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§Materials Sciences Division and Joint Center for Energy Storage Research, 
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Abstract

Electrophoretic NMR (eNMR) is emerging as a powerful technique for 
characterizing ion transport in electrolyte systems. We show that the 
standard approach for analyzing eNMR data is valid only for dilute 
electrolytes and provide a theoretical framework for interpreting eNMR 
results for all binary electrolyte systems with univalent salts. We derive 
relationships between the velocities of the ion species and the solvent in 
terms of the electrochemical Stefan-Maxwell diffusion coefficients and 
provide modified expressions for correctly calculating the transference 
number and conductivity from eNMR data in concentrated electrolytes. Our 
approach suggests that it is necessary to measure not just the displacement 
of ion species during the application of current in an eNMR experiment but 
also the displacement of the uncharged solvent in order to correctly 
calculate ion mobilities and the transference number.

Introduction

Transport in concentrated electrolyte solutions containing a binary salt is 
governed by three transport properties, the ionic conductivity, σ , the 
concentration-based salt diffusion coefficient, Dm, and the cation 
transference number, t+¿¿, and the salt activity coefficient, γ±.1 From 
measurements of these four properties one can calculate the Stefan-Maxwell
diffusion coefficients, D+,0, D−,0, and D+,−¿ ¿: 
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taken from Equation 12.12 and Table 12.1 of Ref. 1, where cT  is the total 

concentration of the electrolyte, c0 is the solvent concentration, 
d lnγ±

d lnm
 is the 

change in the activity coefficient as a function of molal salt concentration m,
R is the gas constant, T  is the temperature, and F is Faraday’s constant. The 
Stefan-Maxwell diffusion coefficients quantify frictional interactions between 
the species in the electrolyte: the cation, +¿, the anion, −¿, and the solvent, 0
. Complete characterization of a few electrolyte systems using these 
electrochemical techniques has been presented.2–5 Knowledge of all three 
Stefan-Maxwell transport coefficients is essential for modeling 
electrochemical cells. 

An emerging technique for characterizing ion transport in electrolytes is 
electrophoretic NMR, where ion velocities are measured under applied 
electric fields. A powerful aspect of this method is that both the magnitude 
and the direction of ion velocities can be measured directly while 
interpretations of ion velocities from conventional electrochemical 
measurements are indirect. In an electrophoretic NMR experiment, a dc 
electric field, E, is applied across the electrolyte at time t=0, and the 
displacement of a chemical species of interest under the influence of the 
field is measured over a short period of time, t 1ms. The displacement is 
measured in a manner that is similar to the measurement of self-diffusion 
coefficients using pulsed-field gradient NMR. The standard approach for 
interpreting electrophoretic NMR assumes that the velocity of the species of 
interest, v i, is a linear function of E and is related to the ionic mobility u❑i .  
For univalent systems,

v i=ui E (5)

Measurement of v ias a function of E allows the determination of the 
electrophoretic mobility u❑i. Theoretical background and practical 
implementations of the technique can be found in a number of seminal 
works.6–11 Ion mobilities in several electrolyte solute ions have been 
determined from linear fits of v i vs. E data.12–21



The relationships between the electrophoretic mobilities, u+¿ ¿ and u−¿¿, and 
the three electrochemically determined transport coefficients remains to be 
established. The purpose of this paper is to create a theoretical framework 
for relating electrophoretic NMR results to classical electrochemical 
characterization using concentrated solution theory. We derive relationships 
between the Stefan-Maxwell coefficients and the velocities of the charge 
carriers measured by electrophoretic NMR. We provide expressions for the 
transference number and conductivity in terms of the species velocities and 
mobilities. Our definitions for the mobilities account for the fact that 
diffusional fluxes are related to velocity differences rather than absolute 
velocities. It is therefore important to measure the electric field-induced 
solvent velocity (electro-osmotic drag) during an electrophoretic NMR 
experiment.

Theory

Following the concentrated solution theory (Equation 12.1 of Ref. 1), 
multicomponent diffusion is described by

c i ∇ μi=RT∑
j

ci c j

cT Dij

(v j−v i)(6)

where c i, c j, and cT  are the concentrations of species i and j, and the total 
species concentration, ∇ μi is the gradient of the electrochemical potential of 
species i, R is the gas constant, T is the temperature, Dij is the Stefan-
Maxwell diffusion coefficient describing interactions between species i and j,
v i and v j are the velocities of species i and j. 

The gradient of the electrochemical potential of each species can be 
expressed in terms of the gradient in potential across the electrolyte and the
gradient in concentration. The salt concentration and potential within a 
binary electrolyte in an electrophoretic NMR experiment is shown in Fig. 1. 
We assume that applying dc current for a short amount of time, t ≈1ms, 
results in concentration gradients that are localized near the electrode-
electrolyte interfaces. The electrophoretic NMR experiment is designed to 
measure velocities in the bulk of the electrolyte where the salt concentration
is uniform. This assumption will be valid as long as the time-scale for data 
acquisition in the electrophoretic NMR experiment is much smaller L2

/D, 
where L is the separation between the electrodes and D is the diffusion 



coefficient of the salt. The electrophoretic NMR experiment is designed to 
minimize convection due to resistive heating. Our analysis assumes that 
convection is negligible.

Figure 1. Schematic of the salt concentration and the electric potential in an 
electrolyte as a function of position between the electrodes in an electrophoretic 
NMR experiment. Species velocities are defined relative to reference frame fixed to 
the electrochemical cell. Velocities are defined to be positive if a species moves 
towards the right. The analysis in the paper applies to the bulk of the electrolyte 
between the dashed lines where the salt concentration is uniform.

We use the quasi-electrostatic potential (Equations 3.18-3.20 of Ref. 1) 
derived from the Gibbs-Duhem relationship to relate the electrochemical 
potential of each species to the electric potential in the region of uniform 
concentration,

∇ μ+¿=F ∇ ϕ (7)¿

∇ μ−¿=−F ∇ ϕ(8)¿

∇ μ0=0(9)

where μ+¿ ¿,μ−¿¿, and μ0 are the electrochemical potentials of the cation, anion,
and solvent, F is Faraday’s constant, and ∇ϕ is gradient of electric potential. 
We not e hat E=-  ∇ϕ, and our simplifying assumption where we neglect the 
potential drop near the electrodes implies that  ∇ϕ is equal to the potential 
applied across our symmetric cell divided by L Eq. 7-9 are valid for both 
liquid and polymer electrolytes containing a salt comprised of two univalent 
ions. It is straightforward to extend this approach to other electrolyte 
systems containing three species, e.g. a mixture of two ionic liquids with a 
common ion or electrolytes comprised of multivalent salts.  Substituting eq. 
7-9 into eq. 6 we get three expressions relating the velocities of the ions and 
solvent to the applied potential,
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where c0, c+¿ ¿, and c−¿¿ are the concentrations of the solvent, cation, and 
anion, respectively, v0, v+¿¿, and v−¿¿ are the velocities of the solvent, cation, 
and anion, respectively, and D0+¿ ¿, D0−¿¿, D±¿¿ are the Stefan-Maxwell diffusion 
coefficients describing interactions between pairs of species in the 
electrolyte indicated by the subscripts. These diffusion coefficients can be 
measured by electrochemical methods.22 Only two of the eq. 10-12 are 
independent. This implies that electrochemically determined D0+¿ ¿, D0−¿¿, and
D±¿¿ cannot be used to predictv0, v+¿¿, and v−¿¿. Conversely, electrochemical 
NMR cannot be used to determine the three electrochemical transport 
properties: D0+¿ ¿, D0−¿¿, and D±¿¿. We choose to solve for the velocities of the 
ions v+¿¿ and v−¿¿,

v−¿=cT D
0−¿

D
±¿F∇ ϕ

¿ ¿
¿

¿ ¿
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0+¿

D
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¿ ¿
¿
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The velocities of the ions depend on the velocity of the solvent. Equations 13
and 14 are really expressions for velocity differences based on eq. 6. This is 
a nontrivial result that has implications for many electrolyte systems where 
the application of an electric field results in a non-negligible solvent velocity. 
The velocity of the cation, v+¿¿, is defined to be positive when the potential 
gradient is negative, and the cation is migrating towards the negative 
electrode, as illustrated in Fig. 1. The velocities of the anion and solvent are 
also positive if they migrate towards the negative electrode. In simple 
electrolytes, the anion migrates toward the positive electrode and the 
velocity is negative. Note that all three velocities, v+¿¿, v−¿¿ and v0, depend on
∇ϕ. We expect the dependence of the solvent velocity on salt concentration 
to be non-monotonic. At low salt concentrations, v0 will increase with 
increasing salt concentration as an increasing number of ions interact and 
migrate with the solvent. However, increasing salt concentration also 
increases viscosity which will decrease v0. The dependence of v+¿¿ and v−¿¿ on
salt concentration is likely to be much more complex due to effects such as 
ion-ion interactions and clustering.



Eq. 13 and 14 have additional usefulness in the absence of a solvent 
velocity, such as in solid electrolyte systems. When v0=0, eq. 13 and 14 can 
be used to calculate the direction in which each of the ions moves under an 
applied electric field solely from the Stefan-Maxwell diffusion coefficients 
derived from electrochemical measurements of the three transport 
properties and the thermodynamic factor. 

The equation for the migration velocity of a charged species due to an 
applied potential is

v i ,migration=−zi ui F ∇ ϕ(15)

where ui is the mobility of a species i and zi is the charge of species i. In 
cases where v0 is nonzero, the relationship between ion velocity and 
migration velocity, suggested by eq. 13-14 is 

v i=v i ,migration+v0(16)

and

v i=−z iu i F ∇ ϕ+v0(17)

Combining eq. 13,14 and 17, we obtain expressions for the mobilities of the 
charge carriers,
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It is interesting to note that the mobility of both of the ions depends on all 
three Stefan-Maxwell diffusion coefficients. Specifically, the mobility of the 
cation, u+¿ ¿, depends on D0−¿¿, the Stefan-Maxwell diffusion coefficient 
describing interactions between the anion and the solvent, and the mobility 
of the anion, u−¿¿, depends on D0+¿ ¿. 

In order to derive expressions for the transference number and conductivity 
in terms of the species velocities we can rearrange eq. 13-14 to get

D0+¿=c0 D±¿RT ¿¿ ¿¿

D0−¿=−c0 D±¿RT ¿¿ ¿¿

The concentrated solution transference number is defined by eq. 3. 
Substituting eq. 20-21 into eq. 3 we get

t
+¿=

v+¿−v0

v
+¿−v−¿ (22 )¿

¿
¿ ¿



The transference number can be obtained by electrophoretic NMR only if all 
three velocities, v+¿¿, v−¿¿ and v0, are measured. The cation transference 
number is defined as the fraction of current carried by the cation in an 
electrolyte of uniform concentration.1,23 Equation 22 is consistent with this 
definition.  Using the relationship between mobility and velocity as defined 
by eq. 17, the transference number expressed in terms of mobility simplifies 
to the commonly used expression

t
+¿=

u+¿

u
+¿+u−¿(23 )¿

¿
¿¿

The mobilities in eq. 23 must be calculated from eNMR data using eq. 17. 

The conductivity of concentrated solutions is given by eq. 4. Substituting eq. 
20-21 into eq. 4 we get

σ=Fc ¿¿

where c=c+¿=c−¿¿ ¿
. Unlike the transference number, conductivity can be 

calculated using only the two velocities of the charge carriers. Substituting 
eq. 17 into eq. 24 leads to the commonly used expression for conductivity in 
terms of the mobilities of the charge carriers

σ=F 2c ¿

Eq. 25 is often used to describe ion transport in electrolytes.

In the dilute limit c→0 ,cT /c0→1, and eq. 13 and 14 reduce to 

v
+¿=

D+¿

RT
F ∇ ϕ+v 0(26)¿¿

v
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D−¿

RT
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where the Stefan-Maxwell diffusion coefficients D0+¿ ¿ and D0−¿¿ simplify to D+¿¿ 
and D−¿¿, which are the diffusion coefficients of free ions in a solvent in the 
limit of infinite dilution. In this limit, the solvent velocity is negligible, v0→0,
ui=Di /RTand eq. 26 and 27 reduce to the commonly used form of eq. 5. In 
other words, interpretations of electrophoretic NMR data using eq. 512-21 are 
valid in the dilute limit or if v0=0.

Conclusions

Concentrated solution theory is used to derive relationships between the 
electrochemical transport coefficients t+¿¿ and σ  and the velocities of the 
charge carriers and the solvent measured during electrophoretic NMR 
experiments. Our work shows that in the presence of a solvent velocity, 



motion of the solvent has a significant contribution to calculations of the ion 
mobilities and the electrochemical transference number. The expression for 
conductivity, however, remains the same in both dilute and concentrated 
solutions. Additionally, one can use the equations derived here to show in 
which direction the charged species are moving under applied electric fields. 
The equations are applicable to all three component electrolyte solutions 
comprised of a solvent and a binary salt of univalent ions. In future work, we 
will apply the framework developed here to interpret electrophoretic NMR 
measurements of polymer electrolytes.
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List of Symbols

c i concentration of species i, mol/cm3

c+¿ ,c−¿¿ ¿
 cation and anion salt concentration, mol/cm3

c0 solvent concentration, mol/cm3 (moles of monomers per unit volume for 
polymeric solvents)

cT total solution concentration, mol/cm3

Dij Stefan-Maxwell diffusion coefficient for interaction of species i and j, cm2/s

D0+¿ ¿, D0−¿¿, D±¿¿ Stefan-Maxwell diffusion coefficients describing the 
interactions between caion-solvent, anion-solvent, and cation-anion, cm2/s

E electric field, V/cm

F Faraday’s constant, 96485 C/mol

R Universal gas constant, 8.3143 J/(mol K)

t0+¿ ,t0−¿¿ ¿
 cation and anion transference number

T absolute temperature, K

u+¿ ¿, u−¿¿ mobilities of the cation and anion, mol cm2/(Js)

v i velocity of species i, cm/s



v+¿,v−¿, v0¿ ¿ velocity of the cation, anion, and solvent, cm/s 

z+¿ ¿, z−¿¿ charges on the cation and anion, +1 and -1 for a univalent 
electrolyte

φ applied potential, V

σ  ionic conductivity of electrolyte, S/cm

μi electrochemical potential of species i, J/mol

μ+¿ ¿,μ−¿¿, μ0 electrochemical potentials of the cation, anion, and solvent, J/mol
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