
UC Irvine
ICS Technical Reports

Title
Usage-based characterization of complex functional blocks for reuse in behavioral synthesis

Permalink
https://escholarship.org/uc/item/18v9356s

Authors
Fan, Nong
Chaiyakul, Viraphol
Gajski, Daniel D.

Publication Date
2000-01-30

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/18v9356s
https://escholarship.org
http://www.cdlib.org/

Usage-B~.se(l Characterization of Complex
Functional Blocks Reuse in Synthesis

Nong Fant
Viraphol Chaiyakult

Daniel D. Gajskit

Technical Report #00-02
January 30, 2000

Notice: This Material
may be protected
by Copyright La~
(Title 17 U.S.C.)

tDepartment of Information and Computer Science
University of California, Irvine

Irvine, CA 92697
(949) 824-8059

:j:Y Explorations, Inc.
20902 Bake Parkway, Suite 100

Lake Forest, CA 92630
(949) 457-0294

nfan@ics.uci.edu
viraphol@yxi.com
gajski@ics. uci.ed u

Usage-Based Characterization of Complex
Functional Blocks for Reuse in Behavioral Synthesis

Nong Fant
Viraphol Chaiyakult

Daniel D. Gajskit

Technical Report #00-02
January 30, 2000

tDepartment of Information and Computer Science
University of California, Irvine

Irvine, CA 92697
(949) 824-8059

tY Explorations, Inc.
20902 Bake Parkway, Suite 100

Lake Forest, CA 92630
(949) 45 7-0294

nfan@ics. uci.ed u
viraphol@yxi.com
gajski@ics. uci.ed u

Abstract

This paper presents a novel usage-based characterization method to capture pre­
designed complex functional blocks for automatic reuse in behavioral synthesis. We iden­
tify attributes necessary for reuse of such complex components and illustrate how the at­
tributes are captured into a design database. A complex component MT X _MU LT8X8,
which computes product of two 8 x 8 matrices, is captured with the proposed method,
and its reuse in behavioral synthesis is demonstrated with design of a DCT example.
Feasibility of the method for capturing various components is demonstrated as well.

~contents

1 Introduction

2 Related Work

3 Problem Definition and Target Architecture

4 Usage-Based Component Characterization

4.1 Specifying Usages

4.2 Specifying an Interface Protocol for Each Usage . .

4.3 Interface Generators

5 Complex Functional Block Reuse in Behavioral Synthesis

6 Experimental Results

7 Conclusion and Future Work

8 References

1

2

3

4

4

5

6

7

8

9

10

~List of Figures

1 MTX.MULT8X8: (a) interface description, (b) clock and reset pulse constraint, (c)

input protocol, and (d) output protocol.

2

3

4

5

6

7

8

Target architecture.

Two usages for MTX.MULT8X8.

An example binding rule for the MTX_MULT8X8.

Interface generator.

Synthesis of a DCT example.

Three designs for DCT

Usage-based characterization for 7 components

ii

1

3

4

5

7

8

9

9

1 Introduction

Pre-designed and pre-verified complex functional

blocks, such as FFT, FIR and DCT cores, have

mask layout data with physical layout informa­

tion. They provide predictable performance and

physical design information since they are tuned

to a specific process. Thus, reusing such complex

components offers great potential for reducing

design time and cost for System-On-Chip (SoC)

designs.

To reuse pre-designed components in synthe­

sis, they need to be properly characterized. Char­

acterization is a process in which attributes of a

component necessary for its reuse are identified

and captured in a design database. Tradition­

ally, attributes such as input timing constraints,

output delays, area and power consumptions are

characterized and stored in a design database.

We refer to these characteristics as component­

based characteristics. However, component­

based characteristics are not enough for auto­

matic reuse of complex components.

Fig. 1 shows an example of pre-designed com­

plex components, MT X _MU LT8X8. It per­

forms multiplication of two 8 x 8 matrices, where

each element in the matrix is a 16-bit number,

either unsigned (TC = 0) or signed (TC = 1).

Fig. 1(a) shows the interface description of the

component. Fig. l(b) shows the constraint on

the minimum clock period and reset pulse. Input

matrices are read into it through the 16-bit data

input port DIN according to the hand-shaking

protocol shown in Fig. 1(c). The resultant ma­

trix is sent out through the 16-bit data output

1

port DOUT according to the hand-shaki;ng pro­

tocol shown in Fig. 1(d).

Reusing components such as MT X _MU LT8X8

with component-based characteristics and sup­

plemented timing diagrams would proceed at Reg­

ister Transfer Level (RTL), where designers have

to manually instantiate instances of the compo­

nents in their RTL codes and hand-generate in­

terface control logics. The drawbacks of such an

approach are that: (1) reading and understand­

ing documentation have to be repeated every

time a component is reused and they are time­

consuming; (2) instantiation of components in

CLK
RST
TC

16

DIN : min.10ns :

R REO MTX_MULT8X8
FLACK

CLK~
min. 15 ns

W_REO
W_ACK DOUT RST

16

(a) component interface (b) clock and reset constraint

64 cycles
I I

CLK ~ ••• ll_SL_IL
I I . :

R_REQ ; I :

R_ACK -fJ ;
·~~~~-,-,-~~~~~~!· .

DIN p 1

• •·. '• 64elements ~

(c) input protocol

64cycles

CLK ~,. •,. n__n__J-i_
I I I

W_REQ : t i
I :

W_ACK --+J I

DOUT ~Ji;.- 64elements ~

(d) output protocol

Figure 1: MTX_MULT8X8: (a) interface descrip­
tion, (b) clock and reset pulse constraint, (c) input
protocol, and (d) output protocol.

a design description makes the design difficult

·to modify since selecting alternative components

means that the design has to be rewritten; (3)

manually generating the control logics is tedious

and error-prone, and (4) the control logics are

mixed with the rest of a design and have to be

re-verified every time a component is reused.

In order to support automatic reuse in behav­

ioral synthesis, attributes of such components

necessary for their automatic reuse must be iden­

tified and captured into a design database. In

this paper, we propose a novel usage-based char­

acterization method to capture the components

such that they can be automatically reused in

behavioral synthesis. We will concentrate on

what attributes of a component need to be cap­

tured and how the information is described in

the design database. The usefulness of the cap­

tured information in behavioral synthesis is demon­

strated by design of a DCT example, and the

feasibility of the method for capturing compo­

nents with various complexities is demonstrated

as well.

2 Related Work

In a traditional behavioral synthesis method­

ology, a designer synthesizes a behavioral de­

scription into an RTL net list using a generic

library of synthesizable and/ or parameterizable

components. Each component in the synthesized

RTL net list is then synthesized or mapped to

an existing component in a target library later.

There is a previous work addressing this issue [1 J.
Libraries used in behavioral synthesis tools, such

as BdA [2], Synopsys behavioral compiler [3],

2

OSCAR [4] and CATHEDRAL-III [5], d,iffer in

the complexity of their components.

Some recently introduced behavioral synthe­

sis tools, such as CADDY-II [6] and AMICAL [7],

increase the complexity of reusable components

in their libraries to include components which

can perform part of the system specifications.

CADDY-II synthesizes a component from its

behavioral specification into an RTL structure

consisting of sub-components. Then the infor­

mation of the component, such as its behavioral

specification, the synthesized RTL structure and

the determined schedule, are captured into the

design database with the goal of sharing the sub­

components in future designs.

In AMICAL, components are captured with

four different views: (1) the conceptual view spec­

ifying operations able to be performed by the

component, (2) the behavioral view specifying

the operations that can be called from behav­

ioral description, (3) the implementation view

specifying the external ports, and (4) the high­

level synthesis view linking the behavioral op­

erations and implementations and providing a

fixed schedule for the execution of the opera­

tions. In order to reuse such a component, a

designer needs to manually instantiate it in the

input description, meaning that its reuse is not

automatically achieved. Both CADDY-II and

AMICAL do not consider how to capture a pre­

designed complex components with arbitrary I/O

protocols and determined timing constraints.

ALOHA [8] proposed a strategy to capture

I/O signaling protocols of hardware modules with

an "event graph" to support automatic gener­

ation of interface between interacting modules

from a high-level specification. However, their

method does not support automatic component

selection during synthesis.

On the other hand, our usage-based charac­

terization provides a method of capturing a pre­

designed complex functional block to support

behavioral synthesis tasks, such as component

selection, scheduling, binding and architecture

generations.

3 Problem Definition and Tar­
get Architecture

Our problem is defined as follows: given a pre­

designed functional blocks, identify attributes nec­

essary for their reuse and capture them into a

design database such that behavioral synthesis

systems can automatically reuse the components

without knowing their implementation details.

In order to support automatic reuse in syn­

thesis, it is desirable to view a component at

a sufficient high level of abstraction which de­

scribes what operations the component can per­

form and hides details about how the component

performs a particular operation. Meanwhile, in­

formation about how to control the component

to perform the required operation must be avail­

able to synthesis systems. Therefore, the follow­

ing two kinds of attributes of a component need

to be captured:

• functionalities of the component, and

• information about how to control the com-

3

ponent to implement a particular f~nction­

ality.

Behavioral synthesis usually involves alloca­

tion, scheduling and binding. Capturing func­

tionalities of a component into a design database

supports the task of allocation and binding since

synthesis systems can search the database for a

capable component based on its functionalities.

Capturing control information supports the task

of scheduling since the control information con­

tains details about how to control the component

to perform a required operation.

SCLK

,,
l

,,

... FSM control DP/CC
...

l status T
, ,,

Figure 2: Target architecture.

ACLK1
• • ACLKn

r:
• • !-+-

Fig. 2 shows the target architecture which

allows us to design a circuit using components

with various complexities. It is basically a Fi­

nite State Machine with Datapath (FSMD) [9].

The FSM controls components in the datapath.

In addition to traditional RTL components, the

datapath may contain complex components(CC).

These complex components may run at their own

clocks and communicate with the FSM via com­

plex protocols. Here we call the clock control­

ling the FSM as the system clock (SCLK) g,nd

the clocks controlling datapath components as

auxiliary clocks (ACLKs).

straints on bit width of operands specify the size

of the operands the component can take, while

the constraints on design clock(s) specify the re-

4 Usage-Based Component Char- quirements for both the system clock (SCLK)

acterization and auxiliary clocks (ACLKs).

The usage-based component characterization is

to characterize a component based on its usage,

i.e., the functionality of an operation the compo­

nent can perform and the constraints it has to

satisfy. There are two tasks in usage-based char­

acterization, specifying a usage and specifying

an interface protocol. The interface protocol

describes how to perform the operation under

the given constraints in the usage. The result

of characterization is a set of binding rules.

Each binding rule relates one usage with its cor­

responding interface protocol. In order to reduce

the number of binding rules for a component, in­

terface generators are introduced for usages

with flexible constraints.

4.1 Specifying Usages

The usage describes the functionality of the op­

erations a component can perform and the con­

straints it has to satisfy to perform the opera­

tions.

The functionality of an operation is modeled

as a either pre-defined or user-defined function or

procedure in a description language by specify-

ing the name of the function/procedure and pa-

-, f
A 8 A 8

behavioral C = CROSS(A, 8) ¥ behavioral
P _CROSS(A, 8, C) 7 operation operation

c
operand A,B,C:array(Oto7,0lo7)af operand A,B,C:array(Oto7,0to7}of
constraints slgned(1GdownloO); constraints urulgned(7dawnl:J O);

SCLK ~ ~
./ \..

(a) (b)

Figure 3: Two usages for MTX_MULT8X8.

As we mentioned before, the MT X _MU LT8X8

can perform multiplication of two 8 x 8 matrices

with each element representing a 16-bit signed

number. This functionality can be modeled as

a function "C = CROSS(A,B)", where A,B

and C are 8 x 8 arrays of 16-bit signed num­

bers, as shown in the usage in Fig. 3(a). The

constraint on the minimum period of the sys­

tem clock (SCLK) is 20ns and it is necessary

for design of interface protocol which will be ex­

plained later. The MTX_MULT8X8 can also

perform multiplication of two 8 x 8 matrices with

elements of 8-bit unsigned numbers. The func­

tionality can also be modeled as a procedure

"P_CROSS(A,B : in; C : out)", where A,B

and C are 8 x 8 arrays of 8-bit unsigned num­

bers, as shown in Fig. 3(b). The constraint on

the minimum period of the SCLK is lOns.

A component may have multiple usages if it
rameters and their data types. The function/procedurean per.corm di'a t t' .c th c i 1 ueren opera ions or per1orm e
can be invoked in a behavioral description. There

are two kinds of constraints in a usage. The con-

4

same operation under different constraints. On

the other hand, different components may have

the same usage since there may exist more than

one component in a design database which can

perform the same operation under the same con­

straints. A component would be selected to per­

form a required operation if and only if the

functionality of the operation is matched, and

the constraints on design clocks and operand bit

width are satisfied.

4.2 Specifying an Interface Protocol
for Each Usage

The purpose of an interface protocol is to provide

control information necessary for performing a

behavioral operation on a component under the

given constraints. By comparing the operation

"CROSS" shown in Fig. 3(a) and the compo­

nent MTX_MULT8X8 shown in Fig. l(a), we

observe that: (1) they have different number of

ports, and (2) the component usually uses more

complicated mechanism to receive operands and

send results than the operation. Thus, an inter­

face protocol is required to bridge the gap be­

tween a behavioral operation and a component.

The control information contained in an in­

terface protocol should specify external control

and data flow requirements of the operations

performed by the component, such as how to

start the operation, how to supply data, read/write

protocols, input/output operation timings etc.

An interface protocol also needs to guarantee

that all timing constraints of the component,

such as clock periods, setup and hold timing con­

straints, are satisfied.

An interface protocol is specified as a state

5

machine, where I/ 0 operations are speci~ied for

each state and state transitions are controlled by

the system clock (SCLK). Since the period con­

straint on the SCLK is important for designing

the interface state machine, it has to be speci­

fied in the corresponding usage of the interface

protocol.

An interface protocol is related to a usage by

a binding rule, which tells that if the usage is

matched, the interface protocol can be used to

control the component to perform the operation

specified in the usage.

lntorfaco protocol

Usago '1•

CLK DIN

-- RST
-- TC

R_REO MTX_MULTBXO

A D

Nhavbft.I C•CAOSS(A.B) ~
~r.SOn y

-- R_ACK
W_REO

-- W_ACI(DOUT

operand A.B.C:11.1T&'J(Olo7,01117)ol
c::ooWahb tlg'lf.d(15tbwnto0);-

SClK~

Figure 4: An example binding rule for the
MTX_MULT8X8.

A binding rule of the MT X _MU LT8X8, which

specifies an interface protocol for the usage in

Fig. 3(a), is shown in Fig. 4. A control scheme

to control the MTX_MULT8X8 to perform the

"CROSS" is specified in the interface protocol

as a state machine. In the initial state STO, it

resets the MTX_MU LT8X8 by sending '1' to

the port RST. In the state STl, it pulls RST

back to 'O', sends '1' to TC, indicating that the

operands should be treated as signed numbers

and waits for R__REQ to become '1'. Once the

R_REQ becomes '1', it goes to the state S,T2

and sends '1' to R_AC K. Then it stays at the

state ST3 for 64 cycles and sends one element

(row wise) to the component at each cycle. Sim­

ilarly, in the state ST4 to ST6, it sends the 64

elements of the second matrix B to the compo­

nent. Then it waits for the computation to finish

and fetches the resultant matrix in the state ST7

to ST9. Since the clock period is no less than

20ns, the 15ns pulse constraint on the RST is

satisfied by keeping it high for one cycle.

The interface protocol actually captures de­

sign knowledge about how to use a component

to perform a particular operation. If the simu­

lation model of the component is available, the

interface protocol may be verified by simulat­

ing the state machine together with the compo­

nent and checking whether the resultant matrix

generated in the interface is correct. Once the

interface protocol is verified and captured into

a design database, it may be used directly by

a synthesis system to control the component to

perform a required operation.

4.3 Interface Generators

Different constraints on performing an operation

usually require different control schemes. For

instance, performing the operation specified in

Fig. 3(b) under a system clock with the mini­

mum period of lOns requires that the RST sig­

nal be kept high for at least two cycles to satisfy

the 15ns pulse constraints. Furthermore, the 8-

bit matrix elements need to be expanded to 16-

bit to match the 16-bit input port DIN, and

the 8-bit result needs to be extracted from the

6

16-bit output port DOUT to match the. size of

the elements of the resultant matrix C. U nfor­

tunately, such constraints are not known until

synthesis. In order for a component to be used

under various design constraints, it is necessary

to specify interfaces suitable to perform an op­

eration under all possible design constraints and

store them into the design database. However,

such a method will require a huge number of

binding rules to be specified for the component,

and result in a huge design database. The in­

terfaces determined during characterization are

referred to as static interfaces.

In order to be able to use MT X _MU LT8X8

to perform multiplication of two 8 x 8 matrices

with each element less than 16-bits and repre­

senting either unsigned or signed numbers, for

instance, we might need to specify 16 x 16 x 2 =

512 binding rules. Considering possible vari­

ations of the system clock periods makes this

number even larger.

To solve this problem, we introduce usages

with :flexible constraints and interface genera­

tors. The :flexible constraints on the operand

sizes and design clocks are specified as ranges.

For example, the constraint on the element size

of the 8 X 8 matrix would be greater than 0 and

less than 17, and the constraint on the mini­

mum system clock period would be greater than

lOns. An interface generator is a programmable

interface protocol for a usage with :flexible con­

straints. It needs to be programmed in such a

way that it takes as input the constraints to per­

form an operation and generates as output a cus-

tomized interface protocol if the constraints sat­

isfy the flexible constraints specified in the usage.

An interface generator usually consists of an

interface template and a set of transformations

to manipulate the template to produce a cus­

tomized interface protocol. The interface tem­

plate specifies a basic state machine which con­

tains necessary information for generating a cus­

tomized interface protocol. Since the constraints

passed into an interface generator include con­

straints on size of operands and constraints on

design clocks, three kinds of transformations may

be applied to the template: state splitting, operand

expansion and result extraction.

Uaago

A B

bohavk>rat c .. CRQSS(A,B) ~
opotnllon y
operand A.B,C:tllfa)'(Oto7,0to7)of
oombah!.s s9ied(rnax15cbwnlo0);

SCLK >•10ns

Interface generator

Interface template
STD

ST3

R_ACKcr'O'
DIH<=A(CNT/l,CHTmod I)

CHT<aCHT+1 ,J(

r-:=====::::---1 ~ ~""6is'l'l<>loeoln
I state Spll!Ung ~
f Operand expansion

I ResullextracUon)

Figure 5: Interface generator.

The state splitting splits a state in the tem­

plate into several states with all the statements

in the original state duplicated into each post­

split state. It is usually used to satisfy con­

straints on input ports, such as pulse constraints

and setup /hold timing constraints, by sustaining

the values on the input ports for more than one

system clock cycles. The number of states may

be determined by dividing the worst case timing

constraints among all the signals in the origi­

nal state by the system clock period. Operand

7

expansion expands operands of a behaviqral op­

eration to match the size of component input

ports, while result extraction extracts data from

component output ports to match the size of the

result expected by the behavioral operation.

Fig. 5 shows an interface generator to gener-

ate interface protocols to control the MT X _MU LT8X8

to perform multiplications of two 8 x 8 matrices

as long as the bit-width of the matrix element

is no greater than 16 and the minimum period

of the SCLK is no less than lOns. The state

STO in the interface template will be split into

f 8~~Kl states, where SCLK represents the pe-

riod of the system clock specified during synthe-

sis and 15 is the minimum pulse width constraint

on RST port. The element of the first matrix

needs to be expanded in the state ST3 and the

result is extracted in the state ST9. This re­

duces the number of binding rules to 1. But

we can still obtain appropriate control schemes

to control the MT X _MU LT8X8 to perform the

required functionality under various design con­

straints.

5 Complex Functional Block Reuse
in Behavio.ral Synthesis

Complex functional blocks with usage-based

characteristics are able to be automatically reused

in behavioral synthesis. With a set of binding

rules stored in a design database for a compo­

nent, the database search engine can use a be­

havioral operation and design constraints passed

by synthesis systems as keys to search for com­

ponents able to perform the operation under ~he

"given constraints. The search results, which are

components and their usage-based characteris­

tics, are returned back to the synthesis system.

Once a component is selected by the synthesis

system, the behavioral description needs to be

modified to include the control scheme specified

in the interface protocol to control the selected

component. A natural approach is to embed it

into the original description and use it to con­

trol the component. [10] proposed a modified list

scheduling algorithm which takes such a control

scheme into consideration during scheduling.

Reuse of the MTX_MULT8X8 in synthe­

sis of a 2-dimensional DCT example is demon­

strated in Fig. 6. The definition of the DCT for

an 8 X 8 image can be represented as follows [11]:

to query a design database to find components

able to perform the "CROSS" under the given

design constraints. If the MT X _MU LT8X8 is

selected from the returned components to per­

form the "CROSS", the synthesis system can

instantiate an instance of the MT X _MU LT8X8

and embed the customized interface protocol into

the description. Since there is a data depen­

dence between the two "CROSS" operations,

they can be performed on the same component.

The interface protocol is used twice to control

the MT X _MU LT8X8 to perform the two oper­

ations.

6 Experimental Results

We have captured a variety of pre-designed
COEFF x Ax COEFFT complex functional blocks into a design database,

where A is the input image, COEF F and COEFFT eXpl~ration Database (XD)1 of Y Explorations,

are DCT constant array and its transpose, re­

spectively.

Input description

C§V+lconstnintol
9'!'•!: ., ••

~ I $
........

.
tom Im CROSS(COEFF,A);

Z := CROSS(t~m,COEFFT); . [Synthesis system J

:~
customized lnterfaca

Figure 6: Synthesis of a DCT example.

The input behavioral description mainly con­

tains two function calls to "CROSS" and is syn~

thesized under a system clock with the mini­

mum period 20ns. The synthesis system needs

8

Inc. (YXI) using the proposed usage-based char­

acterization method. The components can be

automatically reused during synthesis process us­

ing YXI's eXploration Compiler (XC) 2 •

In the first experiment, we demonstrated that

usage-based characterization supports efficient reuse

of complex components by designing the DCT

example with three different allocations and two

design clock constraints as shown in Table 7.

Complex components, such as shift-and-add mul­

tiplier and the MT X _MU LT8X8 were used in

the designs. The DCT algorithm was described

in two ways. One uses nested loops with addi­

tion and multiplication operations inside (input

1 XD is a trademark of YXI.
2 XC is a trademark of YXI.

··1) and the other uses "CROSS" function calls

(input 2). Column 2 in Table 7 lists the num­

ber of lines of VHD L codes for both descriptions.

Column 3 lists three allocations for the designs

and column 4 lists the clock constraints. For

comparison, column 5 lists the number of lines of

VHDL codes a designer would write to design the

DCT with specified allocation and design con­

straints at RTL. Column 6 lists the increment

percentage of code size of these two kinds of de­

scriptions. The last column lists the number of

states in the RTL codes.

II of lines of VHDL #of llnea of VHDL

dealgn ~odes to reuao FUa allocatlon
clock codes to reuse FUa

% Increase #of states with ueage-baaed (ns) with comp.-bsaed
characterlatlce characterlstlca

1 8-blt array mutt 20 224 267 28

1 111-blt adder 10 252 313 32
lnput1 61

18-bltSAM 20 278 355 40

1 19-blt adder 10 298 388 44

1 8-blt axe matrix 20 319 811 42
lnput2 35 mutt 10 327 834 44

Figure 7: Three designs for DCT

The input 1 and 2 have been synthesized by

XC into a structural implementation for each

allocation and clock constraint. The database

support relieves the designers from understand­

ing I/ 0 protocols and timing diagrams of the

components.

In the second experiment, we demonstrated

the feasibility of our method for capturing func­

tional blocks with various complexities. Table 8

lists 7 components we captured using the usage­

based characterization method. All the com­

ponents were designed using MSU SCMOS 0.8

standard cell library [12].

The 16-bit adder and 16-bit ALU show that

our method can also be applied to capture com-

9

Component Clock 110 Automatic rouse In behavioral ayntheal•
Features namo reqlramento protocol• Comp.-baaed char. Ua~ge-baaed char.

16-blt combinational
carry lookup FU

0 No Yes Yes
addsr

16-bltALU mulU-functlonal 0 No Yea Vos
unit

16-blt data-dependent cu atomized
eh lit-and-add 1 No Yes

multiplier
execution time protocol

16-blt twophnaa one-way hand
Radix' 4 Booth 2 No Yes

multlpller
clocking ehaklng

16-blt four
stage pipelined pipelined 1 No No Yea

multiplier

BxOmatrlx array
1

customized
No Yea

multlpller computation protocol

axe ocr array
1

cu atomized No You
computation protocol

Figure 8: Usage-based characterization for 7 compo­
nents

binational and/or multi-functional unit. The 16-

bit shift-and-add multiplier has data dependent

execution time. The 16-bit Radix-4 Booth mul­

tiplier is implemented using two phase clocking

scheme. The 16-bit pipelined multiplier has four

pipe stages. The MT X _MU LT8X8 is the com­

ponent we used in the paper. And the DCT is

the design synthesized using the MT X _MU LT8X8.

All the components with usage-based character­

istics can be automatically reused in behavioral

synthesis.

7 Conclusion and Future Work

We have presented a novel usage-based char­

acterization of pre-designed complex functional

blocks for automatic reuse in behavioral synthe­

sis. The I/ 0 protocols and timing constraints

of the components are captured into interface

protocols based on the operations and the de­

sign constraints. The proposed method has been

implemented in the eXploration Database (XD)

of Y Explorations, Inc.. Experimental results

have demonstrated its efficiency and feasibility

in reuse of complex components in behavioral

synthesis.

8 References

[1] P. Jha and N. Dutt, "Design reuse through high-level
mapping," Proc. of European Design €3 Test Confer­
ence, 1995.

[2] L. Ramachandran and D. Gajski, "Behavioral design
assistant (BdA) user's manual: version 1.0," Univer­
sity of California, Irvine, Dept. of Information and
Computer Science, Technical report, 94-36.

[3] T. Ly, D. Knapp, R. Miller and D. MacMillen,
"Scheduling using behavioral templates," Proc. of
DAG, 1995.

[4] B. Landwehr, P. Marwedel and R. Domer, "OSCAR:
optimum simultaneous scheduling allocation and re­
source binding based on integer programming," Proc.
of EURO- VHDL, 1994.

[5] W. Geurts, F. Catthoor and H. De Man,
"Quadratic zero-one programming-based synthesis of
application-specific data paths," IEEE Transactions
on CAD, vol. 14, pp. 1-11, 1995.

[6] 0. Bringmann and W. Rosenstiel, "Resource sharing
in hierarchical synthesis," International Conference
on Computer-Aided Design, 1997.

[7] P. Kission, H.Ding and A. Jerraya, "VHDL based
design methodology for hierarchy and component re­
use," Proc. EURO- VHDL, 1995.

[8] J. S. Sun and R. W. Brodersen, "Design of system
interface modules," Proc. ICCAD, 1992.

[9] D. Gajski, N. Dutt, A. Wu and S. Lin, High-Level
Synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers, 1992.

[10] H. Juan, Design Methodology and Algorithms for In­
teractive Behavioral Synthesis, Ph.D. Dissertation,
University of California, Irvine, 1997.

[11] P.M. Embree and B. Kimble, C Language Algorithms
for Digital Signal Processing, Prentice Hall, 1991.

[12]
http:/ /WWW .ERC.MsState.Edu/mpl/ scmos /html/
release.html

10

