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Current and future prospects for successfully rebuilding global
fisheries remain debated due to uncertain stock status, vari-
able management success, and disruptive environmental change.
While scientists routinely account for some of this uncertainty
in population models, the mechanisms by which this trans-
lates into decision-making and policy are problematic and can
lead to unintentional overexploitation. Here, we explicitly track
the role of measurement uncertainty and environmental vari-
ation in the decision-making process for setting catch quo-
tas. Analyzing 109 well-sampled stocks from all oceans, we
show that current practices may attain 55% recovery on aver-
age, while richer decision methods borrowed from robotics
yield 85% recovery of global stocks by midcentury, higher eco-
nomic returns, and greater robustness to environmental sur-
prises. These results challenge the consensus that global fish-
eries can be rebuilt by existing approaches alone, while also
underscoring that rebuilding stocks may still be achieved by
improved decision-making tools that optimally manage this
uncertainty.

fisheries | decision theory | adaptive management

Managing fisheries is hard: it’s like managing a forest, in which the
trees are invisible and keep moving around.

John Shepherd, circa 1978

Previous controversy over the future of global fisheries (1–3)
is gradually giving way to a growing consensus on solutions:

in overcoming historical overexploitation in global fisheries,
reforms based on existing methods will be sufficient to secure the
recovery of most stocks (4–6). This optimism may be premature.
Fisheries management is complicated by profound uncertainty
over the number of fish that are in the sea—even well-designed
scientific surveys and sophisticated models leave us with large
measurement errors regarding the state of a particular stock.
This is not the only limiting assumption made in models fore-
casting the recovery of fish stocks, but it is uniquely problematic
for current decision methods that translate model output into
management advice. Here, we revisit the role of measurement
uncertainty in fisheries management by analyzing populations
using decision methods that allow us to fully propagate uncer-
tainty due to imperfect estimates of population size through
future population trajectories and harvest scenarios.

Most decision methods currently used in fisheries are attempt-
ing to maximize some objective such as maximum sustainable
yield (MSY) or maximum economic yield (MEY). While the
underlying fish-stock assessment models typically account for
measurement errors (7), the optimization procedure that is
used in decision-making often fails to account for that uncer-
tainty. For example, MSY is based on a static optimization that
seeks to determine a constant mortality, implicitly ignoring both
stochasticity in stock dynamics and uncertainty in measurement.
This approach is rooted in foundations of fisheries manage-
ment science (8, 9) and remains the operating principle in many
current international fishing agreements, including the United
Nations Law of the Sea (10).

Dynamic optimization techniques have emerged more
recently, showing that in stochastic environments, varying
mortality targets can produce higher yields than the constant
mortality rule of MSY (see formal proof in ref. 11). Because
dynamic approaches must be defined in terms of discounted
economic value, they have been favored more by resource
economists and have been used in determining MEY (5), or in
the context of rights-based fisheries management (RBFM) (4).
The underlying solution method uses Markov decision processes
(MDPs) (12). The Markov property dictates that we can know
the probability of any future state of the system if we only know
the current state (given the present, the future is independent
of the past). It has long been recognized that this property
does not extend to imperfect observations of the state variable,
whose probabilities will depend on all previous observations
(13–15). Such decision problems belong to a class of problems
known as partially observable MDPs (POMDPs), which are
not amenable to the same algorithms and have so far not been
solved in a fisheries context (13, 16). Meanwhile, recognition
that such optimization-based approaches ignore the reality of
imperfect measurements, managers frequently seek heuristic
adjustments. Management strategy evaluation (MSE) compares
the performance of a given set of alternate policies through
forward simulations (17). While MSE provides a mechanism to
compare among policies derived from approaches such as MSY,
MEY, or heuristic adjustments of those rules such as pretty
good yield (PGY) (18), it can only evaluate proposed strategies,
not generate new ones.

Using an MSE approach (17), we evaluate the performance of
existing decision methods, finding that under sufficiently large
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measurement errors (10 to 20%), these methods may impede
recovery or cause net declines even in carefully managed stocks
where professional stock assessment estimates are available. We
then take advantage of relatively recent advances in the fields
of robotics and autonomous vehicle navigation (19), which have
spurred the development of state-of-the-art algorithms mak-
ing large POMDP problems tractable (20), to solve for the
optimal strategy under observation uncertainty in the fisheries
context. We demonstrate that POMDP-derived policies could
still provide for the recovery of these stocks by midcentury.

Materials and Methods
We examine 4 approaches to future fishery management: 1) business-
as-usual management (BAU), in which current fishing effort is used for
projections; 2) maximizing harvest (MSY); 3) maximize long-term economic
value, assuming the stock size is known (MDP); and 4) maximizing economic
value when stock size is uncertain (POMDP). For each fishery, we estimate
catch, profit, and biomass under each approach from today to 2050. To
simplify the comparison between economic maximization approaches (MDP
and POMDP) and catch maximization approaches (MSY), we use a trivial
economic function in which profits are directly proportional to catch. Other
societal objectives such as employment, equity, or biodiversity conservation
are clearly important but are not explicitly modeled here. While it is possible
to include both multiple objectives and price dynamics in the profit function
(21), this can exaggerate the performance of economic-based optimization.

We consider the population dynamics of a generic fishery as follows:

bt = ζtg (bt−1, qt−1)

zt = εtbt ,

where bt and qt are the population biomass and catch quota at timestep
(i.e., year) t, g describes the expected population dynamics, ζt captures the
inherent stochasticity in population growth, and zt is the estimated stock
size subject to measurement error εt . The decision methods based on static
maximization of the long-term catch (i.e., MSY) ignore both ζt and εt , while
existing dynamic optimizations (i.e., MDP) (4, 5) ignore εt . Here, we imple-
ment POMDPs, which simultaneously model and incorporate both sources
of uncertainty.

It is important to remember that the decision problem takes the popula-
tion dynamics model as a given input and seeks to determine the policy
which maximizes some specified objective—in our case, economic value
from harvesting. For simplicity, we assume the commonly used Gordon–
Schaefer surplus production model for g (22). We allow both random
terms to follow a Gaussian distribution with ζt and εt mean unity and
standard deviations of σg and σm, respectively (see ref. 23). While manage-
ment of individual fisheries frequently employs more complex population
models reflecting aspects such as age structure in the population, data
limitations lead global analyses to favor simpler approximations such as
Gordon–Schaefer (4). As the methods considered here (MSY, MDP, POMDP)
are applicable to any population dynamics model, controlling for the
model across all methods allows for a direct comparison both between the
methods and against previous global analyses (4).

Alternate formulations of this decision problem are also possible, such as
more or less frequent observations, or policies formulated in terms of fishing
effort or landing fees rather than quotas (24). All of the decision methods
compared here are agnostic to these details, just as they are agnostic to the
choice of population dynamics. That is, one could also use MSY, MDP, or
POMDP to decide on a fishing effort rather than a quota. Nevertheless, our
focus on quota-based policies is not arbitrary. While it is possible to regulate
some aspect of fishing effort directly (length of season, size of vessel), effort
or mortality-based targets are frequently implemented in terms of catch
quotas (e.g., by setting a total allowable catch [TAC]). Using quota-based
policies also allows direct comparison with (4), which ignores measurement
uncertainty.

Fishing quotas are determined as follows. In the case of BAU, the man-
agement quota is defined as the last observed fishing mortality Ht = F0Bt ,
where F0 is the fishing mortality last observed in that stock and Bt is the esti-
mated biomass. The MSY quota is defined similarly but with mortality fixed
to MSY rather than historical observation, Ht = FMSY Bt . Under MDP and
POMDP, quotas are determined directly by the corresponding algorithms.
These definitions are consistent with how the same policies are defined in
ref. 4. To simplify comparisons across stocks of widely varying total biomass,
we also measure recovery in terms of individual stock biomass relative to
80% of the stock’s estimated biomass predicted to achieve MSY, BMSY .

We explicitly model the dynamics for each fishery under each harvest pol-
icy. To do so, we estimated the intrinsic growth rate and carrying capacity
of each fishery in the dataset. We consider forecasts for 109 commercially
harvested marine fisheries for which sufficient data are available (over 30
contiguous data points; Dataset S1) in the R. A. Myers (RAM) Legacy Stock
Assessment Database v3.0 (25) for reliable model estimates (SI Appendix,
Materials and Methods). For each stock, we perform a Bayesian estima-
tion of parameters of the population dynamics model for the stochastic
Gordon–Schaefer recruitment model (SI Appendix, Materials and Methods
and Dataset S2). We then consider 500 replicate simulations of the estimated
stock dynamics.

Estimating both measurement uncertainty and intrinsic stochasticity
(environmental and demographic noise) (23) from the RAM Legacy Stock
Assessment data can be subtle. The assessment data are themselves the
result of model output, sometimes averaged across multiple models. Con-
sequently, this means that our estimates using the RAM data may under-
estimate intrinsic stochasticity, especially in those regions where RAM data
appear to be only smooth model hindcasts. Since higher levels of intrinsic
stochasticity will tend to improve the performance of the POMDP relative to
existing approaches, underestimating the noise would only favor the sim-
pler existing methods. Estimating just how uncertain stock size estimates
are can be more difficult than estimating the stock size itself. Deviations
between true biomass and that estimated by a stock assessment arise in
many ways, and accepted ranges of uncertainty vary greatly (7). We address
the issue by repeating our analyses over a range of possible measurement
errors (0%, 5%, 10%, 20%; for details, see SI Appendix, Materials and Meth-
ods). While the upper bound of uncertainty is often put even higher than
20% in some stocks, this range is sufficient to see the consequences of both
small and larger measurement error.

Results and Discussion
We find that current decision methods fail to rebuild many stocks
under moderate uncertainty. Fig. 1 shows the percentage of
global stocks in our analysis that remain above or are rebuilt
to the threshold of 80% BMSY over time under each decision
method. In the absence of measurement error, we see a broad
long-term recovery of stocks toward their target biomass, BMSY
by 2050, reversing declines seen in the previous half-century
(Fig. 1A), consistent with previous findings (4). In this scenario,
MDP and POMDP solutions are mathematically identical and
achieve a much faster rate of recovery than MSY and BAU. Due
to stochastic stock recruitment (e.g., environmental noise), some
highly overexploited stocks are lost before they have a chance to
recover. This fraction is higher under the MSY and BAU deci-
sion methods (as shown in Fig. 1A, the recovery rate of POMDP
and MDP is significantly higher with perfect measurement of
population size).

The introduction of increasingly severe measurement error
(5%, 10%, 20%; Fig. 1 B–D, respectively), impedes stock recov-
ery under MSY, BAU, and MDP decision methods, while the
POMDP solution proves robust to these errors. The MDP deci-
sion method (used to solve the RBFM scenario of ref. 4) is
particularly vulnerable to large measurement errors, achiev-
ing a lower recovery rate than the other methods at 10%
and driving outright decline at 20%. Although the majority of
stocks recover under MSY at all levels of uncertainty, this frac-
tion is considerably smaller than projected under a POMDP
method.

Patterns of recovery vary by individual region and species.
Fig. 2 compares projected recovery rates to the year 2050 assum-
ing a measurement error of 10% by region and species group.
In the absence of this error, nearly all overexploited species
recover to above 80% BMSY (SI Appendix, Fig. S1). Under a 10%
measurement error, Fig. 2 shows that MDP and MSY decision
methods see many stocks failing to recover, with the impact vary-
ing considerably by region or species, owing to differences in
current status and estimated population dynamics between dif-
ferent stocks (Fig. 2B). The MDP decision method performs
sometimes better and sometimes worse than MSY, while the
POMDP decision method permits strong rebuilding of stocks
across all regions and species groups.
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Fig. 1. Projected rebuilding of global fish stocks. Historical trajectories and projections of stocks being above 80% BMSY under different management
regimes. Black indicates historical observations; blue, POMDP; yellow, MDP; red, MSY; and purple, BAU. Different graphs correspond to the intensity of the
present measurement error in estimating the population biomass, i.e., 0% (A), 5% (B), 10% (C), and 20% (D). Lines show average trends over all stocks listed
in Dataset S1, and shades show ±SD. It should be noted that in A, MDP (yellow) and POMDP (blue) solutions are mathematically identical and result in the
green curve.

A closer look at the replicate simulations for several repre-
sentative stocks can provide a clearer picture of how current
decision methods may fall short of rebuilding global fisheries.
Under measurement uncertainty, some stocks merely recover
more slowly under MSY or achieve lower long-term biomass
under MDP than under the optimal management provided by
POMDP-based decision-making (e.g., New Zealand Black car-
dinalfish, Epigonus telescopus [Fig. 3A], a slow growing species).
In other stocks, particularly those with faster growth rates, the
introduction of imperfect measurements in a stochastic environ-
ment make projected rebuilding under MSY highly variable (e.g.,
in South Pacific Horse mackerel, Trachurus trachurus; Fig. 3B).
In some cases, this variation is sufficient to drive long-term
declines in the expected stock size under MSY-based manage-
ment (Atlantic cod, Gadus morhua, Scotian shelf; Fig. 3C).
While MDP-based management is less vulnerable to heavy over-
fishing under imperfect measurements, these errors can still
be sufficient to prevent recovery to 80% of BMSY and can, in
some cases, still result in long-term average declines in pre-
dicted biomass (e.g., Pacific herring, Culpia pallassi, Straight of
Georgia [Fig. 3D]; for the corresponding catch values, refer to
SI Appendix, Fig. S3).

Together, these results show that individual life-history dif-
ferences can provide further insight into which species are
most impacted by the uncertainty. Slow-growing species like
the Black cardinalfish rebuild particularly slowly under MSY-
based management, but MDP or MSY management may be
most problematic for faster-growing species with strong cou-
pling to environmental fluctuations, like the Pacific herring.
However, the relative performance of the decision meth-
ods is consistent across these differences in life history and
environment. Differences in the magnitude of measurement

errors have a larger impact, with MSY generally doing worse
with measurement error ≤ 10% and MDP doing worse with
larger error.

SI Appendix, Fig. S2 demonstrates that the consistently higher
rate of fish stock recovery across species and regions under
a POMDP-based decision method does not come at the cost
of reduced economic returns. Rather, ignoring uncertainty also
reduces the long-term economic value of stocks, with MSY
achieving 65 to 80% of the value realized under the POMDP
decision method, and MDP achieving 20 to 80% (SI Appendix,
Fig. S2). Overexploited stocks quickly become less productive
as biomass falls below BMSY , making overharvesting as well as
underharvesting more economically costly. The dynamic MDP
decision method is particularly sensitive to measurement error.
The reason lies in the Markovian assumption. Under imper-
fect measurement of population size, management of future of
stocks needs to consider all historical observations (14). MDP
ignores this complexity, which results in a poor performance in
the presence of the measurement error.

The greater performance of POMDP in terms of stock recov-
ery rates is perhaps more surprising than the performance in
terms of economic value. For simplicity and consistency with pre-
vious analyses (4), we have used each of the decision methods
here to try and maximize a simple measure of economic value
based only on catch. While economic optimization methods such
as MDP and POMDP can be adapted to more general notions of
economic value (25), to do so would bias the comparison against
MSY. Because POMDP approach solves for the optimal strategy
under uncertainty, it by definition sets the bar for economic per-
formance in SI Appendix, Fig. S2. However, since the economic
objective used here merely maximizes long-term catch, it is in no
way assured that doing so will also rebuild by midcentury most
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Fig. 2. Regional and species-specific patterns of stock rebuilding. Bar charts show the fraction of stocks that have recovered to above 80% BMSY

by 2050, which are currently estimated as below that target. A shows projected outcomes for stocks grouped by geographic region (refer to
Dataset S3), B shows outcomes for stocks grouped by species (refer to Dataset S1). Projections show averages over 500 replicate simulations at 10%
measurement error.

of the stocks we have examined. This ultimately depends on the
discount rate applied to future economic returns. When the value
of future harvests is very highly discounted, the optimal strategy
may harvest the stock to extinction. Our analysis has assumed
a modest annual discount rate of 1%, which rewards sustaining
yields over the long term. Alternate discount rates are compared
in SI Appendix, Fig. S4.

Given the difficulty in accurately estimating uncertainty even
in the RAM data, our analysis has considered a plausible range of
measurement error between 0 and 20% and found that the rela-
tive comparisons between different decision methods are consis-
tent across this range. Without perfect information, we find MSY
would achieve only 10 to 30% recovery of overexploited stocks,
while MDP would achieve between 0 to 60% recovery (Fig. 1).
We implement a POMDP-based decision method that efficiently
incorporates uncertainty in observed population size, allowing
over 80% of overexploited stocks to recover by midcentury even
under substantial uncertainty (Fig. 1D), while also projecting
significantly higher economic returns than expected under cur-
rent decision methods after accounting for this uncertainty (SI
Appendix, Fig. S2).

Why do existing decision methods perform so poorly under
measurement uncertainty, given that this error is equally likely
to underestimate as to overestimate the current stock size? The
intuition for this result was anticipated by Clark and Kirkwood
(13), who observed that under traditional decision methods, there
is never any projected risk of local stock collapse and extinction
regardless of the uncertainty in future growth rates. The frequency
of local stock extinctions across simulations varies with measure-
ment error and management strategy. At 10%measurement error,
our simulations find an average of 6% of all stocks are expected
to experience collapse within 50 y under the MDP-based decision
method and 17% collapse under MSY (compared with 4% under
POMDP). Local extinction arises from the interaction of stochas-

tic growth and measurement error. Under our model, stochastic
extinction is possible but only likely to be observed from very
low stock sizes. MSY-based management is more susceptible to
extinction at moderate measurement error, where a sequence of
overestimations leads to overharvesting even from low stock sizes.
Because the MDP strategy does not harvest at all at very low stock
sizes, it is less susceptible to such moderate measurement error.
MDP is more sensitive to large measurement errors, since the
“bang-bang” nature of its constant-escapement solution harvests
in excess of MSY when stock sizes exceed BMSY . Because BAU is
implemented like MSY as a constant effort rather than a constant
escapement, it too is less sensitive to measurement error, although
vulnerable to intrinsic stochasticity.

Our results imply that current approaches to decision-making
(including MSY- and MDP-based methods) are not sufficient to
rebuild global fisheries. In their place, newer and more rigor-
ous but computationally intensive approaches such as POMDP
may prove vital to future conservation planning and resource
management. There is some irony in the fact that fisheries appli-
cations spurred early development of such methods (26), but
sophisticated algorithms such as those we have used here have
been largely developed in other fields (20, 27, 28). POMDP
decision methods have proven promising in other conserva-
tion applications as well (29, 30). It is time to return them to
fisheries.

Our conclusions are not without caveats. First, our analysis has
focused only on stocks for which scientific assessments of stock
biomass were readily available (SI Appendix). Although this rep-
resents a small fraction of commercially exploited stocks world-
wide, these are some of the better-managed and least-uncertain
stocks (4), which suggests that current decision methods would
fare even more poorly with other stocks, making our conclusions
conservative. Second, our results have followed other global
analyses in assuming a simple model of population dynamics.
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Fig. 3. Example projections of individual fish population. This figure shows 4 example population biomass of Black cardinalfish (E. telescopus) (A), Horse
mackerel (T. trachurus) (B), Atlantic cod (G. morhua) (C), and Pacific herring (Culpea pallasii) (D) and their projections based on different decision methods.
Projections show averages over 500 replicate simulations at 10% measurement error. Lines show average trends over replicates, and shades show ±SD. For
the corresponding catch values, refer to SI Appendix, Fig. S3.

Extensions to stage-structured models may be particularly fruit-
ful where fisheries management weighs short- versus long-term
benefits of preserving population structure while accounting for
uncertainty in 100, or more, model parameters. All of the deci-
sion methods considered here (MSY, MDP, POMDP) can, in
principle, be applied to more complex stage-structured models,
although at greater computational cost. Further work is also
needed to address nonstationary models, in which parameters
may change over time due to external forces, such as climate
change, as well as autocorrelation in environmental fluctuations.
Finally, decision methods can only be as good as the objectives
they are given. More work is needed to properly incorporate
additional objectives such as employment, equity, or biodiversity
conservation into these approaches. Even so, a decision method
provides only recommendations on which to base a policy, and
significant challenges remain to implementing, enforcing, and
adjusting such policies. Many small-scale fisheries are not man-
aged at all, and underreporting catch, bycatch, and discards are
an important problem in larger fleets.

Ecologists have for some time recognized the growing divide
between the sophistication of population models and the lim-
itations of decision theory through which they are applied in
resource management, and some have called for new approaches
to bridge this gap (31, 32). Our approach provides an impor-
tant step in this direction. Of course, any decision method is
only as good as the human institutions that make and imple-
ment those policies, but so too should those policies reflect our
best methods. As the rebuilding of depleted fisheries is becom-
ing a unifying policy goal, outdated concepts must give way to
more modern approaches that take full count of substantial and
growing uncertainty we face in the ocean.
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