expression in control samples, and expression in cases was then converted to a z-score relative to 
the local mean in controls. We then assessed the correlation between z-transformed expression and age 
within each disease group (ASD, SCZ, BD) separately, to identify those genes whose magnitude of 
differential expression was associated with age. We find that 143 of the 4821 DGE genes in SCZ show a 
nominal increase in effect size magnitude as a function of age, consistent with a reactive interpretation. In 
ASD, 85 of 1611 DE genes showed this same pattern and in BD there were 29 of the 1119 DE genes. 
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Fig. A3.11. Assessment of psychiatric medication effects  

A) We investigated whether antipsychotic medications could explain differential gene expression and 
module associations identified in SCZ, BD, and ASD. We used three experimental datasets: (1) an RNA-
Seq dataset from DLPFC of nonhuman primates exposed for 6 months to clozapine, haloperidol (low dose), 
or haloperidol (high dose) compared to placebo; (2) a microarray dataset from mouse brain following 
chronic exposure to the SSRI fluoxetine; (3) a microarray dataset from rat cortex following chronic exposure 
to the mood stabilizers lithium or lamotrigine compared with vehicle (21). Overlap of DE genes and modules 
with genes up or downregulated by medications (at nominal significance thresholds, except for lithium) was 
assessed by Fisher’s exact test. Plot shows odds-ratios of enrichment for P<0.05 significant associations, 
with * denoting FDR<0.05 associations. With the exception of lithium, medications show minimal overlap 
with disease-associated transcriptomic changes. The one exception was for the activity dependent module 
pair, geneM21/isoM30, which did seem to be associated with SSRIs and high dose haloperidol. B) To 
investigate this relationship further, we compared geneM21 eigengene expression with medication history 
in those subjects where this information was available. There was a significant negative correlation between 
geneM21 expression and lifetime antipsychotic exposure (chlorpromazine equivalents, log scale). C) A 
subset of samples also had results from post-mortem toxicology testing. We found broadly decreased levels 
of geneM21 eigengene expression in those subjects who tested positive for a host of psychiatric 
medications, including antipsychotics (*FDR<0.05).  

https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
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Fig. A3.12. Co-expression network cell type enrichments  

Plots show enrichment of gene and isoform-level co-expression modules for established markers of CNS 
cell types from human brain single-cell RNA-Seq clusters, as compiled in the companion manuscript (18). 
Clusters were defined separately for TPM- and UMI- based scRNA-Seq quantifications. Text denotes odds 

https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
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ratios of enrichment for significant associations (FDR<0.05). The UMI dataset is from adult human brain, 
whereas the TPM dataset includes two fetal cell types. (Ex# - excitatory neuron cluster; In# - interneuron 
cluster; Per- pericyte; OPC-oligodendrocyte progenitor cell; Oligo - oligodendrocyte; Micro - microglia; End 
- endothelial; Ast - astrocyte). 
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Fig. A3.13. Genetic enrichment analyses  

A) Enrichment for several sets of disease risk genes was assessed among DE features, gene, and isoform-
coexpression modules, including those harboring rare de novo variants identified in each disorder, as well 
as in related neurodevelopmental and psychiatric traits. TWAS signal for each disorder was also included 
as was the list of 321 “high confidence” SCZ risk genes identified in the companion manuscript (18). 
Enrichment was calculated using logistic regression, controlling for gene and transcript length as well as 
GC content (21). Risk gene sets include: 71 risk loci harboring rare de novo variants associated with ASD 
through the transmission and de novo association test (TADA; “ASD_Sanders”) (80); Syndromic and highly 

https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/mspL
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/mrMI
https://paperpile.com/c/KM4a4R/mrMI
https://paperpile.com/c/KM4a4R/mrMI
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ranked (1 and 2) genes from SFARI Gene database (“ASD_SFARI”); genes harboring recurrent de novo 
copy-number variants associated with ASD or SCZ, as defined in (1) (“CNV”); genes harboring an excess 
of rare exonic variants in ASD, SCZ, intellectual disability (ID), developmental delay (DD), and epilepsy as 
assessment through an extended version of TADA (“extTADA”) (140); genes harboring disruptive and 
damaging ultra-rare variants in SCZ (54) (“SCZ_dURVs”); a list of high confidence epilepsy risk genes, 
compiled from (141). B) Enrichment of GWAS signal among gene and isoform co-expression modules, 
using stratified LD score regression (s-LDSR) with summary statistics from several psychiatric, cognitive, 
and behavioral traits (21). Cells are labeled with GWAS enrichment, for those with FDR < 0.05. Cells labeled 
with “-” are nominally (P<0.05) significant but do not pass FDR-correction.   

https://paperpile.com/c/KM4a4R/gJII
https://paperpile.com/c/KM4a4R/gJII
https://paperpile.com/c/KM4a4R/gJII
https://paperpile.com/c/KM4a4R/euaW
https://paperpile.com/c/KM4a4R/euaW
https://paperpile.com/c/KM4a4R/euaW
https://paperpile.com/c/KM4a4R/V5zH
https://paperpile.com/c/KM4a4R/V5zH
https://paperpile.com/c/KM4a4R/V5zH
https://paperpile.com/c/KM4a4R/c0yE
https://paperpile.com/c/KM4a4R/c0yE
https://paperpile.com/c/KM4a4R/c0yE
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
https://paperpile.com/c/KM4a4R/8vmq
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Fig. A3.14. Module-trait associations after SCZ downsampling  

To determine whether differences in module associations observed across disorders was due to the larger 
sample size of the SCZ dataset, we repeated our module-trait association analyses using a randomly 
subsampled SCZ dataset to match the sample size of ASD and BD datasets. We repeated this 100 times 
and reran our module-level associations using these matched sample sizes. Plots show module-trait 
association β values with standard errors. *P<0.05. 
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Fig. A3.15. csuWGCNA identifies putative lncRNA negative regulatory relationships  

A) Network adjacency (y-axis) versus correlation (x-axis) in the signed network, unsigned network, and 
csuWGCNA network. The color of the line denotes the soft threshold power setting. Note that correlation=-
1 leads to adjacency = 0 in the signed network and adjacency =1 in the unsigned and csuWGCNA network. 
B) All modules detected by csuWGCNA were well preserved in the signed networks (Zsummary > 10 
indicates high preservation). C) The enrichment of cell type and GWAS signal in csuWGCNA modules. D) 
csuWGCNA captures more negative lncRNA-gene pairs (cor<-0.3) in the same module than signed and 
unsigned WGCNA (csuWGCNA=7186, signed=20, unsigned=2701). E) csuWGCNA captures stronger 
negative relationships than signed and unsigned network types (Welch two sample t-test, p<10-6 and p<10-

11, respectively). F) The lncRNAs MIAT and MEG3 are negatively correlated with most of the hubs in 
oligodendrocyte modules, including SOX2-OT and oligodendrocyte marker genes (PLP1, MAG, MBP, TF, 
SOX10, and CDKN1B). The blue color indicates negative correlations and the red indicates positive 
correlations. G) Putative target relationships for the lncRNA MIAT. The red line indicates a negative 
relationship only detected in csuM1, and the black line indicates positive relationships detected in both 
csuM1 and geneM2. 

  



255 
 

 
 

Fig. A3.16. LINC00643 and LINC01166 expression in human prefrontal cortex  

Sections from human prefrontal cortex (area 9) were labeled with GAD1 probe (green) and lncRNA 
(magenta) probes for LINC00643 (upper panel) or for LINC01166 (lower panel). All sections were 
counterstained with DAPI (blue) to reveal cell nuclei. Lipofuscin autofluorescence is visible in both the green 
and red channels and appears yellow/orange in the merged image. The lncRNAs are present both in 
GABAergic interneurons and cells without GAD1 signal. Scale bar, 25 µm.
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Fig. A3.17. Additional switch isoforms 

A) The isoform ratio of two SMARCA2 isoforms, SMARCA2-003 and SMARCA2-011, are up and 
downregulated in ASD and SCZ, respectively. B) The isoform ratio of two NIPBL isoforms, NIPBL-002 and 
NIPBL-005, are down and upregulated in ASD and SCZ, respectively. *FDR < 0.05 

 

A3.3: Extended Tables 

 

Please see the electronic tables associated with this document for additional tables (Tables 

A2.1-9). Descriptions for these tables follow: 

 



257 
 

Table A3.1 (separate file) 

Differential gene and isoform expression summary statistics and DE enrichment analyses 

 

Table A3.2 (separate file) 

Annotation of psychiatric ncRNAs 

 

Table A3.3 (separate file) 

Differential splicing summary statistics, annotation and disease overlaps 

 

Table A3.4 (separate file) 

TWAS summary statistics and PRS associations with gene and isoform expression   

 

Table A3.5 (separate file) 

Gene and isoform co-expression module annotation 

 

Table A3.6 (separate file) 

csuWGCNA network annotation and putative lncRNA-mRNA targets 

 

Table A3.7 (separate file) 

Switch isoform and microexon characterization 

 

Table A3.8 (separate file) 

Splicing and isoform validation primers and samples 
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Table A3.9 (separate file) 

RNAscope - Tissue samples and RNA FISH probes 

A3.4: Extended Bibliography 

 

The bibliography/references for the appendix sections A2 and A3 correspond with the 

bibliography for Chapter 3 (Section 3.4). 
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A4: Supplementary Materials for Chapter 4 

A4.1: Extended Materials and Methods 

 

Linear model design 

 

To select the biological and technical covariates to use in downstream linear 

mixed-effects models, the EARTH39 package in R was used. This package applies the 

Multivariate Adaptive Regression Splines (MARS) technique to build regression models. The 

covariates assessed were subject, region, brain bank, diagnosis, sex, age, PMI, sequencing 

batch, ancestry genotype, and RIN, as well as STAR and Picard Tools RNA-seq quality 

measures (all listed in Table A4.1). For 4 subjects with no recorded PMI, the average of the rest 

of the subjects’ PMI was used. Before input into the EARTH algorithm, STAR and Picard Tools 

quality measures were filtered such that collinearity with any other biological or technical 

covariate was eliminated (only one covariate was kept for every identified collinear pair, with 

collinearity defined as an adjusted R2 > 0.95 between the two covariates). All continuous 

covariates were centered and scaled for input into the EARTH algorithm and for remaining 

analyses. A cross-validated approach was used to run EARTH: it was run 10 times with 90% of 

samples, and then the resulting linear model was tested with the remaining 10% of samples. 

The median R2 across all genes/isoforms was used to assess the performance of each cross-

validated EARTH model. Using this metric, the following covariates from the highest performing 

EARTH model were selected for the gene and isoform linear mixed models used in subsequent 

transcriptomic analyses: 

 

Gene Model: subject, diagnosis, region, sequencing batch, sex, ancestry, age, age2, PMI, RIN, 

picard_gcbias.AT_DROPOUT, star.deletion_length, 

picard_rnaseq.PCT_INTERGENIC_BASES, picard_insert.MEDIAN_INSERT_SIZE, 

picard_alignment.PCT_CHIMERAS, picard_alignment.PCT_PF_READS_ALIGNED, 

https://paperpile.com/c/GaGm1R/3RRK
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star.multimapped_percent, picard_rnaseq.MEDIAN_5PRIME_BIAS, 

star.unmapped_other_percent, picard_rnaseq.PCT_USABLE_BASES, 

picard_alignment.PCT_CHIMERAS2, star.uniquely_mapped_percent2. 

 

Isoform Model: subject, diagnosis, region, sequencing batch, sex, ancestry, age, age2, PMI, 

RIN, picard_rnaseq.PCT_MRNA_BASES, picard_gcbias.AT_DROPOUT, 

picard_rnaseq.PCT_UTR_BASES, star.multimapped_toomany_percent, 

picard_rnaseq.MEDIAN_CV_COVERAGE, picard_insert.MEDIAN_INSERT_SIZE, 

picard_rnaseq.PCT_INTERGENIC_BASES, picard_rnaseq.PF_BASES. 

 

For both models, ‘subject’ was input as a random effects term (specifically, a 

random intercept), and diagnosis and region were combined to create one ‘diagnosis x region’ 

term (eg. ASD_BA17, ASD_BA9, Control_BA17, Control_BA9, etc.). This was done to facilitate 

region-specific contrasts in downstream analyses. The rest of the covariates were input as fixed 

effects into the linear mixed models. The ‘variancePartition’40 R library was used to visualize the 

percent of variance explained by each model covariate across all genes/isoforms. 

 

Comparing region-specific ASD effects to whole cortex ASD effects 

 

To test if region-specific ASD dysregulation was significantly greater in 

magnitude than the whole cortex dysregulation in the Parikshak et al.5 modules, a permutation 

approach was utilized. The region-specific ASD signed -log10(p-value) of each module was 

tested against a permuted distribution (10,000 permutations) of this statistic generated from 

randomly assigning cortical regions to samples. Regions were randomly assigned within 

subjects so that regional sample size was consistent for every permutation and subject 

variability was controlled. A region was considered significantly more dysregulated than the 

whole-cortex if the one-tailed p-value derived from comparing the true region-specific ASD 

signed -log10(p-value) to the permuted distribution was less than 0.05. The same approach was 

implemented to test if the number of region-specific DE ASD genes was significantly greater 

https://paperpile.com/c/GaGm1R/XcB4
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than the number of whole cortex DE ASD genes, with the number of region-specific DE ASD 

genes replacing the region-specific ASD signed -log10(p-value) as the statistic of interest. 

 

To compare region-specific ASD gene dysregulation effect sizes to the whole 

cortex ASD effect, we calculated the principal components regression slope comparing the 

whole cortex ASD log2 Fold Change (FC/effect) to the region-specific ASD log2 FC for the 4,223 

genes identified as DE in ASD across the whole cortex. We then generated a bootstrapped 

distribution (1,000 bootstraps) for each of the 11 region-specific slopes (sampling with 

replacement from the region of interest for each ‘diagnosis x region’ group) to calculate a 95% 

confidence interval for these slopes. Sample size was kept consistent for each bootstrap with 

the number of samples from each ‘diagnosis x region’ group. 

 

ARI gene group formation and functional annotation 

 

To evaluate the ARI genes across the whole-cortex, instead of only in the 

regional pairs in which they were identified, the ARI genes from regional pairs containing either 

BA17 or BA39-40 were assembled into two groups: the union (without duplicates) of ARI genes 

with higher Control expression in BA39-40 and BA17 relative to other regions (posteriorly ASD-

downregulated ARI genes), or the union (without duplicates) of ARI genes with higher Control 

expression in the remaining cortical regions relative to BA39-40 and BA17 (posteriorly ASD-

upregulated ARI genes). Genes which were sorted into both groups (eg. highest expression in 

BA39-40 v. BA44-45 in one regional comparison, and highest expression in BA7 v. BA17 in 

another) were removed. Additionally, for each remaining ARI gene, the median Control gene 

expression in BA17 and BA39-40 (from the regressed gene expression dataset used for the 

permutation analysis, using all Control samples) was compared to the median across all 

remaining regions. Only ARI genes with higher median expression in their respective group (eg. 
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higher median expression in BA17 and BA39-40 in the posteriorly ASD-downregulated ARI 

gene group) were retained. For each gene in each of the two groups, the linear contrast 

comparing BA17 and BA39-40 gene expression to all other cortical regions was assessed in 

Controls with the same linear model workflow and normalized, outlier-removed gene expression 

dataset used to identify DE genes and isoforms described before. The beta values and p-values 

from this analysis are shared in Table A4.4 and for top attenuated transcription factors (TFs) in 

Figure 4.2c-d.    

To functionally characterize the ARI gene groups, we performed cell-type and 

gene ontology enrichment, identified transcription factors present, and calculated transcription 

factor binding site enrichment. Cell-type enrichment was conducted with EWCE,41 with broad 

(Level 1) neural cell-type gene markers acquired from Lake et al. Nat Biotechnol 201842 (frontal 

and visual cortex samples combined). To obtain cell-type specificity scores, first genes were 

filtered such that the gene needed to have a mean UMI of 0.005 across all cells. Then, gene 

UMI averages were taken across all Level 2 cell-types, and these averages were used to 

generate the cell-type specificity scores utilized by EWCE to calculate cell-type enrichment in 

the ARI gene groups. This approach was taken to reduce bias introduced by differing numbers 

of cells across Level 2 cell-types when calculating Level 1 cell-type specificity scores. 100,000 

bootstraps were generated to determine cell-type enrichment with EWCE. gProfileR43 was used 

for gene ontology enrichment, with FDR-adjustment for p-values, strong hierarchical filtering, 

and a required overlap size of 10 genes. For the ARI downregulated gene group, a max set size 

of 2500 was enforced, whereas no max set size was enforced for the ARI upregulated gene 

group. Only ‘BP’ (biological process) terms were included in Figure 4.2 and Table A4.4. 

Transcription factor binding site enrichment was also conducted with gProfileR,43 with a 

Bonferroni-adjustment for p-values and strong hierarchical filtering. To identify transcription 

factors within the ARI gene groups, AmiGo 244 was used to acquire all genes in GO:0003700 

https://paperpile.com/c/GaGm1R/BcJp
https://paperpile.com/c/GaGm1R/segc
https://paperpile.com/c/GaGm1R/segc
https://paperpile.com/c/GaGm1R/rB2O
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(DNA-binding transcription factor activity) in the Homo sapiens organism (Gene Ontology 

Consortium,45,46 accessed May 7, 2020).  

 

WGCNA network formation and module identification 

 

Weighted Gene Co-Expression Network Analysis (WGCNA)10 was conducted to 

sort observed gene and isoform expression dysregulation into empirically-informed networks 

which could provide precise functional insight into affected neural cell-types and biological 

processes. Regressed gene and isoform expression datasets containing only the random effect 

of subject, the fixed biological effects (diagnosis, region, age, age2, sex, and ancestry), and the 

model residual were used for WGCNA signed network generation. Regression was performed 

as described previously for the previously identified co-expression modules. A soft-threshold 

power of 6 was chosen for gene network generation, whereas a power of 10 was selected for 

isoform network generation. These values were selected to optimize induced scale-free 

topology in the gene and isoform networks (R2 > 0.8). For the gene-level WGCNA, a robust 

version of WGCNA (rWGCNA)21 was implemented to mitigate the influence of potential sample 

outliers in network formation. Subjects within each diagnosis group were randomly selected 

(with replacement) for inclusion in the adjacency matrix (formulated using the bi-midweight 

correlation of genes) and subsequent TOM matrix generation, 100 times. These TOMs were 

merged into one consensus TOM through first using a quantile scale of 0.95 to calibrate each 

TOM, and then taking the median across all TOMs to create the consensus TOM. To identify 

modules from the consensus TOM, the ‘cutTreeHybrid’ function was used with average linkage 

hierarchical clustering of the consensus TOM, a deep split of 4,  cut height of 0.9999, a negative 

PAMstage, and minimum module size of 50. Modules within a cut height of 0.1 were merged. 

 

https://paperpile.com/c/GaGm1R/SeGr+2MKd
https://paperpile.com/c/GaGm1R/hdrr
https://paperpile.com/c/GaGm1R/DxJz
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Since rWGCNA could not be implemented for the isoform expression data due to 

memory allocation limitations, the ‘blockwiseModules’ function was used with 4 blocks (26,000 

or less isoforms per block) to generate the isoform network and identify modules. The same 

module identification parameters (except for the soft power threshold) used for the gene 

network were also used for the isoform network. To test the robustness of the isoform network, 

a permutation approach was utilized.22,47 For each module, this method tests if the mean 

connectivity within the module (also defined as the module’s density, or the average 

intramodular topological overlap) is significantly different from that of modules of equivalent size 

randomly selected from the same network (n=5,000 permutations). One-tailed p-values were 

calculated through comparing the permuted distribution to the true mean connectivity for each 

module, and only modules with p-values < 0.05 were retained. When merging modules from all 

blocks for the isoform network, a merge cut height of 0.2 was used.  

Module eigengenes (MEs) were calculated for all modules using the regressed 

gene and isoform expression dataset used to generate the networks. We only retained isoform 

modules which were non-redundant with gene modules forward for further analysis. To achieve 

this, isoform and gene MEs were clustered using the ‘cutTreeHybrid’ WGCNA10 function using 

average linkage hierarchical clustering of the bi-midweight correlation of the MEs, a deep split of 

4, a negative PAMstage, a minimum module size of 1, and a cut height of 0.9999. Any isoform 

modules which clustered with gene modules were labeled as overlapping with the gene 

modules, with the exception of Isoform_M26_skyblue3, which upon visual inspection was 

suitably distant from the other gene modules within its cluster to be considered distinct. To 

determine if any of these other overlapping isoform modules were distinct enough from the gene 

modules to be retained for further analysis, for each of the conserved isoform modules an over-

representation analysis (ORA) was conducted with each of the gene modules in its identified 

cluster. Any isoform modules which had no significant overlap (p > 0.01) were retained for 

https://paperpile.com/c/GaGm1R/DxJz+cY5X
https://paperpile.com/c/GaGm1R/hdrr
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further analysis, of which only two were identified - Isoform_M55_blue2 and 

Isoform_M61_navajowhite1. In total, 39 distinct isoform modules were carried forward for further 

analysis out of the original 61 identified isoform modules.   

 

Module functional characterization 

 

Gene and the distinct isoform MEs were assessed with the gene and isoform 

linear mixed models containing all of the biological covariates from the full models described 

previously (the technical covariates were not included, since these covariates were previously 

removed from the regressed expression data used to generate the MEs). The same limma35 

workflow was implemented as described before for calculating DE genes and isoforms. Whole 

cortex and region-specific ASD and dup15q effects were also ascertained as described 

previously for the DE gene and isoform analysis. A covariate required an FDR-adjusted p-value 

< 0.05 to be considered associated with any ME. To determine if any region-specific ASD 

effects in the gene MEs were significantly greater than the whole cortex ASD effect, a 

permutation approach was used which was synonymous to the previously described method 

used with the Parikshak et al. MEs. Regionally-variable modules are those with any region 

having a region-specific ASD effect significantly greater than the whole cortex ASD effect (p < 

0.05). 

To further functionally characterize modules, we calculated enrichments for 

neural cell-types, neuronal subtypes, gene ontology terms, protein-protein interactions, the ARI 

gene groups, gene biotypes, relevant GWAS, ASD and epilepsy associated rare variants, and 

gene modules previously associated with ASD published in Parikshak et al. Nature 20165 and 

Gandal et al. Science 2018b.1 While all of these enrichment analyses were performed for the 

gene modules, only a subset were performed for the isoform modules (neural cell-types, gene 

https://paperpile.com/c/GaGm1R/c7XW
https://paperpile.com/c/GaGm1R/XcB4
https://paperpile.com/c/GaGm1R/2cBf
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ontology terms, gene biotypes, psychiatric GWAS, and ASD and epilepsy associated rare 

variants). 

Neural cell-type enrichment was performed with EWCE41 as previously described 

for the ARI gene groups. For neuronal subtype enrichment, medial temporal gyrus single neuron 

RNA-seq from the Allen Brain Map13,41 was used to define neuronal subtype specific markers for 

enrichment analysis with EWCE.41 EWCE was implemented as previously described for the ARI 

gene groups, with the Allen Brain Map neuronal cells being grouped into cortical layer groups 

(eg. Exc L2, Inh L2-3), for cell-type enrichment. For gene ontology terms, the Metascape48 web 

portal was used with default functions (‘Express Analysis’). Only ‘GO Biological Process’ terms 

with an FDR-adjusted p-value < 0.05 were examined for each module. PPI annotations and 

enrichments were calculated with STRING,49 run with default settings in June 2019. A direct 

connection FDR-corrected p-value < 0.05 was needed for a module to be considered 

significantly enriched with PPIs. ARI gene group enrichment was calculated with ORA, with an 

FDR-corrected p-value < 0.05 and OR > 1 being required for a significant enrichment. 

Gene biotype enrichment was determined with a permutation approach. The 

number of each unique gene biotype was first acquired for each module. Then, for each 

permutation (10,000 in total) gene biotypes were samples across all genes without replacement 

and randomly assigned. The number of each unique gene biotype in each module was collected 

for each permutation. A distribution could then be created for each unique gene biotype in each 

module across the 10,000 permutations. Both over- and under-enrichment of each unique gene 

biotype in each module was determined directly with this distribution (one-tailed p-value). An 

FDR-corrected p-value < 0.05 was required for a significant enrichment. 

For the psychiatric GWAS enrichments, partitioned heritability was calculated 

with stratified LD Score regression50 (run with recommended settings) using 10 kb windows 

around genes (matched genes were used for isoform modules). An FDR-corrected p-value < 

https://paperpile.com/c/GaGm1R/EJJ7+qeW6
https://paperpile.com/c/GaGm1R/QlrV
https://paperpile.com/c/GaGm1R/qang
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0.1 was required for a significant GWAS enrichment (the threshold for significance was relaxed 

since many of the best available GWAS datasets utilized are underpowered, particularly the 

ASD GWAS). We selected the most recent and best powered GWAS which were relevant and 

interesting for comparison with these gene and isoform modules, including GWAS conducted for 

ASD,11 ADHD,51 BD,52 MDD,53 SCZ,54 Educational Attainment,55 Intelligence,56 and IBD.57 

Logistic regression was used for rare variant enrichment, controlling for both gene length and 

GC content, with an FDR-corrected p-value < 0.05 being required for a significant enrichment. 

Syndromic and highly ranked (1 and 2) ASD SFARI12 gene and high-confidence Epilepsy 

(compiled by D. Polioudakis et al. Neuron 2019)58 gene associations were examined. Finally, 

ORA was used to assess previous module enrichment, with an FDR-corrected p-value < 0.05 

and OR >1 indicating a significant positive overlap.  

 

Neuronal density and cortical layer 4 association with ASD dysregulation 

 

A linear model was used to compare region-specific macaque NeuN density15 to 

region-specific ASD effects (model beta) in the regionally-variable gene MEs. Macaque brain 

areas were matched to Brodmann areas (shared in Table A4.7), with six regions matching 

between this dataset and the macaque dataset. FDR-corrected p-values < 0.1 were considered 

significant neuronal density associations (the FDR threshold was relaxed, since only 6 

regions/points were available for every comparison). A leave-one-out cross-validation was 

performed to assess individual regional contributions to neuronal density associations, in which 

a single region was withheld and linear model statistics were re-calculated. In addition to 

neuronal density, we also examined the association between cortical layer 4 thickness18 (von 

Economo and BigBrain estimates, as shared in the publication) and region-specific ASD effects 

in the regionally-variable gene MEs. All 11 regions were matched to layer 4 thickness measures 

https://paperpile.com/c/GaGm1R/vLSu
https://paperpile.com/c/GaGm1R/AAAK
https://paperpile.com/c/GaGm1R/900A
https://paperpile.com/c/GaGm1R/wYDI
https://paperpile.com/c/GaGm1R/w5NB
https://paperpile.com/c/GaGm1R/WKxB
https://paperpile.com/c/GaGm1R/9KzN
https://paperpile.com/c/GaGm1R/9dOX
https://paperpile.com/c/GaGm1R/M1Fi
https://paperpile.com/c/GaGm1R/DWdP
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(this key is shared in Table A4.7). This comparison was also performed with a linear model, with 

FDR-corrected p-values < 0.05 considered significant layer 4 thickness associations.  

 

snRNA-seq 

 

Matched control and ASD samples for co-variates (i.e age, sex, manner of death) 

were processed in the same nuclear isolation batch to minimize potential batch effects. 50 mg of 

sectioned brain tissue was homogenized in 2.5 mL of RNAase-free homogenization buffer 

(250mM sucrose, 5mM MgCl2, 25mM KCL, 10mM Tris pH8, 1 uM DTT, 0.2U RNaseIN, 1% 

BSA, 0.01% Triton X-100, 0.001% Digitonin in RNAse-free water) using glass dounce 

homogenizer on ice. The homogenate was filtered and subjected to a two layer micro-iodixanol 

nuclei centrifugal gradient (50%/30%) for 13500g for 20 minutes at 4°C. Supernatant was 

carefully removed and the nuclei containing pellet were resuspended in RNase-free PBS pH7.4, 

5mM MgCl2, 1% BSA, 0.2U RNaseIN. The nuclear suspension was filtered twice through a 30 

um cell strainer. Nuclei were counted using a hemocytometer and diluted to 1,000 nuclei/uL 

before performing single-nucleus isolation on the 10X Genomics controller.; The 10X capture 

and library preparation protocol was used without modification. Single-nucleus libraries from 

individual samples were pooled and sequenced on the NovaSeq 6000 machine (average depth 

60,000 reads/nucleus).  

Raw snRNA-seq data processing was performed with 10X Genomics CellRanger 

software, Seurat,59 and Liger.60 CellRanger was used with default parameters, except we 

utilized the human pre-mRNA reference file (ENSEMBL GRCh38)27 to insure capturing intronic 

reads originating from pre-mRNA transcripts abundant in the nuclear fraction. Individual libraries 

were analyzed in Seurat for quality control metrics and filtering. Individual libraries were filtered 

to retain nuclei with at least 500 genes expressed and less than 5% of total UMIs originating 

from mitochondrial RNAs. Individual matrices were combined, UMIs were normalized to the total 

https://paperpile.com/c/GaGm1R/9SQN
https://paperpile.com/c/GaGm1R/I9Oq
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UMIs per nucleus and log transformed. Nuclei for all ASD and control subjects from both the 

PFC and OCC were used for clustering with integrative non-negative matrix factorization with  

K=40 and lamba= 5.0 followed by quantile normalization and louvain clustering in Liger. We 

then visualize integrated cells in two-dimensional space with Uniform Manifold Approximation 

and Projection (UMAP). 

 

Cell-type deconvolution 
 
Selected datasets 

Bulk RNA-seq: For the 808 samples from 11 regions, we used the residuals of the regression of 

the bulk data against technical covariates. While we ran the deconvolutions for all samples, we 

explicitly excluded the Dup15q samples from the downstream comparisons between the ASD and 

CTL cohorts. 

Single-nuclei RNA-seq: The single-nuclei dataset used in this analysis was obtained from the 

frontal cortex (FC) and primary visual cortex (V1C) of 4 individuals (2 ASD and 2 CTL) overlapping 

with the bulk tissue cohort, comprising four FC libraries and four V1C libraries (described in the 

preceding section). Cell type assignments for the bulk-tissue-overlapping snRNA-seq libraries 

were obtained by looking at the expression of canonical markers from years of culminated mouse 

and human studies and recent single-cell atlases. Specifically, we utilized the Hodge 2019 (Allen 

Institute)13 and Lake 201818 papers to establish frontal cortex and V1 specific signatures found 

previously. Based on both the expression level of the gene, but also the percentage of cells within 

a cluster that expressed said gene, we identified 35 cell types/states. BA17 specific neurons are 

superficial neurons in V1 that express SYT2 and RORB higher than frontal cortex, and Layer 4 

V1 Ext neurons express PHACTR2 and EYA4 over other areas. 
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Here are examples of core genes used to establish excitatory neuronal types: SLC17A7, 

RBFOX3. For Excit L2/3: “LAMP5",“CUX2”,“GLRA3", “CUX1”, “LHX2",“CBLN2”, “RASGRF2", 

“COL5A2”, “LMO3", “SATB2”. For Excit 3/4: “RORB”, “PCP4”, “LMO3", “CUX2”, “SATB2", 

“NEFM”, “PHACTR2",“EYA4” . For Excit L5/5B: “BCL11A”,“CRYM”,“FOXP2",“BCL11B”,“FEZF2", 

“RORB”, “DKK3", “TLE4”, “SEMA3E”, “LMO4", “CCK”,“ETV1", “NEFH”, “CNTN6", “FOXO1”, 

“OPN3", “LIX1”, “SYT9", “S100A10”, “LDB2", “CRIM1”, “PCP4", “SATB2”, “CRYM”. For Excit L6: 

“GLRA3", “LMO3”, “BHLHE22", “RORB”, “NNAT”, “FOXP2”, “ETV1", “FEZF2”, “TLE4", “GRIK4”, 

“NTNG2", “OPRK1", “NR4A2”, “BCL11B”, “THY1”. 

 

Data processing for deconvolution analyses 

We applied the following processing steps to the bulk tissue RNA-seq and snRNA-seq data prior 

to running CIBERSORTx.  

1. Bulk RNA-seq: For the post-regression residual matrices, gene names were converted 

from ENSEMBL IDs to HGNC symbols. Any genes that were not mapped (by biomaRt in 

R) were removed. Gene expression values were transformed from their log-base-2 values 

to non-log expression values, as required by CIBERSORTx. 

2. snRNA-seq:  

a. Expression analysis: The input data format consisted of standard CellRanger 

output matrices. The matrices were read into Seurat (https://cran.r-

project.org/web/packages/Seurat) objects in R. Lenient QC cutoffs of “Number of 

RNA features > 500” and “Percent Mitochondrial genes < 10” were chosen to filter 

out cells. The Liger cell-type-cluster labels were associated with cells, and any 

cells without identified cell types were removed from the analysis. We again used 

scran but modified the previous pipeline slightly: (I) removed cell types that have 

< 10 cells within the sample; (II) found the size factors using pool sizes of 20, 30, 
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40, 50, and 60; and (III) further removed any cells that produced negative size 

factors. Finally, the counts for each cell were converted to a weighted counts-per-

million scale as 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝐶𝑃𝑀(𝑐𝑒𝑙𝑙 𝑖, 𝑔𝑒𝑛𝑒 𝑔) =

 106. 𝑆𝑖𝑧𝑒_𝑓𝑎𝑐𝑡𝑜𝑟(𝑐𝑒𝑙𝑙 𝑖).
𝐶𝑜𝑢𝑛𝑡𝑠(𝑐𝑒𝑙𝑙 𝑖,𝑔𝑒𝑛𝑒 𝑔)

∑ 𝐶𝑜𝑢𝑛𝑡𝑠(𝑐𝑒𝑙𝑙 𝑖,𝑔𝑒𝑛𝑒 𝑔)
𝑁𝑔𝑒𝑛𝑒𝑠
𝑔=1

, and 𝑁𝑔𝑒𝑛𝑒𝑠 = Total number of 

genes. 

 

b. Pooling of cells: We combined cells from the FC and V1C regions into a single 

reference matrix for the deconvolution. Each of the 4 FC and 4 V1C libraries was 

run through the preprocessing steps separately and combined subsequently. The 

merging of matrices was carried out by concatenating pandas data frames in 

Python, using a join on overlapping gene names. It is worth noting that this merging 

process results in only the intersecting genes across all datasets being included, 

and due to the removal of rows corresponding to non-overlapping genes, the 

resulting cell expression vectors may not be normalized to 106. The numbers of 

cells included in the final deconvolution analysis are 145,373 cells. 

 

CIBERSORTx parameters 

We downloaded the fractions module of CIBERSORTx (doi.org/10.1038/s41587-019-0114-2) 

from the website, in the form of a Singularity image of the Docker file. We ran the program in the 

mode that accepts a full single cell count matrix as input, thereby implicitly generating a reference 

matrix (the parameter single_cell is set to TRUE), and set the batch-correction mode to the ‘S’ 

mode (the parameter rmbatchSmode is set to TRUE).  

   

Testing for differences in cell fractions between ASD and CTL groups 
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To evaluate whether differences, between the ASD and CTL groups, in the cell fractions of 

particular cell types in each region were statistically significant we calculated p-values from the 

Wilcoxon Rank-Sum Test and two-sided Kolmgorov-Smirnov (KS) Test on the distributions of the 

two groups. These were calculated using the scipy.stats.ranksums and scipy.stats.ks_2samp, 

respectively in python’s scipy library. For multiple-hypothesis-testing correction, we performed 

Bonferroni correction for each region: that is, we divided the p-values for each cell type and each 

region by the number of cell types considered (and not by the product of the number of cell types 

and the number of regions). Wilcoxon rank-sum test p-values that were lower than the Bonferroni 

corrected significance threshold (0.05/35 = 0.0014) were considered to represent significant 

differences in cell-type proportion. 

 

Testing for differences in cell fractions across regions 

ANOVA was used to test for differences in cell fractions across all eleven regions separately in 

ASD and CTL groups. Significant differences were those lower than the Bonferroni significance 

threshold, corrected across all cell-types within diagnosis groups (0.05/35 = 0.0014). ASD 

differences were considered attenuated if the ASD p-value was greater than that of the CTL group.  
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A4.2: Extended Figures 

 

Figure A4.1 | Experiment workflow and sample overview. a. Overview of experiment workflow. b. 
Summary of sample composition (biological data, brain bank source, and PMI). 
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Figure A4.2 | Quality control measures. a. Sequencing batch parameters. b. Sequencing batches (top) 
and sequencing statistics (bottom) by region and diagnosis. c. Top 15 expression PCs (gene and isoform, 
with % of variance explained denoted) association with meta data (top) and sequencing statistics (bottom). 
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Figure A4.3 | Model covariates and previous studies across 11 cortical regions. a. For the covariates 
selected for the gene (left) and isoform (right) linear mixed models, % of expression variance explained 
across all genes/isoforms. b-c. For the Voineagu et al. and Parikshak et al. studies, b. ASD associated 
gene module ASD effect (standard error bars and cortical lobes indicated) and c. ASD log2 FC of DE genes 
identified in these studies, compared to this dataset (Spearman’s correlation rho, R, is plotted along with 
the linear least squares regression best fit line). 
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Figure A4.4 | Transcriptomic changes across 11 cortical regions. a. Overlap of Whole-Cortex DE ASD 
genes and isoforms (blue) with other cortical region DE genes (no color). Regions with no third numeric 
label on the right completely overlap with the Whole-Cortex DE genes. b. For the Whole-Cortex DE, overlap 
of genes and isoforms. Regions not shown have no unique DE. c. log2(FC) (top) and standard error (SE, 
bottom) of the Whole-Cortex ASD DE overlapping and distinct genes and isoforms. d. Overlap in DE ASD 
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and dup15q genes and isoforms. e. For regions with DE ASD genes (left) and isoforms (right), ASD 
log2(FC) v. dup15q log2(FC) for specific regions (with principal components regression slope, S). 
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Figure A4.5 | Transcriptomic regional identity attenuation in ASD. a. Mean-centered distribution of 
10,000 permutations for the significantly attenuated regional comparisons in ASD. Red bar = true difference 
in the number of DE genes between controls and ASD. b. Sample size for all regional comparisons. c. 
Permutation p-values for all regional comparisons. d. For 10,000 regional comparison bootstraps, ratio of 
DE genes in ASD compared to controls. e. Number of DE genes between pairs of regions in this study 
(mean across bootstraps in controls, y-axis) compared to the Allen Brain Atlas (ref. 10, mean across 



279 
 

matched regions, x-axis; see Methods for matched regions). This Allen Brain Atlas dataset, with only 2 
unique brains, is the best publicly available dataset for comparison (linear least squares regression best fit 
line plotted). 
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Figure A4.6 | Additional ARI gene dysregulation. a. First principal component (PC1) of posteriorly 
downregulated (1,881, left) and upregulated (1,695, right) ARI genes identified in ASD, plotted in Controls 
and dup15q (loess regression line plotted). b. For each significantly attenuated regional comparison, the 
identified attenuated regional identity (ARI) genes. At center, number of ARI genes with greater neurotypical 
expression in each pair of regions. On either side of the barplot, the PC1 of the genes with greater 
neurotypical anterior (left) or posterior (right) expression is plotted across the pair of regions in Controls and 
ASD. The Wilcoxon signed-rank test (unpaired) p-value is shown. 
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Figure A4.7 | Gene-level co-expression network analysis module associations. Top: average-linkage 
hierarchical clustering of module eigengene biweight midcorrelations. Significant FDR corrected p-values 
are indicated (FDR < 0.05; for GWAS, FDR < 0.1). Any signed –log10(p) colors greater or less than 5/-5 
are set at a max/min of 5/-5 . For ASD, dup15q, and Age covariates, FDR p-value from the linear mixed 
model testing the association of these covariates with module eigengenes is depicted. For the ASD and 
dup15q region-specific comparisons, cortical lobule colors are indicated (Fig. 1a), and bold-italic FDR p-
values indicate that these regions are effected with significantly greater magnitude than the ASD whole-
cortex (Methods). For gene biotypes, both positive and negative enrichment is shown (Methods). Positive 
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enrichment is shown for cell-type, neuronal subtype (ref: Hodge et al, Nature 2019), ARI gene, GWAS, and 
rare variant enrichment (Methods). 
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Figure A4.8 | Isoform-level co-expression network analysis module associations. Top: average-
linkage hierarchical clustering of module eigengene biweight midcorrelations. Significant FDR corrected p-
values are indicated (FDR < 0.05; for GWAS, FDR < 0.1). Any signed –log10(p) colors greater or less than 
5/-5 are set at a max/min of 5/-5 . For ASD, dup15q, and Age covariates, FDR p-value from the linear mixed 
model testing the association of these covariates with module eigengenes is depicted. For the ASD and 
dup15q region-specific comparisons, cortical lobule colors are indicated (Fig. 1a). For gene biotypes, both 
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positive and negative enrichment is shown (Methods). Positive enrichment is shown for cell-type, GWAS, 
and rare variant enrichments (Methods). 
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Figure A4.9 | Neuronal Density Associations, snRNA-seq, and Cell-type Deconvolution. a. Macaque 
neuronal density v. module eigengene ASD effect for modules featured in Fig. 4c-d (linear least squares 
regression). Both p-value and FDR corrected p-value are plotted. b. P-value histogram of all gene modules’ 
linear least squares regression with macaque region-specific neuronal density. c. UMAP plots of snRNA-
seq with cell sub-types (top) and brain regions (bottom) depicted. d. Number of genes differentially 
expressed in ASD in each cell subtype. Upregulated genes are above 0 (red arrow) and downregulated 
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genes are below 0 (blue arrow). e. Average proportion of each broad cell-type in each diagnosis x cortical 
lobule group, derived directly from the snRNA-seq data. f. Additional significant (Bonferroni corrected p-
value < 0.05) cell-type proportion differences in ASD from cell-type deconvolution. Region and cell-type are 
indicated in the title of each plot. g. For two example cell-types, cell-type proportion attenuation in ASD 
across regions. ANOVA p-values stratified by diagnosis are shown. 
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Figure A4.10 | Results Summary. Overview of RNA-sequencing experiment and results. Region-specific 
dysregulation scale in the top right corner and the leftmost portion of the bottom panel depict the region-
specific slopes compared to the whole cortex effect from Fig 1d. Median PC 1 of the ARI dysregulated 
genes is plotted in the middle panel. In the right portion of the bottom panel, the median ME of GeneM4 
(left) and GeneM3 (right) is depicted. 



288 
 

A4.3: Extended Tables 

 

Table A4.1: Metadata and sequencing quality metrics 

Metadata and sequencing quality metrics for all samples, along with top gene and isoform 

expression principal component associations with metadata and sequencing quality metrics. 

Table A4.2: DE gene overlap analyses 

Differential gene expression overlap data, both with previous publications (Voineagu et al. 2011 

and Parikshak et al. 2016) and within this dataset (across regions, diagnoses, and whole gene 

v. isoform datasets). Regional ASD DE gene permutation data is also included. 

Table A4.3: DE gene results 

Linear mixed model statistics for biological covariates (diagnosis, region, age, sex), for all genes 

and isoforms assessed.  

Table A4.4: Transcriptomic regional identity analysis results 

Statistics from transcriptomic regional identity analysis, including permutation data (for both 

gene and isoform level expression), bootstrap data, and attenuated regional identity (ARI) gene 

data. A region matching key for comparing Allen Grain Atlas regions to Brodmann areas is also 

included. 

Table A4.5: Genes matched to WGCNA modules 

For all genes and isoforms, WGCNA module assignment, kME values, and gene/isoform 

annotation. 

Table A4.6: Functional characterization of WGCNA modules 

Functional characterization data for all gene and isoform modules, along with linear mixed 

model effects for biological covariates (diagnosis, region, age, and sex) in all modules. 
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Table A4.7: Supporting data for analyses of regionally-variable ASD transcriptomic 

dysregulation 

Supporting data for the analysis of regionally-variable ASD transcriptomic dysregulation, 

including: neuronal density and cortical L4 thickness associations with modules, brain area 

matching keys for these associations, module overlap with low integrity RNA genes, snRNA-seq 

cell-type proportions across regions (including bootstrapped proportion statistics), snRNA-seq 

DE gene data, and cell-type deconvolution results and statistics. 
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