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Reinforcement Learning and Insight in the Artificial Pigeon

Thomas R. Colin (thomas.colin@plymouth.ac.uk)
School of Mathematics and Computing, University of Plymouth

Plymouth, U.K.

Tony Belpaeme (tony.belpaeme@plymouth.ac.uk)
School of Mathematics and Computing, University of Plymouth

Plymouth, U.K.

Abstract

The phenomenon of insight (also called “Aha!” or “Eureka!”
moments) is considered a core component of creative cogni-
tion. It is also a puzzle and a challenge for statistics-based
approaches to behavior such as associative learning and rein-
forcement learning. We simulate a classic experiment on in-
sight in pigeons using deep Reinforcement Learning. We show
that prior experience may produce large and rapid performance
improvements reminiscent of insights, and we suggest theo-
retical connections between concepts from machine learning
(such as the value function or overfitting) and concepts from
psychology (such as feelings-of-warmth and the einstellung ef-
fect). However, the simulated pigeons were slower than the
real pigeons at solving the test problem, requiring a greater
amount of trial and error: their “insightful” behavior was sud-
den by comparison with learning from scratch, but slow by
comparison with real pigeons. This leaves open the question
of whether incremental improvements to reinforcement learn-
ing algorithms will be sufficient to produce insightful behavior.

Keywords: reinforcement learning; insight; creativity

Introduction

Insight moments are one of the most spectacular mani-

festations of human creativity. Revolutionary insights are

paradigmatic examples of creativity, whether historically sus-

picious (Aristotles’ “Eureka!”, Newton’s apple), or better

documented such as those described by the mathematician

Poincaré (1909) or the chemist Kekulé (Rothenberg, 1995).

In this article, however, we focus on the insights which occur

in everyday human and animal problem-solving.

Over a century of research in psychology underlies our

knowledge of insightful problem-solving. In contrast, to our

knowledge there has been relatively little work considering

insight from an artificial intelligence perspective, especially

since the momentous advent of deep learning techniques in

AI. We seek to remedy this omission. The objective is not

to build a precise model of biological neural processes, but

to uncover analogies between the two domains of deep Rein-

forcement Learning (RL) and biological insight. We do this

by simulating a classic experiment on insight (Epstein, Kir-

shnit, Lanza, & Rubins, 1984), dealing with insight in the

pigeon.

We will first discuss established results from insight re-

search in psychology on humans and animals, and the dif-

ficulties associated with modeling insight problems from a

machine learning perspective. We will then describe the orig-

inal experiment and its simulation, and the results obtained

using a simple deep RL approach (a deep actor-critic). Fi-

nally, we discuss the analogies between insight and various

sub-disciplines within reinforcement learning, suggesting di-

rections for future research.

Background: insight

Psychological research on insight begins with studies on

chimpanzees by Köhler (1921). These studies sought to

demonstrate that animals, far from being Cartesian automatas

as suggested in the work of Thorndike (1898), are capable

of human-like intelligence. One of Köhler’s experiments in-

volved attaching a banana to the ceiling of the chimpanzee

enclosure, and placing a box within the enclosure. The chim-

panzees had to carry the box underneath the banana and climb

onto it in order to reach the fruit. When solving the problem,

the chimpanzees displayed behavior that more closely resem-

bled Aristotle’s “Eureka!” than the trial-and-error learning of

cats locked in puzzle-boxes by Thorndike (1898). In Köhler’s

“gestalt” perspective, it was understood that chimpanzees had

to interpret the situation from scratch in order to discover the

“roundabout” way of reaching for the objective.

Later work by Birch (1945) showed that chimpanzee in-

sight was not achieved from scratch, but was instead made

possible by relevant prior experiences. Epstein et al. (1984)

showed that with adequate training, “even” pigeons could dis-

play the kind of insight observed in chimpanzees. Epstein’s

findings are robust: several variations of this experiment were

performed by Epstein and colleagues, and the original was

recently replicated by Cook and Fowler (2014). For Ep-

stein, who was a student of Skinner, this made the argument

that seemingly complex mental processes could be explained

from behaviorist principles.

There has been continued interest in insight since the cog-

nitive turn in psychology. This body of work has established

several key behavioral, cognitive, and metacognitive charac-

teristics of insight:

1. The insight sequence: search – (impasse) – restructuring –

verification (Ohlsson, 2011; Weisberg, 2015).

2. Insights are sudden and surprising to the problem-solver, as

evidenced by “feeling-of-warmth” ratings measuring sub-

jective closeness to the solution (Metcalfe & Wiebe, 1987).

3. The “restructuring” which accompany insight involves
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changes in problem representation (Knoblich, Ohlsson, &

Raney, 2001), in the heuristics used (Kaplan & Simon,

1990), and in the constraints on operators (MacGregor,

Ormerod, & Chronicle, 2001).

4. Insight depends on previous experience (Wiley, 1998) and

is facilitated by sleep (Wagner, Gais, Haider, Verleger, &

Born, 2004).

Recent research on insight has used imaging techniques

such as fMRI1. Much of this work has focused on associa-

tive cortices (notably middle and temporal gyri) and on hemi-

spheric differences (Kounios & Beeman, 2015); however the

involvement of structures associated with executive control is

a robust finding (prefrontal cortex, especially anterior cingu-

late cortex), and recent ultra high-field work (Tik et al., 2018)

suggests the involvement of deeper brain structures during

insight, including those underlying biological reinforcement

learning (subcortical dopaminergic structures including the

striatum, thalamus, nucleus accumbens and ventral tegmen-

tal area).

Summarizing: a rich body of research has investi-

gated insight according to different psychological research

paradigms, establishing the key characteristics of insight enu-

merated above. However, the precise nature of the cognitive

mechanisms that enable insight remains unclear.

This is not to say that there have not been models, or theo-

ries, of the cognitive basis of insight (computational, mathe-

matical, or otherwise); those of Hélie and Sun (2010), Friston

et al. (2017), Schilling (2005), and Stephen, Boncoddo, Mag-

nuson, and Dixon (2009) are among the most influential. A

review of and comparison with these variegated models is be-

yond the scope of this paper, if only due to their great di-

versity, which ranges from bayesian inference (Friston et al.,

2017) to dynamical systems (Stephen et al., 2009) and graph

theory (Schilling, 2005). We note in passing that the model

presented later in this article may be compatible with several

of these other models: for instance phase transitions such as

those described by Stephen et al. (2009) are conjectured to

occur in neural networks.

None of the four models mentioned above aim to give rise

to artificial agents capable of solving problems through in-

sight2. In contrast, we seek to produce a model of insight

problem-solving which, when implemented, not only pre-

dicts the behavior of a biological insightful problem-solver,

but also solves the problem.

AI: which insight problems to model?

Most of the contemporary insight literature focuses on hu-

mans, using a wide array of experimental designs (for in-

stance, the nine-dots problem (MacGregor et al., 2001), the

mutilated checkerboard problem (Kaplan & Simon, 1990), or

1See Sprugnoli et al. (2017) for a review of brain imaging stud-
ies.

2A notable exception is the model of MacLellan (2011), who
investigates insight as a change of heuristics in a search process, and
tests this on the nine-dot problem.

the Compound Remote Associates (Bowden & Jung-Beeman,

2003)). Despite their apparent variety, virtually all insight

studies involving humans make use of verbal instructions

which define the objective for the problem-solver in their lan-

guage.

Consider the nine-dot problem: the instructions specify the

number of segments, with constraints over their properties

(four segments, drawn in a sequence “without lifting the pen”;

every dot should end up on one of the segments). Language

thus allows for a description of the desired “goal-state” which

is abstract enough to specify the solution without giving it

away. Simulating such a problem using AI would require ei-

ther very task-specific algorithms (which seems to defeat the

point of replicating human insight), or the algorithmic mas-

tery of language as a prerequisite for understanding instruc-

tions.

A “roundabout” solution is to focus instead on insight ex-

periments which feature animals solving problems that are

not specified by instructions, but instead by some intrinsic

need, typically for food, and by the situation in which the ex-

perimenter puts the animal3. This is the approach taken in

this article.

Insightful (real) pigeons

The experiment by Epstein et al. (1984) is a reproduction of

Köhler’s banana-and-box experiment, adapted for pigeons.

Chimpanzees would naturally want to acquire a banana; but

pigeons might not be interested in that fruit. Therefore Ep-

stein et al. first reinforced pecking a facsimile banana (here-

after just “the banana”) by providing a suitable food reward

upon pecks. In the “test” situation, the banana is suspended

from the ceiling of the room, such that pigeons cannot reach

it by stretching towards it (they do not attempt to fly towards

it (Cook & Fowler, 2014)). However, a small cardboard

cube (“the box”) has been placed in the pigeon’s Skinner

box. The problem is solved when the animal pushes/pecks the

box underneath the banana and, standing on the box, reaches

for/pecks at the banana; see figure 1.

Figure 1: Left-to-right, then top-to-bottom: a pi-

geon solves the banana-and-box test (snapshots from

https://youtu.be/mDntbGRPeEU, with permission from Dr.

Epstein).

3See Shettleworth (2012) for a judicious review of insight re-
search on animals.
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Prior to this apparent display of ingenuity, the behavior of

Epstein’s pigeons was carefully shaped. Shaping is a tech-

nique used in animal training (with closely related applica-

tions in certain behavioural therapies for humans), consisting

of reinforcing successive approximations of a desired behav-

ior. Two skills (“behavioural repertoires”) are taught to the

pigeons by reinforcing the corresponding behaviors:

• In the absence of the banana: push a box to a green spot.

• With the box nailed underneath the banana, and in the ab-

sence of a spot: jump on the box and peck the banana.

Teaching pigeons to push a box towards an objective is

considerably more difficult than getting them to hop onto the

pre-placed box. To achieve this, Epstein et al. proceeded

gradually, the shaping sequence including teaching the pi-

geons to move the box, then progressively placing the box

at an increased distance from the spot. Additionally, the pi-

geons were sometimes put in the presence of the box and in

the absence of both banana and spot, in order to extinguish

aimless pushing behavior (which eventually would result, via

a random walk within the Skinner box, in reaching the correct

position and thereby triggering the food reward).

It is of special importance that the two behaviors are not

exactly applicable to the final test: the pigeons are trained to

push the box towards a green spot, but in the test situation

they must spontaneously generalize this behavior to a slightly

different problem: pushing towards the yellow banana. It is

by combining two behaviors, and generalizing one behavior

to a novel situation, that the pigeons solve the test task.

Epstein’s pigeons proved remarkably adept in the test - all

of them succeeding in minutes, save for one, and presenting

behavior that seemed insightful: after a period of hesitation

and some trial and error, the pigeons began acting in a seem-

ingly directed, intentional manner, moving the box towards

the banana and jumping on top of it. The lone laggard failed

in a manner reminiscent of AI failures: during the test, a pro-

jector had been used to illuminate the (filmed) performance.

When the additional lighting was turned off, the pigeon suc-

ceeded quickly.

Simulation

Admittedly, the displays of insight by Epstein’s pigeons are

less impressive than those of Köhler’s chimpanzees: they re-

ceived substantial training in the form of shaping. However,

just as pigeons could not solve the test without having first ac-

quired relevant skills, so chimpanzees were not able to solve

insight problems without having first engaged in spontaneous

play with the relevant objects (Birch, 1945). This suggests

that similar cognitive mechanisms may be at play, and that

it may be wise to begin by modeling the version of the task

completed by pigeons.

In addition to requiring no instructions or verbal skill, the

task used by Epstein et al. (1984) allows for a simulation

which preserves much of what makes the task difficult: the

pigeons had to combine pre-existing skills (pushing the box,

and jumping on top of it to peck at the banana) while also gen-

eralizing to a new stimulus (pushing is shaped using a green

dot, but in the test situation the pigeons must aim instead for

a banana).

Thus, in simulating this task, we seek to preserve the dif-

ficulty inasmuch as it is relevant to problem solving, as op-

posed to the complete difficulty of the task including subjec-

tive perception and full physical coordination.

Figure 2: Successive frames of an artificial pigeon solving

the “push box to spot” shaping task. The pigeon succeeded

despite a sub-optimal policy (first pushing the box in the

wrong direction, then pecking it out of corners). Also note

the stochasticity of the “peck” actions: pecking actions have

up to 4 different outcomes.

Task and shaping model

We model the task as an RGB image, such that the complete

situation is perceived at each time-step. The pigeon, box, ba-

nana and spot consist of squares identifiable by size and color.

For visualization, an interpretable representation is also pro-

vided (see figure 2). The dimensions of the various elements,

and the dynamics of the actions are chosen to match those ob-

served in the experiment. In particular, the size of the various

elements (Skinner box, pigeon, box, banana, spot), the ef-

fects of the actions (walking, directional pecking, and jump-

ing) and the consequences of interactions (box movement)

closely match those of the initial experiment.

Specifically, the pigeon has 9 actions: walking in either

cardinal direction, pecking towards either cardinal direction,

and jumping on/off the box. Walking is deterministic and

moves the pigeon by 1 square in the corresponding cardinal

direction unless an obstacle is present. Pecking the box will

result in its stochastic displacement in the general direction

opposite to that from which it was pecked: assuming there are

no obstacles and the box is not fixed in place, the box moves

with equal probability (0.25) by 1 or 2 squares forward, or by

1 square forward and 1 in either perpendicular direction. With

respect to direction, the pigeon can push the box south if the

northern edge of the pigeon is at least as far north as the north-

ern edge of the box, and if the pigeon is adjacent to the box;
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likewise (mutadis mutandis) for the other directions (refer to

figure 2 for some examples of stochastic box movement and

pigeon positioning). The white pigeon is 3×3, the orange box

2×2, the green spot and yellow banana are 1 square each, and

the background environment 10×10. Assuming squares ap-

proximately 4cm across, this roughly matches the size of the

real objects (10x10cm box, 7x2cm facsimile banana, 4x4cm

spot, approx. 25x8cm pigeons), Skinner box (45x45cm for

the square box), and the effects of recognizable discrete ac-

tions in the original. In Skinner boxes, pigeons are rewarded

by receiving food through a little window; in this simulation,

a reward of 10 is provided instantaneously upon success.

The artificial pigeons undergo shaping similar to that used

by Epstein et al.: artificial pigeons perform the push-to-spot,

jump-and-peck, or push-extinction tasks. In the push-to-

spot task, the box is initially placed immediately next to the

spot. The distance between the box and the spot is sam-

pled uniformly between 0 and X, where X increases progres-

sively as the artificial pigeons become more adept at solv-

ing the task: pigeons “graduate” to the next distance once

they achieve good performance (100 successive successes in

a maximum duration 50 timesteps each) on the task. Other

than box-spot distance, the position of the various elements

of the task is randomized for each shaping and test instance.

For jump-and-peck, the box is fixed in place underneath a

banana, and for push-extinction the box is present with no

reward is available. The three shaping tasks are interleaved.

Artificial pigeons trained in this way did not succeed at the

test on their first try in an “insightful” manner, unlike real pi-

geons. Instead, we present results for repeated tests, in which,

after training, the pigeons face a succession of randomized

test problems (with the box and banana placed randomly).

“Pigeon Insight” Model

Learning is modeled using deep Reinforcement Learning

(Sutton & Barto, 2018), specifically an actor-critic algorithm.

Reinforcement Learning is learning what to do in order to

maximize a reward signal, where obtaining a reward often

requires multiple successive actions. To know whether an ac-

tion was good, it is therefore useful to evaluate the resulting

situation, without waiting for the reward itself: if the new

situation is promising (as opposed to dire), the tendency to

repeat that action in similar contexts should be reinforced (as

opposed to weakened). Many reinforcement learning algo-

rithms exploit these ideas by making use of an actor which

selects actions, and a critic which evaluates situations and

generates a learning signal.

A technical description of these ideas and their implemen-

tation is given below in order to make the present work re-

producible. Readers who wish to familiarize themselves fur-

ther with Reinforcement Learning are encouraged to consult

the article by Kaelbling, Littman, and Moore (1996) or the

more expansive book by Sutton and Barto (2018). For a dis-

cussion of the connections between Reinforcement Learning

approaches in AI and in psychology, see chapters 14 and 15

of Sutton and Barto (2018, accessible online).

The simulated environment is a Markov Decision Process,

where images count as states s from a set S (s ∈ S ), pigeon

behavior as actions a ∈ A , with rewards r ∈ R (10 on suc-

cessful completion, 0 otherwise), and a transition function

p : S ×A×S → [0,1] defining the dynamics of the environ-

ment. In an actor-critic algorithm, the agent, with no prior

knowledge of the environment dynamics, learns from experi-

ence a policy πθ : S ×A → [0,1] (mapping states to a proba-

bility of selecting each action, based on the parameters θ of

the actor) and a value function vw : S → R (which denotes

the agent’s future prospects, or return, assuming it follows its

policy from the current state; it is approximated as v̂w based

on parameters w of the critic). Actor-critic systems are con-

sidered more plausible models for biological agents (Sutton

& Barto, 2018, pp395-402).

Two convolutional neural networks are used to approxi-

mate the value function v as v̂w (critic network) and to imple-

ment the policy (actor network). The architecture is shown

for the actor network in figure 3; the critic network is identi-

cal save for the last layer, which has only one output and no

nonlinearity. Learning proceeds online by gradient descent,

according to the update rules:

w← w+αwδ∇v̂w(S
′)

θ← θ+αθθθδ∇ logπθ(A|S)

Where S is the state, A is the action chosen (according to

the policy π), R is the reward, S′ the following state, and

δ = R+ γv̂w(S
′)− v̂w(S) is the one-step time-difference error.

We use a discount γ (0.9) and learning rates αw and αθ (0.003

and 0.0003). Thus, by way of the time-difference error, the

critic adjusts its estimate of the value of a state based on that

of the next state. Meanwhile, the actor learns to preferentially

select actions which lead to surprisingly high-valued states

(states with positive time-difference errors). The interleaved

processes of estimating the value of states and improving the

policy leads (demonstrably under certain conditions) to a lo-

cally optimal policy. In our implementation, the actor was

regularized based on the entropy of its output to ensure con-

tinued adequate exploration (as in Mnih et al. (2016)), and

learning and acting was parallelized (16 concurrent agents)

to accelerate computation time.

A first cohort of 20 agents was given shaping training up

to a performance of 90% completion within 50 time-steps,

and then continued learning in the test condition; we call this

condition 1. A second cohort of 20 was given more exten-

sive training (150,000 additional timesteps after meeting the

criteria for condition 1); we call this condition 2. The expec-

tation was that additional training would result in overfitting

and render transfer more difficult (as observed for human in-

sight in the work of Wiley (1998)). A third cohort was di-

rectly given the test without any prior training; we call this

condition 3. In all cases, the primary measure is the rate of

success: how likely each simulated pigeon is to succeed at

its task within 50 time-steps. This is measured as a running

average (cf. figure 4).
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Figure 3: The neural network architecture used for the ac-

tor. For illustrative purposes, example activations are given

in shades of grey, and example connections in red.

Results

Figure 4: Performance of the actor-critic model. All graphs

show the success rate for 20 runs, smoothed over 100 time-

steps; color bands show the standard deviation. Note that

the success rate is initially high during shaping because the

shaping tasks are easy in the beginning, and progressively

made more difficult as performance increases. Graphs A and

B show the performance for conditions 1 (dark green) and

2 (lighter orange) for the shaping and test, whereas Graph C

shows the performance for condition 3 (naive agents). Condi-

tion 2 had worse average performance on the test, with greatly

increased variance.

The shaping program was successful in improving perfor-

mance. Agents in conditions 1 and 2 transferred successfully

to the final task, rapidly learning the new task in condition

1, although there was often a delay for those of condition 2

who had been given more extensive training. Agents in con-

dition 2 showed considerable variance in the transfer - some

of them necessitating a much longer time than others. Con-

dition 1 and 2 both showed substantially better performance

than condition 3 on the test. These results are shown in figure

4.

In condition 1, agents adapted rapidly to the new task.

However, in condition 2 there often was a period of “im-

passe” during which the agents displayed low performance;

individual curves are shown in figure 5. These impasses re-

mained short compared to condition 3, but were substantial

compared to condition 1 (see figure 5b); impasse was fol-

lowed by a rapid performance increase, which was accom-

panied by an increase in expected value as estimated by the

critic components of the agents. There was also an increase

in positive time-difference errors, which correspond to unex-

pected progress, from the agent’s perspective.

Discussion

Did the simulated pigeons experience “insight”? Unlike the

real pigeons, few solved the test situation on their first try,

suggesting that out-of-the-box RL is not sufficient for insight.

However, especially for condition 2, they displayed patterns

that are reminiscent of findings on the insight process. Recall

the characteristics of insight enumerated in the background

section. Many of them are reflected in the behavior of the

deep RL agents:

1. The insight sequence: in condition 2 especially, one can

distinguish a fruitless search/impasse phase from a sudden

resolution.

2. Sudden and surprising solution: the sudden increase of

“feelings of warmth” in humans Metcalfe and Wiebe

(1987), i.e. their subjective appreciation of how close they

are to solving the problem, resembles the sudden increase

of the estimated value function in the agents. (Recall that

the value function, estimated by the critic component of the

agents, measures their expectation of acquiring reward; it

is thereby analogous to the “feelings of warmth” measure.)

The steepness of the learning curve for shaped agents (con-

ditions 1 and 2) is sudden by comparison to naive agents

(condition 3).

3. Restructuring: the agents ought to behave “as if” the yel-

low objective is the green spot with which they trained.

We conjecture that when the agent learns this, the rest of

the correct solution “falls into place” rapidly due to prior

learning4.

4. Role of experience: “insight” is made possible by prior

experience, with extensive experience having an ambigu-

ous role – too much experience being detrimental to per-

formance, as in Wiley (1998).

Additionally, we note several associations between the

concepts of reinforcement learning and those of psychology,

which are known in RL and cognitive psychology, but have

received little attention in the insight literature. Readers fa-

miliar with RL may have recognized transfer and curriculum

learning techniques used for instance in robotics; those well-

read in psychology noticed that the overfitting of condition 2

4The distributed nature of neural networks makes this difficult to
verify; we reserve such investigations to future work.
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(a)
(b)

Figure 5: (a) All “overfitting” transfer curves (orange, left), compared to learning from scratch (black, right), over 20 runs. (All

curves have been smoothed for readability, showing the average over 4000 timesteps.).

(b)A single learning curve on the test (one of the 20 shown in orange in subfigure (a)). The top curve is the cumulative TD-error,

the middle curve is the % of success, the bottom curve is the estimated value.

is reminiscent of the Einstellung effect, by which prior expe-

rience gets in the way of finding an optimal solution to a new

problem (Luchins, 1942).

Thus although the artificial pigeons needed a considerable

amount of interaction with the test by trial and error (note that

both pigeons (Epstein et al., 1984) and chimpanzees (Köhler,

1921; Birch, 1945) also showed some amount of trial and er-

ror even during the test), they also presented learning patterns

resembling those of insight: namely (1) a comparatively sud-

den increase of performance, accompanied by (2) an increase

in expected return, which (3) was made possible by a “just-

right” amount of prior experience.

The proposed model thus displays some characteristics of

insight while being limited in other respects. The most no-

table of these limitations is the time needed to discover the

full solution during the test. This might be a matter of learn-

ing quickly from limited data during the test (this is the so-

lution favored by Epstein (2014)), or of making use of more

profound regularities in the shaping tasks, e.g. via tempo-

ral abstraction as suggested by Colin, Belpaeme, Cangelosi,

and Hemion (2016). Alternatively, they might identify new

regularities between old and new tasks on the fly (Friston et

al., 2017), or use off-policy learning to make use of prior ex-

perience (as suggested by Richard Sutton in personal com-

munication; cf. Tolman and Honzik (1930)). Finally, perhaps

the use of model-based reinforcement learning allows for trial

and error to occur in subconscious simulation “in the agent’s

mind” (Hamrick et al., 2016; Hélie & Sun, 2010). These

various approaches are not mutually exclusive - indeed, all

of them are compatible, and perhaps only some (yet-to-be-

realized) combination of all of these methods can produce

behavior truly comparable to animal and human insight.

Conclusion

Insight problem-solving was historically presented by Köhler

as a challenge for Thorndike’s concepts of animal learning.

Nowadays Aha!-moments, due to the sheer speed of the phe-

nomenon in human beings and animals, remain puzzling for

modeling approaches that rely on statistical trial-and-error.

However, their apparent reliance on learning and thereby gen-

eralization, and their representational component, has made

them equally challenging for traditional cognitive models.

Both symbolic and statistical approaches have difficulty ex-

plaining insight.

We suggest that the statistical approaches offer, after all,

a promising avenue of research for explaining insight. The

established importance of learning for insight (Birch, 1945;

Wiley, 1998) suggests a model based on learning. Our results

show how transfer learning can accelerate the resolution of

a new problem to the point of making it seem, in contrast to

solving it “from scratch”, rather sudden. This and the focus of

contemporary machine learning techniques on representation

designates them as clear candidates for modeling insight.

We have presented a simulation of a psychological exper-

iment on insight, with the aim of proposing a model of the

cognitive processes underlying animal behavior in the exper-

iment. Our artificial pigeons were not a match for the real

pigeons performance-wise: they required more experience to

solve a simplified version of the task; their “insights” were

slower and clumsier. However the proposed model showed

qualitative properties reminiscent of those seen in pigeons.

It is a long way to recreating the insights of chimpanzees,

let alone humans; we have given some directions for future

research, and we hope that the methodology presented here

(replicating insight studies on non-human animals) can serve

as a basis for future investigations of the creativity of great

apes - such as ourselves.
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in Kekulé’s discovery of the structure of the benzene

molecule. The American Journal of Psychology, 108(3),

419–438.

Schilling, M. A. (2005). A” small-world” network model

of cognitive insight. Creativity Research Journal, 17(2-3),

131–154.

Shettleworth, S. J. (2012). Do animals have insight, and what

is insight anyway? Canadian Journal of Experimental Psy-

chology/Revue Canadienne de Psychologie Expérimentale,

66(4), 217-226.

Sprugnoli, G., Rossi, S., Emmerdorfer, A., Rossi, A., Liew,

S.-L., Tatti, E., . . . Santarnecchi, E. (2017). Neural corre-

lates of eureka moment. Intelligence, 62, 99–118.

Stephen, D. G., Boncoddo, R. A., Magnuson, J. S., & Dixon,

J. A. (2009). The dynamics of insight: Mathematical dis-

covery as a phase transition. Memory & Cognition, 37(8),

1132–1149.

Sutton, R., & Barto, A. (2018). Reinforcement Learning:

An Introduction. MIT Press. (Accessible at http://

incompleteideas.net/book/the-book-2nd.html)

Thorndike, E. L. (1898). Animal intelligence: an experi-

mental study of the associative processes in animals. The

Psychological Review: Monograph Supplements, 2(4), i–

109.

Tik, M., Sladky, R., Luft, C. D. B., Willinger, D., Hoffmann,

A., Banissy, M. J., . . . Windischberger, C. (2018). Ultra-

high-field fmri insights on insight: Neural correlates of the

aha!-moment. Human brain mapping, 39(8), 3241–3252.

Tolman, E. C., & Honzik, C. H. (1930). Introduction and re-

moval of reward, and maze performance in rats. University

of California Publications in Psychology, 4, 257–275.

Wagner, U., Gais, S., Haider, H., Verleger, R., & Born, J.

(2004). Sleep inspires insight. Nature, 427(6972), 352–

355.

Weisberg, R. W. (2015). Toward an integrated theory of in-

sight in problem solving. Thinking & Reasoning, 21(1),

5–39.

Wiley, J. (1998). Expertise as mental set: The effects of

domain knowledge in creative problem solving. Memory

& cognition, 26(4), 716–730.

1539




