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Abstract 

A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the 

open-source NWChem computational chemistry code is presented. The generalized active space (GAS) 

approach is used to partition large configuration interaction (CI) vectors and generate a sufficient number 

of batches that can be distributed to the available cores. Massively parallel CI calculations with large 

active spaces can be treated. The performance of the new parallel MCSCF implementation is presented 

for the chromium trimer and for an active space of 20 electrons in 20 orbitals, which can now routinely be 

performed. Unprecedented CI calculations with an active space of 22 electrons in 22 orbitals for the 

pentacene systems were performed and a single CI iteration calculation with an active space of 24 

electrons in 24 orbitals for the chromium tetramer was possible. The chromium tetramer corresponds to a 

CI expansion of one trillion SDs (914 058 513 424) and is largest conventional CI calculation attempted 

up to date. 
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1. Introduction 

The accurate calculation of near-degeneracy electron correlation effects for large orbital spaces is central 

in modern electronic structure theory. Many systems of interest cannot be quantitatively described by a 

single electronic configuration. Multireference effects, also referred as static correlation, nondynamic 

correlation, left-right correlation or strong correlation,1-3 can be captured by the full configuration 

interaction (full CI) expansion of the wave function. In full CI theory, the wave function is a linear 

expansion of all the Slater Determinants (SDs) or spin-adapted configuration state functions (CSFs) that 

can be generated in a given one-electron basis. The exponential dependence of the number of SDs on the 

number of orbitals and electrons makes full CI wave function applicable to only small to modest sized 

systems. 

In multiconfigurational self-consistent field (MCSCF) theories a full CI is employed on a selected 

orbital subspace (active orbitals), while the remaining orbitals are kept either occupied (inactive) or empty 

(virtual or secondary), and orbitals are variationally optimized simultaneously with the configuration 

expansion coefficients.4 In recent MCSCF implementations, these two problems are usually decoupled 

and solved separately. In the inner loop (microiterations) the CI coefficients are optimized minimizing the 

energy.  In outer loops (macroiterations) the molecular orbitals are optimized by solving iteratively the 

Newton-Raphson equations using the first-order density matrix calculated from the CI expansion. A full 

CI calculation in the active space is performed at every MCSCF iteration and thus, considerable effort has 

been performed over the past 40 years to develop and implement efficient CI algorithms.4-8 

The CI-related methods have taken advantage of parallel architectures, and significant progress 

has been made in the last 20 years.4, 9-16 However, new architectures with increased parallelism require 

algorithmic improvements of parallel CI and MCSCF implementations to take full advantage of these 

technological advances. Current parallel CI calculations are able to tackle expansions of a few billions of 

CSFs.4 To the best of our knowledge, the largest multireference CI (MRCI) calculation that has been 
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reported is 2.8 billion CSFs (60 billions SDs)17, while the largest CI expansion in a full CI calculation 

contains 10 billion determinants.9  

Alternative expansions of the wave function have been proposed that allow access to larger active 

spaces while limiting the number of determinants in the CI expansion. The density-matrix renormalization 

group (DMRG)18-20 substitutes the exact diagonalization of large Hamiltonian matrices by encoding a 

sequential structure into the correlation. The DMRG wave function is built from local variational objects 

associated with the active orbitals of the system. The DMRG-SCF methodology allows the effective 

treatment of large molecular complexes and is gradually becoming a standard quantum chemical 

method.21-22 The variational two-electron reduced-density matrix (v2RDM) method and the corresponding 

v2RDM-CI and MCSCF variants have been recently applied for solving strongly correlated systems.23-25 

Stochastic approaches have been suggested as an efficient alternative to the standard Davidson CI 

eigensolver.26-27 The full CI quantum Monte Carlo (FCIQMC)-MCSCF method has been applied to study 

transition metal complexes such as Fe porphyrins.28-29 

The restricted active space SCF (RASSCF)7, the generalized active space SCF (GASSCF)30, and 

the occupation restricted multiple active space (ORMAS)31 methods  provide a different approach to the 

reduction of the CI expansion by limiting the excitations within the active orbitals.7, 30, 32 In the GASSCF 

approach, multiple orbital spaces are chosen instead of one complete active space (CAS). The definition 

of the intra- and interspace electron excitations leads to an efficient elimination of negligible 

configurations from the configuration space, which effectively reduces the CI expansion. The spawning 

of multiple active spaces provides an approach to split the CI vector into smaller blocks (vide infra).7, 33-34 

The most time-consuming step of a CI calculation is the construction of the σ vector needed in 

the Davidson algorithm. This step is also the most difficult part in terms of parallelization, as it is subject 

to load-balance, bandwidth and memory constraints. In this study, we used the GAS framework for the 

development of a new implementation of a massively parallel MCSCF code. The new parallel MCSCF 
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implementation, based on a serial version of the LUCIA34 program, was efficiently parallelized and 

integrated into the NWChem program package.35 This implementation allows us to perform large-scale CI 

calculations with a fast time-to-solution, as well as allow us to explore active spaces beyond the limits of 

conventional MCSCF implementations.  

The outline of the paper is as follows: In section 2, the foundations of MCSCF theory are 

discussed. In section 3, the technical aspects of the parallel MCSCF implementation are presented. The 

performance of this implementation for an active space with 20 electrons in 20 orbitals is presented in 

section 4. In section 5 the applicability of the new parallel code to larger full CI spaces, and possible 

further improvements to the parallel performance are discussed. Finally, in section 6 we offer some 

conclusions 

2. Theory and Methodology 

In CASSCF theory, the size of the CI expansion is dictated by the size of the complete active space, or 

CAS. The choice of the number of orbitals and electrons that compose the active space is usually system 

dependent and is based on the nature of the chemical problem under consideration. The number of SDs 

included in the CI expansion scales exponentially with the size of the active space and active spaces 

larger than 18 electrons in 18 orbitals cannot be currently treated.36  

Restricting excitations between orbitals in the generation of the CI expansion lead to the 

reduction of the number of SDs or CSFs that need to be considered. Such restrictions can usually be 

rationalized by the chemistry of the molecular system, and are system dependent, but can lead to a 

simplification of the CI problem without significant loss of accuracy.  

2.1. Determinant-based Direct-CI 

In full-CI theory, and for a given one-electron expansion, the exact solution of the Schrödinger equation 

may be written as a linear combination of all Slater determinants that can be constructed in the N-electron 
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Fock space. The MCSCF wave function in which the SD basis is constructed from a subspace (active 

space) of the full Fock space is expressed as: 

|Ψ୑ୌେ୊ۧ ൌexpሺെ̂ߢሻ෍ܥ௜|Ψ௜ۧ
௜

 (1)

where i is the total number of SDs, Ci the variational CI coefficients, and expሺെ̂ߢሻ the orbital-rotation 

operator. The CI eigenvalue problem can be solved with the direct-CI approach37, in which the expansion 

coefficients are computed in operator form directly from the one- and two-electron integrals within an 

iterative scheme. The handling of the SDs is simplified if each SD is represented as a product of an alpha 

and a beta string38 

|Ψ௜ۧ ൌหߙሺܫఈሻߚሺܫఉሻൿ ൌ ఉሻ|vacۧ, (2)ܫመሺߚఈሻܫොሺߙ

where ߙොሺܫఈሻ and ߚመሺܫఉሻ are ordered products of alpha and beta creation operators, respectively, and |vacۧ 

is the vacuum state. The MCSCF wave function (or CI expansion) can be written as  

|Ψ୑ୌେ୊ۧ ൌ ෍ ,ఈܫ൫ܥ ఉሻൿܫሺߚఈሻܫሺߙ|ఉ൯ܫ
ூഀ,ூഁ

 (4)

  

We are using the modified inverted-Davidson algorithm of LUCIA.7, 34 The Davidson eigensolver39 

iteratively diagonalizes a subspace instead of the full Hamiltonian matrix.  

In a direct CI iteration40, the main computational cost is the construction of the sigma vector 

,ఈܫ൫ߪ ఉ൯ܫ ൌ ෍ ൻߚ൫ܬఉ൯ߙ൫ܬఉ൯หܪ෡หߙሺܫఈሻߚ൫ܫఉ൯ൿܥሺܬఈ, ఉሻܬ
௃ഀ,௃ഁ

 (4)

or, in a matrix notation, 

࣌ ൌ (5) .࡯ࡴ

The non-relativistic Hamiltonian of Eq. (4) and (5) is expressed as 
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෡ܪ ൌ෍݄௞௟ܧ෠௞௟
௞௟

൅
1
2
෍ሺ݆݅|݈݇ሻሺܧ෠௜௝ܧ෠௞௟ െ ෠௜௟ሻܧ௝௞ߜ
௜௝,௞௟

 (6)

where ܧ෠௞௟ is the one-electron excitation operator 

෠௞௟ܧ ൌ ܽ௞ఈ
ற ܽ௟ఈ ൅ ܽ௞ఉ

ற ܽ௟ఉ. (7)

By inserting the Hamiltonian of Eq. 6 in Eq. 5, we can rewrite the sigma vector as a sum of three terms: 

,ఈܫ൫ߪ ఉ൯ܫ ൌ ,ఈܫଵ൫ߪ ఉ൯ܫ ൅ ,ఈܫଶ൫ߪ ఉ൯ܫ ൅ ,ఈܫଷ൫ߪ ఉ൯, (8)ܫ

where σ1 is a column vector with only beta-beta contributions (Iα = Jα), σ2 is a column vector with only 

alpha-alpha contributions (Iβ = Jβ), and σ3 includes the alpha/beta couplings. For more details on the form 

of the three sigma vector terms, and on the efficiency that this splitting introduces, see Ref. 7. 

2.2. Orbital Optimization 

A second-order Newton-Raphson iterative procedure is applied for the orbital optimization step of the 

MCSCF macro-iteration, as implemented in LUCIA, and the variational orbital parameters of the vector κ 

are calculated according to (Eq. 1). The energy can be expressed as 

ሻࣄሺܧ ൌ ሺ0ሻܧ ൅ ࢍࣄ ൅
ଵ

ଶ
(9) ,ࡴଶࣄ

where g and H are the orbital gradient and orbital Hessian, respectively. The stationary points are 

obtained as solutions to the equation: ߲݌߲/ܧ௜ ൌ 0. Orbital rotations between the inactive-active and 

active-virtual orbital spaces are allowed. The full orbital-orbital Hessian is used, without any 

approximations.  

3. Implementation 

The Global Arrays Toolkit41 was used to facilitate the parallelization of LUCIA. The Global Arrays set of 

tools was co-developed with NWChem as a shared-memory programming interface for distributed data 

algorithms relevant to the field of computational chemistry. They allow ease of programming and lack of 
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synchronization between cores, considering that the nonlocal data take more time to access, and offer 

support for both task and data parallelism. The potentially very large CI and sigma vectors, and smaller 

Fock matrices utilized in the LUCIA CI and MCSCF code are stored in global arrays that are distributed 

over the memory available on the allocated cores. A maximum of three vectors are stored in memory, 

whereas additional vectors needed in the Davidson iterative scheme are stored using parallel IO (ParIO) 

within the native framework in the Global Arrays Toolkit. LUCIA’s local data memory registration 

routine was modified to utilize NWChem’s memory allocation process.  

An MCSCF calculation can be divided in four tasks: (1) the generation of the CI expansion, (2) 

the partial atomic orbital (AO) – molecular orbital (MO) integral transformation, (3) the CI eigenvalue 

problem, and (4) the solution of the second-order Newton-Raphson equations for the orbital optimization 

step. For small CI expansions, the AO-MO integral transformation is the most CPU-time demanding step. 

For large CI expansions, the CI eigensolver (usually the Davidson algorithm via the direct-CI method40) 

dominates the computational time of the MCSCF calculation. Prior to this work, the limitation for the 

selected active space was 18 electrons in 18 orbitals for a singlet (S = 0) spin state. The implementation 

details about the parallelization of each of the four tasks are discussed in the following sections. 

3.1 Generation of CI Expansion for Parallel Processing 

The main strategy in the parallelization of the CI algorithm, to enable MCSCF calculations with large 

active spaces, is to distribute CI and sigma vectors into batches. The batches can be subsequently assigned 

as parallel tasks to different cores to obtain a good load balance of work among the cores. With each core 

only having to store a subsection of the CI and sigma vectors, the memory footprint is significantly 

reduced. For simplicity NWChem’s LUCIA version will store the CI and sigma vectors as SDs instead of 

the CSFs used by other codes.  

The algorithm presented in this work is based on the GAS concept. In the GASSCF method, an 

arbitrary number of active spaces (GAS spaces) is defined. Within each GAS space, a full CI expansion is 
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considered, while intra-GAS excitations are limited and defined by the user. An example of intra-GAS 

excitations for a GASSCF with 4 GAS spaces is the following: one electron excitations between GAS 1 

and GAS 2, no excitations from GAS 2 to GAS 3, and two electron excitations between GAS 3 and GAS 

4. The definition of the GAS spaces and the intra-GAS excitations is based on physical criteria. The aim 

of GASSCF is the reduction of the configurations included in the CI expansion. The GAS distribution of 

a parent, large CAS is used in our parallel implementation, but without applying any restrictions on the 

intra-GAS excitations. This means that no truncation of the CI problem is implicitly considered. The 

benefits of this approach are discussed in the following paragraphs. 

 LUCIA organizes the alpha and beta strings of Eq. 2 into blocks of SDs with the same occupation 

type (T) and spin symmetry (S). The occupation type is defined according to the distribution of electrons 

in each GAS space. Spatial and spin symmetry are defined according to the occupation of the spin orbitals 

in each string. Therefore, each alpha string has a specific TS value:  

ఈሻܫොሺߙ ൌෑߙොሺܫ௜ఈሻ

ே

௜ୀଵ

ൌෑߙොሺܫ௜ఈ
்೔ௌ೔ሻ

ே

௜ୀଵ

ൌ ොܽ൫ܫఈ
భ் మ்⋯்ಿௌభௌమ⋯ௌಿ൯ ൌ ఈ்ௌሻ (9)ܫොሺߙ

where N is the number of GAS spaces. Similar expression holds for a beta string. Combinations of alpha 

and beta TS strings generate SDs with a specific TTSS definition. SDs with same TTSS definition are 

grouped into TTSS blocks. The TTSS blocks are furthered grouped in TTSS batches.  

By default, LUCIA generates only a limited number of batches, which restricts the number of 

cores among which the workload can be distributed. The approach used here to increase the number of 

TTSS blocks and batches, and subsequently the number of tasks available for parallel processing, is to 

fragment a parent (complete or general) active space and distribute the orbitals over additional GAS 

spaces. The GAS partitioning approach within LUCIA offers an inherent block distribution of both the CI 

vector and the Hamiltonian to increase the number of tasks that can be distributed over the available 
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cores. The technique is also used in serial calculations, to reduce the batch size and memory footprint.34 

The approach is schematically depicted in Figure 1.  

 

Figure 1: Schematic representation of the distribution of the CI vector. Fragmentation of the CI vector (upper line) 
into a limited number of TTSS blocks for a given CAS (second line). Partitioning of the parent CAS into multiple 
GAS spaces generates more TTSS blocks (third line), which can be grouped into TTSS batches. The TTSS batches 
are distributed into the available cores (bottom line). 

 

The algorithm which generates multiple TTSS blocks is based on the different distribution of 

electrons of a spin alpha or beta in different GAS spaces (types, T). The number of possible types T that 

an alpha or beta string can belong is increased when additional GAS spaces are introduced. This is shown 

schematically in Table 1 and analyzed with an example in the Appendix. The CI vector is generated by 

combining all possible alpha and beta strings. Only SDs with the correct spin (SS) are included in the CI 

expansion and they are grouped in different TTSS blocks based on their alpha and beta occupation type 

(TT).  
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Table 1: Schematic representation of the distribution of alpha (or beta) strings in different types T by increasing the 
number of GAS spaces. Each symbol corresponds to a different alpha (or beta) string, different colors represent 
different supergroups. 

Irreducible 
Representation 

One GAS Space Two GAS Spaces Three GAS Spaces 

1 ●●●● ●●●● ●●●● 
2 ●●●●●●●● ●●●●●●●● ●●●●●●●● 
3 ●●●●●●●● ●●●●●●●● ●●●●●●●● 
⋮ ⋮ ⋮ ⋮ 

 

Dividing the parent active space across multiple GAS spaces can be accomplished in many ways. 

In the current implementation two strategies have been automated, which are represented in Table 2. The 

first strategy is to distribute the MOs of each irreducible representation into a separate GAS space (Table 

2A). This will increase the number of TTSS batches, but still has limitations, for example when limited 

point group symmetry is available. The second strategy is an iterative scheme where one MO is moved 

into a new GAS space (Table 2B). We elected to move an MO from the irreducible representation with 

the largest number of orbitals. This process is repeated until the number of TTSS batches is larger than 

the number of cores and a distribution of the CI tasks is feasible. This approach has the additional 

advantage that it generates smaller TTSS batches that can easily fit in local memory, something that will 

be crucial for the execution of CI and MCSCF calculations with more than 60 billion SDs. It should be 

noted that these strategies still have little control over the size and computational intensity of the batches 

that are created, which will affect our ability to effectively load-balance the work over the cores. 

Table 2: Representative examples of possible approaches to CAS(20,20) distribution over multiple GAS spaces. (A) 
Each GAS holds all orbitals from one or more irreducible representations, generating 888 TTSS batches. (B) 
Individual orbitals from irreducible representations are stored in different GAS spaces, generating 14502 TTSS 
batches. 

(A) Irreducible Representation (B) Irreducible Representation
 ag b3u b2u b1g b1u b2g b3g au   ag b3u b2u b1g b1u b2g b3g au

GAS 1 6 0 0 0 0 0 0 0  GAS 1 3 1 1 2 2 2 2 1 
GAS 2 0 1 1 2 0 0 0 0  GAS 2 1 0 0 0 0 0 0 0 
GAS 3 0 0 0 0 5 0 0 0  GAS 3 0 0 0 0 1 0 0 0 
GAS 4 0 0 0 0 0 2 0 0  GAS 4 1 0 0 0 0 0 0 0 
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GAS 5 0 0 0 0 0 0 2 0  GAS 5 0 0 0 0 1 0 0 0 
GAS 6 0 0 0 0 0 0 0 1  GAS 6 1 0 0 0 0 0 0 0 
          GAS 7 0 0 0 0 1 0 0 0 

 

Having divided the CI expansion into a large number of TTSS batches, the next step is to 

distribute the batches over the allocated cores and ensure that the computational work of each core is 

balanced and maximum parallelization is achieved. In the design of the parallel algorithm the choice was 

made to only allow each core to access to the data of the sigma batches locally, while CI batches needed 

in the calculation were fetched using one-sided get operations41. To ensure memory locality for the sigma 

vector, the allocation of the global arrays containing the CI expansion and sigma vectors is done such that 

no TTSS batch is distributed over the memory of multiple cores. The distribution of the TTSS batches 

over the cores can be non-uniform, depending on the computational complexity. This will be discussed 

later in this section. One-sided get operations enable access to, and retrieval of data from, memory of 

cores physically located on different compute nodes through remote direct memory access (RDMA) 

protocols. These get (fetch) operations do not interfere with the running process on the remote core, and 

are also available in the new MPI-3 standard. The Global Arrays Toolkit can also perform non-blocking 

get calls, where the (pre-)fetch essentially gets posted and the core continues its compute, and returns to 

the get operation when the data is needed. This would require the allocation of extra memory buffers to 

retrieve this data. The get operations were found to provide limited overhead, and therefore the pre-fetch 

approach was not implemented. All the computational work associated with a TTSS sigma batch is 

therefore also assigned to the core where the data resides. This approach significantly reduces the overall 

communication volume needed, but does require the computed batches to be statically distributed at the 

beginning of the CI calculation. An alternative approach would be the use of a global task pool, requiring 

communication of both CI and sigma data blocks if non-locality is assumed. This alternative approach 

was implemented in an earlier prototype, and demonstrated considerably poorer parallel performance then 
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the current algorithm, primarily because of memory contention with many processors accumulating data 

into the same sigma data block, effectively serializing this operation. 

The order of the TTSS batches in the CI vector is fixed, and it is conceivable that batches have 

drastically different computational time requirements (see for example the top-left graph in Figure 2), and 

that computationally expensive batches are located at the beginning or end of the CI vector. One would 

prefer the number of parallel tasks to be many orders of magnitude larger than the number of cores to 

balance out the irregular batch sizes and associated computational work. The large number of GAS spaces 

needed to create, for example, a batch to core ratio of 100:1, themselves generate a significant 

computational overhead, as will be shown in section 4. Hence, the challenge in achieving parallel 

efficiency is finding the optimum balance between the number of GAS spaces and parallel tasks/batches 

needed given the number of cores.  
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Figure 2: Upper line: Scatter plots between the timings of the sigma tasks for each batch and three parameters of the 
CI batches: (a) batch size in SDs, (b) number of blocks, (c) number of connections. Lower line: scatter plot between 
two different TTSS weight factors: (d) Knecht et al14, (e) this work. All y axis values are normalized to 1. All data 
obtained from a CI expansion of an active space that includes 20 electrons in 20 orbitals (2 133 595 282 SDs, 8 
irreducible representations, singlet state). 

 

The work associated with each TTSS batch needs to be estimated accurately and enough batches, 

i.e. parallel tasks, need to be available to ensure a balanced workload. Three intrinsic parameters of the 

TTSS (or CI) batches were initially considered to estimate the computational work, and they are plotted 

versus the timings of the corresponding sigma calculation tasks in Figure 2. These three parameters are 

the number of SDs or size of the TTSS batch (Figure 2a), the number of TTSS blocks per batch (Figure 

2b), and the number of connections between the CI vector and the Hamiltonian (Figure 2c). The 

connectivity between the CI vector and the Hamiltonian is defined by the electron difference between a 

TTSS block (subgroup of a TTSS batch) and the Hamiltonian. The diagonal elements differ by zero 

electrons, while the off-diagonal elements can differ by one or more electrons. The cases that differ by 



  14

more than two electrons do not couple, and they are not included in the connectivity calculation. All data 

of Figure 2 were obtained from a CI expansion that includes 20 electrons in 20 orbitals, or CAS(20,20), in 

a short-hand notation. The size of the CI vector is 2 133 595 282 SDs (linear Cr3 molecule, D2h symmetry 

with 8 irreducible representations, singlet Ag state). It is evident from Figure 2 that there is no correlation 

between the size of a TTSS batch and the task time (Figure 2a). The time spent for batches of maximum 

size ranges from a few seconds to the maximum sigma TTSS batch task time (~1400 seconds). On the 

other hand, a reasonable correlation is observed between the number of blocks (Figure 2b)/number of 

connections (Figure 2c) and the timings of the sigma tasks. 

Knecht et al.14 developed a computational work estimator, or weight factor, that is based on the 

connectivity and the size of the individual TTSS blocks. For the i-th TTSS batch, the weight factor is 

calculated as  

ܽሺ݅ሻ ൌ ෍ ௝ܿሺ݅ሻ ௝݈ሺ݅ሻ

ே್೗೚೎ೖೞሺ௜ሻ

௝

 (10)

 

where Nblocks(i) is the number of TTSS blocks of the i-th TTSS batch, cj(i) is the number of connections of 

the j-th TTSS block that belongs to the i-th TTSS batch, and lj(i) the number of SDs of the j-th TTSS 

block. For the CAS(20,20) test case no good correlation was found between the a(i) weight factors and 

the sigma task timings (Figure 2d). In an attempt to better capture some of the outliers seen in the 

correlation graphs for the number of blocks and connections, an alternative weight factor b(i) was 

considered, combining the connectivity and the number of TTSS blocks Nblocks(i) in a batch. The factor bi 

is defined as 

ܾሺ݅ሻ ൌ ቌ ෍ ௝ܿሺ݅ሻ

ே್೗೚೎ೖೞሺ௜ሻ

௝

ቍ ௕ܰ௟௢௖௞௦ሺ݅ሻ (11)
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The correlation of this weight with the sigma task timings (Figure 2e) is similar to that of the number of 

blocks and number of connections separately, though a few outliers now have weight factors that better 

reflect their computational workload.  

An important step for the distribution of SDs to TTSS blocks is the organization of alpha/beta 

superstrings into occupation classes. This step involves a double loop over all alpha and beta occupation 

types (supergroups), where the full CI vector is read for each alpha/beta superstring combination. No 

significant time is spent for a small number of GAS spaces (i.e. small number of alpha/beta occupation 

types) or small CI expansions (< 108). However, significantly more time is spent when multiple GAS 

spaces (typically more than 6) or large active spaces are applied, and will be discussed in section 4. To 

reduce the amount of time spent in this generation, the double loop was decoupled and effectively 

parallelized by distributing the alpha occupation types over the available cores. The occupation alpha/beta 

connection map is built locally on each core and is stored in a Global Array using allocated but not yet 

utilized memory for storing the CI and sigma vectors. The connection map is updated and in a second 

parallel loop the alpha/beta supergroup combinations are sorted into occupation classes. 

For wave functions with vanishing spin-projection and well-defined spin, the CI-vectors are 

either symmetric or anti-symmetric under transposition, ܥ൫ܫఈ, ఉ൯ܫ ൌ 	െ1ௌܥ൫ܫఉ,  ఈ൯, where S is the totalܫ

spin. This may be used to reduce the storage and computational effort by a factor of two as originally 

suggested for singlet FCI states by Knowles and Handy.38 In the present context, this transpositional 

symmetry relates TTSS blocks that have the type and symmetry of the alpha- and beta-strings permuted.  

When the type and symmetry of the alpha- and beta-strings differ, this symmetry relates two different 

TTSS blocks, allowing us to evaluate and store only one of these. When the type and symmetry of the 

alpha- and beta-strings are identical, the symmetry is used to evaluate and store only the lower half of the 

elements in this matrix-block. 

3.2 The Direct CI algorithm 
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The evaluation of the three parts of the sigma-vector in Eq. 8 constitutes the inner part of the CI iterations 

and an efficient evaluation of these terms is central for the overall performance of the code. We will now 

briefly discuss the most important aspects of this evaluation. The point of departure is within the loops 

over TTSS blocks of the sigma and CI-vectors discussed in section 3.1, so the computational task is the 

evaluation of the contribution from a given TTSS block of a CI-vector, C, to a given TTSS block of the 

sigma-vector.  The code examines first whether the two TTSS blocks are connected by at most a double 

spin-orbital excitation. Provided that the two TTSS blocks differ by at most a double excitation, the code 

uses the occupation of the two TTSS blocks to select the algorithm that will be most efficient for this 

particular task. The code has thus several algorithms available for is constructed of the various terms of 

the sigma-vector of Eq. 8. Furthermore, a given algorithm has several variants, as the code may use 

particle-hole rearrangements of the Hamiltonian operator and transpose the blocks of ࣌	and C to reduce 

the computational complexity. We will here focus on the generally used algorithm for the evaluation of 

 which is the most time-consuming part of the generation of the sigma vector. The algorithm is based	ଷ,࣌

on the introduction of the resolution of the identity to write this contribution as  

,ఈܫଷ൫ߪ ఉ൯ܫ ൌ ∑ ൏ ܽ௜ఈ	ఈ|ܫ
ற ሺ∑ 	|௄ഀ ఈܭ ൐൏ ఈቚܭ ௝ܽఈ		หܬఈ ൐൏ หܽ௞ఉ	ఉܫ

ற ܽ௟ఉቚܬఉ ൐ ሺ݆݅|݈݇ሻ	ܥ	ሺܬఈ௃ഀ௃ഁ,௜,௝,௞,௟ ,  ఉ),  (12)ܬ

 

where the sums over ݅, ݆, ݇, ݈	are over active orbitals and the resolution of the identity is over alpha-strings 

with one alpha-electron less than in the reference state. This resolution of the identity is now used to 

organize the calculation as  

1. Evaluate 

,ఈܭ൫ܦ ݆, ఉ൯ܬ ൌ 	෍ ൏ |ఈܭ
௃ഀ

௝ܽఈ	|ܬఉ ൐ ,ఈܬ൫ܥ  ሺ13ሻ																																													ఉ൯ܬ

2. Evaluate 
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ܶ൫ܭఈ, ݅, ఉ൯ܫ ൌ 	 ෍ ൏ ఉቚܽ௞ఉܫ
ற ܽ௟ఉቚܬఉ ൐	

௞,௟,௃ഁ

ቌ෍ሺ݆݅|݈݇ሻܦ൫ܭఈ, ݆, ఉ൯ܬ
௝

ቍ							ሺ14ሻ	 

3. Update     

,ఈܫଷ൫ߪ	 ఉ൯ܫ ൌ ,ఈܫଷ൫ߪ ఉ൯ܫ ൅	෍ ൏ ܽ௜ఈ	ఈหܫ
ற หܭఈ ൐ ܶሺܭఈ, ݅, ఉܫ

௜

ሻ																			ሺ15ሻ	

     

The program chooses between several variants of the above algorithm. As presented above, the algorithm 

uses a resolution of the identity in the space of alpha-strings. For some forms of the TTSS-blocks, the 

calculation is faster if the resolution of the identity is over the beta-strings, so the code checks and 

compares the operation counts for these two choices to select the optimal route.  As mentioned above, the 

code may also use particle-hole reorganizations of the second-quantized Hamiltonian of Eq. 6, so that it is 

not necessarily the annihilation operators that occur to the right in the operator. In this case, the resolution 

of the identity may be in a space with an additional electron, rather than with one electron less. The time-

defining step of the algorithm is the matrix-multiplication in Eq. 14, which is performed over the orbital-

index ݆	to obtain the T from the integrals and D. The advantages of the algorithm is: 1) the overhead is 

minimal as the constructions of D from C in Eq. 13 and ߪଷfrom T in Eq. 15 scale as the number of active 

orbitals times the number of determinant, 2) the calculations may be blocked in batches of with limited 

cost and 3) the inner loop is a matrix multiply. A less appealing aspect of the presented algorithm is that 

the matrix multiplication has a single orbital index as the inner loop, so for small active spaces with 

symmetry, this loop may be rather small.  

The parallel distribution of tasks in the generation of the sigma-vector proceeds as follows: each 

node receives a replicated copy of the one- and two-electron integrals, while the large sigma and CI 

vectors are stored in Global Arrays and they are distributed as described in Section 3.1. To construct its 

part of the sigma vector, each core only works on the blocks of the sigma vector it has in local memory, 

with the interacting blocks of the CI vector fetched from the memory of remote cores using one-sided get 
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operations and combined with the replicated integrals available locally on each node. Only non-zero 

sigma blocks are processed, i.e. the corresponding Hamiltonian and/or the CI coefficients are non-zero, 

which avoids spending computation time on redundant tasks.  

3.3 Partial AO-MO Integral Transformation 

The one- and two-electron integrals and the 4-index AO-MO transformation of the two-electron integrals 

are performed with the optimized parallel subroutines of NWChem.35 The two-electron integrals in MO 

basis are subsequently reordered to the minimal integral list that LUCIA needs, and the full set of 

integrals is replicated across the nodes used in the calculation. This reordering step has also been 

parallelized in the implementation. The choice to replicate the full set of integrals is driven by the inherent 

random single integral element access nature of the underlying algorithm. While each CI step may only 

need a subset of integrals, the full set is stored to allow for an easy 4-index transformation of the integrals 

needed in each MCSCF step after the molecular orbitals are rotated.  

3.4 CI Eigensolver 

The Davidson algorithm is an efficient procedure for the calculation of the lowest few eigenvalues by 

iteratively diagonalizing a subspace of a large sparse matrix. The steps that are followed are (1) the 

construction and diagonalization of an initial subspace matrix, which involves the calculation of an initial 

sigma vector as outlined in section 3.2, (2) calculation of the preconditioner, (3) multiplication with the 

inverse Hessian and diagonalization to all previous vectors, and (4) construction of the new sigma vector 

and diagonalization of the updated projected matrix. If convergence is not reached, return to step 2. The 

update of the Davidson subspace involves vector operations that are naturally parallelized along the 

distributed CI and sigma vectors within the Global Array framework. As stated earlier, only a subset of 

the CI and sigma vectors are kept in memory. The additional vectors are stored on disk using the parallel 

I/O (ParIO) tools of the Global Arrays Toolkit.   

3.5 Orbital Optimization Step and Outer MCSCF Iteration 
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The underlying vector-vector and vector-matrix multiplications of the orbital optimization and the kappa 

update (Eq. 9) are parallelized via the NWChem tools and take little time in the overall MCSCF 

calculation. As already mentioned in section 3.3, each MCSCF iteration requires a transformation of the 

one- and two-electron integrals to the new MO basis. Each node does this transformation locally based on 

a transformation matrix describing the rotation from the previous iteration MOs to the current MOs. All 

necessary Fock matrices needed are stored globally in a Global Array and matrix elements are updated by 

the core that has them in local memory, thereby minimizing any communication. 

3.6 Memory Requirements 

Memory is the main driving force of the new MCSCF implementation for performing calculations with 

large active spaces, where the storage of large CI and sigma vectors is needed. Larger number of cores 

increases the total allocated memory available for a specific calculation. Therefore, memory requirements 

are decreased with increasing number of cores, and are roughly estimated from the ratio (number of 

SDs)/cores. Memory allocated for integrals is constant per core since they are stored in local memory on 

each core. Eventually, this could become a bottleneck for larger molecules or basis sets. This issue can be 

resolved by storing integrals once per node using the Global Arrays framework with processor groups. 

4. Parallel Performance 

The linear chromium trimer, Cr3, was used to assess the performance of the new parallel MCSCF 

implementation. The Cr-Cr distance was arbitrarily set to 1.5 Å, a singlet ground state was computed, and 

the 6-31G* basis set was used to describe the molecular orbitals. Larger basis sets increase both the local 

memory requirements and the computational time of the CI microiterations. A systematic examination of 

the basis set size effect is beyond the scope of this work. The CI expansion was constructed using an 

active space of 20 electrons in 20 orbitals, CAS(20,20). An MCSCF calculation of this size is 

computationally not feasible for a serial code and has very large memory requirements. All 3d4s orbitals 

of the three chromium atoms were included in the active space, augmented with one occupied and one 
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unoccupied molecular orbital to obtain the CAS(20,20) target active space. The choice of the correlated 

orbitals inside the active space is somehow arbitrary since these calculations were performed only for 

demonstrating the parallel scaling performance of the MCSCF implementation. All calculations were 

performed with the highest Abelian point group (D2h), which limits the number of SDs to about 4 billion 

(4 267 005 808). Within this symmetry, the 20 CAS orbitals are distributed over the irreducible 

representations as 6 ag, 1 b3u, 1 b2u, 2 b1g, 5 b1u, 2 b2g, 2 b3g and 1 au. In the benchmark results the timings 

of a single MCSCF macroiteration with 20 Davidson CI microiterations and one extra CI iteration, used 

in creating the first-order density matrix, are reported. All calculations were performed using the Intel 

Haswell nodes (processors) on Cori supercomputer located at the National Energy Research Scientific 

Computing Center (NERSC). Each node has 128 GByte of memory and two 16-core Haswell processors 

running at 2.3 GHz, for a total of 32 cores per node. The developed version of NWChem was compiled 

with the Intel 16.0 compiler version, and the Global Arrays Toolkit delivering the parallel infrastructure 

was compiled with the MPI-PR setting. For each calculation 17 cores were used per processor, 16 for the 

computation and one to support the MPI communication.  

Table 3 and Figure 3 show the results for the CAS(20,20) case with 6 GAS spaces from 32 to 512 

cores. These extra GAS spaces were created by moving all orbitals from one irreducible representation 

into a different GAS space (as demonstrated in Table 2A), which resulted 888 TTSS batches available for 

parallel processing. The introduction of GAS spaces does not truncate the CI expansion, it only generates 

TTSS batches that can be efficiently distributed in different cores, as described in Section 3. Each step 

discussed in Table 3 is performed once in a MCSCF macroiteration, which involves 20 CI 

microiterations. 

Table 3: Individual times (in sec) of the MCSCF steps for one macroiteration with a CAS(20,20) for the chromium 
trimer. The CAS(20,20) is divided in 6 GAS spaces moving all orbitals belonging to one irreducible representation 
into a different GAS space (as demonstrated in Table 2A). 

Number of Cores 32 64 128 256 512 
Time (sec) 

CI Generation 
 

56
 

38
 

24
 

18
 

12 
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MO-AO Transformation 24 18 12 8 4 
Integral Evaluation 132 80 43 23 18 

CI Eigensolver (20 iterations) 30026 17040 10331 5815 4285 

1e/2e Density Matrices 3897 2219 1442 1062 856 
Total time per MCSCF iteration 34135 19395 11852 6926 5175 

Parallel Speedup x1 x1.8 x2.9 x4.9 x6.6 
 

 

 

Figure 3: Total CPU time (in sec) and the individual contributions of one MCSCF iteration for the chromium trimer 
with an active space of 20 electrons in 20 orbitals and with different number of cores. The CAS(20,20) is distributed 
over 6 GAS spaces by moving all orbitals from one or more irreducible representations (see Table 2A as an 
example).  

 

As stated before, the most time-consuming step (over 85% of the computational time) is the CI 

eigensolver that constructs the sigma vector in the iterative Davidson algorithm. Reasonable parallel 

performance was obtained scaling the CAS(20,20) calculation to 512 cores, with a speed up of 6 going 

from 32 to 512 cores. No perfect load-balance was achieved, which can be attributed to the small set of 
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888 TTSS batches or parallel tasks, each of difference size and computational complexity. To increase the 

number of TTSS batches that can be processes in parallel, and allow for better static load balancing, 

additional GAS spaces or different orbital distributions need to be introduced. In Table 4 the timing data 

of the CI eigensolver component for the 6 GAS spaces is compared to that of calculations using 8 GAS 

spaces, where each GAS space contains all orbitals of one irreducible representation. The two additional 

GAS spaces, each containing one orbital, generate few additional batches, and these few additional 

batches come at a significant computational cost. There are several factors contributing to the large 

increase in the computational timings when the number of GAS spaces is increased. First of all, the inner 

loops of the calculation of the sigma-vector are organized as loops over types of double excitations where 

a type specifies the four GAS spaces of the double excitation. By increasing the number of GAS spaces 

from 6 to 8, the number of times these loops are executed increases from 1296 to 4096.  Although the 

number of operations executed in a given pass through the loop is reduced, the total number of operations 

is increased significantly. Furthermore, the use of GAS spaces with one or very few orbitals per symmetry 

leads to rather inefficient matrix multiplies due to matrices with one very small dimension, being equal to 

the number of orbitals or orbital pairs with given symmetry and GAS space. 

Table 4: Comparison of CI eigensolver timings (in sec) in one macroiteration with a CAS(20,20) for the chromium 
trimer using different distributions of orbitals and GAS spaces. 

Number of Cores 32 64 128 256 512
6 GAS spaces (888 batches) 30026 17040 10331 5815 4285
8 GAS spaces (896 batches) 42644 22764 13559 8736 4752
  

The approach of placing orbitals of each irreducible representation in a different GAS space will 

be able to generate at most 896 TTSS batches for the CAS(20,20) calculation considered here. As such 

there are not enough batches and tasks to utilize more than 896 processes. Note that, if lower symmetry 

would be applied the ability to generate batches for parallel processing would be limited even further.  

The alternative approach that was utilized is to iteratively generate new GAS spaces with only a single 

orbital until the number of TTSS batches significantly exceeds the number of cores available for the 
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calculation, i.e. distributing orbitals of a single irreducible representation over multiple GAS spaces as 

depicted in Table 2B. The one orbital per GAS approach enabled calculations beyond 512 cores. In Table 

5 the timings of calculations up to 2048 cores are presented.   

 

Table 5: Individual times (in sec) of the MCSCF steps for one macroiteration with a CAS(20,20) for the chromium 
trimer. The number of GAS spaces is also given for all cases. 

Number of Cores 64 128 256 512 1024 1024 2048
Number of GAS spaces 4 4 5 5 6 7 6

Number of TTSS Batches 288 288 1076 1076 3963 14502 3963
CI Generation 2 2 4 4 29 114 27

MO-AO Transformation 19 13 8 5 2 4 1
Integral Evaluation 4 4 8 8 15 34 14

CI Eigensolver 40967 26478 14131 8065 4873 6059 2868
1e/2e Density Matrices 3947 2051 1844 941 803 872 555
Total time per MCSCF 

iteration 
44939 28548 15995 9023 5722 7083 3465

 

Table 5 shows that while for smaller core counts the one orbital per new GAS approach increases 

the computational cost, it does enable the overall algorithm to achieve reasonable speedup all the way to 

2048 cores. Therefore, the encoded GAS distribution approach first attempts to distribute the orbitals in 

each irreducible representation into different GAS spaces, and only when it still does not have enough 

work for all available cores, it switches to distributing one orbital into a different GAS space. 

5. Exploring CI expansions beyond CAS(20,20) 

Additional test calculations were performed on larger CI expansions created by a CAS(22,22) and a 

CAS(24,24) to get insight into the performance of the parallel MCSCF code, and to assess the feasibility 

of these classes of calculations. The test calculations were run on 4096 and 8196 cores of the NERSC 

Cori machine. Only a single CI iteration was performed, which provides the essential information about 

the building of the most computationally expensive sigma vector in the new parallel CI eigensolver. To 

ensure maximum connectivity between sigma and the CI vector and the computational work, 

representative of one of the last iterations in a CI calculation without zero-valued CI blocks that would be 
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skipped, the coefficients of all SDs in the CI expansion were given a normalized value of 1.0/(number of 

SDs). Given potential sparsity in the CI wave function, the calculated results are the upper bound for the 

computational time needed. 

CASSCF calculations were performed on linear tetracene and pentacenes, which are relevant 

species to design organic semiconductors.23, 42-44 For tetracene a full CI expansion that includes the 

complete ππ* system corresponds to a CAS(18,18). A ππ* complete active space in pentacene 

corresponds to 22 electrons in 22 orbitals, and a CI of 497 634 306 624 SDs. By applying symmetry 

restrictions (D2h point group), the ππ* are transformed only by four different irreducible representations, 

and the 1Ag singlet ground state would require a CI expansion of 124 408 640 160 SDs. The number of 

SDs is about 30x larger than the CAS(20,20) used in the performance benchmarks in section 4. Our initial 

approach of moving all orbitals of a given irreducible representation into their own GAS space did not 

create enough TTSS batches relative to the number of cores we intended to use for the calculation. Hence, 

we followed the approach discussed at the end of section 4, even though this will result in a significant 

computational overhead. For a calculation with 4096 cores, 7 GAS spaces were needed to generate 7788 

TTSS batches, providing each cores with one or two batches to compute. Olsen and coworkers showed 

that the CI algorithm used here scales approximately linearly with the number of SDs,34 which provides 

an excellent measure to understand possible performance degradation. . The pentacene CAS(22,22) single 

CI iteration required 4212 seconds on 4096 cores. An additional eighth GAS space was needed to 

generate enough TTSS batches (28607) that would utilize all 8196 cores. Only a slight reduction of time 

was achieved by doubling the number of cores, with the CI iteration requiring 4085 seconds.  This means 

that a full MCSCF calculation with 10 macro iterations, each with 20 CI iterations, would still require 9 

days of compute time.  

The chromium dimer and trimer structures are typical benchmark systems for new electronic 

structure theory methods. It is generally accepted that all molecular orbitals composed by the 3d and 4s 

atomic orbitals of the chromium atoms should be included in the active space of MCSCF calculations for 
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Cr2 and Cr3. This gives rise to active spaces of CAS(12,12) and CAS(18,18) size, respectively. The 

chromium tetramer MCSCF with all 3d 4s atomic orbitals included would require a CAS(24,24) active 

space consisting of 7.3 trillion SDs (7 312 459 672 336 SDs), reduced by D2h symmetry and a 1Ag ground 

state to almost one trillion SDs (914 058 513 424 SDs). Distributing the 24 orbitals in 8 GAS spaces 

generates 57538 TTSS batches, with each core receiving seven or eight batches. A single CAS(24,24) CI 

iteration on 8196 cores required 50136 seconds. While this setup would allow the use of 20000-30000 

cores, clearly, a full iterative MCSCF calculation at this scale is not yet feasible, unless the overall 

performance can be significantly improved. 

6. Summary and Conclusion 

With the parallel implementation presented in this work, MCSCF calculations with active spaces 

composed by 20 electrons in 20 orbitals can be performed routinely in small computer clusters, while 

calculations with almost one trillion SDs can be executed in supercomputers with thousands of cores. 

Such large active spaces and CI expansions are beyond the limits of current MCSCF implementations. 

The methodology presented in this work is based on (1) the application of the native NWChem tools for 

the parallelization of the MCSCF steps and (2) the generation and distribution of computational work in 

assembling the sigma vector of the Davidson algorithm on available cores. Fragmentation of a parent 

active space (CAS or GAS) into multiple GAS spaces was used to generate enough CI/sigma tasks to be 

distributed over cores. For active spaces as large as the CAS(20,20), good scalability up to 2048 cores has 

been demonstrated. For larger active spaces, such as CAS(22,22) and CAS(24,24), this approach 

increases significantly the number of CI tasks that have to be performed, so that smaller number of GAS 

spaces is preferred. It should be noted that this fragmentation approach does generate additional overhead 

in the calculations. Our approach shows that CI calculations with an active space composed by 22 

electrons in 22 orbitals have become accessible on large parallel computing platforms, while a chromium 

tetramer with an active space composed by 24 electrons in 24 orbitals would require a significant increase 

in parallel performance. 



  26

As the seminal publication of Olsen et al.34 marked the new era in multiconfigurational theory for 

the calculation of “exact”, non-relativistic electronic energies for systems with CI expansions of one 

billion elements, this work sets the foundations for the “exact” treatment of larger active spaces. The new 

parallel implementation of MCSCF can provide benchmark results for the calibration of novel non-

conventional CI methods such as DMRG or FCIQMC. 

Supplementary Material 

See supplementary material for Cartesian coordinates and input examples of Cr3, Cr4 and pentacene 

molecules. 
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Appendix: Example of Multiple TTSS Block Generation with the GAS scheme 

Let us consider a system with C2v symmetry (4 irreducible representations - irreps). We would 

like to perform a calculation for the 1A1 state with a complete active space (CAS) composed by 4 

electrons in 8 orbitals (CAS(4,8)) which are transformed according to the following irreps: 1a1, 2a1, 1a2, 

2a2, 1b1, 2b1, 1b2, and 2b2 (Table A1). The CAS(4,8) can be considered as a GAS calculation with only 

one GAS space (GAS 1) 

 

Irrep a1 a2 b1 b2 
GAS 1 2 2 2 2
Total Active 2 2 2 2
Table A1: Composition of the parent CAS(4,8). 

 

 The CI expansion is evaluated in combinations (CMs), rather than Slater determinants (SDs), 

which can also be constructed by an alpha string ߙሺܫఈሻ and a beta string ߚ൫ܫఉ൯. Since we want to 

calculate a singlet state (S = 0), we need to construct CMs with two alpha and two beta electrons. The 

alpha string is composed by two creation operators  

 

ఈሻܫሺߙ ൌ ௜ఈߙ
ற ሺ݊ሻ	ߙ௝ఈ

ற ሺ݉ሻ,    i, j = 1a1, 2a1, 1a2, 2a2, 1b1, 2b1, 1b2, or 2b2, 

 

with each of them adding an alpha electron to the vacuum state. The indices n and m correspond to the 

GAS space that the operator creates an electron (n = m = 1 for this example). For obtaining the type (T) of 
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the alpha string ߙሺܫఈሻ, i.e. the spatial symmetry of ߙሺܫఈሻ, we have to consider all possible unique 

combinations between different irreps i.e. 

ଵ௔భఈߙ
ற ሺ1ሻ	ߙଶ௔భఈ

ற ሺ1ሻ	, 

ଵ௔భఈߙ
ற ሺ1ሻ	ߙଵ௔మఈ

ற ሺ1ሻ	, 

ଵ௔భఈߙ
ற ሺ1ሻ	ߙଶ௔మఈ

ற ሺ1ሻ	, 

etc. 

In total, we have 28 different combinations. Let us define as a supergroup the distribution of electrons of 

a spin alpha or beta in different GAS spaces. For this example, since we have only one GAS space that 

both alpha electrons can occupy, there is only one alpha supergroup that we will call it {2} (i.e. two alpha 

electrons in GAS 1). Next, we group the strings of each supergroup according to their symmetry by 

calculating the corresponding direct products (Table A2), i.e. for the supergroup {2}, we have 4 strings 

with a1 symmetry, 8 strings with a2, 8 strings with b1 and 8 strings with b2. Similar work is followed for 

the beta string (ߚ൫ܫఉ൯ ൌ ௜ఉߙ
ற ሺ݊ሻ	ߙ௝ఉ

ற ሺ݉ሻ). 

Irrep Type of alpha 
supergroups 

Type of beta 
supergroups 

Number of 
Supergroups 

1 1 

Distribution of 
electrons per GAS 

{2} {2} 

a1 4 4
a2 8 8
b1 8 8
b2 8 8

Table A2: Distribution of alpha and beta strings in supergroups for CAS(4,8). 

 

By evaluating the spin of each supergroup product between alpha and beta types, we calculate the number 

of different TTSS blocks and the number of CMs that each block contains (Table A3). For this example, 

where we want to calculate a root with A1 symmetry, only four direct products between alpha and beta 

supergroups give CMs with the correct symmetry 
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ܽଵሺalphaሻ	⨂	ܽଵሺbetaሻ, 

ܽଶሺalphaሻ	⨂	ܽଶሺbetaሻ, 

ܾଵሺalphaሻ	⨂	ܾଵሺbetaሻ, 

ܾଶሺalphaሻ	⨂	ܾଶሺbetaሻ. 

 

Each direct product forms a TTSS block. In total, there are 4 TTSS blocks (Table A3). 

 

TTSS Block Size 
1 10 
2 36 
3 36 
4 36 
CI Vector 118 
Max Size 36 
Table A3: Number of CMs per TTSS block for a CAS(4,8). 

 

 Let us now consider a case where we move one orbital (eg. of a1 symmetry) from GAS 1 to a new 

GAS (GAS 2, Table A4): 

 

Irrep a1 a2 b1 b2 
GAS 1 1 2 2 2
GAS 2 1 0 0 0
Total Active 2 2 2 2
Table A4: Composition of the parent CAS(4,8) split in two GAS spaces. 

The number of supergroups per spin has increased to 2: two electrons in GAS 1 and zero in GAS 2 

(termed as {2 0}), and the first electron in GAS 1 and the second in GAS 2 (termed as {1 1}).  

  

Irrep Type of alpha 
supergroups 

Type of beta 
supergroups 

Number of 
Supergroups 

2 2 

Distribution of {2 0} {1 1} {2 0} {1 1}
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electrons per GAS 
a1 3 1 3 1
a2 6 2 6 2
b1 6 2 6 2
b2 6 2 6 2

Table A5: Distribution of alpha and beta strings in supergroups for CAS(4,8) split in two GAS spaces. 

 

By following this approach, we have increased the number of alpha types T to eight. By considering all 

possible combinations between alpha and beta supergroups, avoiding double counting of CMs, and 

keeping those with the correct spin, we construct 12 TTSS blocks (Table A6). 

  

TTSS Block Size 
1 6 
2 21 
3 21 
4 21 
5 3 
6 12 
7 12 
8 12 
9 1 
10 3 
11 3 
12 3 
CI Vector 118 
Max Size 21 
Table A6: Number of CMs per TTSS block for a CAS(4,8) split in two GAS spaces. 

 

Further splitting of the parent CAS(4,8) to three GAS spaces (Table A7) increases the number of 

supergroups since we have now four different possibilities to distribute 2 alpha (or beta) electrons in three 

GAS spaces ({2 0 0}, {1 1 0}, {1 0 1}, and {0 1 1}). This increases the number of different strings (Table 

A8) that eventually increases the number of TTSS blocks (Table A9). 

 

Irrep a1 a2 b1 b2 
GAS 1 1 1 2 2
GAS 2 1 0 0 0
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GAS 3 0 1 0 0
Total Active 2 2 2 2
Table A7: Composition of the parent CAS(4,8) split in three GAS spaces. 

 

Irrep Type of alpha supergroups Type of beta supergroups
Number of 

Supergroups 
4 4 

Distribution 
of electrons 

per GAS 
{2 0 0} {1 1 0} {1 0 1} {0 1 1} {2 0 0} {1 1 0} {1 0 1} {0 1 1} 

a1 2 1 1 0 2 1 1 0
a2 5 1 1 1 5 1 1 1
b1 4 2 2 0 4 2 2 0
b2 4 2 2 0 4 2 2 0

Table A8: Distribution of alpha and beta strings in supergroups for CAS(4,8) split in three GAS spaces. 

TTSS Block Size TTSS Block Size
1 3 16 8
2 15 17 1
3 10 18 1
4 10 29 4
5 2 20 4
6 5 21 1
7 8 22 1
8 8 23 3
9 1 24 3

10 1 25 5
11 3 26 1
12 3 27 1
13 2 28 1
14 5 CI Vector 118
15 8 Max Size 15

Table S9: Number of CMs per TTSS block for a CAS(4,8) split in three GAS spaces. 
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