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ABSTRACT OF THE DISSERTATION

Exploring Interprocess Techniques for High-Performance MPI Communication

by

Kaiming Ouyang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2022

Dr. Zizhong Chen, Chairperson

In exascale computing era, applications are executed at larger scale than ever before, which

results in higher requirement of scalability for communication library design. Message Pass-

ing Interface (MPI) is widely adopted by the parallel application nowadays for interprocess

communication, and the performance of the communication can significantly impact the

overall performance of applications especially at large scale.

There are many aspects of MPI communication that need to be explored for the

maximal message rate and network throughput.

Considering load balance, communication load balance is essential for high-performance

applications. Unbalanced communication can cause severe performance degradation, even

in computation-balanced Bulk Synchronous Parallel (BSP) applications. MPI communi-

cation imbalance issue is not well investigated like computation load balance. Since the

communication is not fully controlled by application developers, designing communication-

balanced applications is challenging because of the diverse communication implementations

at the underlying runtime system.
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In addition, MPI provides nonblocking point-to-point and one-sided communica-

tion models where asynchronous progress is required to guarantee the completion of MPI

communications and achieve better communication and computation overlap. Traditional

mechanisms either spawn an additional background thread on each MPI process or launch

a fixed number of helper processes on each node. For complex multiphase applications,

unfortunately, severe performance degradation may occur due to dynamically changing

communication characteristics.

On the other hand, as the number of CPU cores and nodes adopted by the ap-

plications greatly increases, even the small message size MPI collectives can result in the

huge communication overhead at large scale if they are not carefully designed. There are

MPI collective algorithms that have been hierarchically designed to saturate inter-node

network bandwidth for the maximal communication performance. Meanwhile, advanced

shared memory techniques such as XPMEM, KNEM and CMA are adopted to accelerate

intra-node MPI collective communication. Unfortunately, these studies mainly focus on

large-message collective optimization which leaves small- and medium-message MPI collec-

tives suboptimal. In addition, they are not able to achieve the optimal performance due to

the limitations of the shared memory techniques.

To solve these issues, we first present CAB-MPI, an MPI implementation that can

identify idle processes inside MPI and use these idle resources to dynamically balance com-

munication workload on the node. We design throughput-optimized strategies to ensure

efficient stealing of the data movement tasks. The experimental results show the benefits

of CAB-MPI through several internal processes in MPI, including intranode data transfer,
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pack/unpack for noncontiguous communication, and computation in one-sided accumulates

through a set of microbenchmarks and proxy applications on Intel Xeon and Xeon Phi plat-

forms. Then, we propose a novel Dynamic Asynchronous Progress Stealing model (Daps)

to completely address the asynchronous progress complication; Daps is implemented inside

the MPI runtime, and it dynamically leverages idle MPI processes to steal communication

progress tasks from other busy computing processes located on the same node. We compare

Daps with state-of-the-art asynchronous progress approaches by utilizing both microbench-

marks and HPC proxy applications, and the results show the Daps can outperform the

baselines and achieve less idleness during asynchronous communication. Finally, to fur-

ther improve MPI collectives performance, we propose Process-in-Process based Multiobject

Interprocess MPI Collective (PiP-MColl) design to maximize small and medium-message

MPI collective performance at a large scale. Different from previous studies, PiP-MColl

is designed with efficient multiple senders and receivers collective algorithms and adopts

Process-in-Process shared memory technique to avoid unnecessary system call and page

fault overhead to achieve the best intra- and inter-node message rate and throughput. We

focus on three widely used MPI collectives MPI Scatter, MPI Allgather and MPI Allreduce

and apply PiP-MColl to them. Our microbenchmark and real-world HPC application ex-

perimental results show PiP-MColl can significantly improve the collective performance at

a large scale compared with baseline PiP-MPICH and other widely used MPI libraries such

as OpenMPI, MVAPICH2 and Intel MPI.
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Chapter 1

Introduction

Message Passing Interface (MPI) is widely used in HPC applications for low latency

and high network throughput communication. Especially in exascale era, applications are

usually executed at large scale so that MPI communication plays an important role at the

overall performance.

Considering the importance of MPI communication, many studies have been per-

formed to improve the performance. One of research directions is to load balance the

communication workload among processes. Dynamic load balance is a common approach

for irregular workloads or for applications adapting heterogeneous execution environments.

This approach is widely utilized in both domain applications and runtime systems. Fla-

herty et al. [41] and Biswas et al. [15] introduced their dynamic load balancer approaches

for irregular workloads in mesh applications by repartitioning domains. Sheridan et al. [103]

presented a distributed work-stealing scheme for X10 regular applications. At runtime level,

AMPI [12] executes processes on top of user-level threads and adopts Charm++ [71] to mi-
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grate tasks between processes to dynamically balance workloads. The lightweight user-level

thread-based implementation allows the user to overdecompose the problem and create

more tasks than the number of underlying cores. Therefore, migrating tasks across cores

can potentially make a workload balanced on each core. The task in AMPI is essentially an

MPI rank containing both user computation and communication work. AMPI applications

have to periodically invoke the AMPI migrate function in order to allow the runtime to

move tasks across cores for load balance.

There are also researches that explore the benefits of work stealing which can be

adopted by MPI communication load balance design. Traditional work-stealing mechanisms

are designed for multithreading environments. The work-stealing strategies often focus

on computing tasks. LAWS [25] involves a triple-level work-stealing algorithm to make

idle threads steal tasks from local workers, the local cache-friendly task pool, and the

remote cache-friendly task pool, in order to maximize cache reuse. ADWS [104] provides

hierarchical localized work stealing to steal tasks only in an activated range, for better data

locality. HotSLAW [87] extends stealing beyond intranode to distributed environments;

it hierarchically picks a victim for work stealing to keep data access as local as possible.

Barghi et al. [9] designed a locality-aware work stealing based on the actor model and

NUMA architectures. Many other methods[32, 27, 128, 83, 36, 24, 101, 93, 130] also have

tackled NUMA-aware work stealing by increasing local data access to mitigate NUMA

effects on remote task stealing. Instead of creating tasks beforehand, cooperative stealing

[4, 56] utilizes the message-passing-based approach where victims create tasks only when

the worker sends a stealing request, in order to avoid overhead caused by concurrent deques.
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On the other hand, MPI asynchronous progress is also a critical part which can

significantly impact the performance of communication. Jiang et al. [69] propose a thread-

based asynchronous progress method on the InfiniBand clusters for one-side communication.

Pritchard et al. [97] utilize CoreSpec capability provided by Cray XE Systems to dedicate

one or more cores to background threads for asynchronous progress. Casper [109] designates

user-specified number of ghost processes and offloads RMA and point-to-point operations

to the ghosts processes for asynchronous progress.

The dynamic version of Casper[106] can disable inefficient asynchronous progress

during a multistage execution, but the number of ghost processes cannot be dynamically

changed. Vaidyanathan et al. [123] target the MPI+Threads programming model where

MPI communication is offloaded to the corresponding background thread on each MPI

process. Because all threads on an MPI process can share the same background thread,

it does not involve the drawbacks of the thread model in traditional MPI-only programs.

Ruhela et al. [99] improve the thread-based asynchronous progress for MPI-only model

by reducing the frequency of progress polling from the thread. Alternatively, PIOMan

[118] is an external task scheduler for communication libraries. The task scheduler can

asynchronously handle offloaded communication tasks such as polling progress on idle cores.

However, it has to closely work with the thread scheduler to ensure core idleness. PAMI

[78] uses communication threads for asynchronous progress on IBM Blue Gene/Q platform,

but it requires special hardware and kernel support for such offloading.

Sur et al. [112] exploit RDMA read and selective interrupt-based asynchronous

progress on the InfiniBand cluster. On IBM systems, as described in [77, 76, 79], the

3



system interrupt-based progress mechanism is studied. In addition, MPI collectives are

widely adopted in current HPC application and must be carefully designed to provide

good scalability for large-scale execution. Many studies have been done to improve MPI

collective performance. Thakur et al. [116] focus purely on the internode MPI collective

algorithm design and can provide efficient collective communication in the general case. Jain

et al. [67] propose a collective framework that implements release and gather primitives

to implement all types of MPI collectives. This method is general and based on POSIX-

SHMEM for data exchange to deliver high performance. LiMiC-, KNEM-, and CMA-based

collective designs [34, 86, 22] are proposed to bypass the POSIX-SHMEM limitation. In

their designs, processes single-copy exchange data through kernel and accelerate intranode

collective performance. Hashmi et al. [53] design XPMEM-based MPI collectives to improve

reduce-related MPI collectives with userspace data sharing. Processes expose and attach

the private buffers through the system calls xpmem make and xpmem attach; then they can

perform reduction directly from the attached buffer to achieve zero-copy communication.

Moreover, Kandalla et al. [72] propose a multileader–based allgather algorithm

to increase network throughput, and the improved version propsoed by Parsons et al. [92]

presents the POSIX-SHMEM–based multisender design to utilize multiple senders to in-

crease network throughput. Other thread-based works [64, 94, 82, 113] utilize threads

instead of processes to achieve high-bandwidth intranode communication.
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1.1 Problem Statement

This thesis mainly focuses on three important problems that exist in current ex-

ascale computing era where HPC applications are executed on large-scale clusters.

The first problem we focus on is communication imbalance in which the processes

can spend various amount of time in communication even if the communication workload

is well-balanced by application developers. This issue causes idleness, resource waste and

worse performance, which severely limits the scalability of MPI communication.

The second problem is the suboptimal MPI asynchronous progress. Asynchronous

progress is usually triggered by the preallocated threads or processes, but the statically

allocated threads or processes can result in resource waste when there is not enough asyn-

chronous progress to perform during execution.

The last problem is the inefficient design of small- and medium-message MPI

collectives at large scale. The traditional MPI collectives rely on the POSIX, XPMEM, CM,

KNEM shared memory techniques with one leader per node for inter-node communication.

The designs are not able to deliver maximal performance for small- and medium-message

MPI collectives at large scale.

1.2 Thesis Statement

In this thesis, we propose the corresponding methods to mitigate or solve the issues.

For the CAB-MPI design, it mitigates the imbalance for applications at large scale during

communication where idle processes are able to steal the communication workload from

other on-node processes; Daps provides the capability for idle processes to dynamically poll
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the asynchronous progress of busy processes to improve overall performance; PiP-MColl is

an efficient design for small- and medium-message MPI collectives which provide maximal

message rate and bandwidth usage at large scale.
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Chapter 2

CAB-MPI: Exploring Interprocess

Work-Stealing towards Balanced

MPI Communication

2.1 Introduction

MPI remains the dominant parallel programming model in high-performance com-

puting (HPC) applications. A primary goal of MPI applications is to efficiently execute on

large-scale systems while maintaining low communication overhead. The communication

overhead is not only caused by the data transfer required by application algorithms but

may be also caused by the synchronization between processes that are handling unbalanced

workload. That is, the process that has finished its local work has to wait for the other

busy processes (e.g., the one that handles heavier work) to complete at a synchronizing
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point before moving to the next step or iteration in the application. Such an issue not only

degrades performance but also causes underutilization of hardware resources because the

underlying cores are completely idle during waiting.

Application developers have put significant effort into balancing computational

workload [41, 15, 55, 33]. However, the balance of communication workload (e.g., data

transfer and internal processing in MPI) is often not well optimized, resulting in considerable

performance degradation. For instance, the stencil is a widely studied application pattern

and is considered to be regular and balanced (i.e., bulk synchronous parallelism). As we

show in Figure 2.1, however, a well-balanced seven-point three-dimensional stencil program

can still present up to 45% idle time (i.e., the period idly waiting inside MPI) on some

processes, resulting in 18% degradation in the overall performance (based on the estimated

“ideal time” with balanced communication.1) Indeed, such idleness is caused mainly by the

imbalance of communication.

Pursuing evenly distributed communication at the application level is impractical

mainly because the users of MPI cannot precisely estimate the amount of work involved

inside each MPI call. For instance, intranode communication and internode communication

are usually implemented differently. Consequently, the required workloads are very different

even if the message size is the same. Within noncontiguous data transfer, depending on

the data layout the workloads can be significantly different (e.g., the data transfer of the

X-Z plane vs. that of the Y-Z plane in a 3D halo exchange). Moreover, even with the same

type of data transfer, the amount of work might vary depending on the location of the

1We obtained the ideal time by averaging the sum of compute time and communication time on all 36
processes on the node.
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communicating processes (e.g., cross-NUMA data transfer usually takes longer than that

inside a NUMA node).
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Figure 2.1: Unbalanced communication in 3D 7-point stencil on 4 Broadwell nodes (Intel
Xeon E5-2695v4 CPU, 36 processes per node). The experiment adopted the miniGhost
stencil program [11] with parameters nx=ny=nz=50,nvar=100 and process grid 4×6×6.
The time is measured for processes on the first node.

To address this challenging issue, we believe that a runtime-level solution is essen-

tial. In this thesis, we present CAB-MPI, a communication-auto-balance MPI implementa-

tion that internally balances various communication workloads in MPI. CAB-MPI is based

on the concept of interprocess work stealing that utilizes idly waiting processes inside the

MPI library to “steal” communication tasks from the other busy processes located on the

same node, consequently achieving communication balance.

The work-stealing approach has been broadly investigated in multithreading pro-

gramming [49, 16, 114, 120, 104, 6, 23, 3, 54, 28, 26]. Such an approach requires flexible

data sharing because the worker (i.e., the one that steals work) has to access arbitrary data

associated with the stolen task. Such a requirement is naturally met in multithreaded pro-

grams since the worker thread and the victim thread share the same virtual address space.

In process-based MPI programs, however, a special memory-sharing technique has to be
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used because accessing data owned by a different process is prohibited by the operating

system. As the prerequisite of the proposed interprocess work stealing, we analyze primary

process-memory-sharing techniques that are available in the HPC community. We then

present the implementation of CAB-MPI based on the process-in-process address-sharing

technique [63].

Unlike traditional work-stealing solutions that are often designed for computa-

tional workloads, the work stealing in MPI specializes in communication. The dominant

data-movement-centric workloads make the stealing tasks memory bandwidth bound. A

performance-efficient work-stealing strategy must take into account the bandwidth limita-

tion especially when cross-memory-domain data access is involved. More important, stealing

a communication task has to involve multiple processes (e.g., sender, receiver, and worker

in MPI point-to-point communication) and data buffers (i.e., including source, destina-

tion, and any intermediate buffers). Special locality-aware strategies must be designed for

such a multiprocess multibuffer scenario. These challenges make our work-stealing design

completely different from existing work. To the best of our knowledge, CAB-MPI is the

first work that systemically explores interprocess work stealing for MPI-like communication

workloads.

We demonstrate the performance benefit of the proposed approach in several MPI

internal processes, including intranode data transfer, pack/unpack in noncontiguous data

transfer, and reduce operations in the RMA accumulate communication. We also present

a thorough experimental evaluation and analysis on Intel Xeon Broadwell and Knights

Landing (KNL) platforms using a variety of microbenchmarks and proxy applications.
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2.2 Shared-Memory Technique Analysis

Interprocess work stealing requires data sharing between processes mainly for two

kinds of data. The first is a shared data structure to manage the available tasks on each

process such as the queue structures used in CAB-MPI; the second kind is the user data

associated with each communication task, which is usually managed by the user program

(e.g., the source and destination buffers specified to the MPI send/receive calls). Unlike

threads, processes cannot arbitrarily access the data owned by another process, because of

limitations by the operating system (OS). Several process-memory-sharing techniques are

used in the HPC community, but not all of them provide sufficient support for the required

data sharing. In this section, we give a brief overview of each technique and discuss its

suitability for use in CAB-MPI.

POSIX shared memory [75] allows two processes to collectively allocate a shared-

memory segment. However, global variables or preallocated buffers (e.g., the user data

associated with an MPI call) cannot be shared.

Cross-Memory-Attach (CMA) [125] and KNEM [45] are two kernel-assisted tech-

niques. A process can directly read/write a buffer of another process by using the system call

provided by CMA or KNEM. To make a third process perform the copy for two processes,

it has to copy the data through a temporary buffer in its own memory space beforehand.

Each data copy has to go through the kernel, making these approaches expensive.

XPMEM [57] is a Linux kernel module supporting cross-process memory mapping.

A process can attach a remote memory segment to its local address space through an

XPMEM system call and cache the segment handle for reuse. The data copy is performed
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completely in user space. For every newly used buffer on a process, however, the worker

process still has to pay an expensive cost to attach the segment. Such a limitation can

result in up to O(p2) attach overhead, where p is the number of processes on a node.

Process-in-process (PiP) [63] is a user-level address-space-sharing technique based

on position-independent executables (PIE) and the dlmopen() Glibc function. The PiP en-

vironment allows every execution unit (called a PiP task) to behave as a normal OS process

(i.e., each task owns a privatized variable set and can execute a different program) but

share the same virtual address space with others located on the same node. Consequently,

it enables arbitrary interprocess data access without involving additional overhead.

The thread-based MPI implementations allow complete data sharing across MPI

processes. For instance, MPC is a thread-based language-processing system designed for

hybrid MPI and OpenMP programming [95]. The MPC runtime creates threads running

as MPI processes so that intranode data transfer can be highly optimized. AMPI over

Charm++[12, 71] implements MPI ranks over user-level threads in order to migrate ranks

over different physical cores for dynamical workload balance. Both implementations, how-

ever, indicate several shortcomings of the thread-based model, such as inconvenient global

variable privatization and lack of support for executing multiple programs.

In summary, PiP is the most suitable memory-sharing technique to support in-

terprocess work stealing in MPI. Some other approaches (i.e., POSIX shared memory, XP-

MEM, or the thread-based model), however, are also feasible with limitations in the user

program. For instance, if the user agrees to allocate user data only from shared memory,

POSIX shared memory would be sufficient for interprocess stealing.
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In the following sections, we use the PiP-aware MPI [63] as the baseline implemen-

tation. To be specific, we extended the MPICH implementation of MPI (commit 8cccb4c5

from the master branch at https://github.com/pmodels/mpich). We modified the Hy-

dra process launching of MPICH to spawn MPI processes as PiP tasks. All intranode data

transfer routines were optimized following the 1-copy protocol in the baseline implementa-

tion. Work stealing applies only to communication with medium-sized and large data; thus,

discussion regarding small data communication is omitted in this thesis.

2.3 Design and Implementation

In this section, we describe the design of the proposed work-stealing mechanism

in CAB-MPI.

2.3.1 Basic Semantics Definition

The core concept of CAB-MPI is to employ idle MPI processes to steal the com-

munication tasks from the other busy processes in order to balance workload. We call such

an idle process a valid “worker.” Below we define the semantics of worker, task, and their

locality.

Worker Definition

We define that a process becomes a valid worker of the work-stealing mechanism

when it is idly waiting at an MPI blocking call. A simple example is the MPI Barrier

call. Once a process arrives at the barrier, it has to idly wait until the last process in

the communicator also arrives at the call. Therefore, the waiting process becomes a valid
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worker. When a process makes a call to MPI Recv, for example, it becomes a valid worker

until a matching message arrives. In sending calls, the process can also be a valid worker

if it is waiting inside MPI for available communication resources or for response from the

other process (e.g., in a rendezvous protocol). For nonblocking calls such as MPI Isend and

MPI Put, the process returns immediately after initializing the sending; thus it cannot be a

worker. However, it becomes a valid worker once it arrives at the blocking synchronization

calls such as MPI Wait and MPI Win flush. For nonblocking synchronization calls such as

MPI Test, we consider that the user wants to compute after the call; thus we do not make

the process be a worker.

The worker status of a process is time-specific. For instance, a worker may become

invalid after finishing a stealing task if it detects that its waiting condition is met (e.g.,

the incoming data has arrived). In MPICH-derived MPI implementations, this situation

usually occurs when the process polls the progress engine.

Task Definition

MPI provides many types of routines to which work stealing can bring perfor-

mance benefits. We summarize them in two categories: data-movement-centric routines

and compute-centric routines. The former category includes any intranode communica-

tion calls such as MPI Send|Recv and one-sided operations and any internal data movements

for internode communication (e.g., data pack/unpack for noncontiguous data). The lat-

ter category refers to the reduce operation involved in some communication calls such as

MPI Accumulate and MPI Reduce. We define the the stealing task as moving or computing a

certain amount of data from the source to the destination buffer.
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We note that for intranode data movement or compute routines, the buffers are

usually the same as those of the user-specified buffers. For internode routines, however,

either the source or the destination buffer is an internal buffer maintained by MPI. We give

a detailed description in Section 2.3.4.

Ownership determination. Task ownership identifies the locality of tasks and workers,

which is a key performance factor in work stealing. Unlike traditional work-stealing scenar-

ios, a stealing task in CAB-MPI involves at least a pair of processes. Thus, special rules

must be designed to determine the ownership of a task. We define two common rules.

• Rule 1. A task belongs with the involved process that will likely consume the result

data.

• Rule 2. If it is unknown what process will use the result data, the task belongs with

the process that actually performs the data movement or computation before applying

work stealing.

Based on these two rules, we describe the task ownership for each MPI commu-

nication mode. For intranode send/receive, the receiver process owns the involved data

movement task(s) because it will likely use the received data (e.g., using it in a user com-

putation) (Rule 1 is applied). For intranode one-sided operations, however, the transferred

data does not have a specific “consumer.” Thus, the origin process that performs the work

in the 1-copy protocol owns the involved data movement or computing task(s) (Rule 2 is

applied). An internode operation may involve separate tasks on each node (e.g., an active-

message-based noncontiguous MPI Accumulate produces packing task(s) on the origin node

and computing task(s) on the target node). In such a case, each task is owned by the
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operating process on each node (Rule 2 ). Collective operations are implemented based on

active messages by default. Thus, the task ownership is similar to an internode operation.2

Locality Definition

Cross-memory domain (e.g., NUMA) work stealing may degrade performance es-

pecially for data movement tasks. The locality of stealing tasks and workers is an essen-

tial property for performance consideration. The granularity of locality varies on different

hardware architecture and can be hierarchical. in this thesis we consider only a single-level

granularity for simplicity (NUMA node). To be specific, we define that the locality of a task

belongs to the NUMA node to which the owner process is bound. Moreover, we use the term

local stealing to describe the case where a worker steals a task from the local NUMA node;

otherwise we describe it as remote stealing.

2.3.2 Framework Design

We present our basic work-stealing framework in Figure 2.2. We separate the

procedure into a task allocation flow from the view of the task owner and a work-stealing flow

from the view of a worker. At the task allocation flow, the owner logically chunks the buffers

and creates a separate task for each chunk. The task descriptor contains the information

of buffer offset, chunk size, reduce operation (MPI REPLACE is set for data movement tasks),

and datatypes. A completion flag is used to determine whether the worker has finished the

task. Each process maintains two queue structures: a first-in, first-out task queue shared

with all potential workers and a private track queue that is used to track any completed

2 Shared-memory-based collective optimization [68, 53] is orthogonal to this work; we leave work stealing
for such tasks as future work.
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tasks and reclaim the associated resources. The owner enqueues each created task into both

queues (atomicity is required only for the shared task queue.3) At the work-stealing flow, a

worker follows the stealing strategies (see Section 2.3.3) to choose the victim process. The

worker dequeues a task from the victim’s task queue and then processes it. After the task is

complete, the worker marks the completion flag in the task descriptor so that the owner can

notice the completion when traversing its private track queue and can clean up resources.

Ensuring MPI semantics correctness. For send/receive communication the stealing

tasks are created only after message matching. Thus, the message ordering is not broken by

work stealing. For one-sided accumulate operations, the owner process creates the tasks for

an operation only after obtaining permission to update the window (e.g., through a mutex

lock in MPICH) and always waits for the completion of all tasks before processing the next

operation. Hence, the required atomicity and ordering are ensured.

2.3.3 Work-Stealing Strategies

In this section, we explore the strategies for victim selection through three work-

stealing strategies.

Localized Work Stealing

The worker can perform only local stealing based on the fact that intra-NUMA

data access is always faster than that across NUMA nodes. Therefore, the data is always

kept in the local cache, and the stealing never causes extra cross-NUMA data access. The

3Our current implementation simply uses a lock-based single-producer-multiple-consumer queue. How-
ever, the implementation can be further optimized based on lock-free algorithms.
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struct task{
void *src_offset;  /* src addr */
void *dest_offset; /* dest addr */
size_t chunk_size;
MPIR_Op op; /* task operation */
MPIR_Datatype *src_datatype;
MPIR_Datatype *dest_datatype;
volatile int complete_flag;
......

};

task

(3) enqueue 
task queue

(4) enqueue 
track queue

Track queue (private to owner 
process for resource reclaim)

(2) create task
Source

Destination

(1) buffer are logically cut into chunks

Task queue (shared by all 
processes on the node)

Task Allocation Flow

(5) check and dequeue task

(6) process task and 
set complete flag

Stealing Worker

Stealing Strategy (determine 
stealing behaviors)

Work Stealing Flow

Busy Process (7) detect idleness

Figure 2.2: High-level queue-based work-stealing framework.

selection of a victim from the local NUMA is based on a random protocol that is simple yet

sufficient. If the victim’s task queue is not empty, the worker dequeues a task and handles

it; otherwise, the worker simply exits. We note that each worker checks only one victim at

a time in order to keep the stealing routine lightweight. This approach allows the worker

to frequently check whether its waiting condition is met so that it can switch back to its

original work. If the worker status is still valid, it can re-enter the stealing routine again.

Mixed Work Stealing

Mixed work stealing extends the localized work-stealing version. If a worker cannot

find any task from the selected local victim, it then proceeds to remote stealing following
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the same random victim selection method. All remote victims are maintained in a single

pool for random selection even if the architecture contains multiple NUMA nodes (e.g., in

KNL SNC4 mode). Similar to local stealing, each worker selects a remote victim only once,

to keep the trial lightweight.

Discussion: localized vs. mixed stealing. For memory-bound tasks that are dominated

by memory operations (e.g., memcpy), the performance is determined mainly by the achieved

data access throughput. Therefore, localized work stealing should be the best approach if

the number of local workers is sufficient. When the local workers are not enough to saturate

the memory bandwidth, however, allowing remote stealing can improve memory throughput.

Hence, mixed stealing works better in such a case. Unfortunately, none of the strategies

can efficiently serve all use cases. Therefore, we further explore the third strategy based on

throughput awareness.

Throughput-Aware Work Stealing

Throughput-aware work stealing is based on the notion that when the memory

bandwidth of a NUMA node is not saturated, increasing remote stealing can improve overall

throughput. When local stealing is sufficient to saturate the bandwidth, however, we need

to avoid remote stealing in order to ensure high local-NUMA throughput. To demonstrate

such a tradeoff, we use a simple memcpy microbenchmark to mimic the data movement

tasks in MPI. Each process allocates the source and the destination buffers from the same

NUMA node and performs memcpy with 64 KB of data 1,000 times. We adjust the number of

processes that simultaneously perform the copy on every NUMA node and report the overall

throughput on the node by summing the local throughput achieved by each process. The
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experimental platform consists of two NUMA nodes. We call processes on the first NUMA

node local processes, and we call the ones on the other NUMA nodes remote processes. As

shown in Figure 2.3, if we vary the number of remote processes for each fixed number of

local processes, throughput improves only when the number of local processes is less than 4.

When more local processes are performing the copy, adding remote processes significantly

degrades overall throughput. Clearly, we can divide the trend into a bandwidth-unsaturated

range and a bandwidth-saturated range as indicated in the graph.
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Figure 2.3: Memcpy throughput with variable number of local and remote processes on a
Broadwell node (two NUMA nodes each with 18 cores). The results are averaged from ten
runs, and the error is less than 4%.

Based on the throughput analysis, we design the throughput-aware work-stealing

strategy. The local stealing phase remains unchanged. When local stealing fails, it then tries
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to perform remote stealing. Unlike the mixed stealing strategy, it first checks the bandwidth

status of the NUMA node associated with the selected remote victim. The worker steals a

task from the victim only when the NUMA bandwidth is not saturated.

Precisely quantifying the bandwidth usage of a NUMA node is difficult because the

processes perform a variety of tasks during runtime. Some of the tasks are generated by MPI

while some others are from the user program; some tasks are memory-bound while some

others are more compute-bound. Therefore, we make a conservative estimation based on

the number of processes that are “possibly active” on that NUMA node. That is, we count a

process as guaranteed idle only when it is idly waiting inside MPI; otherwise, we assume it is

active and contributes to the bandwidth usage. We denote the number of active processes

by nactive. We define the threshold of saturated local workers based on the results from

Figure 2.3 (denoted by Nsaturate. Value is 4 on our platform). Therefore, a worker checks

whether the remote NUMA’s bandwidth is saturated by comparing nactive ≥ Nsaturate.

We emphasize that this method is conservative because we assume all active processes are

performing memcpy-like tasks. However, such a method allows us to avoid any performance

degradation that may be caused by remote stealing.

To keep the preferred local stealing fast, each process updates only a local flag.

The flag is 1 by default. It becomes 0 only when the process becomes a valid worker and

does not handle any stealing task. The worker that performs remote stealing checks the

flag on each process on the remote NUMA to count nactive.
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2.3.4 Work-Stealing Showcase

We exploit three internal aspects in CAB-MPI to showcase the proposed working-

stealing method: intranode contiguous data transfer, noncontiguous data packing/unpacking,

and the reduce operation in one-sided accumulate. We describe the task creation for each

aspect. The consequent work stealing follows the generic framework and strategies as de-

scribed in the preceding subsections.

Intranode Data Transfer

In the baseline PiP-aware MPI, the receiver process directly copies data from the

sender process on the same node after exchanging the buffer addresses at handshake. As

the simplest task type, we logically chunk such data copy into multiple chunks and expose

each chunk as a stealing task.

Noncontiguous Data Packing

To transfer noncontiguous data, MPICH internally triggers the pack/unpack rou-

tines. For an intranode message, if both the source and the destination buffers are non-

contiguous, an internal contiguous buffer is used; for internode messages, the data is first

packed into an internal buffer on the sender process for network transfer and then unpacked

into the destination buffer once it arrive on the receiving side. A similar approach is used

for both send/receive and one-sided operations. We logically chunk the pack/unpack task

and expose each as a stealing task.
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Reduce Operation

Several MPI functions carry a reduce operation (e.g., MPI SUM, MPI PROD). Here we

optimize the MPI Accumulate function as an example. In the baseline implementation, the

computation is performed by the origin process in an intranode accumulate through PiP’s

shared-memory environment; for any internode accumulate, it is implemented as an active

message (i.e., the target process receives the data and then computes and updates the

window). In either case, the computation is chunked and posted as stealing tasks. Each

task always handles a separate data range. We note that a similar optimization can be

easily applied to other MPI functions involving the reduce operation, such as MPI Reduce.

We omit its description because of space limitation.

2.3.5 Other Optimizations

Reversed Task Enqueue

The receiver process commonly will access the data after communication. For large

data transfer (e.g., larger than the last-level cache (LLC) size), the data at the low address of

the destination buffer may be flushed out from cache when the transfer completes if the data

movement starts from the low address. If the user later also loads data from the low address,

extra cache misses can occur, and thus the post-communication access becomes slow. To

reduce such cache misses, we propose to reverse the order of task enqueue. Specifically, we

define three access patterns: from low to high address (lo-to-hi), from high to low address

(hi-to-lo), and random access (random). We allow the user to provide a hint to MPI to

indicate the access pattern with the info key post comm access. The info value is random
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by default. If lo-to-hi is specified, we post tasks in reverse order; otherwise we post tasks

from low to high address. We note that the stealing tasks might be performed out of order

by different workers. Thus, this approach aims onlyto get a higher chance to keep data in

cache.

Noncontiguous Task Bundle

In noncontiguous data transfer, an internal contiguous buffer is used together with

the pack/unpack routines. On modern architectures[51] data stored in the internal buffer is

likely cached when performing pack and then reused at unpack. If we create stealing tasks

separately for pack and unpack routines, the tasks might be executed by different workers,

resulting in inefficient use of cache. Consequently, we propose to combine the pack and the

unpack work into a single task. To be specific, each stealing task carries data from a chunk

of the source buffer to the corresponding chunk in the destination buffer. The internal

buffer is allocated by each worker. In this way, the data packed into the internal buffer can

be reused. We note that the resulting benefit is highly related to the layout of the source

datatype. That is, if the layout contains a long stride between data elements, cache waste

can be caused by inappropriate prefetching. In Section 2.4 we demonstrate such a trend.

Nevertheless, the proposed optimization never causes performance degradation compared

with the original approach.

On-Demand Chunking

A small data chunk size may benefit performance because it can produce suffi-

cient tasks for parallelism; however, overly creating tasks also causes more manipulation
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overhead, such as the costs required by task creation, enqueue, and dequeue. Therefore,

we propose to adjust the chunk size “on demand” in order to maintain a reasonable degree

of decomposition. For instance, for contiguous data transfer we set three message ranges

and choose a different chunk size for each range based on profiling results. The appropriate

value for the range thresholds and the chunk sizes should be tuned for different platforms.

Our platform sets a 16 KB chunk size for small messages (< 96 KB), a 32 KB chunk size

for medium messages (96 KB ≤ size < 512 KB), and a 64 KB chunk size for large messages

(≥ 512 KB).

2.4 Experimental Configuration

The experiments were executed on a Broadwell cluster and a KNL cluster. The

Broadwell cluster consists of 664 nodes. Each node contains two Intel Xeon E5-2695v4

processors with 36 cores in total. Its memory is 128 GB of DDR4 RAM divided into

two NUMA nodes. The L1, L2, and L3 cache sizes are 32 KB, 256 KB, and 45 MB,

respectively. The node of the KNL cluster uses a 64-core Intel Xeon Phi 7230 processor

with 32 KB L1 cache, 1 MB L2 cache shared per 2 cores, 16 GB of MCDRAM, and

96 GB of DDR4. We set the cache mode with SNC-4 cluster (4 NUMA nodes) for all

tests . All nodes are connected through the Intel Omni-Path interconnect. We used PiP-

aware MPI extended from MPICH (commit 8cccb4c5 on the master branch) as the baseline

implementation compared against the proposed CAB-MPI implementation. We used the

gcc/gfortran compiler 4.8.5 to compile the MPI implementations and programs and used

PAPI-5.7 for cache miss analysis. We set the N saturate threshold in the throughput-
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aware stealing strategy to 4 on Broadwell nodes and to 12 on KNL nodes based on our

offline profiling by using the memcpy microbenchmark (see Section 2.3.3).

2.5 Microbenchmarks

In this section, we evaluate each showcase in CAB-MPI with a set of microbench-

marks. We also compare the stealing strategies and optimizations presented in Sections 2.3.3

and 2.3.5, respectively. Unless specified otherwise, we enabled all optimizations in the show-

case evaluation.

2.5.1 Intranode Data Transfer

We first evaluate work stealing for intranode data transfer. We use the experi-

ments also to analyze the efficiency of localized, mixed, and throughput-aware work-stealing

strategies. We extended the IMB-P2P PingPong test from the Intel MPI Benchmarks to

add more processes waiting at a barrier so that they can join as stealing workers. Each of

the PingPong processes touches the receive buffer after each round of data exchange (from

low address to high address). We measure performance for both intra-NUMA and inter-

NUMA PingPong. To isolate the performance of each strategy, we disabled all optimizations

proposed in Section 2.3.5 and used a fixed 64 KB chunk size.

In Figure 2.4a, processes 0–35 are placed sequentially from core 0 to 35; Figure 2.4b

uses the same approach. In Figure 2.4c and 2.4d, processes 0 and 1 are placed on NUMA

node 0 and node 1, respectively, to perform inter-NUMA pingpong. We first fill NUMA

node 0 with processes and then fill other NUMA nodes sequentially.
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A common trend observed from Figs. 2.4a and 2.4b is that speedup increases

with increasing message size. The reason is that speedup is limited by the number of

available tasks at small messages with fixed chunk size. In Figure 2.4a, mixed work stealing

always performs worse than the other strategies. The reason is that the workers from

the local NUMA are already sufficient to saturate memory bandwidth. Thus, enabling

remote stealing degrades performance. A comparison of localized and throughput-aware

strategies shows that the latter have observable overhead at small messages mainly due

to the bandwidth status checking. Figure 2.4b does not indicate such clear gaps on KNL

because the high bandwidth of MCDRAM enables room for remote stealing.

On the downside, however, remote stealing also forces the data of the destination

buffer to be cached in different NUMA nodes, consequently causing extra overhead when

the receiver touches the data. Similarly, we observe high deviation of the KNL results.

Specifically, the data block (64 B) can be cached in different tiles after stealing. Conse-

quently, the post-communication data touch suffers from varying access time subject to the

location of the cached block.

In regard to inter-NUMA results (see Figure 2.4c and 2.4d), we fix the message

size to 8 MB and gradually add more processes starting from the first NUMA node. The

PingPong processes are bound to the first two NUMA nodes, respectively. Before processes

fill out the first NUMA node, the tasks generated on the second NUMA node cannot be

stolen in the localized strategy. Therefore, its performance is significantly worse than that

of the other two. When more processes are added and the bandwidth becomes saturated,

mixed stealing degrades performance because of inefficient remote stealing.
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In conclusion, localized strategy can maximize memory throughput but lose remote

stealing chances; mixed strategy can utilize remote stealing chances but may cause extra

overhead when memory is saturated; throughput-aware strategy on average performs better

than localized and mixed strategies and delivers close-to-optimal performance in all exper-

iments. Nevertheless, they always significantly outperform the baseline. In the reminder of

the evaluation, we use the throughput-aware strategy for all experiments.

2.5.2 Noncontiguous Data Transfer

We extended the PingPong test for noncontiguous data transfer. We used a 3D

matrix of double, with the X dimension as the leading dimension and a fixed volume at

1 GB. We exchanged the X-Z plane in our experiments. The data layout is defined as a

vector datatype. We increased the Z dimension with fixed Y dimension size at 2 doubles

(the X dimension decreases).

Intranode Transfer

We compared two communication patterns, noncontiguous to contiguous (pack)

and noncontiguous to noncontiguous (pack-unpack), on both Broadwell and KNL nodes.

With increasing numbers of processes, we observe consistent speedup with all Z dimension

sizes (see Figure 2.5). We find up to 4x and 6.7x speedup in the pack tests on Broadwell

and KNL, respectively. The speedup in the pack-unpack tests is close to 3.7x on Broadwell

and 6.1x on KNL. We note that the speedup on KNL suddenly slows after the number of

processes becomes more than 16 because remote stealing was not enabled in the throughput-
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Figure 2.4: Intranode contiguous PingPong with comparison of localize, mixed, and
throughput-aware stealing strategies: (a) and (b) vary the message size with fixed num-
ber of processes (36 and 64 for Broadwell and KNL, respectively); (c) and (d) vary the
number of processes with fixed 8 MB message size. In all tests, only two processes perform
PingPong; the others remain idle and behave as workers. In (c) and (d) the workers are
sequentially increased from the first NUMA node. Core binding is set for all processes.
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aware strategy. Thus only 16 processes performed the work even when more processes were

added on the remote NUMA nodes (each KNL NUMA node contains 16 processes).
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Figure 2.5: Intra-NUMA noncontiguous PingPong with varying Z dimension sizes in the
X-Z plane of a 3D matrix. Each line represents a Z dimension size (count of doubles).
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Internode Transfer

To demonstrate the benefits of work stealing in internode communication, we per-

formed the same pack-unpack PingPong test with the X-Z plane datatype on two Broadwell

nodes. We expect that the internal packing on the sender and the unpacking on the receiver

can be improved by work stealing. We fixed the Z dimension size at 256 count of doubles

and gradually increased the number of idly waiting processes (i.e., workers) on each node.

As shown in Figure 2.6, the performance with stealing significantly outperforms that of

the baseline and achieves up to 46% improvement. When the number of processes on each

node is greater than 9, adding more workers does not help performance further because

the memory bandwidth has been saturated. This trend matches our observation in the

intranode experiments (Figure 2.5).
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Figure 2.6: Internode noncontiguous PingPong on two Broadwell nodes. The data layout
uses the X-Z plane of a 3D matrix with Z=256 (count of doubles).
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2.5.3 Accumulate Operation

We then evaluated the accumulate operation. To isolate the speedup in compute-

centric reducing tasks, we used contiguous data with the double datatype in our experi-

ments. We extended the IMB-RMA Accumulate test from the Intel MPI Benchmarks by re-

placing the lock-flush-unlock synchronization with fence. Thus, the other non-communicating

processes can wait inside MPI and perform stealing. In the intra-NUMA experiments, both

rank 0 and rank 1 were on the same NUMA node; all processes waiting at the fence call

could steal the exposed reducing tasks. In the internode experiments, rank 0 and rank 1

were on separate nodes; stealing tasks were available only on the target node (node 1).

Figure 2.7 reports the results. Work stealing consistently improves performance

for all data sizes. It delivers up to 3.7x speedup in the intra-NUMA test and more than

1.8x in the internode version. We note that the trend of the internode results is similar to

that of the intra-NUMA version. The speedup is reduced because of the constant cost of

network data transfer. While using a 128 KB data size, we notice both intra-NUMA and

internode accumulate speedup gradually decreases because of task dequeue contention and

bandwidth status checking overhead. In both experiments, we observe higher speedup with

large data size (e.g., 8 MB) because it provides more work that can be accelerated by the

workers. The increase of speedup slows after having more than 8 processes on the node

because the ceiling of memory throughput is reached.
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Figure 2.7: One-sided Accumulate with MPI SUM reduce operation and varying data size
(from 128 KB to 8 MB) on Broadwell. Data is contiguous with the double datatype. Only
rank 0 performs Accumulate; the others behave as workers.

2.5.4 Optimizations Evaluation

Reversed Task Enqueue

We reused the PingPong benchmark used in Section 2.5.1. We launched 36 pro-

cesses on a Broadwell node and set the data size to 90 MB (twice the 45 MB LLC size on

Broadwell). Each process accesses the data of the destination buffer from low address to

high address after data exchange. Thus, we set the info hint post comm access=lo-to-hi to

the world communicator. With the reversed task enqueue optimization, CAB-MPI posts

tasks from high address to low address of the buffers. As shown in Figure 2.8, this opti-

mization can reduce the post-communication access time by 11%. The result can be clearly

explained by the reduced L2 and L3 cache misses, as indicated in the graph.
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Figure 2.8: Reversed task enqueue (RTE) evaluation based on intra-NUMA PingPong on a
Broadwell node. Destination buffer access time, L1, L2, and L3 cache misses are reported.

Noncontiguous Task Bundle

We reused the pack-unpack PingPong benchmark with the X-Z plane datatype to

evaluate the noncontiguous task bundle optimization. We performed the experiment on a

single Broadwell node. As reported in Figure 2.9, the optimization significantly improves

performance, contributing up to 1.5x speedup (with Z=256 count of doubles) for both intra-

NUMA and inter-NUMA cases. The speedup rate decreases with larger Z dimension sizes

(longer stride in the vector layout). The trend is expected, as we discussed in Section 2.3.5.

On-Demand Chunking

We analyzed the performance of different static chunk sizes by using the contiguous

PingPong benchmark. We created 36 processes on a Broadwell node and varied the chunk

size for different message sizes. As shown in Figure 2.10, a small chunk size (e.g., 16 KB,

32 KB) is more beneficial for small messages; for large messages, however, large chunk sizes

(e.g., 32–96 KB) perform better. The reason is that a small chunk size enables sufficient
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Figure 2.9: Task bundle performance and speedup in intranode noncontiguous PingPong
on Broadwell.

tasks for small messages; when a message becomes large, a large chunk size can ensure

less task-stealing overhead. The proposed on-demand chunking allows CAB-MPI to set a

different chunk size for different message sizes; thus it always delivers the best performance.

64 96 128 192 256 384 512 1024 2048 4096 8192
Message Size (KB)

102

103

Ti
m

e
(u

s)

96KB Chunk Size
64KB Chunk Size
32KB Chunk Size
16KB Chunk Size
On-Demand Chunking

Figure 2.10: On-demand chunking evaluation.
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2.5.5 Stealing Overhead Analysis

The overheads of the work-stealing mechanism are caused by owner task creation,

owner/worker queue operations, and operations for updating and checking nactive on every

process (only in the throughput-aware strategy). We demonstrated the overheads by mea-

suring two modified CAB-MPI versions with the intra-NUMA contiguous PingPong test

with small messages. The first version enables work stealing for any message size but keeps

the chunk size unmodified. The owner process does not expose any stealing task because the

message size is always smaller than a single chunk. Thus, the workers perform “empty check-

ing” without stealing any task. We abbreviate this version as CABMPI-check-only. The

second version also forces each message to split into two tasks (denoted by CABMPI-check-

steal). Therefore, the remaining stealing overhead can be shown. As shown in Figure 2.11,

CABMPI-check-only reports close to 0.15µs overhead on a Broadwell node in comparison

with the baseline. This is caused mainly by the checking of nactive from processes on remote

NUMA nodes. The overhead produced by CABMPI-check-steal is more significant (e.g.,

close to 6.5µs at 2 B message). We analyzed that the overhead is generated mainly by

the lock contention on task queues that are concurrently accessed by 34 workers. However,

we note that CAB-MPI is designed for medium and large message transfer (e.g., we set a

threshold at 64 KB on our platform) and thus the contention overhead is negligible in prac-

tice. The small check-only overhead may degrade performance for applications that perform

only small messages (i.e., no stealing). The user can disable work stealing to eliminate such

an overhead.
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Figure 2.11: Stealing overhead evaluation with small messages by using intra-NUMA Ping-
Pong on a Broadwell node with 36 processes. Similar trend is observed on KNL.

2.5.6 Shared-Memory-Based Intranode Data Transfer

Several MPI implementations utilize shared-memory techniques (e.g., CMA, XP-

MEM, PiP) to optimize MPI intranode communication. We compared CAB-MPI with these

state-of-the-art optimizations. To be specific, we measured MPICH uses POSIX shared

memory (denoted by MPICH-posix), MPICH with the XPMEM cooperative protocol[21]

(MPICH-xpmem-coop), OpenMPI using CMA (version 4.0.3, denoted by OMPI-cma), PiP-

aware MPI extended from MPICH (baseline)[63], and MPC based on thread-based data

sharing (version 3.4.0)[95]. 4 The MPICH options use commit 427cdb07 from the master

branch. We compared these approaches with CAB-MPI through the intra-NUMA Ping-

Pong test on a single Broadwel node as shown in Figure 2.12. We note that the baseline

PiP-aware MPI performs copy only on the receiver whereas MPICH-xpmem-coop utilizes

both the sender and receiver to perform the copy, thus the latter shows better performance.

4MPC uses modified gcc 7.3.0 and software package which may cause unfair comparison with the other
approaches.
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Nevertheless, CAB-MPI improves the performance over all existing approaches by utilizing

the local idle processes.

0

1000

2000

3000

4000

5000

6000

Ti
m

e
(u

s)

MPICH-posix
MPICH-xpmem-coop
PiP-MPI (baseline)
OpenMPI-cma
MPC
CAB-MPI

Figure 2.12: Comparison of shared-memory-based optimizations by measuring intra-NUMA
PingPong with a fixed message size at 8 MB and fixed number of processes at 36 on a
Broadwell node. Only two processes perform PingPong; the others remain idle or behave
as workers.

2.6 Application Evaluation and Analysis

We evaluated our approach on two miniapplications: miniGhost and BSPMM.

2.6.1 MiniGhost

MiniGhost is a miniapplication developed for exploring the context of exchanging

interprocess boundary data that is widely seen in finite difference and finite volume compu-

tations [11]. MiniGhost is often used to mimic different stencils used in HPC applications.

Our experiments used its 3D 7-point stencil where each process computes a 7-point stencil

for nvar number of 3D grids each with (nx×ny×nz) dimension. We used the default bulk

synchronous parallel with message aggregation (BSPMA) method where each plane of the
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grids is accumulated into a single message and exchanged with the neighbor. For each of the

X-Y, Y-Z, and X-Z planes, we defined a different vector derived datatype to describe the

layout of data in nvar grids and directly specify it in the halo-exchange communication. For

instance, the accumulated message for the X-Y plane on each process can be represented

with a vector with nvar count of blocks each with (nx×ny) length and (nx×ny×nz) stride.

Compared with the manual pack/unpack-based implementation in the original miniGhost

code, this approach allows MPI to directly copy noncontiguous data into the internal buffer

that is ready for data transfer. We fixed the data size to 1 GB (nx × ny × nz × nvar×

sizeof(double)=1 GB) on each process and set nx, ny, and nz equal (each grid is a cube).

Thus, the global problem size is 1 GB×P , where P is the total number of processes. We

also modified the miniGhost code to use the MPI Cartesian topology in order to generate

the optimal process grid (e.g., 8× 8× 9 with 576 processes).
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Figure 2.13: MiniGhost with 3D 7-point stencil and BSPMA method running on 576 cores
(16 nodes) on Broadwell. The global data size is fixed to 576 GB with varying nx=ny=nz,
nvar local parameters; the optimal (8× 8× 9) process grid is used.
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Figure 2.13 presents the execution time and speedup with varying problem param-

eters. We increased nx, ny, and nz at the same time; hence nvar decreases. The overhead

of the computing portion remains similar for all inputs. When nx=ny=nz are small, the

dominant overhead is caused by the halo exchange communication with extremely sparse

data elements. When the grid size becomes large and nvar decreases, the program becomes

more compute-bound, and the communication overhead is generated mainly by the Y-Z

plane. CAB-MPI improves the internal pack/unpack speed for all three planes. However, it

achieves the best speedup for the Y-Z plane. This also justifies the reason that the speedup

increases from grid size 4 to 24. For larger grid sizes, the constant computing portion causes

the major overhead, and thus the overall speedup decreases. The best speedup achieved by

CAB-MPI is 1.3x at nx=ny=nz=24, nvar=9709.

Unlike the observation from Figure 2.12, MPICH-xpmem-coop performs even worse

than baseline (PiP-aware MPI with 1-copy) for grid sizes smaller than 16. The reason is

that its cooperative copy is not process idleness aware; thus, adding more workload on the

sender process aggravates load imbalance.

Figure 2.14 shows the miniGhost weak-scaling performance with CAB-MPI on up

to 128 Broadwell nodes (4,608 processes) by using a fixed set of parameters nx=ny=nz=24,

nvar=9709 on each process. Roughly speaking, CAB-MPI delivers improved performance

with varying number of processes. The speedup gradually decreases at large scale, however,

because the overhead of network data transfer becomes dominant. Nevertheless, CAB-MPI

always outperforms the baseline MPI implementation and MPICH-xpmem-coop.
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Figure 2.14: Weak-scaling evaluation of miniGhost with 3D 7-point stencil and BSPMA
method running on up to 128 Broadwell nodes. Each process uses a fixed set of parameters
nx=ny=nz=24, nvar = 9709 (1 GB local data size, and more than 4 TB global data size
on 128 nodes).

2.6.2 BSPMM

NWChem [124] is a widely used computational chemistry application suite. NWChem

is developed on top of Global Arrays over the MPI one-sided model[88, 35]. A typical get–

compute–update pattern is widely used in all the internal phases of NWChem, which every

process essentially performs by varying the size of matrix-matrix multiplication for mul-

tidimensional tensor contraction by coordinating with others through get and accumulate

operations.

BSPMM is a miniapplication that mimics the one-sided get–compute–update com-

putation in NWChem through a 2D sparse matrix multiplication A×B = C. Each process

asynchronously gets subblocks from the global matrices A and B, performs dgemm with the

subblocks locally, and then accumulates the result into the remote C matrix. The owner-

ship of each subblock computation is scheduled by updating a global shared counter with

MPI atomic fetch and op. The subblock data is represented as a strided subarray derived
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dataype in MPI. We expect that CAB-MPI can optimize BSPMM from intranode data

transfer (for both get and accumulate), pack for internode accumulates (noncontiguous get

does not apply because it is transferred via multiple RDMA requests in MPICH), and the

reduce computation associated with each accumulate.

We set each global matrix size to 102400×102400 and used block size 1024 (both in

count of doubles) with double data elements. We performed strong scaling on the Broadwell

cluster on up to 1,152 processes. As shown in Figure 2.15, both get and accumulate can

be improved with CAB-MPI on a single node (36 processes). When scaling across multiple

nodes, internode accumulates becomes the dominant overhead in the overall execution time

and thus contributes to higher speedup. We achieved the best speedup of 1.4x on 144

processes (4 nodes). We also notice that the overall speedup gradually decreases after

scaling over 144 processes. The reason is that the proportion of the reduce computation

reduces in each accumulate since the network data transfer takes longer time. MPICH-

xpmem-coop achieves performance similar to that of the baseline because its cooperative

protocol cannot apply to one-sided communication where the remote process is not required

to make an MPI call explicitly.

2.6.3 Discussion of Application-Level Performance Impact

CAB-MPI can benefit both regular and irregular applications. For instance, the

miniGhost evaluation showed improved performance in the regular bulk synchronous par-

allelism pattern where we observed that stealing performs mainly in blocking calls such as

MPI Wait all and MPI Barrier. BSPMM is a typical example of the irregular application
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Figure 2.15: BSPMM strong scaling and overhead analysis on Broadwell using global matrix
size 102400×102400 and block size 1024 (both in count of double elements).

pattern where CAB-MPI performs stealing in blocking MPI Win flush calls. However, we

note a limitation of CAB-MPI in that it relies on the semantics of MPI blocking calls to

identify idle processes (i.e., valid workers). Hence it cannot help applications that use only

nonblocking calls to check the completion of messages (e.g., MPI Test). The concept of work

stealing is still applicable to such applications; however, an additional method is required

for process idleness determination. We plan to address it in future work.

2.7 Summary

Communication imbalance is ubiquitous among HPC applications. Eliminating

unbalanced communication at the application level is difficult mainly because of the chal-

lenges to estimate the amount of workloads. Load balance will not be accurate if the appli-

cation developer distributes communication loads based only on the message size, because

the data transfer overhead may vary at runtime in different situations (e.g., intranode vs.
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internode, contiguous vs. noncontiguous). To this end, we presented CAB-MPI, an MPI im-

plementation that can dynamically balance MPI communication through novel interprocess

work stealing. The proposed communication balance is transparent to user applications.

We have designed several stealing strategies and optimizations based on the unique fea-

tures of the MPI internal work. We showcased the benefit of the work-stealing mechanism

through three types of MPI internal work: intranode data transfer, pack/unpack for non-

contiguous data movement, and computation in one-sided accumulates. We evaluated the

solution by using a set of microbenchmarks and proxy applications on both Intel Xeon and

Xeon Phi platforms. Evaluation results indicate up to 1.3x improved performance in the

stencil-based miniGhost proxy application over 576 Xeon cores and a 1.4x speedup in the

one-sided BSPMM application.
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Chapter 3

Daps: A Dynamic Asynchronous

Progress Stealing Model for MPI

Communication

3.1 Introduction

MPI [47] is widely used in high-performance computing (HPC) applications run-

ning on distributed-memory systems. To optimize communication overhead that may be-

come expensive especially in large-scale executions, application developers often overlap

communication and computation by leveraging nonblocking MPI communication functions

such as nonblocking send/receive and one-sided (also known as RMA) operations. Al-

though these functions provide the semantics to decouple the issuing and completion steps

of a communication (e.g., a nonblocking send/receive can be completed by a separate call
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to MPI Wait), the underlying MPI implementation may not be able to continue processing

the data transfer asynchronously because of limitations from network hardware support or

complex MPI-level protocols. For instance, an MPI Accumulate with a noncontiguous data

array has to be emulated in MPI software (also known as active messages) because such a

complex atomic operation still cannot be handled by the network hardware of most HPC

interconnects. A send/receive with a large message often involves an additional handshake

to ensure zero-copy optimization [84].

Traditionally, the user program has to make frequent MPI calls to ensure prompt

processing of these internal package exchanges, causing overcomplicated user code. Alterna-

tively, a number of asynchronous progress mechanisms have been developed. For instance,

asynchronous threading [69, 97, 123] is the most commonly supported asynchronous progress

mechanism where a background thread is spawned on each MPI process to actively poll the

progress for that process. Each background thread is usually bound onto dedicated idle

CPU cores or share the same core of the MPI process. Although it helps communication,

severe performance degradation may occur in user computation beeause of reduced comput-

ing resource or overhead from core contention. Casper [109, 110] introduces a process-based

asynchronous progress mechanism to address the issues of the thread model. It allows the

user to keep aside a few CPU cores and launch a ghost process on each core. The ghost pro-

cess can help advance communication for other MPI processes on each node. Nevertheless,

both models all fall into the static asynchronous progress model where the communication

progress resource (i.e., CPU cores) has to be statically set when executing a program. Be-

cause of such a limitation, the user has to determine the optimal resource configuration
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(i.e., number of dedicated cores and core binding strategy in the thread model; number

of ghost processes in Casper) through repeated experiments, causing an extra burden on

the user that is tedious and time wasting. What is worse, scientific applications often

involve multiple stages and each stage may contain different computation and communica-

tion workloads. Thus, different progress resource configuration is preferred for each stage.

Unfortunately, the static progress model cannot dynamically adjust a dedicated progress

resource at runtime. Hence, the user has to make a tradeoff among multiple stages suffering

from suboptimal overall performance.

in this thesis we present a novel dynamic asynchronous progress-stealing (Daps)

model that eliminates the drawbacks of the traditional static progress model. The core

notion of Daps is to dynamically determine idle MPI processes at runtime and utilize them

to perform MPI internal progress tasks for the other busy computing processes on the node.

Thus, we call this model “progress stealing.” Daps internally manages the dynamic stealing

and thus does not require the user to make a decision about the appropriate resource config-

uration of asynchronous progress. More important, Daps can adapt to complex multistage

applications and deliver the optimal overall performance. The reason is that Daps utilizes

only an idle MPI process to perform progress tasks and thus does not statically occupy any

computing resources.

We note that although both work stealing [4, 103, 120, 91] and MPI asynchronous

progress [69, 97, 123, 109, 110] have been heavily studied in the HPC field, to our best

knowledge Daps is the first work that combines them together and delivers improved per-

formance.
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We implement Daps inside MPICH by leveraging the Process-in-Process (PiP)

memory-sharing technique [63] for interprocess task stealing. Interprocess task stealing

in multiprocess parallelism (e.g., the MPI model) brings in various implementation chal-

lenges compared with traditional task-stealing techniques in multithread parallelism, mainly

because of different low-level data- and code-sharing mechanisms between processes and

threads. Unlike our previous work CAB-MPI [91], which can steal only the basic memory

copy and MPI reduce operation tasks between processes, Daps steals an arbitrary progress

task defined in MPI that may involve complex code context and interaction with external

libraries and low-level network drivers. in this thesis we make a thorough analysis of all pre-

requisites and challenges of Daps and present efficient solutions for the MPI communication

environment.

We demonstrate the benefit of Daps by applying it to the widely used MPI non-

blocking communication routines including point-to-point MPI Isend/Irecv and RMA op-

erations (e.g., MPI Put/Get/Accumulate). We compare Daps with the state-of-the-art static

asynchronous progress approaches in both microbenchmarks and computational kernels on

an Intel Omni-Path cluster. The results demonstrate that the Daps model is truly efficient

and adaptive for both single-stage and multistage MPI applications.

3.2 Background

3.2.1 MPI Progress

An ideal MPI implementation is to directly offload all communication requests

(e.g., a send or a put) to the low-level network or translate to shared memory load/store.
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In reality, however, MPI often has to require additional packets exchanges to process com-

plex data movement or for performance optimization. For instance, an RMA operation

defines the datatype of both origin and target buffers on the local process. When the target

datatype is noncontiguous, a typical implementation is to let the local process send both

the target datatype metadata and the data to the remote process via an internal active

message. An MPI call on the remote process can internally process this incoming active

message (i.e., unpack the data into the window buffer) and send back an acknowledgment

when transmission completes.1 In the point-to-point model, for example, a receiver-first

nonblocking receive often posts only the request to the MPI internal queue. The receiver

process can handle the request matching with an incoming message and perform the actual

data transfer at a later MPI call (e.g., in MPI Wait). If the message is large, the typical ren-

dezvous protocol often sends only the message metadata in the first round handshake and

lets the sender or receiver perform direct RDMA for actual data transfer. An acknowledg-

ment is required to notify the other side in order to return the buffer to the user. Similar

protocols are used also in intranode communication (e.g., a handshake following with a

POSIX-shared-memory-based pipeline copy or XPMEM-based single copy). For simplicity,

in this thesis “active message” refers to all these multipacket protocols.

To properly handle various internal active messages, MPI implementations often

define a generic progress routine (also known as a progress engine) that receives any incom-

ing internal packet and dispatches to the corresponding callback function to process the

packet. The progress engine consists of a network routine and a shared-memory routine.

1An implementation may choose to process a noncontiguous RMA operation by issuing multiple network
RDMA operations each carrying a chunk of the data. However, such an approach is expensive especially for
sparse data layout. Therefore, the active-message-based implementation is still the norm.
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As showcased in the above examples, the callback function can involve different code logic

and often interacts with external libraries (e.g., memory allocation via Glibc) as well as

low-level network drivers (e.g., sending an acknowledgment).

3.2.2 Asynchronous Progress

In order to ensure prompt processing of the internal active messages, MPI has

to ensure that the progress routine is frequently triggered. When the user process is

busy in computation outside MPI, however, it cannot make MPI calls until the compu-

tation completes. Consequently, an arbitrary long delay may occur in the communica-

tion [17, 60]. Asynchronous progress is the mechanism to ensure that the MPI progress

can be asynchronously triggered even when the user process is outside MPI, thus achiev-

ing communication and computation overlap. Three mechanisms have been well studied in

the community: thread-based [69, 97, 123], process-based [109, 106], and system interrupt-

based [112, 77, 76, 79, 52]. Because of the the lack of portability and significant overhead

of the interrupt-based mechanism, the former two are more commonly used on mainstream

HPC systems. Thus, our work omits the comparison with the interrupt-based mechanism.

3.3 Limitation of Static Asynchronous Progress

In both thread-based and process-based asynchronous progress mechanisms, the

user has to statically configure the amount of progress resources, often a few “likely idle”

CPU cores that can be occupied from a multicore or many-core node. The user has to

make repeated experiments to understand the application characteristics in order to deter-
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mine the optimal number. The thread-based mechanism usually allows the user to choose

either dedicating 50% of CPU cores for the background threads or oversubscribing cores.2

The process-based Casper mechanism is more flexible in that it can specify an arbitrary

number of cores used for asynchronous progress. Nevertheless, once the setting is specified,

when s execution starts, that number can no longer change during runtime. Hence, both

mechanisms follow a static asynchronous progress model.

Scientific applications often consists of multiple solvers that form a multistage

execution. At each stage, the communication and computation characteristics can be com-

pletely different. Consequently, the number of “likely idle” cores varies. For instance, in

the quantum chemistry application suite NWChem [124], the “gold-standard” CCSD(T)

task contains four stages: self-consistent field (SCF), four-index transformation (4-index),

CCSD iteration, and the noniterative (T) portion. As reported in [52, 110], the (T) por-

tion is extremely computationally expensive whereas the others are more communication

intensive.

Clearly, the static model cannot provide optimal performance for multistage ap-

plications. To demonstrate the performance impact, we extended the block sparse matrix

multiplication (BSPMM) proxy application of NWChem to mimic a two-stage execution

(see details of two-stage BSPMM in Section 3.6.2). We compare the execution time of

original MPI without asynchronous progress (Baseline) and static asynchronous progress

mechanisms (Thread and Casper) with varying numbers of cores dedicated to the progress

thread or process (see the definition of the experimental platform and baseline MPI in Sec-

2To ensure fairness, we modified the MPI implementation to internally bind the background threads to
user-specified number of dedicated cores.
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tion 4.4). The remaining cores run user processes. Figure 3.1 shows the breakdown of the

computation time and the communication time of each stage. Clearly, neither Thread nor

Casper can deliver the best-performing result (shown as Ideal). The reason is that the first

stage needs only two cores (Thread-2 and Casper-2) to make communication progress and

prefers to use the majority of cores to speed up the computation. Dedicating more cores

at stage 1 only slows down the computation (Tcomp1). On the other hand, the second stage

suffers from a communication bottleneck when using only a few cores for communication

progress. Thus, using more progress cores helps (see Tcomm2). Unfortunately, the state-of-

the-art static model cannot adjust the number of progress cores for the second stage. Even

the best-performing Casper-2 shows a 30% slowdown if we compare with the ideal time.

Baseline Thread-2 Thread-4 Thread-8 Casper-2 Casper-4 Casper-8 Thread (O) Ideal
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Figure 3.1: Two-stage BSPMM execution time on 4 Broadwell nodes each with 36 cores. The
first stage (Tcomp1+Tcomm1) is computation intensive, and the second stage (Tcomp2+Tcomm2)
is communication intensive. The fifure compares the original MPI (Baseline), thread-
based asynchronous progress with core oversubscription (denoted by Thread (O)), and
thread-based asynchronous progress and Casper with varying numbers of cores dedicated to
progress (denoted by Thread-N and Casper-N where N=2, 4, 8; the number of user processes
are 34, 32, 28, respectively). The Ideal time is estimated by combining the best Tcomp1 and
Tcomm1 from Baseline and Casper-2, and Tcomp2 and Tcomm2 from Baseline and Casper-8,
respectively.
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3.4 Dynamic Asynchronous Progress Design

To address the critical limitation of the static mechanisms, we design Daps that

enables fully dynamic MPI asynchronous progress. Daps is a novel progress-stealing model

that explores the work-stealing scheme to dynamically balance progress tasks in the mul-

tiprocess space. The foundation of Daps is the flexible data- and code-sharing capability

provided by the underlying interprocess memory-sharing techniques. In this section, we

introduce the basic concept of Daps together with a comprehensive analysis of the data-

and code-sharing prerequisites that ensure the design correctness.

3.4.1 Basic Definition

In a work-stealing scheme, the common objects are task, task worker, and task

owner. We define similar concepts in Daps.

Progress Task

Section 3.2.1 described the MPI progress concept. A progress task consists of the

network progress step and the shared-memory (shm) progress step that handle incoming ac-

tive messages from network and shared memory, respectively. We separately define network

and shm progress tasks for each process because of their different overheads. We detail the

progress-overhead-aware design in Section 3.4.3. Inside a progress task, it primarily polls the

low-level progress (e.g., via a call to Libfabric fi cq read function on the Omni-Path plat-

form) to receive an incoming packet and then triggers the corresponding handling function

(callback) defined in MPI. A callback may consist of various internal steps such as mem-
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ory copy (e.g., move network transferred data from a temporary contiguous buffer to the

destination noncontiguous buffer), computation of a reduce operation, issuing of a network

packet (e.g., for acknowledgment), and memory allocation for any temporary buffer. Some

of the internal steps cause implementation challenges in the interprocess-stealing scheme.

We give a systemic diagnosis and propose solutions in Section 3.5.

Progress Worker

Any MPI process that is idly waiting in an MPI blocking call (e.g., MPI Wait in

a point-to-point communication, or MPI Win flush in RMA) can become a progress worker.

But if the process has to handle any pending internal incoming or outgoing messages once

having polled the progress routines, it becomes busy and thus cannot continue stealing. If

the process is in an MPI nonblocking call (e.g., MPI Test), we define it as a busy process

because it is expected to return to the user program immediately.

Progress Owner

The owner is the process that originally receives the incoming data.

Putting the above objects together, a progress stealing is the procedure where a

progress worker checks and executes the progress task of the selected progress owner. Only

the owner that is likely busy in the user computation will be selected.

3.4.2 Prerequisite Analysis

A progress task in Daps may involve arbitrary code logic as defined in the preceding

section. A correct progress stealing requires the worker process to access the task code and
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data belonging to the owner process and execute the task code the same as that executed

by the owner. Code sharing is a concept commonly explored in the multithread model.

In the multiprocess model (e.g., MPI), however, only data sharing has been studied so

far [45, 86, 63, 91]. To the best of our knowledge, Daps is the first work that explores code

sharing for multiprocess programs.

We define three prerequisites for a correct progress stealing:

• Data Sharing: All global, static, and private data of the progress owner must be

successfully accessed by the progress workers.

• Code Sharing: The progress worker must be able to access any code blocks loaded

into the address space of the owner.

• Shared Code Execution: The progress worker must execute the shared code instruc-

tions and deliver exactly the same resulting state as that performed by the owner

itself.

To this end, we investigate five widely studied interprocess memory-sharing tech-

niques in the HPC domain: POSIX SHM [73], Cross-Memory-Attach (CMA) [74], KNEM [46],

XPMEM [58], and Process-in-Process (PiP) [63]. We analyze their capability following the

above prerequisites.

POSIX SHM, CMA, and KNEM are designed for optimizing interprocess data

transmission on a node. POSIX SHM allows the user to allocate a shared buffer for two

processes. CMA and KNEM allow a process to directly read or write a buffer allocated by

the other process via a kernel-assisted approach. None of these techniques can share code.
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XPMEM allows a process to expose a section of its virtual address space (VAS)

so that the other process can map the exposed section to its own VAS. Both code and data

sections can be exposed and mapped.

PiP spawns multiple PiP tasks into the same VAS. Unlike a thread, all statically

allocated variables are privatized and behave like a process. Similar to a thread, a PiP

task can directly access the data and code of another task. Previous work [63, 91] has

demonstrated the usage of PiP tasks as MPI processes and optimized the interprocess data

transmission via data sharing.

We further assess the shared code execution capability of XPMEM and PiP. The

key questions are (1) whether the shared functions can be correctly executed, (2) whether

the function parameters can be correctly passed, (3) whether the stack variable can be

correctly allocated and referenced in the shared function, (4) whether the global, static,

and heap data can be correctly referenced, and (5) whether any internal function of the

shared function can be executed. For instance, Figure 3.2 showcases the expected correct

behaviors during a progress stealing.

The progress worker is expected to access the shared entry func() function de-

fined in the owner’s text segment. Once the worker calls into the function, it is ex-

pected to reference the static variable svar and the global variable gvar allocated in the

owner’s data segment. The shared function may invoke other function or function pointer

(gvar->print var()) or external library function (printf() from Glibc), which should be cor-

rectly accessed by the worker. Moreover, the stack variables (a, b, and str in print var())

must be correctly allocated, value assigned, and referenced.
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struct gvar_s {

int a;

int *hd; /* heap data */

void (*print_var)(int a, int b);

};

void entry_func(){ /* (1) */

static int svar = 2; /* (4) */

gvar->a = gvar->hd[0] = 1; /* (4) */

gvar->print_var(svar, gvar->a); /* (2)(5) */

}

.text

entry_func

print_var

printf (glibc)

.data

svar

gvar

void print_var(int a, int b){

char *str = "a = %d, b = %d“; /* (3) */

printf(str, a, b); /* (2)(5) */

}

Progress Owner 
Memory Layout

call from 
progress worker

Figure 3.2: Expected behaviors when a progress worker calls into entry func() shared by
the owner; the corresponding assessment question ID is marked behind each line.

XPMEM can expose the entire VAS of a process and map it to the other process’s

VAS. Thus, all code and data can be theoretically shared at MPI initialization. 3 However,

the mapped address range is usually different from that on the owner process. This causes

severe correctness fault in our stealing scheme. For example, a variable or a function is

usually referenced by its address in the assembly code. The referenced address is undefined

or defined for other data on the worker’s VAS. Consequently, undefined behavior may occur

when the worker executes the mapped code.

Unlike XPMEM, PiP can correctly support shared code execution thanks to the

shared VAS scheme. The addresses of any global, static, or heap variable and function

are consistent on all processes located in the same PiP VAS. Thus, they can be correctly

3Such a coarse-grained memory mapping may cause other drawbacks such as heavy page mapping over-
head. Nevertheless, it is beyond the scope of this paper, and we omit the discussion.
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referenced. A stack variable is automatically allocated and stored on the executing process’s

stack (i.e., the worker’s stack in a progress stealing) during its lifetime.

So far, our analysis indicates that PiP is the most promising low-level memory

sharing technique to support the interprocess progress stealing. Hence, we implement Daps

based on PiP-aware MPICH [63], and the baseline in the remaining sections refers to PiP-

aware MPICH (extended from bb595ca0 of MPICH main branch).

3.4.3 Progress-Stealing Algorithm

To ensure efficient stealing, the stealing algorithm of Daps is locality aware, progress

overhead aware, and MPI context aware. We describe each aspect in detail.

Locality Aware

Similar to previous work-stealing studies [91, 24, 104], locality awareness helps the

stealing procedure reduce the cache miss penalty when the data is accessed by both the

worker and the owner. The same principle can be applied to our case, where a progress

worker may touch the user communication buffer (e.g., moving data from a temporary buffer

to the user destination buffer) during stealing, and the destination buffer is then accessed

by the owner after communication completes (e.g., using the data to compute in the user

program). On modern multicore and many-core architectures, we expect that NUMA brings

in the most significant performance impact. Thus, our algorithm prioritizes local NUMA

progress stealing. We note, however, that when no local progress task is available, the

worker may still handle the remote task located on a remote NUMA node because the

delay caused by lack of asynchronous progress is usually more significant than the cache
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miss penalty. Our previous work [91] discussed locality-aware stealing in detail. We follow

a similar approach in Daps and thus omit the locality impact analysis.

Progress Overhead Aware

Stealing a shm progress task is expected to be more expensive than stealing a

network progress task. The reqson is that the shm progress task often involves blocking

memory copy (e.g., copy data from the user source buffer to the destination buffer after a

handshake in the rendezvous protocol). The blocking copy can be significantly expensive in

a large data transmission. In a network progress task, on the other hand, even if a progress

task involves user data transmission, the transmission is offloaded to network hardware

so that the progress worker can return. The completion of the network transmission may

be checked asynchronously in a separate progress task. Taking into account the progress

overhead difference, we prioritize network progress stealing. When the owner exposes both

the network progress task and the shm progress task, the worker always first picks the

network one. The shm task is picked only when the network task had nothing to do (i.e., no

incoming active message from the network). This design allows us to maximize the stealing

throughput.

MPI Context Aware

A progress task can be empty when no incoming active message arrives on the

owner. Arbitrarily stealing the progress of the other process can cause severe contention

overhead because the progress routines is often protected in a critical section in most MPI

implementations. Therefore, we define two MPI-context-aware rules to reduce invalid steal-
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ing. Rule 1 : If the progress owner can poll the progress soon (e.g., the owner is in a

blocking MPI call) no worker can concurrently steal from the owner. It also ensures good

data locality. Rule 2 : Only the progress task with a likelihood of receiving an incoming

active message can be stolen.

We implement the rules by defining three atomic flags on each process. The first

flag is in progress. It is set to true when the owner itself is capable of making progress (Rule

1 ) or a worker is already handling the progress task for the owner. The flag is reset once the

progress task completes. The other two flags are net avail and shm avail, which indicate

the likelihood of receiving an incoming active message in the network progress and shm

progress, respectively. We estimate the likelihood based on the MPI context. Specifically, if

the process posts a nonblocking receive that involves any active-message-based handshake

(e.g., for a rendezvous protocol), we enable net avail or shm avail based on the source

rank’s location. For the receive with MPI ANY SOURCE, we have to enable both flags because

we do not know whether network or shm will receive the message. A similar approach can

be used for collectives. For RMA, however, we can estimate only based on the window

creation. We enable the flags on a process whenever it creates a window with a nonzero

buffer since this is an indication of remote access. We cannot make a more fine-grained

estimation similar to point-to-point because the origin process in the RMA model specifies

both synchronization (e.g., MPI Win lock) and communication (e.g., MPI Put). The target

side is unaware of such incoming RMA accesses.
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3.5 Implementation Challenges

The progress-stealing scheme is promising; however, we faced two challenges when

implementing the novel interprocess stealing. These challenges are caused mainly by the

traditional operating system process-based implementation in low-level libraries such as

network user space drivers and Glibc. It assumes that the internal structure of a process is

never accessed by the other process. We expect that software stack codesign is becoming

the norm in HPC. Thus, the multithread-like weak process model may be also adapted

in low-level libraries to fully benefit from the performance gain [63, 91]. Nevertheless, in

this thesis we systemically diagnose the issues with the current software stack and present

solutions.

3.5.1 Network Interaction

A special interaction between the MPI progress task and the external library is

that a task can issue a network data transmission (e.g., when issuing an acknowledgment or

issuing a RDMA read/write after a handshake in the rendezvous protocol). On modern HPC

interconnects (e.g., InfiniBand and Intel Omni-Path (OPA)), a network data transmission

is cooperatively handled by the low-level network drivers in both the user space and kernel

space to synchronize with the network adapter. Different network architectures may have

different designs. Because of space limitation, we focus on the OPA platform in this thesis

with the open-source Libfabric[1] and Intel Performance Scaled Messaging 2 (Psm2)[65]

libraries as the low-level user space drivers. The OPA-stack analysis also can be insightful

for adaptation on other RDMA architectures.
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A typical communication approach between the user-space driver and the corre-

sponding kernel module is system calls with a preopened file descriptor. For instance, Psm2

contains the send direct memory access (SDMA) engine for large data transmission[65, 13].

It preallocates a number of SDMA slot queues to offload RDMA data transmission to the

network adapter. When issuing a RDMA write, for example, Psm2 stores the metadata

(e.g., data address and size) of the transmission into an SDMA header descriptor and passes

down to the kernel module via a system call writev. Then, the kernel module can properly

issue an RDMA transmission via the corresponding SDMA queue by referencing based on

the file descriptor. The problem that occurs during a progress stealing is that each process

initializes a different file descriptor and shares it with the corresponding kernel thread. If

a worker steals the progress task and issues an RDMA for the owner, it uses the owner’s

endpoint and thus the owner’s file descriptor. Such a file descriptor is invalid for the kernel

thread of the worker, consequently causing undefined behavior.

One can enable stealing-awareness in the low-level libraries in several ways. Here

we use a simple yet efficient approach. We modified Psm2 to bypass the kernel notification

if the current process is a progress worker. It allows the worker to asynchronously handle

the user space progress (i.e., most software instructions in MPI, Libfabric, and Psm2) but

leave the final kernel notification to either the Psm2 background thread 4 or the progress

owner itself, whoever arrives first.

One concern may be that the delayed kernel notification may degrade perfor-

mance. We analyzed the possible scenarios with and without progress stealing and compare

4A low-frequency progress thread to avoid memory overflow in case the user cannot consume the received
data. It can make progress neither for MPI nor for Libfabric.
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Figure 3.3: Progress-stealing timeline with Psm2 network driver.

the timeline in Figure 3.3. Figure 3.3(a) shows the timeline without progress stealing. The

owner has to handle the user space progress and kernel notification after it finishes the com-

putation. Figures 3.3(b) and (c) demonstrate two possible cases when stealing is enabled.

In the extreme scenario, the owner may finish its computation and be ready to progress

when a worker just stole its task. Then, the owner has to wait until the stealing completes.

The execution time of such a progress task becomes (T u+ T k), where T u indicates the

time to process the user-space progress and T k is the kernel notification overhead. It is

the same as that without Daps (e.g., Figure 3.3 (a) with a zero computation). Whenever

the user computation is not zero, Daps improves performance.

3.5.2 Thread Local Storage

The Thread Local Storage (TLS) mechanism allows each thread to allocate distinct

instance for a static or global variable. A TLS variable is declared by using the thread
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attribute. The implementation of TLS is architecture specific. However, we notice that the

PiP-based progress-stealing implementation may not be compatible with TLS. Specifically,

we define that a correct stealing must ensure that the global and static variables of a progress

owner can be correctly accessed by the worker during stealing (see prerequisites definition

in Section 3.4.2). The same rule applies to the TLS variable. Unfortunately, accessing a

remote TLS variable in our current implementation may cause an incorrect result or even

segmentation fault.

We note that the goal of this paper is to enable interprocess progress stealing in the

MPI-specific context but not to implement a generic interprocess work stealing. Thus, we

seek only MPI-specific solutions. A systemic analysis of the TLS issue in generic interprocess

stealing is left for future work.

We survey the usage of TLS in all libraries that may be called in an MPI progress

task. Table 3.1 includes the libraries used in the MPI stacks for all major HPC intercon-

nects: the Intel OPA network (libfabric, libpsm2), Mellanox InfiniBand (libucx, libibverbs,

librdmacm), and Cray interconnects (libfabric, libugni5). We notice that the usage of TLS

is not common in network low-level libraries. Some TLS variables are used only for debug-

ging (i.e., in libfabric and libucx). In librdmacm, TLS variables are defined only for the

socket or socket-over-RDMA protocol, which is not used in any progress task of MPI. In

Glibc, the variables errno and h errno report the error number whenever a Glibc function

call fails. In all call paths of the progress task, we confirm that these variables are not used.

Moreover, resp, dlerror run, and strsignal are irrelevant to MPI progress tasks as well.

5We check the close-source libugni via readelf.

64



Lib (Version) Funcs/Vars Purpose

libfabric (1.10.1)
(1) gnix debug pid
(2) gnix debug tid
(3) cntr test tid

(1), (2) gnix prov debug var
(3) gnix prov test var

libpsm2 (0201) - -

libugni (6.0.14) - -

libnl-3 (3.2.25) - -

libucx (1.9)

(1) ucs profile thread
expand locations
(2) ucs profile record
(3) ucs profile dump

(1), (2), (3) profiling
and debug func

libibverbs (33.1) - -

librdmacm (33.1)
(1) socket
(2) fds alloc
(3) rs fds alloc

(1) socket hook func
(2) socket fd buffer alloc func
(3) rsocket fd buffer alloc func

Glibc (2.17)

(1) malloc/free/calloc/
realloc/posix memalign
(2) errno/h errno
(3) resp
(4) dlerror run
(5) strsignal

(1) manage heap
memory func
(2) function call return state var
(3) DNS resolver var
(4) load dynamic binary func
(5) describe signal func

Table 3.1: Survey of TLS variable usage in the MPI progress stack. We summarize the
functionality of each TLS variable and its purpose. We highlight the variables that can
impact on the correctness of Daps.
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The Glibc memory allocation functions bring more concern in our case. An MPI

callback function commonly may internally allocate a temporary buffer and free it when

the communication finishes. Thus, the worker may perform memory allocation during

stealing, which accesses to the Glibc internal TLS-variable-based allocator owned by the

owner process. To ensure correctness, we choose a simplified solution that patches Glibc

to create two global memory allocators for each process; the more comprehensive solution

by using a PiP-based user-level thread [62] will be our future work. The default TLS-

variable-based allocator is still used by the process itself. When a worker calls malloc in

the namespace of another process (i.e., the owner), we use the second global-variable-based

allocator, which can be correctly referenced in our implementation. We note that the second

allocator on a process can be used by at most one worker at a time; thus thread-safety is

unnecessary. A worker-allocated buffer can be correctly freed by the worker, the owner,

or another worker because Glibc stores the allocator base address as the metadata of each

Glibc-allocated buffer.

3.6 Experimental Evaluation

We perform all experiments on the Argonne Bebop cluster6. Each node contains

two Intel Xeon E5-2695v4 processors with 36 cores in total, and each NUMA node attaches

64 GB DDR4 memory locally which amounts to 128 GB memory on a node. The nodes

are connected via the Intel OPA interconnect. Hyper-threading is disabled on all nodes.

We use PiP-aware MPICH (extended from commit bb595ca0 of MPICH main branch) as

6https://www.lcrc.anl.gov/systems/resources/bebop/
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the baseline implementation which includes single-copy based optimization for intranode

messages[63]. For fairness, we apply the thread-based asynchronous progress (denoted by

Thread), Casper (version 1.0b2), and Daps onto the same baseline. All source codes are

compiled by the gcc/gfortran compiler (version 4.8.5). The low-level libraries include Lib-

fabric (version 1.10.1), Psm2 (version 0201), and Glibc (version 2.17). The Psm2 and Glibc

are patched as described in Section 3.5.

For the static approaches, we vary the number of dedicated cores in each experi-

ment, denoted by Thread-N and Casper-N where N indicates the number of dedicated cores.

Thus, the number of remaining user processes reduces accordingly (e.g., N=1 leaves 35 cores

as user processes on a node). For multi-stage experiments in Sections 3.6.2 and 3.6.3, we also

include the dynamic Casper extension [110], denoted by Casper(D). We compare only the

user-guided strategy in our experiments as it is the best result of Casper(D). Following the

configuration suggested in [110], we always set 2 dedicated cores in Casper(D) to minimize

computation degradation and disable the progress redirection in the communication-heavy

stage. We omit the thread version with core oversubscription in all experiments because of

its known high overhead on Hyper-threading disabled machine.

3.6.1 Asynchronous Progress Capability

We first design a set of microbenchmarks to ensure the asynchronous progress

capability of all mechanisms in internode RMA and point-to-point communication. We

employ two communication processes each is launched on a separate node. In our three

RMA tests (including Get, Put, and Accumulate), process-1 performs a 200ms sleep to

mimic user computation followed with a barrier, and process-0 issues two RMA operations
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each with contiguous 16MB data to process-1 followed with a call to flush. In the point-

to-point test, process-0 issues two isend, whereas process-1 posts two irecv followed with

a 200ms sleep. Both sides complete with a call to waitall. Each isend-irecv pair transfers

2MB data with the vector derived datatype (basic datatype=char, blk len=1, stride=64)

which is internally handled by the rendezvous protocol in our baseline. For the Thread and

Casper options, one CPU core is dedicated to the background thread or ghost process. For

Daps, we launch one more user process on each node which is only idly waiting in a barrier

thus it becomes a progress worker. We note that all RMA operations in Libfabric/Psm2

are emulated by internal active messages, thus benefiting from asynchronous progress.

Figure 3.4 measures the overall runtime time. With baseline, process-1 cannot

promptly handle the incoming active message while computing outside MPI due to lack of

asynchronous progress. Thus, communication from process-0 cannot be overlapped with

the computation on process-1. All the asynchronous progress options, including Daps, can

provide prompt progress for the incoming message on process-1, thus communication over-

head can be perfectly hidden. One exception is that Casper does not support asynchronous

progress in the noncontiguous point-to-point test, thus showing the same result as that of

baseline in Figure 3.4d.

3.6.2 Static Progress v.s. Dynamic Progress

We then compare the adaptability of static and dynamic progress models by uti-

lizing two computational kernels.
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Figure 3.4: Evaluating asynchronous progress capability with Get, Put, Accumulate, and
Isend/Irecv with two internode process.

Custom Two-Stage BSPMM

Block sparse matrix multiplication (BSPMM) is the proxy application of compu-

tational chemistry software suite NWchem [124]. It represents the core get-compute-update

computing pattern for a 3D sparse matrix multiplication C=A ∗ B. Each process uses the

one-sided get to obtain subblocks of the global 3D matrices A and B, and then performs

DGEMM locally with the local subblocks, and finally updates results to the global matrix C

via an accumulate. Inspired by the benchmarks used in [110], we extended BSPMM to

contain two stages. The first stage (stage-1) is computation-intensive where each process

performs 130 DGEMM tasks each with a local problem size M=N=K=1024. Each process

issues 512 get and accumulate operations to all the other processes in an all-to-all fash-

ion. Each operation carries a 503 3D subarray as the target datatype. The second stage

(stage-2) is communication-intensive where each process performs only 50 local DGEMM tasks

with unchanged problem size, but increases the number of issued get and accumulates to

8640. In both stages, the origin data layout of each operation is a contiguous array with

125000 (=503) count of double elements. To focus on the progress of the key get-accumulate
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operations, we omit the fetch and op based global counter update in the original BSPMM

which is used for subblock scheduling.

Figure 3.5 reports the overall performance on 8 nodes of the Bebop cluster. It is

clear that Daps outperforms all the static approaches including Casper(D). It reduces 48%

overall execution time compared to the baseline. The static approaches can successfully

reduce the time of stage-1 but suffer from the heavy communication cost of stage-2. The

achieved best improvement compared to baseline is only 37%, delivered by Casper-8.

To further analyze the internal behaviors of each stage, we zoom in the com-

munication portion (sum of all gets and accumulates) and the computation portion (sum

of DGEMM tasks) of each stage. In stage-1 (see Figures 3.5b), the communication with

baseline is heavily delayed due to lack of asynchronous progress. The Casper approach

delivers the best improvement in the communication portion, because all active messages

are promptly handled by the dedicated cores. Using dedicated cores, unfortunately, also

degrades the speed of the heavy computation portion. In contrast, Daps does not degrade

the user computation and also largely reduces the communication delay. We note that

the communication improvement from Daps is not as good as Casper, because the heavy

computation makes all processes busy at most time thus providing only a few temporary

progress workers in Daps.

Figure 3.5c details the internal overheads of the communication-dominant stage-2.

Casper has to occupy as many as 8 cores from the user processes to balance the heavy com-

munication progress workload, largely reducing the available computing resources. Again,

Daps does not require any dedicated core thus does not affect user computation. Our MPI-
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context-aware design can further minimize invalid stealing, ensuring efficient communication

progress without any side effect.
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Figure 3.5: Comparing Daps with static progress using the custom Two-Stage 3D BSPMM
on 8 Bebop nodes (Thread results cannot be shown due to an MPICH bug, will add upon
fix). Stage 1 us computation-heavy, and stage 2 is communication-heavy.

Five-Point 2D Stencil

A stencil kernel consists of an iterative computation stage where each iteration

involves a local extremely expensive computation (5-point stencil with double elements in

our case) following with a halo exchange that updates the edge data with the neighbors.

We implement the halo exchange by using nonblocking isend/irecv with waitall and setup

the processes in a two-dimensional Cartesian topology, following the common approach in

domain applications.

Figure 3.6 breaks down the stencil update time (Tcomp) and halo exchange cost

(Tcomm) by comparing baseline, Thread, Casper, and Daps on 8 Bebop nodes. The 2D

matrix is with 4096∗4096 dimension size. The left and right direction isend-irecv exchanges
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Figure 3.6: Comparing Daps with static progress using five-point 2D stencil with a total
problem size of 4096 ∗ 4096 on 8 Bebop nodes. Showing computation and communication
breakdown and the speedup of the communication portion compared to baseline.

a vector type noncontiguous data whereas the top and bottom direction carries contiguous

double elements.

As shown in the baseline result, the stencil kernel is dominated by computation.

Neither Casper nor Thread can help performance. This is because Casper does not support

noncontiguous datatype, thus it is disabled and shown as Casper-0. Thread has to occupy

only a few cores to minimize the degradation in the computation portion. But using such

a few number of cores cannot efficiently handle all communication requests, thus resulting

in visible communication bottleneck. As a result, the Thread option even performs worse

than the baseline. Unlike the static model, Daps can dynamically detect the spare time of

each process rather than static core occupancy, thus enabling performance improvement. It

achieves a 1.18x speedup in the communication portion compared to the baseline.
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3.6.3 Scalability

By utilizing the same custom Two-Stage BSPMM as described in Section 3.6.2,

we evaluate the scalability of Daps in weak scaling over varying number of computing

nodes. We empirically pick the best configuration for the static approaches at each test.

Specifically, we use 2 dedicated cores for tests running on 2-6 nodes, use 8 dedicated cores

for tests on 8 or more nodes and always use 2 dedicated cores for Casper (D). The results

are reported in Figure 3.7. We observe that Daps can always achieve the best performance

even in comparison to the best configuration of the static mechanisms in most of cases. It

delivers up to 50% improvement compared to the baseline and 20% compared to Casper(D)

on 16 nodes (576 processes). The performance gap between Casper and Daps consistently

increases with increasing number of processes. This is because the amount of communication

gradually increases, thus dynamically contributing more progress workers for Daps.

3.7 Summary

Lack of asynchronous progress is a long-lasting problem in MPI. Ideally, all data

transmission can be offloaded to the network hardware so that the CPU resources can

be dedicated to user computation. Today’s HPC interconnects, unfortunately, still cannot

handle many complex data transfers that are required by MPI. Consequently, software-level

asynchronous progress has to be involved. Traditional software-level asynchronous progress

mechanisms have to statically configure progress resources (i.e., CPU cores), forcing the user

to perform repeated experiments to fine-tune the configuration for different applications.
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74



Such a method may even perform poorly for multiple-stage applications where each stage

often forms a different communication and computation pattern. in this thesis, we presented

Daps, a novel dynamic asynchronous progress model based on interprocess work stealing.

We formulated a detailed guideline for the prerequisites of a successful work stealing in

the multiprocess space and utilized the PiP weak multiprocess model to support flexible

data and code sharing as well as shared code execution. The Daps algorithm is highly

optimized by leveraging MPI internal knowledge We also analyzed and addressed special

implementation challenges that occurred when a stealing interacts with low-level network

drivers and TLS-involved libraries. The evaluation was performed on an Intel OPA cluster.

Compared with the state-of-the-art mechanisms, Daps achieves up to 20% improvement in

the two-stage BSPMM kernel and a 1.18x speedup in the five-point 2D stencil.
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Chapter 4

Efficient Process-in-Process based

Multiobject Interprocess MPI

Collectives for Large-Scale

Applications

4.1 Introduction

Message Passing Interface (MPI) collectives have been widely adopted in different

research fields [7, 127, 2, 8, 66] because of the low latency and high throughput they deliver

on distributed-memory systems. In the era of exascale computing, the number of cores per

node and nodes on which MPI applications execute becomes larger than ever before. This

scenario brings about higher MPI collective scalability demands; even small- or medium-
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message collectives can result in significant communication overhead so that their designs

become critical for performance optimization [29].

Generally, MPI collectives consist of intra- and internode communication. Al-

though internode collective communication is usually responsible for most of the overhead

and its performance optimization is the major consideration, intranode collective communi-

cation overhead is no longer negligible nowadays because of the increased cores per node [67].

Therefore, many methods have been proposed to optimize both intranode and internode

collective communication in order to obtain maximal communication performance.

Reduction in shared address space [53] has been proposed to accelerate MPI Allreduce

and MPI Reduce communication; it utilizes the interprocess shared-memory (SHMEM) ca-

pability of XPMEM [57] to achieve zero-copy intranode reduction. On the other hand,

kernel-assisted interprocess data copy techniques such as LiMiC [34], KNEM [86], and

Cross Memory Attach (CMA) [22] are also adopted to speed up intranode communication

of MPI Allgather, MPI Scatter and many other MPI collectives. Although these methods can

bring faster intranode communication and more optimized collective algorithms, the benefits

are significant only when the message size is large enough because they can degrade perfor-

mance for small- or medium-message collective performance due to the expensive system

call and page fault overhead. Parsons et al. [92] demonstrate the efficient MPI collective

algorithms with a POSIX shared-memory (POSIX-SHMEM) [75] multisender design. Al-

though the multisender brings about better network bandwidth utilization, POSIX-SHMEM

limits the efficiency of algorithms that cannot achieve high performance for large-message

collective communication because of the double copy overhead that inherently resides in it.
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To solve these issues, we propose a Process-in-Process–based multiobject interpro-

cess MPI collective (PiP-MColl) design that maximizes intra- and internode message rate

and network throughput and eliminates the drawbacks of existing collective algorithms for

small- and medium-message MPI collectives. Under the Process-in-Process [63] environ-

ment, all processes on a node are loaded into the same virtual memory space so that they

can access the private memory of each other like threads in userspace. PiP-MColl utilizes

the features of PiP to avoid extra data copy and expensive system-related overhead so that

it is able to deliver higher message rate and network throughput. More important, the

MPI collective algorithms must be carefully redesigned to provide high parallelism for both

intra- and internode communication and mitigate the impact of the potential overhead (e.g.,

process synchronization), which becomes the most challenging part of our work.

With newly designed multiobject (i.e., multiple senders and receivers) collec-

tive algorithms, PiP-MColl is able to saturate the message rate and bandwidth by send-

ing/receiving multiple messages in parallel without causing extra overhead. In addition,

overlapping-supported PiP-MColl can hide the intranode communication under internode

communication; it helps bring better network bandwidth usage for medium- and large-

message cases.

We apply PiP-MColl to the well-known MPICH library and show the benefits

for MPI Scatter, MPI Allgather, and MPI Allreduce, three widely used MPI collectives. We

measure the performance of collective microbenchmarks and a real-world HPC application

N-body with various message sizes and execution scales (up to 256 Xeon Broadwell nodes)

and compare with the baseline implementation PiP-MPICH and three other widely used
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MPI libraries: Intel-MPI, OpenMPI, and MVAPICH2. The results show PiP-MColl is able

to provide significant message rate and network throughput for small- and medium-message

MPI collectives.

4.2 Background

This section provides background information about the existing widely adopted

shared-memory techniques in MPI collective designs.

MPI collectives mainly involve intra- and internode communication. Since the

number of cores per node has reached up to tens and even hundreds, the overhead of intra-

node collective communication no longer is negligible. In order to optimize the performance

of intranode collectives, different shared-memory techniques are adopted.

4.2.1 POSIX Shared Memory

POSIX-SHMEM is natively supported by the Linux kernel and widely adopted

in MPI design because of its portability and efficiency. To exchange data, processes must

collectively allocate shared-memory buffers through system calls; senders copy user data

into the shared-memory buffer, and receivers copy data out into the receive buffer. This

exchange mechanism brings fast communication when the message size is small since process

synchronization is not required; however, for medium- and large-message communication,

it results in double data copy, which causes lower performance compared with other kernel-

assisted shared-memory techniques.
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4.2.2 Data Exchange Based Shared Memory

LiMiC and KNEM work in similar ways; they are both Linux kernel modules

that support direct data copy from one process to another. Each LiMiC- and KNEM-

based communication involves system calls to operate user-level buffer segments through

the kernel. Senders register the user-level buffer in the kernel space, obtain a kernel-created

buffer key, and send the key to receivers; on the other hand, receivers get the key and retrieve

the data through the kernel system call. The CMA mechanism has been integrated into the

Linux kernel where senders and receivers can exchange data through process vm writev or

process vm readv. Although CMA provides a simple and native way for interprocess data

exchange functionality, it still involves system calls whenever a data transmission happens.

LiMiC, KNEM, and CMA are all designed for data exchange instead of data shar-

ing. They are not able to avoid unnecessary data copy during collective communication.

For example, in MPI Allreduce, each process must exchange data with the other processes

before performing reduction. This data exchange results in extra data copy that can be

avoided by data sharing.

4.2.3 Data Sharing Based Shared Memory

XPMEM is also a Linux kernel module but supports data sharing among pro-

cesses in the userspace. Senders can expose the user buffer in the beginning, and receivers

attach the buffer in their own address space and perform the data exchange. XPMEM al-

lows receivers to access private buffers of senders without extra copy required with LiMiC,

KNEM, and CMA, thus bringing about huge benefits for the reduce-based MPI communi-
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cation. Similarly, XPMEM requires system calls for buffer expose and attachment so that

it usually benefits large-message communication.

4.2.4 Userspace Address Space Sharing

Process-in-Process (PiP) is a userspace shared address space technique that does

not need system calls in order to achieve interprocess data exchange. In the PiP environ-

ment, MPI processes are loaded into the same virtual memory space. Each process has

its own separate context (e.g., static variables) but can access the private data of other

processes like threads. No system call overhead is involved throughout the communication.

Unlike the conventional shared memory techniques, this shared address space technique al-

lows us to access any data structures including pointers. This feature brings the possibility

to deliver optimal performance for all collective communication sizes compared with other

shared-memory techniques.

In the following, we present the design of the MPI collective multiobject algorithms

in the PiP environment.

4.3 Multiobject Interprocess MPI Collective Design

In this section, we first analyze the factors which affect message rate and network

throughput to support our multiobject (i.e., multiple sender and receiver) design; secondly,

we explain the communication cost model used for the theoretical performance analyses;

thirdly, we detail the PiP-based multiobject collective algorithm designs for three widely

used MPI collectives MPI Scatter, MPI Allgather and MPI Allreduce.
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4.3.1 Message Rate and Network Throughput

Message rate and network throughput are two important metrics to evaluate the

efficiency of MPI communication. For small-message communication, higher message rate

means better parallelism; for medium- or large-message communication, higher network

throughput means better network bandwidth utilization.

For large-message communication, the network bandwidth can usually be satu-

rated by one process; this implies internode collective performance should be improved in

algorithm level to reduce overall communication volume. However, for small- and medium-

message communication, the data transmission is hard to saturate the corresponding hard-

ware (i.e., memory and network interface card) by only one process.

To show the feasibility of the multiobject design, considering widely deployed net-

work interconnect Intel Omni-Path [14], we show the performance of point-to-point com-

munication with 4KB and 128 KB message size and various pairs of senders and receivers

locating on two separate nodes in Figure 4.1.

The Figure 4.1 proves that if there are more senders to issue messages out and

receivers to receive the data in parallel, we are able to get higher message rate and better

network throughput due to better hardware utilization. The results build the foundation

which motivate us to choose as many objects as possible in PiP-MColl for maximal collective

communication performance.
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Figure 4.1: The inter-node message rate and network throughput of 4KB and 128KB point-
to-point with various pairs of senders and receivers locating on two separate nodes. The
network interconnect is Intel Omni-Path.

4.3.2 Communication Cost Model

The Hockney cost model [59] α + M ∗ β is a simple and frequently used model

for data transmission performance; α represents the start-up latency per message, M is the

size of message in byte; and β stands for the transmission speedup (s/byte). Since we focus

on MPI collectives with intra- and internode codesigned algorithms, to more precisely show

the theoretical performance, we extend this model to include both intra- and internode

communication runtime.

We define αr and αe as intra- and internode start-up latency; βr and βe stand for

intra- and internode transmission time per byte, respectively; γ is reduction speed (s/byte);

M is message size in byte; P is the number of processes on a node; and N is the number of

nodes on which MPI collectives execute.
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Symbol Meaning

αr intranode start-up latency

βr intranode transmission speed (s/byte)

P #processes per node

M message size (byte)

Cb data size per process

Nid node id

Bk Bruck algorithm base

As source buffer address

Symbol Meaning

αe internode start-up latency

βe internode transmission speed (s/byte)

N #nodes

γ reduction speed (s/byte)

Rl process local rank

Nr root process node id

Sp Bruck algorithm step

Ad destination buffer address

Table 4.1: Summary of MPI collective communication cost model symbols.

The symbols mentioned above and those defined in the following section are sum-

marized in Table 4.1.

4.3.3 PiP-MColl based Collective Algorithm Design

MPI Scatter

In MPI Scatter, the global root process designated by the user will evenly scat-

ter the data to other processes. To implement this functionality, traditional MPI usually

chooses a binomial tree algorithm [105] where only one pair of sender and receiver per node

is selected for internode data exchange. In contrast, PiP-MColl selects all processes on a

node as senders and receivers to scatter and receive data among nodes in parallel for all

message sizes (i.e., small, medium, and large messages). In the PiP-MColl MPI Scatter
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design, we define the local rank of a process on a node as Rl ranging from 0 to P − 1. For

description convenience also we assume that the user-designated global root process is a

local root process. N is the power of P + 1; Cb is the number of bytes each process should

receive into the destination buffer in scatter; and Nid is the node id ranging from 0 to N−1.

Figure 4.2 shows the high-level design of PiP-MColl MPI Scatter with overlapped

intranode scatter. The corresponding algorithm can be described as follows.

Step 1: Share sending buffer address. For the global root node or nodes that

just receive the data, if the local root process has not shared the source buffer address As,

the local root process posts the address to all processes on the node and proceeds to next

step.

Step 2: Asynchronously scatter data through network. Each process on a

node with data finds the paired process with global rank ((Rl + 1) ∗ N
P+1 +Nid) ∗ P ; then,

it asynchronously sends data from address As + (Rl + 1) ∗ N
P+1 ∗ Cb ∗ P with N

P+1 ∗ Cb ∗ P

bytes.

Step 3: Perform intranode scatter. For all processes on a node containing

data, each process finds offset address As + Rl ∗ Cb and copies Cb bytes into the receiving

buffer.

Step 4: Wait until internode scatter completes. Each process waits until its

own internode sending requests issued in Step 2 complete; the paired processes wait until

receiving all data.

Step 5: Recursively execute Step 1 to Step 4. Update N = N
P+1 . If N == 1,

the algorithm completes; otherwise, go back to Step 1.
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Process

Inter-node comm

Intra-node comm

Root Node

…

m/4 Node m/2 – 1 Node

…

3m/4 – 1 Node

…

3m/4 Node m – 1 Node

…

m/2 Node

Subgroup

…

… … …

Stage 1

Stage 2

Figure 4.2: High-level design of PiP-MColl MPI Scatter with overlapped intranode scatter.
Shown as an example are 3 senders and 1 receiver on a node. The figure shows only the
partial stages; the rest of the stages will repeat the same operations in stage 1 for each new
generated subgroup.

Considering the theoretical runtime analyses, we can present the intranode scatter

runtime as Equation 4.1 and the internode scatter runtime as Equation 4.2. Since our

algorithm overlaps intra- and internode scatter, the overall runtime can be summarized as

T = Max(Tintrascatter, Tinterscatter).

Tintrascatter = αr + P ∗ Cb ∗ βr (4.1)

Tinterscatter = αe ∗ dlogP+1Ne+ Cb ∗ (N − 1) ∗ P ∗ βe (4.2)

MPI Allgather

Generally, different algorithms are adopted for MPI Allgather based on the com-

munication message size. Traditionally, for small messages, Bruck algorithm [18] can be

adopted when the number of processes is a non-power of two, and recursive doubling al-

gorithm [116] can be adopted for power-of-two cases; for medium and large messages, a
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ring algorithm is applied to achieve minimal internode communication volume. To further

improve allgather performance, we design two PiP-MColl allgather algorithms for differ-

ent message sizes. Figure 4.3 illustrates a high-level overview of the PiP-MColl allgather

algorithm for small message cases, which can be described as follows.

Step 1: Perform intranode gather to local root process. Local processes

perform MPI Gather to gather data into the local root process destination buffer Ad.

Step 2: Initialize parameters. The multiobject Bruck algorithm step is ini-

tialized as Sp = 1 and the base of the multiobject Bruck algorithm as Bk = P + 1.

Step 3: Find the paired source and destination process. Each process sets

Noffset = (Rl + 1) ∗ Sp and finds the paired source node Nsrc = (Nid + Noffset)%N and

destination node Ndst = (Nid−Noffset)%N . The paired source process rank is Nsrc∗N+Rl,

and the destination process rank is Ndst ∗N +Rl.

Step 4: Perform send and receive. We define Cb as the receiving bytes from

each process in allgather and Ad as the starting address of the destination buffer of the

local root process. Each process sends Cb ∗ Sp bytes from the local root process buffer

to destination process and receives Cb ∗ Sp bytes from the source process into address

Ad + Cb ∗ Sp ∗ (Rl + 1). Then, each process updates Sp = Sp ∗Bk. If Sp is smaller than or

equal to N
Bk

, we repeat Step 3 to Step 4; otherwise, we go to Step 5.

Step 5: Deal with the remainder. If N is not a power of Bk, we have the

remaining N − Sp nodes for the final step. Each process takes Rem = Max(Min(Sp, N −

Sp ∗Rl), 0) remainder; if Rem > 0, the process will send and receive the Rem ∗Cb bytes to

and from the paired destination and source process.

87



Step 6: Shift data and broadcast. Local root process shifts the data into

correct sequence [18] and broadcasts to other processes.

Step 0 
(offset 1, 2, 3)

Step 1 
(offset 4, 8, 12)

Process

Inter-node comm

Node

……

Node 0

15 14 13

Node 1

0 15 14

Node 15

14 13 12

……

Node 0

12 8 4

Node 1

13 9 5

Node 15

11 7 3

Figure 4.3: Example of two-step PiP-MColl allgather algorithm for small-message commu-
nication with 16 nodes and 3 objects per node.

Based on the small-message allgather algorithm mentioned above, we provide

Equation 4.3, which shows the intranode gather runtime, and Equation 4.4, which shows the

internode allgather runtime 1. Since we do not overlap intra- and internode communication

in this case, the overall runtime is T = Tintra−gathers + Tinter−allgathers.

Tintra−gathers = αr + (1 +N ∗ P ) ∗ (P − 1) ∗ Cb ∗ βr (4.3)

Tinter−allgathers = αe ∗ dlogP+1Ne+ (Cb ∗ P − 1) ∗ Cb ∗ P ∗ βe (4.4)

On the other hand, for medium- and large-message allgather, we adopt the multi-

object ring algorithm to maximize network bandwidth utilization.

1Since the bandwidth term is not as important as the latency term when the message size is small, to
simplify the equation, we omit the remainder processing overhead. This is the same for the MPI Allreduce
runtime analyses.
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Figure 4.4 provides an overview of the algorithm. The detailed procedures can be

described as follows.

Step 1: Intranode gather to local root process. Similar to the small-message

algorithm, all processes on a node gather data into the destination buffer Ad of the local

root process.

Step 2: Identification of paired processes and parameter initialization.

Each process finds left source node Nsrc = (Nid − 1)%N and right destination node Ndst =

(Nid + 1)%N ; then the paired source process rank is P ∗ Nsrc + Rl, and the destination

process rank is P ∗Ndst + Rl. Each process then sets Ndoffset = Nid and Nsoffset = Nsrc

for node reference.

Step 3: Multiobject send and receive in ring pattern. Each process sets

the address offset Adoffset = Cb ∗Rl +Ndoffset ∗ P ∗Cb and Asoffset = Cb ∗Rl +Nsoffset ∗

P ∗Cb; then each process asynchronously sends Cb bytes starting from Ad +Adoffset to the

destination process and receives Cb bytes in Ad +Asoffset.

Step 4: Overlapped intranode broadcast. The local root process broadcasts

P ∗ Cb bytes at address Ad +Adoffset to other processes on the node.

Step 5: Parameter check and update. If the ring communication step is

smaller than N−1, every process updates Ndoffset = Nsoffset, Nsoffset = (Nsoffset−1)%N

and jumps back to Step 3; otherwise, the algorithm completes.

Similarly, medium- and large-message allgather involves an intranode gather, an

overlapped intranode broadcast, and an internode multiobject ring communication. The

intranode gather and broadcast runtime are shown in Equation 4.5 and 4.6 (the detailed
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Process

Inter-node comm

Intra-node comm

Node 0 Node 1 Node 2

Figure 4.4: High-level PiP-MColl allgather algorithm for medium- and large-message size.
The figure shows an example with 3 nodes and 3 objects per node and one step of the ring
communication. The intra- and internode communications run in parallel for overlapping.

gather and broadcast algorithm design are explained in Section 4.3.4); the internode runtime

is presented in Equation 4.7.

The overall runtime is T = Tintra−gatherl +Max(Tintra−bcastl, Tinter−allgatherl).

Tintra−gatherl = αr + (P − 1) ∗ Cb ∗ βr (4.5)

Tintra−bcastl = αr ∗ (N − 1) + (P − 1) ∗N ∗ P ∗ Cb ∗ βr (4.6)

Tinter−allgatherl = αe ∗ (N − 1) + P ∗ Cb ∗ (N − 1) ∗ βe (4.7)

MPI Allreduce

Traditionally, allreduce adopts a recursive doubling algorithm [116] for small mes-

sages and Rabenseifner’s algorithm [98] for large messages, which performs a reduce-scatter

followed by an allgather. To maximize performance, we design the recursive PiP-MColl

Bruck algorithm for small-message allreduce. The part of the design in allreduce is similar
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to allgather, but allreduce requires an extra reduction operation after each data transmis-

sion. In addition, when the number of nodes is not a power of P + 1, we need to compute

the reduction results of the reminder recursively. Cb bytes are for reduction. The algorithm

is designed as follows.

Step 1: Intranode reduce. All processes on a node perform intranode binomial

reduce and store final results into destination buffer Ad of the local root process.

Step 2: Parameter initialization All processes set Sp as 1 and Bk as P + 1,

which is the base of the multiobject Bruck algorithm.

Step 3: Identification of paired source and destination process. Each

process assigns Noffset = (Rl + 1) ∗ Sp and finds the paired source node Nsrc = (Nid +

Noffset)%N and destination node Ndst = (Nid − Noffset)%N . The paired source process

rank is Nsrc ∗N +Rl, and the destination process rank is Ndst ∗N +Rl.

Step 4: Send, receive, and reduce. Each process sends Cb bytes from the

local root process buffer Ad to the destination process, receives Cb bytes from the source

process in a temporary buffer, and performs an intranode reduce.

Step 5: Handling of current stage remainder. Every process sets Sp =

Sp ∗ Bk. If Rem = N%Sp is not zero, we need to perform an intranode reduction for the

reminder. If Sp == Bk, then Rem number of processes perform intranode reduction using

the received data and store the results in a new remainder buffer Ar; if Sp > Bk, then

dRem∗Bk
Sp

e number of processes perform intranode reduction using the received data and

previous reminder results and store the results in a new reminder buffer Ar. If Sp is smaller

than or equal to N
Bk

, go back to Step 3; otherwise, go to Step 6.
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Step 6: Final stage for remainder. If N is not a power of Bk, each process

sets Rem = Min((N − Sp) − Rl ∗ Sp, Sp). If Rem > 0 and Rem == Sp, the process

sends Cb bytes from As to the destination process and receives Cb bytes from the source

process. On the other hand, if Re > 0 and Re 6= Sp, the process sends Cb bytes from Ar to

the destination process and receives Cb bytes from the source process. The processes with

Re > 0 on the node perform an intranode reduce.

Step 6: Broadcasting of results. The local root process broadcasts the global

reduction results to all processes on the node, and the algorithm completes.

The small-message allreduce contains an intranode reduce whose runtime can be

represented as Equation 4.8 and an internode allreduce whose runtime is shown in Equation

4.9. The overall runtime is T = Tintra−reduces + Tinter−allreduces.

Tintra−reduces = αr ∗ dlog2P e+ Cb ∗ dlog2P e ∗ βr + Cb ∗ dlog2P e ∗ γ (4.8)

Tinter−allreduces = αe ∗ dlogP+1Ne+ Cb ∗ P ∗ dlogP+1Ne ∗ βe + Cb ∗ dlogP+1Ne ∗ γ (4.9)

For medium- and large-message allreduce, PiP-MColl performs a multiobject reduce-

scatter followed by PiP-MColl based allgather. We assumeN is divisible by P , Cb is divisible

by N , and the data chunk size is Sc The algorithm is described as follows.

Step 1: Perform intranode reduce. All processes on a node perform intranode

reduce (the detailed algorithm is explained in Section 4.3.4) and store final results in the

local root process destination buffer.
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Step 2: Post buffer address. Each process posts the source data buffer address

to all other processes on the node and gets the local root process destination buffer address

Ad.

Step 3: Find paired node range and process. Each process finds the paired

node range from N∗Rl
P to N∗(Rl+1)

P . For a paired node Np, the paired destination process

rank is Np ∗ P +Rl.

Step 4: Perform internode reduce-scatter. For each paired node, a process

finds the data chunk starting from Ad +
Cb∗Np

N to Ad +
Cb∗(Np+1)

N and sends it to the paired

process. Then, if Np == Nid, the process receives N − 1 chunks from the paired source

processes and reduce in the corresponding chunk; otherwise, it sends the chunk to the paired

destination process.

Step 5: Perform internode allgather with intranode broadcast. After

Step 4, each node owns the partial results of allreduce. All processes need to perform

internode allgather followed by intranode broadcast to obtain the complete global results,

and the algorithm completes.

Tintra−reducel = αr ∗ (P − 1) + Cb ∗ P ∗ γ (4.10)

Tinter−rscatterl = αe ∗ (P − 1) +
(N − 1) ∗ Cb

N
∗ βe +

Cb

N
∗ (N − 1) ∗ γ (4.11)

The algorithm contains intranode reduce, internode reduce-scatter, internode all-

gather, and intranode broadcast. Among them, internode allgather and intranode broad-

cast have been analyzed in Section 4.3.3. Intranode reduce and internode reduce-scatter
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runtime can be represented in Equation 4.10 and 4.11. The overall runtime should be

T = Tintra−reducel + Tinter−rscatterl +Max(Tintra−bcastl, Tinter−allgatherl).

4.3.4 Auxiliary MPI Collectives

For the algorithms presented above, the MPI collectives we focus on are MPI Scatter,

MPI Allgather, and MPI Allreduce. However, other auxiliary intranode MPI collectives—

including MPI Bcast, MPI Gather, and MPI Reduce—are designed as the building blocks of the

three MPI collectives in focus here. In the following, we briefly talk about the designs of

the auxiliary MPI collectives in the PiP environment.

Reduce by Rank 0

Reduce by Rank 1

Reduce by Rank 2

Reduce by Rank 3

Root

Rank 0 Rank 1 Rank 2 Rank 3

Reduction

Figure 4.5: PiP-MColl–based large-message intranode reduce communication with 4 pro-
cesses on a node. Each buffer is chunked based on the number of processes, and all data
will be reduced into the root process destination buffer.
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MPI Bcast is a one-to-all operation where one root process broadcasts the data to

all processes in the group. For small-message broadcast, the root process first copies the

source data into a temporary buffer; next it posts the address of the temporary buffer to all

processes, which then copy data into their destination buffer. For large-message broadcast,

the root process posts its source buffer address to all processes in the beginning; then the

processes copy data into their destination buffer. In this case, the root process needs to

wait until all processes complete the data copy.

MPI Gather is an all-to-one operation where one root process gathers data from all

processes in the group. The same algorithm is applied to both small- and large -message

communication. The root process first posts its destination buffer to all processes; then

every process copies the source data into the designated position in the buffer. In this case

also, the root process needs to wait until all processes complete the data copy.

For MPI Reduce, for small messages we simply adopt the binomial algorithm for

reduction, For large messages, the root process posts its destination buffer, and every process

posts its source data buffer; then each process is responsible for a chunk of buffer reduction.

That is, if there are N processes, every posted buffer is evenly cut into N chunks, and process

i will reduce the ith chunk from all source data buffers into the ith chunk of the destination

buffer. Figure 4.5 shows the reduction pattern. Correspondingly, the root process needs to

wait until all processes complete the data reduction.
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4.4 Experimental Results

In this section we first show the large-scale microbenchmark performance of MPI Scatter,

MPI Allgather, and MPI Allreduce; next, we compare PiP-MColl with the other widely used

MPI libraries:, namely, Intel MPI, MVAPICH2, and OpenMPI; we then measure the per-

formance of a real-world application N-body problem to further prove the effectiveness of

PiP-MColl.

4.4.1 Experimental Setup

We perform all experiments with a 256-node cluster with 18 processes on each

node.2 Each node contains two Intel Xeon E5-2695v4 Broadwell processors with 36 cores in

total, and each NUMA node attaches 64 GB DDR4 memory locally, which amounts to 128

GB of memory on a node. The nodes are connected via the Intel OPA interconnect with

maximal 97 Mpps (million per port per second) message rate and 100 Gbps bandwidth.

Hyperthreading is disabled on all nodes. We use PiP-based MPICH (extended from com-

mit bb595ca0 of the MPICH main branch) as the baseline implementation, which includes

single-copy–based optimization for medium and large intranode message communication

[63]. All source codes are compiled by the gcc/gfortran compiler (version 4.8.5). The low-

level libraries include Libfabric (version 1.10.1), Psm2 (version 0201), and Glibc (version

2.17). The Glibc libraries are patched in order to support PiP task spawn. For the MPI

library comparison, we use Intel-MPI (version 2017.3), OpenMPI (version 4.1.2), and MVA-

PICH2 (version 2.3.6) to compare with PiP-MColl using MPI Allgather communication.

2in this thesis we focus mainly on high-performance multiobject collective algorithm design instead of
hierarchical design [82]. Therefore, we ignore the NUMA feature and use only one socket per node for
performance showcase. However, the work can be easily extended to NUMA-aware version.
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4.4.2 Microbenchmark Evaluation

In this section we present the microbenchmark performance of MPI Scatter, MPI Allgather,

and MPI Allreduce. The microbenchmark is designed in two stages: a warm-up stage and

an execution stage. Each stage runs the same number of iterations. For small messages

(i.e., 1 B–1 kB), we run 10,000 iterations and compute the average time per iteration as

the final runtime; for medium messages, we run 1,000 iterations for 1–8 kB and 100 iter-

ations for 8–128 kB; for large messages (i.e., 128 kB or more), we run 10 iterations. All

microbenchmarks are repeatedly performed in 10 rounds in order to measure their standard

deviation. The main focus of PiP-MColl is to optimize small and medium message-size MPI

communication, where we expected the speedup. However, we also present the performance

of large-message collectives to prove the feasibility and effectiveness of PiP-MColl.

MPI Scatter

We first show the performance of MPI Scatter with various message sizes and

numbers of nodes. Figure 4.6a shows the scatter performance with different message sizes

(Msize) per process (i.e., overall data size on the root process is Msize ∗#process) on 256

Broadwell nodes with 18 processes on each node.

In all cases PiP-MColl outperforms the baseline; however, PiP-MColl achieves the

best speedup when the message size is small enough (i.e., around 2 bytes), and the speedup

decreases constantly along with the increase of message size until 64 kB. The reason is that

the network bandwidth is gradually saturated by the larger messages so that the benefits of

multiobject scatter become less significant. For large messages, although PiP-MColl is not
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(a) Message-based test on 256 nodes.
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(b) Node-based test with 1-byte message size.

Figure 4.6: MPI Scatter performance with different message size and numbers of nodes.
PiP-MColl scatter uses the same algorithm throughout the tests.
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able to bring about great speedup, it will not degrade the performance originally delivered

by the baseline. We also notice the abnormal speedup increment when message sizes are 256

kB and 440 kB; this is due to the performance degradation of baseline instead of PiP-MColl.

Theoretically, the baseline should be slightly slower than PiP-MColl in these cases.

On the other hand, in Figure 4.6b we present the performance of MPI Scatter with

fixed 1-byte message size and increasing numbers of nodes. We see that PiP-MColl beats

the baseline at both small and large scale for small-message communication. We also notice

when the number of nodes increases, the overall speedup gradually increases; this is because

the multiobject design takes much fewer steps to complete in internode scatter (as shown

in Equation 4.2 latency term), which provides the higher message rate at larger scale.

MPI Allgather

We present the performance of MPI Allgather with different message sizes and

numbers of nodes. Since different algorithms are adopted for small and large messages in

PiP-MColl, to better understand the performance, we mainly focus on the optimal allgather

performance (PiP-MColl Opt); we show the PiP-MColl performance with only a small-

message algorithm (PiP-MColl Small) as a reference.

Figure 4.7a shows the MPI Allgather performance with different message sizes from

1 byte to 440 kB on 256 Xeon Broadwell nodes. PiP-MColl Opt performs better than the

baseline in all cases, and it switches to the large-message algorithm after 32 kB message

size. We note that for medium-size messages (e.g., 2 kB), the multiobject benefits will

be negligible, and the major performance improvement is from intranode communication.

In addition, PiP-MColl Small presents worse performance when the message size is larger
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than 32 kB. This is because the overhead of the bandwidth term in Equation 4.4 becomes

prominent. This issue is solved in PiP-MColl Opt, however.

On the other hand, Figure 4.7b shows the MPI Allgather performance with various

numbers of nodes at fixed 1-byte message size per process. PiP-MColl outperforms the

baseline in all cases; however, we notice that the speedup does not increase along with

the increment in the number of nodes as it does with MPI Scatter. This is because the

multiobject design in MPI Allgather requires synchronization among processes per node in

the small-message algorithm Step 4, and the synchronization overhead is comparable to

the communication runtime when the message size is not large enough. If the number of

nodes is larger than P + 1 (in our case, P + 1 is equal to 19), this overhead persists in each

repeated step, thus limiting overall speedup.

In summary, PiP-MColl MPI Allgather is able to outperform the baseline with

various numbers of nodes and message sizes using appropriate algorithm switch.

MPI Allreduce

Similarly, we measure MPI Allreduce performance with various message sizes and

numbers of nodes. In this test we use double data type and the MPI SUM operation as

the input of MPI Allreduce.

Figure 4.8a presents the performance with different message counts on 64 nodes.

Similar to PiP-MColl MPI Allgather, the large-message algorithm in PiP-MColl MPI Allreduce

is switched on at 8K message counts (i.e., 64 kB). However, we notice that the PiP-MColl

performance is worse than the baseline when message counts are between 2K and 32K.
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(a) Message-based test on 256 nodes.
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(b) Node-based test with 1-byte message size.

Figure 4.7: MPI Allgather performance with various message size and number of nodes.
PiP-MColl Opt is the optimal case where the large-message algorithm is switched at 64 kB;
PiP-MColl Small is the case where only the small-message algorithm is used throughout
the test.
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The reason is that in these cases we are still using the small-message algorithm.

The increased message sizes result in the smaller multiobject benefits, which cannot offset

the synchronization overhead. In addition, the results are different from MPI Allgather

because the message size will not increase along with the communication, which results

in smaller ratio of communication to synchronization overhead; therefore, the PiP-MColl

MPI Allreduce not able to provide a performance boost similar to PiP-MColl MPI Allgather

in these cases.

On the other hand, when PiP-MColl switches to the large-message algorithm, it is

not able to achieve better performance from 8K to 32K message counts. The reason is that

the message sizes are still relatively small where the large-message algorithm benefits of

PiP-MColl cannot offset the synchronization overhead. However, when the message count

is larger than 32K, PiP-MColl performs better than the baseline because of more efficient

design of large-message algorithm.

Considering scalability, Figure 4.8b shows the performance on different number of

nodes with fixed 1 message count. In all cases, PiP-MColl outperforms the baseline, and this

is because of the multiobject benefits which brings about higher message rate. Similar to

MPI Allgather, when the number of nodes is larger than P+1, the synchronization overhead

persists in each repeated step of the algorithm which will limit overall speedup.

MPI Implementation Comparison

In this part we compare PiP-MColl with the widely used MPI libraries Intel-

MPI, OpenMPI, and MVAPICH2 using MPI Allgather communication. Figure 4.9 shows
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(a) Message-based test on 64 nodes.
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(b) Node-based test with fixed 1 message count.

Figure 4.8: MPI Allreduce performance with various double-type message counts and nodes.
For message-based execution, MPI Allreduce switches to the large-message algorithm when
message count is larger than or equal to 8 kB.
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the corresponding performance. We notice for large messages (e.g., 440 kB), all of the

MPI libraries provide excellent performance so that PiP-MColl does not provide too much

performance benefit over them. For small and medium-message sizes (i.e., from 1 bytes to 8

kB), however, PiP-MColl presents the best performance, surpassing the other MPI libraries

because of the multiobject benefits of PiP-MColl, which provides higher message rate and

network bandwidth utilization.

In summary, although PiP-MColl is not able to deliver much better performance

for large messages at large scale, it achieves the best performance for small and medium-size

message communication.

4.4.3 Applications Evaluation

In this section we apply PiP-MColl to a real-world application, an N-body simu-

lation, which is widely used in astronomy, and show the strong-scaling performance.

N-body simulation [119] is the foundation of numerous scientific applications where

the movement of particles (e.g., stars) in the dynamic systems is simulated over time under

certain forces (e.g., gravity) [117]. Current N-body simulation is usually implemented in

the MPI environment because of the huge amount of data computation and communication

requirements. On the other hand, the parallel algorithms that can be applied by N-body

simulation are massive; we choose the Barnes–Hut approximation algorithm [10], which is

a widely used hierarchical algorithm in the real world.

The key input of N-body simulation is the number of particles N to be calculated

and their initial status including position, velocity, mass, and radius. For simplicity, these
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Figure 4.9: MPI Allgather performance comparison among Intel-MPI, OpenMPI, MVA-
PICH2, and PiP-MColl with different message sizes on 256 Xeon Broadwell nodes.

are randomly initialized in our test in the beginning, and we only set the input parameter

N to define the problem size. The simulation iterates force and position computation many

times. The major MPI routine adopted by the simulation is MPI Allgather, and multiple

iterations are executed.

We perform the strong-scaling experiment with nodes ranging from 4 to 256, and

we set N = 105. Figure 4.10 shows the average runtime of one simulation iteration of
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baseline and PiP-MColl with runtime breakdown. We notice that when the number of nodes

is 4, the speedup is the smallest; this is because the ratio of communication to computation

is small, which results in negligible runtime improvement from communication for the whole

application. When we increase the execution scale, however, the overall speedup increases

rapidly. This is because PiP-MColl benefits predominate and bring about higher message

rate and network throughput.

The runtime and speedup trend comply with our microbenchmark results in Figure

4.7. In N-body simulation, when the execution scale is increased, the workload per process

of MPI Allgather decreases, and PiP-MColl switches to the small-message algorithm, which

provides maximal 2.5 speedup at 256 nodes.
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Figure 4.10: Strong scaling N-body simulation performance from 4 to 256 nodes. The
particle is set as 105 and average runtime of multiple iterations is presented.
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4.5 Summary

MPI collective performance is a popular research topic that has been studied for

years. The state-of-the-art works adopt various methods to improve intra- and internode

collective communication performance; among them, XPMEM, CMA, KNEM, and POSIX

shared-memory techniques are widely used for efficient MPI collective design. However,

these designs involve heavy system overhead or double copy overhead, which results in

suboptimal performance of collective algorithms.

In this thesis we propose PiP-MColl, a PiP-based multiobject interprocess MPI

collective design, to improve performance for small- and medium-message collectives without

causing extra overhead. PiP-MColl utilizes a PiP shared-memory technique to load MPI

processes into the same virtual memory space and allows us to perform data copy at the

userspace and avoid system and double copy overhead. Multiobject design at large scale for

small- and medium-message communication in the PiP environment enables us to obtain

maximal message rate and network throughput. We apply PiP-MColl to three widely used

MPI collectives: MPI Scatter, MPI Allgather, and MPI Allreduce. The experimental results

show that PiP-MColl performs much better than the baseline PiP-MPICH in all cases

and also beats the widely used MPI libraries Intel MPI, OpenMPI, and MVAPICH2. In

addition, the real-world N-body application obtains better performance than the baseline,

providing further proof of the effectiveness of PiP-MColl.

In summary, PiP-MColl is an efficient method that utilizes multiobject and the

PiP shared-memory technique and is able to maximize performance at a large scale for

small- and medium-message MPI collectives.
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Chapter 5

Conclusions

In this thesis, we focus on three problems in MPI communication and propose the

corresponding solutions.

Communication imbalance is ubiquitous among HPC applications. Eliminating

unbalanced communication at the application level is difficult mainly because of the chal-

lenges to estimate the amount of workloads. In addition, traditional software-level asyn-

chronous progress mechanisms have to statically configure progress resources (i.e., CPU

cores). Such a method may even perform poorly for multiple-stage applications where each

stage often forms a different communication and computation pattern.

To solve these issues, we presented CAB-MPI, an MPI implementation that can

dynamically balance MPI communication through novel interprocess work stealing. The

proposed communication balance is transparent to user applications. We have designed

several stealing strategies and optimizations based on the unique features of the MPI inter-

nal work. We showcased the benefit of the work-stealing mechanism through three types

108



of MPI internal work: intranode data transfer, pack/unpack for noncontiguous data move-

ment, and computation in one-sided accumulates. We evaluated the solution by using a set

of microbenchmarks and proxy applications on both Intel Xeon and Xeon Phi platforms.

Evaluation results indicate up to 1.3x improved performance in the stencil-based miniGhost

proxy application over 576 Xeon cores and a 1.4x speedup in the one-sided BSPMM appli-

cation.

At the same time, we presented Daps, a novel dynamic asynchronous progress

model based on interprocess work stealing. We formulated a detailed guideline for the

prerequisites of a successful work stealing in the multiprocess space and utilized the PiP

weak multiprocess model to support flexible data and code sharing as well as shared code

execution. The Daps algorithm is highly optimized by leveraging MPI internal knowledge

We also analyzed and addressed special implementation challenges that occurred when a

stealing interacts with low-level network drivers and TLS-involved libraries. The evaluation

was performed on an Intel OPA cluster. Compared with the state-of-the-art mechanisms,

Daps achieves up to 20% improvement in the two-stage BSPMM kernel and a 1.18x speedup

in the five-point 2D stencil.

To further improve MPI collectives performance, we propose PiP-MColl, a PiP-

based multiobject interprocess MPI collective design, to improve performance for small-

and medium-message collectives without causing extra overhead. PiP-MColl utilizes a PiP

shared-memory technique to load MPI processes into the same virtual memory space and

allows us to perform data copy at the userspace and avoid system and double copy overhead.

Multiobject design at large scale for small- and medium-message communication in the PiP
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environment enables us to obtain maximal message rate and network throughput. The

experimental results show that PiP-MColl performs much better than the baseline PiP-

MPICH in all cases and also beats the widely used MPI libraries Intel MPI, OpenMPI, and

MVAPICH2. In addition, the real-world N-body application obtains better performance

than the baseline, providing further proof of the effectiveness of PiP-MColl.
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[95] Marc Pérache, Hervé Jourdren, and Raymond Namyst. MPC: A Unified Parallel
Runtime for Clusters of NUMA Machines. In Proceedings of the 14th International
Euro-Par Conference on Parallel Processing, Euro-Par’08, pages 78–88, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[96] Antoine Petitet, RC Whaley, J Dongarra, and A Cleary. HPL–A Portable Implemen-
tation of the High-Performance Linpack Benchmark for Distributed-Memory Comput-
ers (2004). Available from Internet:¡ http://www. netlib. org/benchmark/hpl, 2016.

[97] Howard Pritchard, Duncan Roweth, David Henseler, and Paul Cassella. Leveraging
the cray linux environment core specialization feature to realize MPI asynchronous
progress on cray XE systems. In Proceedings of the Cray User Group Conference,
volume 79, page 130, 2012.

[98] Rolf Rabenseifner. Optimization of collective reduction operations. In International
Conference on Computational Science, pages 1–9. Springer, 2004.

[99] Amit Ruhela, Hari Subramoni, Sourav Chakraborty, Mohammadreza Bayatpour,
Pouya Kousha, and Dhabaleswar K Panda. Efficient asynchronous communication
progress for MPI without dedicated resources. In Proceedings of the 25th European
MPI Users’ Group Meeting, pages 1–11, 2018.

[100] Marc Sergent, Mario Dagrada, Patrick Carribault, Julien Jaeger, Marc Pérache,
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