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Abstract: The αvβ3 integrin, a receptor for many extracellular matrix proteins with RGD-sequence
motif, is involved in multiple physiological processes and highly expressed in tumor cells, therefore
making it a target for cancer therapy and tumor imaging. Several RGD-containing cyclic octapeptide
(named LXW analogs) were screened as αvβ3 antagonists with dramatically different binding affinity,
and their structure–activity relationship (SAR) remains elusive. We performed systematic SAR studies
and optimized LXW analogs to improve antagonistic potency. The NMR structure of LXW64 was
determined and docked to the integrin. Structural comparison and docking studies suggested that the
hydrophobicity and aromaticity of the X7 amino acid are highly important for LXW analogs binding
to the integrin, a potential hydrophobic pocket on the integrin surface was proposed to play a role in
stabilizing the peptide binding. To develop a cost-efficient and fast screening method, computational
docking was performed on LXW analogs and compared with in vitro screening. A consistency within
the results of both methods was found, leading to the continuous optimization and testing of LXW
mutants via in silico screening. Several new LXW analogs were predicted as the integrin antagonists,
one of which—LXZ2—was validated by in vitro examination. Our study provides new insight into
the RGD recognition specificity and valuable clues for rational design of novel αvβ3 antagonists.

Keywords: integrin αvβ3 antagonists; RGD peptides; structure–activity relationship; in silico
screening; in vitro binding

1. Introduction

Integrin αvβ3 known as the vitronectin receptor is a member of the integrin superfamily and
a heterodimeric transmembrane protein formed by non-covalent association of αv and β3 subunits.
Each subunit consists of a large extracellular domain, a single transmembrane domain, and a short
cytoplasmic domain, through which the integrin modulates bi-directional cell signaling over the plasma
membrane [1]. As a cell surface receptor of the extracellular matrix (ECM), it binds a wide variety of
ECM ligands with RGD motif implicated in many normal and pathological cell functions including cell
survival, angiogenesis, tumor invasion, etc. [2]. Unlike other integrins ubiquitously expressed in adult
tissues, αvβ3 is most abundantly expressed on angiogenic endothelial cells in pathological tissues [3].
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In fact, the inhibition of αvβ3 has been widely used in clinical trials as anti-angiogenic therapy with
growing interest in developing inhibitors specifically targeting αvβ3 integrin in the past decade [4].

RGD peptides are well-known to bind to the integrins including αvβ3 as revealed by the crystal
structure ofαvβ3 ectodomain in complex with the cyclic RGD peptide—cilengitide [5]—which provided
the structural basis for development of αvβ3 antagonists. Targeting tumor cells or tumor vasculature
by RGD-based strategies is a promising approach for delivering anticancer drugs or contrast agents for
cancer therapy and diagnosis. RGD-based strategies include RGD peptide or peptidomimetic drugs,
RGD-conjugates, and the grafting of the RGD peptide or peptidomimetic, as targeting ligand, at the
surface of nanocarriers [6]. A series of RGD-containing cyclic octapeptides—LXW analogs—have been
reported using the one-bead-one-compound (OBOC) combinatorial library technology (Table 1) [7,8].
LXW7 was identified as a leading ligand that binds specifically to αvβ3 integrin with a comparable
binding affinity to those well-known RGD-cyclic pentapeptide ligands [7]. A further systematic
optimization of LXW analogs was conducted and led to identification of several more potent LXW
peptides [8]. One of the best ligands-LXW64 demonstrated 6-fold higher binding affinity than LXW7
and identified as the new lead [8]. However, the SAR remains elusive as these LXW analogs share
similar structures but exhibit substantially different integrin binding affinities. Furthermore, this
in vitro screening procedure requires considerable efforts such as synthesis of OBOC libraries, on-bead
whole-cell screening assays, etc. which is often time-consuming and costly. To develop and apply a
rapid, low-cost in silico screening method combining with selective in vitro validation would be a
better way for this purpose. As a continuation of our previous efforts in developing αvβ3 antagonists,
we herein introduce a combinatorial method, report identification of a new RGD-containing cyclic
octapeptide against αvβ3 integrin. Its high binding affinity to the integrin has been validated using
the competition binding assay on αvβ3 integrin-transfected cells (K562/αvβ3+).

Table 1. Representative LXW analogs and their IC50s *.

Peptide Amino Acid Sequence # IC50 (µmoL/L)

LXW7 cGRGDdvc-NH2 0.46
LXW11 CGRGDdvC-NH2 >20
LXW64 cGRGDd-DNal1-c-NH2 0.07

* IC50 of the peptide is the concentration of peptide required for inhibition of 0.5 µmoL/L biotinylated LXW7 binding
to K562/αvβ3+ cells by half. # The lowercase letters indicate D-amino acids, whereas the uppercase letters denote
L-amino acids.

2. Results

2.1. NMR Assignments of LXW64 and Verification of Disulfide Bond

LXW64 (
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) contains 8 amino acids including non-proteinogenic amino
acid—3-(1-naphthyl)-D-alanine (D-Nal1). The 1H-coupling spin system for each residue type was
unique and easily distinguishable from 1H-1H TOCSY, for example, the residue, arginine, was
unambiguously assigned based on its unique 1H resonances of Hβ and Hγ (1–2 ppm). The other three
types of residues, two glycines, two aspartates, and two cysteines, were also identified and assigned
with their HN, Hα, and Hβ. The sequential assignment was then completed through the connectivity
of NOEs observed between the amide protons in 2D NOESY (Figure 1). Thus, all 1H resonances were
unambiguously assigned for LXW64. The proton assignments allowed unambiguous assignments
of all proton-attached 13C resonances using 1H-13C HMQC spectrum, while the chemical shifts of
non-pronated 13C were assigned from 1H-13C HMBC spectrum due to their long-range couplings with
other assigned protons. Native abundance gradient 15N HSQC spectrum was obtained for LXW64
on the 600 MHz Bruker spectrometer. The high-signal-to-noise quality of this spectrum enabled
unambiguous assignments for all 15N chemical shifts. Chemical shifts of all 1H, 13C and 15N were
fully assigned for LXW64 peptide and are available as Supporting Information in Table S1. The
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intramolecular disulfide bond of the peptide was confirmed via the NOEs between two cysteines (Cys1
and Cys8). Moreover, the disulfide bridge connectivity was identified by MS and 13Cβ chemical shifts
of two cysteines [9].
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Figure 1. The observed NOEs of LXW64 in 2D 1H-1H NOESY (dashed lines for sequential NOEs; solid
lines for long-range NOEs).

2.2. Structure Determination of LXW64 and Structural Comparison with Other LXW Peptides

All sequential NOEs between α proton of residue i (Hαi) and amide proton of residue i+1 (HN
i+1)

were observed in 2D NOESY, as shown in the molecular structure of LXW64 (Figure 1). Interestingly,
NOEs between Hα5 and the aromatic side-chain protons (Hδ2 and Hε2) of D-Nal1 was observed,
which is similar toLXW7 but missed in LXW7 isomer, i.e., LXW11 [8]. The NMR-derived distance
constraints from 2D NOESY as well as the dihedral constraints from J coupling constants and carbon
chemical shifts (Table 2), allow us to perform atomic resolution structure calculation. The final
NMR-derived structures are illustrated in Figure 2 and summarized in Table 2. The 10 lowest-energy
conformers when superimposed have an overall main chain root-mean-squared derivation (RMSD) of
0.34 ± 0.072 Å. The energy-minimized average structure of LXW64 is shown in Figure 2B (see for the
structure coordinate (S2 LXW64 Coordinates)). The peptide adopts a bowl-shape and open circular
structure with all side chains pointing toward the outside. The structure (Figure 2C) contains positively
(L-Arg3) and negatively (L-Asp5 and D-Asp6) charged portions and hydrophobic moiety (D-Nal1),
which may contribute to hydrophilic, electrostatic and hydrophobic interactions when binding to
αvβ3 integrin.

The structure of LXW64 is less compact and very similar to that of LXW7 since there is only
one amino acid difference at position 7 [8]. The backbone RMSD of two peptides when aligned is
1.4 Å, and all side chains overlap very well (Figure 3A). Both peptides adopt an open ring-shaped
structure, in which the side chains of two Asp residues point toward the outside ring plane, while
Arg3 and D-Val7/D-Nal1 protrude from the ring structure in opposite directions. However, LXW64
and LXW7 are considerably different from LXW11, with a backbone RMSD of 2.5 Å after alignment.
The bowl-like structures of LXW64 and LXW7 are twisted in LXW11, resulting in drastic changes of
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side-chain orientations of amino acids (Figure 3B). The side chains of Asp5 and D-Val7 in LXW11 are
totally buried inside the circular structure, quite close to the opposite amino acids—Gly2 and Arg3.
The side chain of D-Asp6 shows closer to the peptide backbone, and less protruding in comparison to
LXW64 and LXW7 (Figure 3B). In addition, two cysteines (Cys1 and Cys8) in LXW11 are much closer
to each other than that of LXW64 and LXW7 (Figure 3C,D), indicating that LXW11 is more structurally
constrained than LXW64 and LXW7. These significant conformational differences are likely to cause
dramatic changes in their binding affinities to αvβ3 integrin.

Table 2. Structure Statistics for the Ensembles of 10 Calculated Structures of LXW64.

NOE Restraints (Total) 58

dihedral angle restraints 14
RMSD from ideal geometry

bond length (Å) 0.0094 ± 0.00041
bond angles (degree) 2.27 ± 0.04
Ramachandran plot
allowed region (%) 100

disallowed region (%) 0
RMSD of atom position from average structure

main chain (Å) 0.34 ± 0.072
non-hydrogen (Å) 1.47 ± 0.16
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Figure 2. NMR-derived structures of LXW64. (A) An ensemble of 10 superimposed minimum energy
structures. (B) Sticks representation of the energy-minimized average structure, in which L-Arg3,
L-Asp5, D-Asp6 and D-Nal1 (X7) are labeled. (C) Representation of the molecular surface of LXW64,
colored by electrostatic potential. Blue and red color represents positive (Arg) and negative (Asp)
potential, respectively. The hydrophobic portion is highlighted in yellow.
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both α- (Ala215, Ile216, Phe217, Ala246, Ala247) and β-subunit (Val314, Leu317, Ala218, Ala252) 
adjacent to the MIDAS site (Figure 4B), which has never been reported. The binding pattern of LXW7 
with the integrin is almost identical to LXW64 (Figure 4C). However, instead of only interacting with 
one of the carboxylate oxygens (Asp218 in α-subunit) in the previous docking simulation studies [7], 
LXW7 Arg3 is able to interact with both Asp148 and Asp150 in α-subunit (Figure 4C). D-Val7 side 
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Figure 3. (A) Superimposed structures of LXW64 (grey) and LXW7 (cyan) with labeled side chains of
L-Arg3, L-Asp5, D-Asp6 and D-Nal1 (X7) (LXW64) or D-Val7 (LXW7); (B) Sticks representation of the
energy-minimized average structure of LXW11, L-Arg3, L-Asp5, D-Asp6, and D-Val7 are labeled; (C)
The energy-minimized average structure of LXW64 with labeled distance between D-Cys1 Hα and
D-Cys8 Hα; (D) The energy-minimized average structure of LXW11 with labeled distances between
D-Cys1 Hα and D-Cys8 Hα, D-Val7 methyl protons and L-Gly2 HN/L-Arg3 Hα, L-Asp5 carboxyl
group, and L-Gly2 HN.

2.3. Complex Structure Models of LXW Peptides and αvβ3 Integrin

To further examine the SARs of LXW analogs binding to the αvβ3 integrin, the computational
models of three LXW analogs (LXW64, LXW7, LXW11) bound with the integrin were generated by
means of docking calculation using AutoDock Vina [10] (see Materials and Methods for a detailed
description), starting from the crystal structure of the extracellular segment of integrin αvβ3 in complex
with cilengitide (PDB ID 1L5G). The energy-minimized average structures of LXW64, LXW7, and
LXW11 were docked into the metal ion-dependent adhesion site (MIDAS), as shown in Figure 4A. In
contrast to the crystal structure, the Arg3 side chain of LXW64 is able to form salt bridges with Asp150
and Asp148, but not with Asp218 in the complex model, indicating that Asp218 in the integrin is not
optimal for LXW64. The carbonyl oxygen of Arg3 also forms a hydrogen bond with Tyr178 of the
α-subunit. Both carboxylates of D-Asp6 side chain and D-Cys8 of LXW64 interact with Mn2+ ions
within the MIDAS domain of the β-subunit. D-Asp6 is also close to Arg214 of the β-subunit and forms
a salt bridge. In addition, a salt bridge is formed between LXW64 Asp5 and Lys253 of the β-subunit.
Intriguingly, D-Nal1 (X7) side chain—naphthalene—is located in a potential hydrophobic pocket above
Lys253 of the β-subunit, formed by nine hydrophobic amino acids from both α- (Ala215, Ile216, Phe217,
Ala246, Ala247) and β-subunit (Val314, Leu317, Ala218, Ala252) adjacent to the MIDAS site (Figure 4B),
which has never been reported. The binding pattern of LXW7 with the integrin is almost identical
to LXW64 (Figure 4C). However, instead of only interacting with one of the carboxylate oxygens
(Asp218 in α-subunit) in the previous docking simulation studies [7], LXW7 Arg3 is able to interact
with both Asp148 and Asp150 in α-subunit (Figure 4C). D-Val7 side chain is also in the hydrophobic
pocket, but much less extended than D-Nal1 of LXW64, indicative of a weaker binding affinity. This is
consistent with docking studies that LXW7 calculated free energy (−7.7 kcal/mol) is less than LXW64
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(−9.0 kcal/mol). Although binding to the same site, LXW11 loses some critical interactions with the
integrin compared to LXW64 and LXW7 (Figure 4D), even though the ionic interactions with Asp 148,
Asp150, Lys253, Arg214 still remain. These missing interactions include the electrostatic interaction
between Asp5 side-chain carboxylate and Mn2+ ions, the hydrophobic interaction between D-Val7
side chain and the hydrophobic groove as both are buried inside the circular structure. Furthermore,
the configuration change from D-Cys (LXW64 and LXW7) to L-Cys in LXW11 alters the orientation
of L-Cys8 carboxylate resulting in a much weaker interaction with Mn2+ ions. Its calculated free
energy (−7.4 kcaL/moL) is much lower than other two peptides, indicating a significantly lower affinity
binding (IC50). These results imply that the structures of LXW analog predominate their bindings with
the αvβ3 integrin and a D-amino acid with a hydrophobic side chain at position 7 is preferred for a
higher binding affinity.
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(green) bound to αvβ3 integrin (α-subunit: blue, β-subunit: grey, Mn2+: purple); (B) Closeup view
of LXW64 (green sticks) in the αvβ3 integrin binding site. Key amino acids are labeled with blue in
α-subunit, black in β-subunit, and red in LXW64; (C) Closeup view of LXW7 (green sticks) in the αvβ3
integrin binding site. Key amino acids are highlighted with the same labels as in (B,D) Closeup view of
LXW11 (green sticks) in the αvβ3 integrin binding site. Key amino acids are highlighted with the same
labels as in Figure 4B.
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2.4. New LXW-Analogous Peptide Screening by Autodock

To further develop more potent LXW-analogous peptides with a high affinity to αvβ3 integrin, we
conducted in silico screening. Our strategy is to design new LXW64 mutants by replacing the X7 amino
acid with hydrophobic residues, and then perform molecular docking by AutoDock Vina to screen
new LXW analogs based on the docking scores. Five representative LXW analogs (LXW7, LXW11,
LXW26, LXW64, LXW65) with known IC50s from previously in vitro screening were selected to test
the feasibility of our strategy. Comparison between in vitro screening and in silico molecular docking
(Table 3 and Figure 5) demonstrated a consistency within the results of both methods, suggesting that
the in silico molecular docking can produce reliable results and is feasible for screening. We designed a
series of LXW64 analogous peptides in which the X7 amino acid was replaced by D-amino acids in the
SwissSidechain database (https://www.swisssidechain.ch/) [11]. In silico screening was performed by
docking new designed LXW analogs to the crystal structure of αvβ3 integrin (PDB ID: 1L5G). Total
20 new LXW-analogous peptides were identified with a high binding affinity to the αvβ3 integrin
referred to the new lead according to AutoDock prediction. All the new LXW analogs contain a X7
non-natural amino acid with either a cyclic (total 13) or non-cyclic (total 7) side chain as shown in
Table 4. For these X7 amino acids, the side chains with cyclic structures were predicted with higher
binding affinity than that of non-cyclic ones. Seven new LXW analogs with DNTL, DTRP, DPHE, DQ36,
D5MW, D6MW, and DQX3 as the amino acid at position 7 were predicted with a binding affinity (Kd
≤ 0.5 µM) comparable to the new lead—LXW64 (0.25 µM). Intriguingly, one of the best X7 residues,
3-(9-anthryl)-D-alanine (DNTL) is structurally similar to the X7 of the new lead. This DNTL-containing
LXW-analogous peptide (LXZ2) was predicted with a high binding affinity to the αvβ3 integrin.

Table 3. The experimentally measured half-maximal inhibitory concentration (IC50) and computationally
calculated binding free energy (kcal/mol) and equilibrium dissociation constant (Kd) by Autodock of LXW
analogs binding to αvβ3 integrin.

RGD Peptide X Amino Acids in LXW
Analogs (CGRGDdXc-NH2)

IC50 (µmoL/L) Binding Free Energy
(kcaL/moL)

Kd (µmoL/L) by
Autodock #

LXW7 D-Val 0.46 −7.7 2.27
LXW11 * D-Val and L-Cys >20 −7.4 3.70
LXW26 D-Ile 1.84 −7.6 2.67
LXW64 D-Nal1 0.07 −9.0 0.24
LXW65 D-Nal2 0.13 −9.3 0.15

* two cysteines are L-configuration. # According to calculation of Ki in Autodock 4.
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Table 4. 20 X7 amino acids screened from the SwissSidechain database (https://www.swisssidechain.ch/)
in LXW-analogous cyclic octapeptides (cGRGDdXc-NH2) and the peptides’ binding affinities (Kd,
µmoL/L) to αvβ3 integrin calculated by Autodock 4.2. (note: Residues highlighted in bold are
comparable to LXW64 listed as a reference and all non-natural amino acid codes are from the
SwissSidechain database).

Peptide/X7 Residue Kd (µmoL/L) Peptide/X7 Residue Kd (µmoL/L) Peptide/X7 Residue Kd (µmoL/L)

DNAL1 (LXW64)
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DAHP

 

1.63 

0.42
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DNVA

 

1.16 
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DALC

 

0.50 

DQ33

 

0.50 

DPZ4

 

0.59 

DLVG

 

0.83 

DQ36

 

0.30 

DLEU
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0.30 

DQX3

 

0.38 
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DMET

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 17 

 

Table 4. 20 X7 amino acids screened from the SwissSidechain database 
(https://www.swisssidechain.ch/) in LXW-analogous cyclic octapeptides (cGRGDdXc-NH2) and the 
peptides’ binding affinities (Kd, µmoL/L) to αvβ3 integrin calculated by Autodock 4.2. (note: Residues 
highlighted in bold are comparable to LXW64 listed as a reference and all non-natural amino acid 
codes are from the SwissSidechain database). 

Peptide/ 

X7 Residue 
Kd (μmoL/L) 

Peptide/ 
X7 Residue 

Kd 
(μmoL/

L) 

Peptide/ 
X7 Residue 

Kd 
(μmoL/

L) 

DNAL1 

(LXW64) 

 

0.25 

DCPE

 

0.70 

DNLE

 

1.63 

DNTL (LXZ2) 

 

0.29 

DHL1

 

1.38 

DNVA

 

1.16 

DTRP 

 

0.30 

DALC

 

0.50 

DQ33

 

0.50 

DPZ4

 

0.59 

DLVG

 

0.83 

DQ36

 

0.30 

DLEU

 

1.16 

D5MW

 

0.30 

DQX3

 

0.38 

DPHE

 

0.36 

D6MW

 

0.42 

DTH9

 

0.59 

DMET

 

0.83 

D2TH 

 

0.98 

DAHP

 

1.63 
0.83

D2TH

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 17 

 

Table 4. 20 X7 amino acids screened from the SwissSidechain database 
(https://www.swisssidechain.ch/) in LXW-analogous cyclic octapeptides (cGRGDdXc-NH2) and the 
peptides’ binding affinities (Kd, µmoL/L) to αvβ3 integrin calculated by Autodock 4.2. (note: Residues 
highlighted in bold are comparable to LXW64 listed as a reference and all non-natural amino acid 
codes are from the SwissSidechain database). 

Peptide/ 

X7 Residue 
Kd (μmoL/L) 

Peptide/ 
X7 Residue 

Kd 
(μmoL/

L) 

Peptide/ 
X7 Residue 

Kd 
(μmoL/

L) 

DNAL1 

(LXW64) 

 

0.25 

DCPE

 

0.70 

DNLE

 

1.63 

DNTL (LXZ2) 

 

0.29 

DHL1

 

1.38 

DNVA

 

1.16 

DTRP 

 

0.30 

DALC

 

0.50 

DQ33

 

0.50 

DPZ4

 

0.59 

DLVG

 

0.83 

DQ36

 

0.30 

DLEU

 

1.16 

D5MW

 

0.30 

DQX3

 

0.38 

DPHE

 

0.36 

D6MW

 

0.42 

DTH9

 

0.59 

DMET

 

0.83 

D2TH 

 

0.98 

DAHP

 

1.63 0.98

DAHP

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 17 

 

Table 4. 20 X7 amino acids screened from the SwissSidechain database 
(https://www.swisssidechain.ch/) in LXW-analogous cyclic octapeptides (cGRGDdXc-NH2) and the 
peptides’ binding affinities (Kd, µmoL/L) to αvβ3 integrin calculated by Autodock 4.2. (note: Residues 
highlighted in bold are comparable to LXW64 listed as a reference and all non-natural amino acid 
codes are from the SwissSidechain database). 

Peptide/ 

X7 Residue 
Kd (μmoL/L) 

Peptide/ 
X7 Residue 

Kd 
(μmoL/

L) 

Peptide/ 
X7 Residue 

Kd 
(μmoL/

L) 

DNAL1 

(LXW64) 

 

0.25 

DCPE

 

0.70 

DNLE

 

1.63 

DNTL (LXZ2) 

 

0.29 

DHL1

 

1.38 

DNVA

 

1.16 

DTRP 

 

0.30 

DALC

 

0.50 

DQ33

 

0.50 

DPZ4

 

0.59 

DLVG

 

0.83 

DQ36

 

0.30 

DLEU

 

1.16 

D5MW

 

0.30 

DQX3

 

0.38 

DPHE

 

0.36 

D6MW

 

0.42 

DTH9

 

0.59 

DMET

 

0.83 

D2TH 

 

0.98 

DAHP

 

1.63 1.63

2.5. In Vitro Examination of New LXW-Analogous Peptides

To further verify our in silico screening results, we examined the binding of new LXW-analogous
peptides to αvβ3 integrin in αvβ3-K562 cells. LXZ2 with DNTL as the X7 residue (Figure 6 left) was
arbitrarily chosen and tested through flow cytometry for competing with 1 µM biotinylated LXW7
binding to αvβ3 integrin. As shown in Figure 6, LXZ2 exhibited a stronger binding affinity than the
first lead—LXW7. The IC50 of the peptide inhibiting biotinylated LXW7 binding with K562/αvβ3+

cells was determined (Figure 6 right). Its converted IC50 (0.09 µmol/L referred to LXW7 in Table 3) is
comparable to the new lead-LXW64 (0.07µmol/L, Table 3) and the well-known RGD-cyclic pentapeptide
ligand—cilengitide [5,8]. The result proved LXZ2 as a new αvβ3 integrin antagonist.
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Figure 6. (A) Chemical structure of LXZ2; (B) Competitive binding assay. 5 µM of LXW7 (green) or
LXZ2 (orange) competes with 1 µM biotinylated LXW7 binding to αvβ3-K562 cells, LXZ2 demonstrates
a stronger binding affinity than LXW7. Positive control (cyan), cells were treated with 1µM biotinylated
LXW7 and streptavidin-PE successively, and measured with flow cytometry. Negative control (red)
represents cells without treatment of biotinylated LXW7. (C) IC50 measurement of LXW7 and LXZ2.
The IC50s were determined with competitive binding assay by using a series of concentrations of LXW7
or LXZ2 competing with 1 µM biotinylated LXW7 binding to αvβ3-K562 cells.

3. Discussion

Relatively rapid and low-cost identification of RGD-containing αvβ3 integrin antagonists The
specificity of the integrins (e.g., αvβ3) recognizing and binding RGD motif has provided the molecular
basis of integrin-targeted cancer therapy and enabled the development of several RGD-containing
drugs for cardiovascular disease and cancer [2]. The first integrin antagonist—cilengitide— was
discovered on the basis of “ligand-oriented design” via the optimization of RGD peptides by means
of different chemical approaches including reduction of the conformational space by cyclization and
spatial screening of cyclic peptides [12]. A similar RGD-based strategy combining with different
techniques has led to identification of several RGD peptides, such as 1a-RGD [13], cyclopeptide
c-Lys [14], LXW-analogous peptides [7,8]. These screening methods often require relatively expensive
and time-consuming synthesis and a large amount of in vitro/in vivo cellular assays. Interestingly, two
linear antagonists—RWr and RWrNM peptides—were identified recently using pharmacophore-based
virtual screening [15], although cyclic peptides are likely preferred due to the fact that they usually
show great biological activities compared to their linear counterparts because of their advantages
including the conformational rigidity, the resistance to hydrolysis by exopeptidases, the receptor
selectivity, and the efficient membrane-crossing property [16,17]. In our current studies, NMR structure
determination of LXW64 and structural comparison with other LXW analogs, e.g., LXW7 and LXW11,
enabled us to design new LXW-analogous peptides. Several new LXW-analogous antagonists were
identified via in silico screening and one of the best LXW analogs—LXZ2—was arbitrarily chosen
and verified by in vitro examination. Our results demonstrate that SAR studies provide clues for
new RGD-containing αvβ3 integrin inhibitor design. Computational docking can predict the binding
affinity quickly and narrow down the candidates; finally, the selected candidates can be tested by
in vitro/in vivo examination. This provides a brief, rapid and relatively low-cost screening procedure
for identification of αvβ3 integrin antagonists.

Structure–activity relationship between LXW peptides and αvβ3 LXW analogs are a new category
of RGD-containing cyclopeptides that binds specifically to αvβ3 integrin [7,8]. The LXW analogs
were designed and screened using OBOC combinatorial technology. Unlike other RGD cyclopeptide
antagonists (i.e., cilengitide) [12,14], LXW analogs are extended circular structures with a disulfide bond
formed between two cysteines in the peptide sequence (cGRGDdXc). D-configuration of two cysteines
in these analogs is essential for the antagonistic activity, which can force the cyclopeptide to adopt
an open bowl-shape conformation with the side chains of Arg, Asp, D-Asp and X7 residue pointing
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outwards from the peptide ring [8]. These protruding side chains are critical to interact with the integrin.
LXW7 with D-Val7 was first identified as a lead ligand and further optimized by OBOC technology
that led to the discovery of a 6-fold αvβ3-binding affinity increased antagonist—LXW64—with D-Nal1
at position X7 [7,8]. As shown in Figure 7, LXW7 and LXW64 share similar structural patterns with an
enlarged circular backbone structure, an extended hydrophobic moiety (disulfide-bonded cysteines and
X7 residue) as well as an extra polar group (carboxyl group of D-Asp) in comparison with cilengitide.
These unique structural properties suggest that LXW-analogous antagonists are more flexible and
may adopt better fit-in conformations and exhibit better recognition specificity and selectivity than
other RGD peptidomimetics (i.e., cyclic pentapeptide—cilengitide) when binding to αvβ3 integrin. In
fact, LXW64 shows significant positive binding with αvβ3, weak or no binding to αvβ5, αIIbβ3, α5β1
expressed on K562 cells [8], while cilengitide can inhibit both αvβ3 and αvβ5 [18]. In addition, the
biotinylated forms of LXW ligands show the similar binding strengths as LXW peptides against αvβ3
integrin [7], whereas biotinylated other RGD cyclopentapeptide ligands exhibit much weaker binding
affinities than their free forms [7]. Thus, LWX analogous peptides are preferable as αvβ3 antagonists.
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structure in complex with αvβ3 (PDB ID 1L5G, grey).

Despite the structural similarity, LXW64 demonstrated 6-fold higher binding affinity than that
of LXW7. This suggests that the hydrophobicity and aromaticity of X7 amino acid plays a critically
important role in improving the binding affinity of LXW analogs. A careful inspection of crystal
structure of αvβ3 in complex with RGD ligand (PDB ID 1L5G) shows that there is a potential
hydrophobic pocket next to the RGD ligand-binding area; however, two hydrophobic amino acids of
the RGD ligand—D-Phenylalanine and N-methyl-Valine—make no contact with this pocket, likely due
to the compact and rigid structure of the small ring-shape ligand. The hydrophobic pocket is formed
by hydrophobic amino acids from both α- and β-subunits as shown in Figure 8, which are located on
the flexible surface area (e.g., flexible loops, short helical or β turn structures). As mentioned above,
LXW-analogous peptides, especially LXW7 and LXW64 contain an extended hydrophobic moiety (i.e.,
disulfide-bonded D-cysteines and D-valine/3-(1-naphthyl)-D-alanine (D-Nal1)). It is highly possible
that this hydrophobic moiety may undergo the hydrophobic interaction with this pocket and induce
tertiary and quaternary structural changes of αvβ3 (Figure 9). In fact, LXW64 with a large polycyclic
aromatic and hydrophobic X7 residue exhibited much higher binding affinity for the integrin than
LXW7 (Figure 3A), suggesting the importance of hydrophobicity and aromaticity for the binding. It is
surprising that this new hydrophobic pocket has not been identified previously [5], but likely plays a
critical role in stabilizing the binding of LXW analogs to αvβ3 integrin and increase the binding affinity.
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Figure 9. The hydrophobic amino acids (D-Val (purple), D-Nal1 (3-(1-naphthyl)-D-alanine, green)) at
X7 position of LXW-analogous cyclic octapeptides (cGRGDdXc-NH2) binds at the major hydrophobic
interface between the α (blue) and β (grey) subunits formed by Ala215, Ile216, Phe217, Ala246, Ala247
in the α subunit and Ala218, Ala252, Val314, Leu317 in the β subunit of the αvβ3 integrin.

Identification of a New LXW Analog—LXZ2

In our current study, 20 new LXW analogs were predicted via in silico screening with a high binding
affinity to αvβ3 integrin. As shown in Table 4, all these peptides contain a hydrophobic non-natural
amino acid at X7 position, which is consistent with our SAR studies. These X7 amino acids can be
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classified into two groups according to their side-chain structures—cyclic (total 13) and non-cyclic
(aliphatic, total 7). All cyclic amino acids showed a lower but favorable Kd (≤ 1.0 µM) than aliphatic
residues (Kd ≥ 1.0 µM). Among the cyclic amino acids, the aromatic (mainly polycyclic excepted
DPHE) structures (e.g., DNTL, DTRP, DQ36, D5MW, DQX3, D6MW) showed a Kd ≤ 0.5 µM and
were identified as the most favorable X7 residues, suggesting the importance of both hydrophobicity
and aromaticity for the binding. However, further cellular binding assays are still needed to verify
their bioactivities as potent integrin antagonists. It would not be surprising to discover that some
peptides might not be functional as good as the docking prediction, likely resulting from the induced-fit
effects [19]. We arbitrarily chose LXZ2 among all possible candidates (i.e., X7 = DPHE, DTRP, D5MW,
D6MW, DQ36, DQX3) for further in vitro studies. LXZ2 was identified as a new αvβ3 antagonist. It has
IC50 of 0.09 µM (this value was converted to match with the IC50s in Table 3), which is comparable to
LXW64 (0.07 µM) [8] and the first antagonist—cilengitide—with IC50 of 0.25 µM [20]. In comparison
with other RGD antagonists, LXZ2 as a LXW analog, not only shows a high binding affinity, but also
likely exhibits the binding specificity against αvβ3 as previous studies showed that LXW peptides
contain the auxiliary binding motifs including D-Asp at position 6 and the hydrophobicity of amino
acid at X7 position [7,8]. LXZ2 contains non-proteinogenic amino acid—3-(9-Anthryl)-D-alanine—and
its anthracene—tricyclic aromatic hydrocarbon—is noncarcinogenic, and readily biodegraded in soil
and especially susceptible to degradation in the presence of light [21]. Considering the toxicity and
environmental impact [22], LXZ2 can be used as a good substitute of LXW64 as both have a similar
affinity to the integrin. Like LXW64, it may also be used as an excellent candidate vehicle for delivering
drug-loaded nanoparticles for cancer imaging and therapy.

4. Materials and Methods

4.1. Synthesis of Peptides

All RGD-cyclic peptides,
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were chemically synthesized and purified by preparative RP-HPLC) from C S Bio Co (Menlo Park, CA,
USA). For synthesis of LXW64 and LXZ2, the non-natural amino acids—Fmoc-3-(1-naphthyl)-D-alanine
and Fmoc-3-(9-anthryl)-D-alanine—were purchased from Chem Impex (Wood Dale, IL, USA). HPLC
purification was performed using an Agilent 1200 instrument and a Phenomenex Luna 5 µm C18(2)
100A 250 × 4.6 mm column. The peptides were eluted using a gradient of buffer A (0.1% TFA in water)
and B (0.1% TFA in acetonitrile) with a flow rate of 1 mL/min. Each peptide eluted as a single peak via
HPLC with > 97% purity, was verified by MS. The theoretical mass of LXW64 (918.98) was very close
to the experimental value (918.73). For LXZ2, the experimentally measured mass of 968.72 was also
similar to the expected 969.09. For NMR sample preparation, 20 mg peptides were dissolved in 0.6 mL
DMSO-d6 solvent (Cambridge Isotope Laboratories, Inc., Tewksbury, MA, USA). The peptide solution
was carefully transferred into an NMR tube after centrifugation. The repeated NMR analysis showed
that the peptide samples were stable over several months in the chosen DMSO solvent.

4.2. NMR Spectroscopy

All NMR data were recorded at 295 K on a Bruker Ultrashield Plus 600 MHz spectrometer
equipped with a 5 mm double resonance broad band room temperature probe (BBO) and a single-axis
pulse-field-gradient accessory along the z-axis. All experiments were performed in a dimethyl sulfoxide
solution to observe the amide protons. 1H-1H homonuclear two-dimensional (2D) NMR NOESY (τmix

= 125 and 250 ms), TOCSY ((τmix = 70 ms), and DQF-COSY spectra were acquired using a sweep
width of 14423 Hz and 1024 complex points in F1. The transmitter carrier was placed on the water
resonance. Gradient heteronuclear correlation experiments, (1H-13C)-HMQC, (1H-13C)-HMBC, and
(1H-15N)-HSQC were carried out to assign all carbon (13C) and nitrogen (15N) chemical shifts. The
carbon carrier frequency was kept at 82 ppm for HMQC and 112 ppm for HMBC, the spectral width in
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the indirect carbon dimension was set to 150 ppm and 200 ppm for HMQC and HMBC, respectively.
For 1H-15N HSQC, the nitrogen channel was centered at 116 ppm with a sweep width of 32 ppm. The
States-TPPI method was used for quadrature detection in all indirectly detected dimensions. 1H, 13C,
and 15N NMR chemical shifts were reported using DSS and DMSO-d6 as references. NMR data were
processed by NMRPipe [23] and analyzed with SPARKY (https://www.cgl.ucsf.edu/home/sparky/) [24].

4.3. Experimental Constraints and Structure Calculation

The NMR structures of LXW64 were calculated based on NOE distances and dihedral angle
restraints. Distance constraints were extracted from 2D NOESY recorded using two mixing times
(125 ms and 250 ms). NOE cross peaks (NOEs) were classified into strong, medium and weak according
to the intensities, and assigned to the interproton distances of 2.9, 3.5 and 5 Å. The upper bound distance
constraints of the NOEs involving methyl and methylene groups were modified using pseudoatom
correction [25]. The backbone dihedral angles (ϕ) were calculated from the Karplus Equation using
3JHNα coupling constants measured from DQF-COSY spectrum [26]. For side-chain dihedral angles,
the χ1 was defined according to the NOE intensities between the amino proton (HN) and two β
protons (Hβ) in comparison with the NOE intenwrsities between α proton (Hα) and two β protons in
the same residue [27,28]. The additional constraint data from the chemical shifts of Cα, Cβ and Hα

were used in the final structure refinement. The NMR-derived distances and dihedral angles then
served as constraints for calculating the three-dimensional structures using distance geometry and
restrained molecular dynamics. Structure calculations were performed using the YASAP protocol
within X-PLOR version 2.36 [29,30] installed on a regular Linux workstation (CentOS 6), as described
previously [31]. Fifty independent structures were calculated, and the 10 lowest-energy structures
were selected. The average total and experimental distance energy were 185 ± 7 and 12 kcal/mol.
Ramachandran analysis of the determined structures was performed through MolProbity [32] with
default settings to measure the structure reliability. The average root-mean-square (rms) deviation
from an idealized geometry for bonds and angles were 0.0094 Å and 2.27◦. None of the distance and
angle constraints were violated by more than 0.4 Å and 4◦, respectively.

4.4. Complex Modeling and Autodock Screening

Complex modeling of three representative LXW analogs (LXW7, LXW11, LXW64) and in silico
screening of new LXW analogs were performed using the program AutoDock 4.20 [10] by following
stepwise guidelines [33]. The NMR structures of LXW7 and LXW11 determined previously [8], and of
LXW64 were used for docking. For screening of new RGD-containing peptides, all peptide mutants
were generated using PyMol Mutagenesis Wizard by substituting D-Val7 of LXW7 with non-native
amino acids in the SwissSidechain database (https://www.swisssidechain.ch/) [11]. Each peptide was
prepared by the AutoDock Tools GUI (graphical user interface) and with the rotatable side-chain
bonds set to allow rotation and docked into the ligand-binding pocket of integrin αvβ3 (PDB ID
1L5G) [5], in which the default ligand was removed using a text editing software. The modified αvβ3
structure was prepared for AutoDock Vina [34] compatibility with AutoDock Tools GUI [10]. The
grid box with spacing size of 0.375 Å was placed in the center of the binding pocket in accordance
with the ligand (cyclo(RGDf-N(Me))V-) on the crystal structure (PDB ID 1L5G). The grid box center
was selected to include all the residues in the binding pocket and set as follows: X-center 18.792,
Y-center 42.057, and Z-center 43.65. The configuration settings for AutoDock Vina were set to default
except for the number of binding modes, which was set to 8. The appropriate search space parameters
were determined through eBoxSize for each ligand [35]. A stochastic Lamarckian genetic algorithm
was employed for computing peptide conformations within the active pocket by using the default
parameters. A total of 1000 conformers were generated for the ligand in the binding pocket, which
were clustered using a 2.0 Å root-mean-square deviation. The output ligand files were modified to
contain only the optimal configuration through UCSF Chimera version 1.9 [36]. The receptor-ligand
complexes were developed through the UCSF Chimera ViewDock extension and prepared using the
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FindHBond tool. The receptor and ligand-binding modes were joined using a text editing software
and analyzed by PyMol 1.7 (open-source) [37]. The AutoDock screening generates an energy score
(kcal/moL), which represents the free energy (∆G) of peptide binding to integrin αvβ3. The peptide
binding affinity (Kd) is obtained according to calculation of Ki in AutoDock 4 at 298K.

4.5. Flow Cytometry

The human leukemia cancer cells (K562, ATCC, Manassas, VA, USA) transfected with
αvβ3-integrin were grown in the RPMI1640 medium and used for the assay as previously described [7,8].
To demonstrate the peptides binding to the integrin and compare with the binding affinity of LXW7,
the cells in each sample were incubated with 1.0 µM biotinylated LXW7 in 50 µL of phosphate-buffered
saline (PBS) containing 10% fetal calf serum (FBS) and 1 mM MnCl2 for 30 min on ice. The samples
were washed with 1 mL PBS containing 1% FBS for three times, then incubated with a 1:500 dilution of
streptavidin-PE (1 mg/mL) for 30 min on ice followed by a single wash with 1 mL of PBS containing
1% FBS. Finally, the samples were analyzed via flow cytometry (Coulter XL-MCL). To measure the
half-maximal inhibitory concentration (IC50) of the peptides, various diluted peptide solutions were
mixed with 1.0 µM biotinylated LXW7, then incubated with cells, and followed by streptavidin-PE
incubation. The samples were run through flow cytometer and Mean Fluorescence Intensity was
decided for each individual sample. The IC50s were calculated from each sample based on the readings.

5. Conclusions

In this study, SARs of LXW-analogous cyclic octapeptides andαvβ3 integrin had been investigated
through NMR structure determination and complex modeling. The hydrophobicity and aromaticity of
the X7 amino acid in LXW-analogous sequence was found to be important for enhancing LXW analogs
binding to the integrin, likely through the interaction with a potential hydrophobic pocket on the
integrin surface. The SAR studies led to the identification of several new LXW-analogous peptides by in
silico screening, which were predicted with high binding affinity. One of the best peptides—LXZ2—was
arbitrarily chosen and verified by cell-based competitive binding assays and found to be comparable
to other well-known “head-to-tail” RGD cyclopeptide—LXW64—and cilengitide. Most importantly,
this new αvβ3 antagonist was identified through a brief and comparatively inexpensive screening
procedure, benefited from the SAR studies. LXZ2 as an analogous peptide of LXW64 demonstrated a
high binding affinity to αvβ3 integrin transfected in K562 cells, can be used a vehicle for delivery of
cytotoxic payload to tumors and tumor blood vessels with overexpressing αvβ3 integrin.
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Abbreviations

SAR Structure–Activity Relationship
RGD Arginylglycylaspartic acid
NMR Nuclear Magnetic Resonance
NOE Nuclear Overhauser Effect
HSQC Heteronuclear Single Quantum Correlation
TOCSY TOtal Correlated SpectroscopY
NOESY Nuclear Overhauser Effect Spectroscopy
HMQC Heteronuclear Multiple-Quantum Correlation
HMBC Heteronuclear Multiple Bond Correlation
RMSD Root-Mean-Squared Derivation
RP-HPLC Reversed Phase-High Performance Liquid Chromatography
MS Mass spectrometry
DMSO Dimethyl sulfoxide
DSS 2,2-Dimethyl-2-silapentane-5-sulfonate
PBS Phosphate-Buffered Saline
FBS Fetal Calf Serum
IC50 Half-Maximal Inhibitory Concentration
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