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Abstract 

This paper presents a novel usage-based characterization method to capture pre­
designed complex functional blocks for automatic reuse in behavioral synthesis. We iden­
tify attributes necessary for reuse of such complex components and illustrate how the at­
tributes are captured into a design database. A complex component MT X _MU LT8X8, 
which computes product of two 8 x 8 matrices, is captured with the proposed method, 
and its reuse in behavioral synthesis is demonstrated with design of a DCT example. 
Feasibility of the method for capturing various components is demonstrated as well. 
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1 Introduction 

Pre-designed and pre-verified complex functional 

blocks, such as FFT, FIR and DCT cores, have 

mask layout data with physical layout informa­

tion. They provide predictable performance and 

physical design information since they are tuned 

to a specific process. Thus, reusing such complex 

components offers great potential for reducing 

design time and cost for System-On-Chip (SoC) 

designs. 

To reuse pre-designed components in synthe­

sis, they need to be properly characterized. Char­

acterization is a process in which attributes of a 

component necessary for its reuse are identified 

and captured in a design database. Tradition­

ally, attributes such as input timing constraints, 

output delays, area and power consumptions are 

characterized and stored in a design database. 

We refer to these characteristics as component­

based characteristics. However, component­

based characteristics are not enough for auto­

matic reuse of complex components. 

Fig. 1 shows an example of pre-designed com­

plex components, MT X _MU LT8X8. It per­

forms multiplication of two 8 x 8 matrices, where 

each element in the matrix is a 16-bit number, 

either unsigned (TC = 0) or signed (TC = 1). 

Fig. 1( a) shows the interface description of the 

component. Fig. l(b) shows the constraint on 

the minimum clock period and reset pulse. Input 

matrices are read into it through the 16-bit data 

input port DIN according to the hand-shaking 

protocol shown in Fig. 1( c). The resultant ma­

trix is sent out through the 16-bit data output 
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port DOUT according to the hand-shaki;ng pro­

tocol shown in Fig. 1( d). 

Reusing components such as MT X _MU LT8X8 

with component-based characteristics and sup­

plemented timing diagrams would proceed at Reg­

ister Transfer Level (RTL), where designers have 

to manually instantiate instances of the compo­

nents in their RTL codes and hand-generate in­

terface control logics. The drawbacks of such an 

approach are that: (1) reading and understand­

ing documentation have to be repeated every 

time a component is reused and they are time­

consuming; (2) instantiation of components in 

CLK 
RST 
TC 

16 

DIN : min.10ns : 

R REO MTX_MULT8X8 
FLACK 

CLK~ 
min. 15 ns 

W_REO 
W_ACK DOUT RST 

16 

(a) component interface (b) clock and reset constraint 

64 cycles 
I I 

CLK ~ ••• ll_SL_IL 
I I . : 

R_REQ ; I : 

R_ACK -fJ ; 
·~~~~-,-,-~~~~~~!· . 

DIN p 1 

• •·. '• 64elements ~ 

(c) input protocol 

64cycles 

CLK ~,. •,. n__n__J-i_ 
I I I 

W_REQ : t i 
I : 

W_ACK --+J I 

DOUT ~Ji;.- 64elements ~ 

(d) output protocol 

Figure 1: MTX_MULT8X8: (a) interface descrip­
tion, (b) clock and reset pulse constraint, ( c) input 
protocol, and ( d) output protocol. 

a design description makes the design difficult 



·to modify since selecting alternative components 

means that the design has to be rewritten; (3) 

manually generating the control logics is tedious 

and error-prone, and ( 4) the control logics are 

mixed with the rest of a design and have to be 

re-verified every time a component is reused. 

In order to support automatic reuse in behav­

ioral synthesis, attributes of such components 

necessary for their automatic reuse must be iden­

tified and captured into a design database. In 

this paper, we propose a novel usage-based char­

acterization method to capture the components 

such that they can be automatically reused in 

behavioral synthesis. We will concentrate on 

what attributes of a component need to be cap­

tured and how the information is described in 

the design database. The usefulness of the cap­

tured information in behavioral synthesis is demon­

strated by design of a DCT example, and the 

feasibility of the method for capturing compo­

nents with various complexities is demonstrated 

as well. 

2 Related Work 

In a traditional behavioral synthesis method­

ology, a designer synthesizes a behavioral de­

scription into an RTL net list using a generic 

library of synthesizable and/ or parameterizable 

components. Each component in the synthesized 

RTL net list is then synthesized or mapped to 

an existing component in a target library later. 

There is a previous work addressing this issue [1 J. 
Libraries used in behavioral synthesis tools, such 

as BdA [2], Synopsys behavioral compiler [3], 
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OSCAR [4] and CATHEDRAL-III [5], d,iffer in 

the complexity of their components. 

Some recently introduced behavioral synthe­

sis tools, such as CADDY-II [6] and AMICAL [7], 

increase the complexity of reusable components 

in their libraries to include components which 

can perform part of the system specifications. 

CADDY-II synthesizes a component from its 

behavioral specification into an RTL structure 

consisting of sub-components. Then the infor­

mation of the component, such as its behavioral 

specification, the synthesized RTL structure and 

the determined schedule, are captured into the 

design database with the goal of sharing the sub­

components in future designs. 

In AMICAL, components are captured with 

four different views: (1) the conceptual view spec­

ifying operations able to be performed by the 

component, (2) the behavioral view specifying 

the operations that can be called from behav­

ioral description, (3) the implementation view 

specifying the external ports, and ( 4) the high­

level synthesis view linking the behavioral op­

erations and implementations and providing a 

fixed schedule for the execution of the opera­

tions. In order to reuse such a component, a 

designer needs to manually instantiate it in the 

input description, meaning that its reuse is not 

automatically achieved. Both CADDY-II and 

AMICAL do not consider how to capture a pre­

designed complex components with arbitrary I/O 

protocols and determined timing constraints. 

ALOHA [8] proposed a strategy to capture 

I/O signaling protocols of hardware modules with 



an "event graph" to support automatic gener­

ation of interface between interacting modules 

from a high-level specification. However, their 

method does not support automatic component 

selection during synthesis. 

On the other hand, our usage-based charac­

terization provides a method of capturing a pre­

designed complex functional block to support 

behavioral synthesis tasks, such as component 

selection, scheduling, binding and architecture 

generations. 

3 Problem Definition and Tar­
get Architecture 

Our problem is defined as follows: given a pre­

designed functional blocks, identify attributes nec­

essary for their reuse and capture them into a 

design database such that behavioral synthesis 

systems can automatically reuse the components 

without knowing their implementation details. 

In order to support automatic reuse in syn­

thesis, it is desirable to view a component at 

a sufficient high level of abstraction which de­

scribes what operations the component can per­

form and hides details about how the component 

performs a particular operation. Meanwhile, in­

formation about how to control the component 

to perform the required operation must be avail­

able to synthesis systems. Therefore, the follow­

ing two kinds of attributes of a component need 

to be captured: 

• functionalities of the component, and 

• information about how to control the com-
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ponent to implement a particular f~nction­

ality. 

Behavioral synthesis usually involves alloca­

tion, scheduling and binding. Capturing func­

tionalities of a component into a design database 

supports the task of allocation and binding since 

synthesis systems can search the database for a 

capable component based on its functionalities. 

Capturing control information supports the task 

of scheduling since the control information con­

tains details about how to control the component 

to perform a required operation. 

SCLK 

,, 
l 

,, 

... FSM control DP/CC 
... 

l status T 
, ,, 

Figure 2: Target architecture. 

ACLK1 
• • ACLKn 

r: 
• • !-+-

Fig. 2 shows the target architecture which 

allows us to design a circuit using components 

with various complexities. It is basically a Fi­

nite State Machine with Datapath (FSMD) [9]. 

The FSM controls components in the datapath. 

In addition to traditional RTL components, the 

datapath may contain complex components( CC). 

These complex components may run at their own 

clocks and communicate with the FSM via com­

plex protocols. Here we call the clock control­

ling the FSM as the system clock (SCLK) g,nd 



the clocks controlling datapath components as 

auxiliary clocks (ACLKs ). 

straints on bit width of operands specify the size 

of the operands the component can take, while 

the constraints on design clock( s) specify the re-

4 Usage-Based Component Char- quirements for both the system clock (SCLK) 

acterization and auxiliary clocks (ACLKs ). 

The usage-based component characterization is 

to characterize a component based on its usage, 

i.e., the functionality of an operation the compo­

nent can perform and the constraints it has to 

satisfy. There are two tasks in usage-based char­

acterization, specifying a usage and specifying 

an interface protocol. The interface protocol 

describes how to perform the operation under 

the given constraints in the usage. The result 

of characterization is a set of binding rules. 

Each binding rule relates one usage with its cor­

responding interface protocol. In order to reduce 

the number of binding rules for a component, in­

terface generators are introduced for usages 

with flexible constraints. 

4.1 Specifying Usages 

The usage describes the functionality of the op­

erations a component can perform and the con­

straints it has to satisfy to perform the opera­

tions. 

The functionality of an operation is modeled 

as a either pre-defined or user-defined function or 

procedure in a description language by specify-

ing the name of the function/procedure and pa-

-, f 
A 8 A 8 

behavioral C = CROSS(A, 8) ¥ behavioral 
P _CROSS(A, 8, C) 7 operation operation 

c 
operand A,B,C:array(Oto7,0lo7)af operand A,B,C:array(Oto7,0to7}of 
constraints slgned(1GdownloO); constraints urulgned(7dawnl:J O); 

SCLK ~ ~ 
./ \.. 

(a) (b) 

Figure 3: Two usages for MTX_MULT8X8. 

As we mentioned before, the MT X _MU LT8X8 

can perform multiplication of two 8 x 8 matrices 

with each element representing a 16-bit signed 

number. This functionality can be modeled as 

a function "C = CROSS(A,B)", where A,B 

and C are 8 x 8 arrays of 16-bit signed num­

bers, as shown in the usage in Fig. 3( a). The 

constraint on the minimum period of the sys­

tem clock (SCLK) is 20ns and it is necessary 

for design of interface protocol which will be ex­

plained later. The MTX_MULT8X8 can also 

perform multiplication of two 8 x 8 matrices with 

elements of 8-bit unsigned numbers. The func­

tionality can also be modeled as a procedure 

"P_CROSS(A,B : in; C : out)", where A,B 

and C are 8 x 8 arrays of 8-bit unsigned num­

bers, as shown in Fig. 3(b ). The constraint on 

the minimum period of the SCLK is lOns. 

A component may have multiple usages if it 
rameters and their data types. The function/procedurean per.corm di'a t t' .c th c i 1 ueren opera ions or per1orm e 
can be invoked in a behavioral description. There 

are two kinds of constraints in a usage. The con-
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same operation under different constraints. On 

the other hand, different components may have 



the same usage since there may exist more than 

one component in a design database which can 

perform the same operation under the same con­

straints. A component would be selected to per­

form a required operation if and only if the 

functionality of the operation is matched, and 

the constraints on design clocks and operand bit 

width are satisfied. 

4.2 Specifying an Interface Protocol 
for Each Usage 

The purpose of an interface protocol is to provide 

control information necessary for performing a 

behavioral operation on a component under the 

given constraints. By comparing the operation 

"CROSS" shown in Fig. 3(a) and the compo­

nent MTX_MULT8X8 shown in Fig. l(a), we 

observe that: (1) they have different number of 

ports, and (2) the component usually uses more 

complicated mechanism to receive operands and 

send results than the operation. Thus, an inter­

face protocol is required to bridge the gap be­

tween a behavioral operation and a component. 

The control information contained in an in­

terface protocol should specify external control 

and data flow requirements of the operations 

performed by the component, such as how to 

start the operation, how to supply data, read/write 

protocols, input/output operation timings etc. 

An interface protocol also needs to guarantee 

that all timing constraints of the component, 

such as clock periods, setup and hold timing con­

straints, are satisfied. 

An interface protocol is specified as a state 
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machine, where I/ 0 operations are speci~ied for 

each state and state transitions are controlled by 

the system clock (SCLK). Since the period con­

straint on the SCLK is important for designing 

the interface state machine, it has to be speci­

fied in the corresponding usage of the interface 

protocol. 

An interface protocol is related to a usage by 

a binding rule, which tells that if the usage is 

matched, the interface protocol can be used to 

control the component to perform the operation 

specified in the usage. 

lntorfaco protocol 

Usago '1• 

CLK DIN 

-- RST 
-- TC 

R_REO MTX_MULTBXO 

A D 

Nhavbft.I C•CAOSS(A.B) ~ 
~r.SOn y 

-- R_ACK 
W_REO 

-- W_ACI( DOUT 

operand A.B.C:11.1T&'J(Olo7,01117)ol 
c::ooWahb tlg'lf.d(15tbwnto0);-

SClK~ 

Figure 4: An example binding rule for the 
MTX_MULT8X8. 

A binding rule of the MT X _MU LT8X8, which 

specifies an interface protocol for the usage in 

Fig. 3( a), is shown in Fig. 4. A control scheme 

to control the MTX_MULT8X8 to perform the 

"CROSS" is specified in the interface protocol 

as a state machine. In the initial state STO, it 

resets the MTX_MU LT8X8 by sending '1' to 

the port RST. In the state STl, it pulls RST 

back to 'O', sends '1' to TC, indicating that the 

operands should be treated as signed numbers 

and waits for R__REQ to become '1'. Once the 

R_REQ becomes '1', it goes to the state S,T2 



and sends '1' to R_AC K. Then it stays at the 

state ST3 for 64 cycles and sends one element 

(row wise) to the component at each cycle. Sim­

ilarly, in the state ST4 to ST6, it sends the 64 

elements of the second matrix B to the compo­

nent. Then it waits for the computation to finish 

and fetches the resultant matrix in the state ST7 

to ST9. Since the clock period is no less than 

20ns, the 15ns pulse constraint on the RST is 

satisfied by keeping it high for one cycle. 

The interface protocol actually captures de­

sign knowledge about how to use a component 

to perform a particular operation. If the simu­

lation model of the component is available, the 

interface protocol may be verified by simulat­

ing the state machine together with the compo­

nent and checking whether the resultant matrix 

generated in the interface is correct. Once the 

interface protocol is verified and captured into 

a design database, it may be used directly by 

a synthesis system to control the component to 

perform a required operation. 

4.3 Interface Generators 

Different constraints on performing an operation 

usually require different control schemes. For 

instance, performing the operation specified in 

Fig. 3(b) under a system clock with the mini­

mum period of lOns requires that the RST sig­

nal be kept high for at least two cycles to satisfy 

the 15ns pulse constraints. Furthermore, the 8-

bit matrix elements need to be expanded to 16-

bit to match the 16-bit input port DIN, and 

the 8-bit result needs to be extracted from the 
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16-bit output port DOUT to match the. size of 

the elements of the resultant matrix C. U nfor­

tunately, such constraints are not known until 

synthesis. In order for a component to be used 

under various design constraints, it is necessary 

to specify interfaces suitable to perform an op­

eration under all possible design constraints and 

store them into the design database. However, 

such a method will require a huge number of 

binding rules to be specified for the component, 

and result in a huge design database. The in­

terfaces determined during characterization are 

referred to as static interfaces. 

In order to be able to use MT X _MU LT8X8 

to perform multiplication of two 8 x 8 matrices 

with each element less than 16-bits and repre­

senting either unsigned or signed numbers, for 

instance, we might need to specify 16 x 16 x 2 = 

512 binding rules. Considering possible vari­

ations of the system clock periods makes this 

number even larger. 

To solve this problem, we introduce usages 

with :flexible constraints and interface genera­

tors. The :flexible constraints on the operand 

sizes and design clocks are specified as ranges. 

For example, the constraint on the element size 

of the 8 X 8 matrix would be greater than 0 and 

less than 17, and the constraint on the mini­

mum system clock period would be greater than 

lOns. An interface generator is a programmable 

interface protocol for a usage with :flexible con­

straints. It needs to be programmed in such a 

way that it takes as input the constraints to per­

form an operation and generates as output a cus-



tomized interface protocol if the constraints sat­

isfy the flexible constraints specified in the usage. 

An interface generator usually consists of an 

interface template and a set of transformations 

to manipulate the template to produce a cus­

tomized interface protocol. The interface tem­

plate specifies a basic state machine which con­

tains necessary information for generating a cus­

tomized interface protocol. Since the constraints 

passed into an interface generator include con­

straints on size of operands and constraints on 

design clocks, three kinds of transformations may 

be applied to the template: state splitting, operand 

expansion and result extraction. 

Uaago 

A B 

bohavk>rat c .. CRQSS(A,B) ~ 
opotnllon y 
operand A.B,C:tllfa)'(Oto7,0to7)of 
oombah!.s s9ied(rnax15cbwnlo0); 

SCLK >•10ns 

Interface generator 

Interface template 
STD 

ST3 

R_ACKcr'O' 
DIH<=A(CNT/l,CHTmod I) 

CHT<aCHT+1 ,J( 

r-:=====::::---1 ~ ~""6is'l'l<>loeoln 
I state Spll!Ung ~ 
f Operand expansion 

I ResullextracUon ) 

Figure 5: Interface generator. 

The state splitting splits a state in the tem­

plate into several states with all the statements 

in the original state duplicated into each post­

split state. It is usually used to satisfy con­

straints on input ports, such as pulse constraints 

and setup /hold timing constraints, by sustaining 

the values on the input ports for more than one 

system clock cycles. The number of states may 

be determined by dividing the worst case timing 

constraints among all the signals in the origi­

nal state by the system clock period. Operand 
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expansion expands operands of a behaviqral op­

eration to match the size of component input 

ports, while result extraction extracts data from 

component output ports to match the size of the 

result expected by the behavioral operation. 

Fig. 5 shows an interface generator to gener-

ate interface protocols to control the MT X _MU LT8X8 

to perform multiplications of two 8 x 8 matrices 

as long as the bit-width of the matrix element 

is no greater than 16 and the minimum period 

of the SCLK is no less than lOns. The state 

STO in the interface template will be split into 

f 8~~Kl states, where SCLK represents the pe-

riod of the system clock specified during synthe-

sis and 15 is the minimum pulse width constraint 

on RST port. The element of the first matrix 

needs to be expanded in the state ST3 and the 

result is extracted in the state ST9. This re­

duces the number of binding rules to 1. But 

we can still obtain appropriate control schemes 

to control the MT X _MU LT8X8 to perform the 

required functionality under various design con­

straints. 

5 Complex Functional Block Reuse 
in Behavio.ral Synthesis 

Complex functional blocks with usage-based 

characteristics are able to be automatically reused 

in behavioral synthesis. With a set of binding 

rules stored in a design database for a compo­

nent, the database search engine can use a be­

havioral operation and design constraints passed 

by synthesis systems as keys to search for com­

ponents able to perform the operation under ~he 



"given constraints. The search results, which are 

components and their usage-based characteris­

tics, are returned back to the synthesis system. 

Once a component is selected by the synthesis 

system, the behavioral description needs to be 

modified to include the control scheme specified 

in the interface protocol to control the selected 

component. A natural approach is to embed it 

into the original description and use it to con­

trol the component. [10] proposed a modified list 

scheduling algorithm which takes such a control 

scheme into consideration during scheduling. 

Reuse of the MTX_MULT8X8 in synthe­

sis of a 2-dimensional DCT example is demon­

strated in Fig. 6. The definition of the DCT for 

an 8 X 8 image can be represented as follows [11]: 

to query a design database to find components 

able to perform the "CROSS" under the given 

design constraints. If the MT X _MU LT8X8 is 

selected from the returned components to per­

form the "CROSS", the synthesis system can 

instantiate an instance of the MT X _MU LT8X8 

and embed the customized interface protocol into 

the description. Since there is a data depen­

dence between the two "CROSS" operations, 

they can be performed on the same component. 

The interface protocol is used twice to control 

the MT X _MU LT8X8 to perform the two oper­

ations. 

6 Experimental Results 

We have captured a variety of pre-designed 
COEFF x Ax COEFFT complex functional blocks into a design database, 

where A is the input image, COEF F and COEFFT eXpl~ration Database (XD)1 of Y Explorations, 

are DCT constant array and its transpose, re­

spectively. 

Input description 

C§V+lconstnintol 
9'!'•!: ., •• 

~ I $ 
........ 

. 
tom Im CROSS(COEFF,A); 

Z := CROSS(t~m,COEFFT); . [ Synthesis system J 

:~ 
customized lnterfaca 

Figure 6: Synthesis of a DCT example. 

The input behavioral description mainly con­

tains two function calls to "CROSS" and is syn~ 

thesized under a system clock with the mini­

mum period 20ns. The synthesis system needs 
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Inc. (YXI) using the proposed usage-based char­

acterization method. The components can be 

automatically reused during synthesis process us­

ing YXI's eXploration Compiler (XC) 2 • 

In the first experiment, we demonstrated that 

usage-based characterization supports efficient reuse 

of complex components by designing the DCT 

example with three different allocations and two 

design clock constraints as shown in Table 7. 

Complex components, such as shift-and-add mul­

tiplier and the MT X _MU LT8X8 were used in 

the designs. The DCT algorithm was described 

in two ways. One uses nested loops with addi­

tion and multiplication operations inside (input 

1 XD is a trademark of YXI. 
2 XC is a trademark of YXI. 



··1) and the other uses "CROSS" function calls 

(input 2). Column 2 in Table 7 lists the num­

ber of lines of VHD L codes for both descriptions. 

Column 3 lists three allocations for the designs 

and column 4 lists the clock constraints. For 

comparison, column 5 lists the number of lines of 

VHDL codes a designer would write to design the 

DCT with specified allocation and design con­

straints at RTL. Column 6 lists the increment 

percentage of code size of these two kinds of de­

scriptions. The last column lists the number of 

states in the RTL codes. 

II of lines of VHDL #of llnea of VHDL 

dealgn ~odes to reuao FUa allocatlon 
clock codes to reuse FUa 

% Increase #of states with ueage-baaed (ns) with comp.-bsaed 
characterlatlce characterlstlca 

1 8-blt array mutt 20 224 267 28 

1 111-blt adder 10 252 313 32 
lnput1 61 

18-bltSAM 20 278 355 40 

1 19-blt adder 10 298 388 44 

1 8-blt axe matrix 20 319 811 42 
lnput2 35 mutt 10 327 834 44 

Figure 7: Three designs for DCT 

The input 1 and 2 have been synthesized by 

XC into a structural implementation for each 

allocation and clock constraint. The database 

support relieves the designers from understand­

ing I/ 0 protocols and timing diagrams of the 

components. 

In the second experiment, we demonstrated 

the feasibility of our method for capturing func­

tional blocks with various complexities. Table 8 

lists 7 components we captured using the usage­

based characterization method. All the com­

ponents were designed using MSU SCMOS 0.8 

standard cell library [12]. 

The 16-bit adder and 16-bit ALU show that 

our method can also be applied to capture com-
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Component Clock 110 Automatic rouse In behavioral ayntheal• 
Features namo reqlramento protocol• Comp.-baaed char. Ua~ge-baaed char. 

16-blt combinational 
carry lookup FU 

0 No Yes Yes 
addsr 

16-bltALU mulU-functlonal 0 No Yea Vos 
unit 

16-blt data-dependent cu atomized 
eh lit-and-add 1 No Yes 

multiplier 
execution time protocol 

16-blt twophnaa one-way hand 
Radix' 4 Booth 2 No Yes 

multlpller 
clocking ehaklng 

16-blt four 
stage pipelined pipelined 1 No No Yea 

multiplier 

BxOmatrlx array 
1 

customized 
No Yea 

multlpller computation protocol 

axe ocr array 
1 

cu atomized No You 
computation protocol 

Figure 8: Usage-based characterization for 7 compo­
nents 

binational and/or multi-functional unit. The 16-

bit shift-and-add multiplier has data dependent 

execution time. The 16-bit Radix-4 Booth mul­

tiplier is implemented using two phase clocking 

scheme. The 16-bit pipelined multiplier has four 

pipe stages. The MT X _MU LT8X8 is the com­

ponent we used in the paper. And the DCT is 

the design synthesized using the MT X _MU LT8X8. 

All the components with usage-based character­

istics can be automatically reused in behavioral 

synthesis. 

7 Conclusion and Future Work 

We have presented a novel usage-based char­

acterization of pre-designed complex functional 

blocks for automatic reuse in behavioral synthe­

sis. The I/ 0 protocols and timing constraints 

of the components are captured into interface 

protocols based on the operations and the de­

sign constraints. The proposed method has been 

implemented in the eXploration Database (XD) 

of Y Explorations, Inc.. Experimental results 

have demonstrated its efficiency and feasibility 



in reuse of complex components in behavioral 

synthesis. 
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