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One of the key challenges in quantum information is coherently manipulating the quantum state.
However, it is an outstanding question whether control can be realized with low error. Only gates
from the Clifford group – containing π, π/2, and Hadamard gates – have been characterized with
high accuracy. Here, we show how the Platonic solids enable implementing and characterizing larger
gate sets. We find that all gates can be implemented with low error. The results fundamentally
imply arbitrary manipulation of the quantum state can be realized with high precision, providing
new practical possibilities for designing efficient quantum algorithms.

The Platonic solids have been studied since ancient
times for their beauty and symmetry [1], and make ex-
cellent random number generators [2]. Here, we exploit
their symmetry for quantum information. Quantum pro-
cessing would benefit from having a large set of accu-
rate gates to reduce gate count and error [3–5], yet it
is an open question whether arbitrary gates can be im-
plemented with low error – only the restricted group of
Clifford gates [6, 7] has been used with high precision [8–
10]. We use the Platonic solids as a pathway and imple-
ment gate sets inspired by the tetrahedron, octahedron,
and icosahedron, including gates never previously bench-
marked. We achieve low error for all gates. These results
illustrate the potential of using unitaries with a fine dis-
tribution, and suggest arbitrary rotations can be realized
with high accuracy, opening new avenues for performing
gates and designing algorithms efficiently.

Recently, major advances have been made in accu-
rately implementing octahedral (Clifford) gates on a va-
riety of platforms. Superconducting qubits, liquid NMR
and ion traps have shown single-qubit gate errors ranging
from 10−3 to 10−6 [8–10], determined via Clifford-based
randomized benchmarking (RB). However, process veri-
fication of non-Clifford gates is a conundrum: Quantum
process tomography can be used, but state preparation
and measurement error can lead to significant systematic
deviations, limiting precision. Clifford-based RB is insen-
sitive to these errors, but unavailable for gates which fall
outside of the Clifford group. Here, the use of other ro-
tational groups allows for randomized benchmarking of
non-Clifford gates. A different approach to estimating
errors of non-Cliffords was proposed in Ref. [11].

The groups of unitaries we use here are formed by
the rotations that preserve the regular tetrahedron, oc-
tahedron, and icosahedron – Platonic solids – in the
Bloch sphere representation, see Fig. 1. These are the
rotational subgroups of the tetrahedral, octahedral and
icosahedral symmetry groups Th, Oh and Ih. These ro-

tations exchange faces, amounting to a quantum ver-
sion of rolling dice (such dice are referred to as d4,
d8, and d20), but now in Bloch space. The tetrahe-
dral, octahedral and icosahedral rotational groups have
size (order) 12, 24, and 60, respectively. The axes are
defined by the lines that intersect the origin, and a
face center, vertex, or midpoint of an edge. The an-
gles of rotation around these axes are, respectively, in-
teger multiples of {2π/3, 2π/3, π} for the tetrahedral
group, {2π/3, 2π/4, π} for the octahedral group, and
{2π/3, 2π/5, π} for the icosahedral group. The tetrahe-
dral rotations (orange axes in Fig. 1) are shared among
all three groups, enabling comparison experiments. The
octahedral rotations form the single-qubit Clifford group.
The icosahedral rotations form the most dense group –
the icosahedron is the largest of the Platonic solids – al-
lowing for fine unitary control.

For implementing gates from these groups we de-
compose them into rotations around the X, Y, and Z

tetrahedral 
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FIG. 1: The Platonic solids and their rotational
groups. The axes of rotation are of the tetra-, octa- and
icosahedral rotational group; the respective Platonic solids
are superimposed. The axes are defined by lines intersecting
the origin, and a vertex, face center, or midpoint of an edge.
The tetrahedral rotational group (orange) is shared among all
groups.
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FIG. 2: Calibrating the angles of rotation. (a) The ex-
cited state probability versus X and Y pulse voltage amplitude
on the control board. The amplitudes for the required phases
of rotations around the X and Y axes are indicated with dot-
ted lines. The data follow a sin2 dependence (solid line) on the
pulse amplitude, as expected. Data not corrected for measure-
ment fidelity. (b) The phase of the quantum state as a func-
tion of Z pulse voltage amplitude, measured using quantum
state tomography. Solid line is a fit to the data. For brevity,
only the positive angles are shown. Here tanφ = (1 +

√
5)/2.

Insets show the trajectories on the Bloch sphere for the X-,
Y-, and Z-axis rotations.

axes. The tetra- and octahedral groups can be im-
plemented using only π/2 and π rotations [12]. The
icosahedral group requires the following rotation angles:
{φ, 2π/5, π/2, 2φ, 4π/5, π}, with φ an irrational angle
from tanφ = (1 +

√
5)/2 the golden ratio. The decom-

position into physical gates is shown in the Supplemen-
tary Information. The average number of physical gates
per tetra-, octa- or icosahedral rotation is 1 3

4 , 1 7
8 , and

4 4
15 , respectively. This decomposition requires a mini-

mal number of used angles and only one irrational angle.
The rotations are implemented in our superconducting

quantum system, the Xmon transmon qubit [13]. This
qubit combines full, direct axial control with a high level
of coherence. Details of the device used in this experi-
ment can be found in Ref. [8]. Rotations around the X
and Y axes are achieved by applying microwave pulses.
Rotations around the Z axis can be directly performed by
detuning the qubit frequency, or by combining X and Y
rotations. All control pulses have cosine envelopes, gener-
ated by fast (1 Gsample/sec) digital-to-analog converter
boards. For XY control we generate both the in-phase
and quadrature component and upconvert it to the qubit
frequency using quadrature mixing, see Supplementary
information and Refs. [8, 14] for more detail. For cali-
brating the pulse amplitudes we use the measured prob-
ability for X and Y rotations, and for Z rotations the
phase as determined using quantum state tomography
(Fig. 2). We minimize leakage to energy levels above the
computational subspace by applying a quadrature correc-

tion [15, 16]. Subsequently, fine-tuning of the parameters
is done through optimized randomized benchmarking for
immediate tune-up (ORBIT) [14], reducing gate errors
by approximately 10−4 [17]. The generators of the tetra-
hedral and octahedral group are fully parameterized by a
total of three parameters, and the generators of the icosa-
hedral group by a total of 14 variables (Supplementary
Information).

We test the gates using randomized benchmarking [8–
10, 12, 18]. In essence, randomized benchmarking is
equivalent to randomly rolling the die in Bloch space
m times followed by a final rotation that returns it to
the starting position, and then measuring the probabil-
ity of success. One would like to determine the gate error
averaged over all possible input states. As the gate er-
ror depends quadratically on, for example, any amount
of over- or underrotation, we do not need to evaluate a
continuum of input states. The average of a polynomial
function of order t over the surface of a sphere can be
evaluated exactly using only a finite number of points,
such a group of points is a spherical t-design. For the
single-qubit case, unitary designs are the group of rota-
tions that can generate spherical designs, mapping be-
tween the points [19]. Therefore, the rotational group
used in randomized benchmarking needs to be a unitary
2-design [19–22]. Moreover, unitary 2-designs depolar-
ize any error in the computational basis. For the single-
qubit case, the rotational groups which preserve Platonic
solids are the 2-designs [23]. There are only three unitary
2-designs as the cube shares the same group as the octa-
hedron (the cube and the octahedron are duals), and the
dodecahedron shares the same rotations as the icosahe-
dron (the dodecahedron and the icosahedron are duals).
We have thus tested all unitary 2-designs in Bloch space.

Randomized benchmarking with 2-designs is therefore
a crucial test of coherent control. The decrease of the
probability of success – the sequence fidelity – with in-
creasing sequence length is used to quantify the gate fi-
delity. We start by measuring a reference curve, using
sequences of m random rotations. The sequence fidelity
follows Apm +B, with variables A and B absorbing mea-
surement and initialization errors, and pref giving the av-
erage error per rotation: rref = (1−pref)/2 [18]. We then
interleave a specific gate with m random rotations, the
difference with the reference is a direct measure of the
gate error: rgate = (1 − pgate/pref)/2, the gate fidelity is
Fgate = 1 − rgate [24]. At each m, the data is averaged
over k = 50 random sequences [25].

We have performed randomized benchmarking using
the tetrahedral, octahedral, and icosahedral rotational
groups; the results are shown in Fig. 3. As we start by
initializing the qubit in the ground state, the sequence
fidelity is given by the ground state population after ap-
plying the random sequences. The traces follow an expo-
nential decay with increasing m, as expected. We have
also interleaved four gates from the tetrahedral group
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FIG. 3: Randomized benchmarking with the (a) tetra-, (b) octa- and (c) icosahedral rotational groups. The
sequence fidelities are plotted as a function of m, the number of random rotations or sets of random rotation and interleaved
gate. For each m, the fidelity is averaged over k = 50 different, random sequences. From fits to the reference curves (black
lines) we extract the average error per group rotation of rref,T = 0.0009, rref,C = 0.0010, and rref,I = 0.0019, consistent with
an average physical gate fidelity of 0.9995. The rotational groups preserve Platonic solids in Bloch space, the respective solids
are shown in the insets. The colored lower curves show the data when interleaving four tetrahedral rotations which are shared
among all the three groups, the rotational axes are shown in the insets; the composed gates are Xπ (#), Xπ/2 Yπ/2 (M), X−π/2
Yπ/2 (O), and Yπ/2 Xπ/2 (D). Here, Xπ/2 Yπ/2 denotes the unitary RY(π/2) ·RX(π/2) = exp(−iπσY/4) · exp(−iπσX/4). The
gate fidelities are tabulated in the figures, extracted from fits to the data (solid lines). Error bars on the data indicate the
standard deviation of the mean.

(see insets for the rotational axes). These rotations are
shared by all three rotational groups, allowing for a direct
comparison between tetra-, octa-, and icosahedral-based
randomized benchmarking. We emphasize that the in-
terleaved gates are physically implemented in exactly the
same manner.

From the reference traces, we extract an average er-
ror per group of rotations of rref,T = 9 · 10−4, rref,C =
10 · 10−4, rref,I = 19 · 10−4. When dividing by 1 3

4 , 1 7
8

or 4 4
15 , these numbers consistently point to an average

error of 5 · 10−4 per physical gate (single decomposed
rotation around the X, Y, or Z axis). The extracted fi-
delities for the interleaved gates are tabulated in Fig. 3.
The reference error per gate, as well as the errors for the
interleaved gates, are consistent with previous measure-
ments [8], where the average physical gate fidelity lies at
0.9994. In addition, the mean difference in error of the
interleaved gates is below 2 · 10−4, verifying that any of
the groups can be used for randomized benchmarking.

With icosahedral randomized benchmarking shown to
be a viable method for determining gate fidelity, we can
now benchmark gates outside of the Clifford group, as
shown in Fig. 4. We chose three composite gates, which
are implemented using three, six, or eight physical gates.
The rotational axes are highlighted in the inset. The fi-
delities of these gates are tabulated in the figure. These
complex gates work surprisingly well: we compute the av-
erage error per physical decomposition to range between
3 · 10−4 and 4 · 10−4, assuming that errors are small and
uncorrelated. These results demonstrate that even these

complex, composite gates, can be implemented with high
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FIG. 4: Icosahedral-based randomized benchmarking.
We have interleaved three non-Clifford gates whose axes are
shown in the inset, the gates rotate around a face center,
vertex or edge midpoint of the icosahedron (superimposed).
The gates are composed of three, six, and eight elements.
Their compositions are: Yφ X2π/5 Y−φ (�), Xφ Z−2π/5 Y X2φ

Z2π/5 X−φ (C), and Xφ Z−2π/5 X−φ X−π/2 Y−π/2 Xφ Z2π/5

X−φ (B). The gate fidelities are tabulated in the figure. The
average error per physical gate which makes up the interleaved
gates is r = 3− 4 · 10−4.
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fidelity.

Apart from the first demonstrated implementation of
rotational groups beyond the Clifford group, the results
on icosahedral benchmarking in Figs. 3 and 4 clearly in-
dicate that physical rotations, other than the widely used
Clifford rotations, can be done with a very similar fidelity.
This strongly suggests that any arbitrary rotation can be
done with high fidelity. Moreover, the gate parameters
can be optimized to achieve decoherence-limited perfor-
mance using the method outlined in Ref. [14], providing
an interpolation table for implementing any desired ro-
tation directly, efficiently, and accurately. In addition,
icosahedral benchmarking could also be used for evalu-
ating functions of higher order, beyond gate fidelity, as
the tetra-, octa-, and icosahedral rotational groups are
unitary 2-, 3-, and 5-designs [26, 27].

We have shown a quantum version of rolling dice with
a superconducting qubit, using gate sets inspired by the
Platonic solids. Fundamentally, our work illustrates the
potential of using unitaries with a finer distribution for
accurate control, and provides a route for the implemen-
tation and benchmarking of non-Clifford gates. More
generally, our results imply that arbitrary rotations can
be done with high accuracy, allowing for complex gates
and algorithms to be performed more efficiently in quan-
tum information processing.
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ROTATIONAL GROUPS

The tetra-, octa-, and icosahedral rotational groups are
shown in Tables. S1, S2 and S3.

PULSE CALIBRATION

The microwave pulses – the rotations around the X
and Y axes – are created by generating envelopes using 1
Gsample/s digital to analog converters, and upconverting
these envelopes to the qubit frequency using quadrature
mixing (see Ref. [1] for the control and readout system).
The room temperature electronics are calibrated by cor-
rected the pulse from distortion using deconvolution tech-
niques, and by correcting the quadrature mixer for gain
and phase imbalances. The pulses for frequency control
– the rotations around the Z axis – are generated by 1
Gsample/s digital to analog converters; non-idealities in
the pulse shape from room temperature electronics are
suppressed by deconvolution techniques. Non-idealities
arising from stray inductance and reflections in the wiring
of the cryostat are suppressed by using the qubit to mea-
sure the step response and by randomized benchmarking,
see Refs. [1, 2] for details.

We then use the qubit to calibrate the pulse ampli-
tudes, and the DRAG (derivative reduction for adiabatic
gates) parameter for minimizing 2-state leakage [3, 4].

We do not calibrate the phase between a X and Y rota-
tion using the qubit [5] as the quadrature mixer calibra-
tions are sufficient. The pulse amplitudes for Z rotations
are determined using quantum state tomography.

We use three parameters to generate the microwave
pulses necessary for the tetrahedral and octahedral rota-
tional groups (DRAG parameter, two pulse amplitudes)
and 14 parameters (DRAG parameter, 13 pulse ampli-
tudes) to generate the pulses for the icosahedral rota-
tional group; see Table S4 for the generators.
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TABLE S1: The tetrahedral rotational group, written in terms of the physical microwave gates applied in time. Negative angles
are included through opposite rotational axes.

Paulis - π
I
Xπ

Yπ

Yπ Xπ

2π/3
Xπ/2 Yπ/2

Xπ/2 Y−π/2
X−π/2 Yπ/2

X−π/2 Y−π/2
Yπ/2 Xπ/2

Yπ/2 X−π/2
Y−π/2 Xπ/2

Y−π/2 X−π/2

TABLE S2: The octahedral rotational group – single qubit Cliffords. The Paulis and 2π/3 rotations form the tetrahedral
rotational group.

Paulis - π
I
Xπ

Yπ

Yπ Xπ

2π/3
Xπ/2 Yπ/2

Xπ/2 Y−π/2
X−π/2 Yπ/2

X−π/2 Y−π/2
Yπ/2 Xπ/2

Yπ/2 X−π/2
Y−π/2 Xπ/2

Y−π/2 X−π/2

π/2
Xπ/2

X−π/2
Yπ/2

Y−π/2
X−π/2 Yπ/2 Xπ/2

X−π/2 Y−π/2 Xπ/2

Hadamard-like - π
Xπ Yπ/2

Xπ Y−π/2
Yπ Xπ/2

Yπ X−π/2
Xπ/2 Yπ/2 Xπ/2

X−π/2 Yπ/2 X−π/2

TABLE S3: The 60 icosahedral rotations, excluding the idle (I). The rotations are ordered based on their angles, and
their points of intersection with the icosahedron. The edges and faces contain the Paulis and 2π/3 rotations which over-
lap with the tetrahedral rotational group. For the edge rotations we have used RX(φ)RY(π)RX(−φ) = RX(2φ)RY(π) and
RX(φ)RZ(π)RX(−φ) = RX(2φ)RZ(π) to reduce the gate count.

Vertices - 2π/5
Yφ X2π/5 Y−φ
Yφ X−2π/5 Y−φ
Y−φ X2π/5 Yφ

Y−φ X−2π/5 Yφ

Zφ Y2π/5 Z−φ
Zφ Y−2π/5 Z−φ
Z−φ Y2π/5 Zφ
Z−φ Y−2π/5 Zφ
Xφ Z2π/5 X−φ
Xφ Z−2π/5 X−φ
X−φ Z2π/5 Xφ

X−φ Z−2π/5 Xφ

Vertices - 4π/5
Yφ X4π/5 Y−φ
Yφ X−4π/5 Y−φ
Y−φ X4π/5 Yφ

Y−φ X−4π/5 Yφ

Zφ Y4π/5 Z−φ
Zφ Y−4π/5 Z−φ
Z−φ Y4π/5 Zφ
Z−φ Y−4π/5 Zφ
Xφ Z4π/5 X−φ
Xφ Z−4π/5 X−φ
X−φ Z4π/5 Xφ

X−φ Z−4π/5 Xφ

Faces - 2π/3
X−π/2 Y−π/2
Yπ/2 Xπ/2

Xφ Z−2π/5 X−φ X−π/2 Y−π/2 Xφ Z2π/5 X−φ
Xφ Z−2π/5 X−φ Yπ/2 Xπ/2 Xφ Z2π/5 X−φ
Xφ Z−4π/5 X−φ X−π/2 Y−π/2 Xφ Z4π/5 X−φ
Xφ Z−4π/5 X−φ Yπ/2 Xπ/2 Xφ Z4π/5 X−φ
X−π/2 Yπ/2

Y−π/2 Xπ/2

Xφ Z2π/5 X−φ X−π/2 Y−π/2 Xφ Z−2π/5 X−φ
Xφ Z2π/5 X−φ Yπ/2 Xπ/2 Xφ Z−2π/5 X−φ
Xπ/2 Yπ/2

Y−π/2 X−π/2
Xφ Z−4π/5 X−φ Xπ/2 Yπ/2 Xφ Z4π/5 X−φ
Xφ Z−4π/5 X−φ Y−π/2 X−π/2 Xφ Z4π/5 X−φ
Xφ Z4π/5 X−φ Xπ/2 Yπ/2 Xφ Z−4π/5 X−φ
Xφ Z4π/5 X−φ Y−π/2 X−π/2 Xφ Z−4π/5 X−φ
Xφ Z2π/5 X−φ Xπ/2 Yπ/2 Xφ Z−2π/5 X−φ
Xφ Z2π/5 X−φ Y−π/2 X−π/2 Xφ Z−2π/5 X−φ
Xπ/2 Y−π/2
Yπ/2 X−π/2

Edges - π
Xπ

Xφ Z2π/5 Xπ Z−2π/5 X−φ
Xφ Z−2π/5 Xπ Z2π/5 X−φ
Xφ Z4π/5 Xπ Z−4π/5 X−φ
Xφ Z−4π/5 Xπ Z4π/5 X−φ
Yπ

Xφ Z2π/5 Yπ X2φ Z−2π/5 X−φ
Xφ Z−2π/5 Yπ X2φ Z2π/5 X−φ
Xφ Z4π/5 Yπ X2φ Z−4π/5 X−φ
Xφ Z−4π/5 Yπ X2φ Z4π/5 X−φ
Zπ
Xφ Z2π/5 Zπ X2φ Z−2π/5 X−φ
Xφ Z−2π/5 Zπ X2φ Z2π/5 X−φ
Xφ Z4π/5 Zπ X2φ Z−4π/5 X−φ
Xφ Z−4π/5 Zπ X2φ Z4π/5 X−φ
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TABLE S4: Generators of the tetra-, octa-, and icosahedral rotational groups, excluding the idle. The generators are listed in
terms of shared pulse amplitude parameter. Including the DRAG parameter, we use a total of three parameters to generate
the tetra-, and octahedral rotational group (DRAG parameter, pulse amplitude parameter for Xπ and Yπ, pulse amplitude
parameter for Xπ/2, X−π/2, Yπ/2, and Y−π/2), and a total of 14 parameters to generate the icosahedral rotational group. The
duration of the idle and each of the X and Y gates is 12 ns, and each Z gate is 10 ns.

Rotational group Generators

Tetrahedral, octahedral, and icosahedral
Xπ, Yπ

Xπ/2, X−π/2, Yπ/2, Y−π/2

Icosahedral

X2π/5, X−2π/5, Y2π/5, Y−2π/5

X4π/5, X−4π/5, Y4π/5, Y−4π/5

Xφ, Yφ, X−φ, Y−φ
X2φ

Z2π/5

Z−2π/5

Zφ
Z−φ
Z4π/5

Z−4π/5

Zπ




