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Epistemic drive and memory manipulations in explore-exploit problems
Nicolas Collignon Christopher Lucas

n.collignon@ed.ac.uk clucas2@inf.ed.ac.uk
School of Informatics, University of Edinburgh

Abstract

People often navigate new environments and must learn about
how actions map to outcomes to achieve their goals. In this pa-
per, we are concerned with how people direct their search and
trade off between selecting informative actions and actions that
will be most immediately rewarding when they are faced with
new tasks. We find that some people selected globally infor-
mative actions and were able to generalize from few observa-
tions in order learn new reward structures efficiently. These
participants also displayed the ability to transfer knowledge
across similar tasks. However, a consistent proportion of par-
ticipants behaved sub-optimally, caring more about observing
novel information instead of maximizing reward. Across four
experiments, we present evidence that participants’ motivation
to explore was influenced by 1) how much they already knew
about the underlying task structure and 2) whether their obser-
vations remained available. We discuss possible explanations
behind people’s exploratory drive.
Keywords: active learning; generalization; exploration-
exploitation; transfer learning; data-availability;

Introduction
In order to act, plan, and achieve goals, people must learn
about their environment and the outcome of possible actions.
One reason for human successes in developing new theories
and strategies when confronted with new problems is that
people are not passive observers. Indeed, children ask in-
formative questions and can adapt their strategies when in-
quiring about things they don’t know (Ruggeri & Lombrozo,
2014), and play with new toys in ways that help them dis-
ambiguate uncertain causal relationships and gather informa-
tion (L. Schulz & Bonawitz, 2007; Cook et al., 2011). The
idea that humans learn and interact with their environment
by performing intuitive experiments, maximizing informa-
tion gain, is a popular one (Coenen et al., 2017; Gureckis
& Markant, 2012; Nelson, 2005; Gopnik et al., 2004).

In this paper, we are interested in how people learn to select
actions that are most rewarding when faced with a sequence
of novel but potentially related tasks. We designed experi-
ments to better understand people’s exploration and reward
maximizing strategies across a sequence of tasks. Do those
strategies evolve over time, as they encounter related tasks?
Can people transfer structural knowledge and improve their
performance by leveraging similarities between tasks? What
is the relationship between people’s search strategies, their
ability to learn and generalize from observations, and how
well they do?

When encountering new situations, people are often faced
with the decision of either gathering more information about
the task to improve the quality of their decision, or choosing
an action that has been shown to be rewarding (Hills et al.,
2015). A doctor might, for example, want to run more tests
to have a better diagnosis for their patient or give them the

treatment they believe will best relieve them from their symp-
toms. To better understand human decision strategies when
dealing with the explore-exploit trade-off, Multi-armed Ban-
dits (MAB) have been used extensively. In these experiments,
participants have to select between different possible actions
(e.g. the arms of a bandit) yielding stochastic rewards, so as
to maximize their rewards. In the real world, an essential part
of solving problems lies in discovering the underlying struc-
ture of the problem, where each action can be represented as a
set of continuous and discrete features. In a Contextual MAB
(CMAB), there are observable feature that provide informa-
tion about the arms’ reward distributions. Learning how fea-
tures relate to rewards allows for an efficient representation
of the environment, and enables the learner to generalize to
new events. Previous studies of human behavior in CMAB
problems have shown that people are able to generalize across
observations when faced with a large number of options, and
make use of uncertainty to direct their search (E. Schulz et al.,
2017; Wu et al., 2018; Borji & Itti, 2013). These experiments
have assumed the basic structure of the underlying problems
to be static, or known in advance. When confronted with un-
known task structures, Teodorescu and Erev (2014) showed
that people were able to adaptively learn purely exploratory
or purely exploitation-oriented policies. However, in their ex-
periment there was no systematic relationship between an op-
tion’s features and its reward, aside from whether it had been
previously explored.

Unlike a CMAB-type task, the tasks we presented to par-
ticipants were deterministic, meaning that re-selecting an op-
tion would always yield the same reward. This was done to
ensure a clear distinction between exploration and exploita-
tion in participant decisions. To examine people’s ability to
use generalization to guide their search we presented them
with tasks that contained a large number of choices and a rel-
atively limited number of actions, meaning that generalizing
over previous observations is necessary for optimal perfor-
mance. We chose a simple structure to ensure it would be
possible for participants to learn and exploit it when maxi-
mizing rewards.

Our first two experiments focus on sequential tasks where
participants had no prior information about the underlying re-
ward structure, and where a combination of exploration – to
discover task structure and discover optima – and exploita-
tion is necessary to do well. The next two experiments pro-
vided participants with training about the reward structures
before the task itself. In all of these experiments, we found
that some participants selected actions that resolved uncer-
tainty about the underlying structure of the task, and traded
off between exploration and exploitation in order to maximize
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reward. These participants were also able to transfer knowl-
edge across tasks and gradually improved their performance.
We also found a significant number of participants engaged in
purely exploratory behavior, consistently preferring to choose
novel actions, even when these actions were relatively unre-
warding. These results highlight the importance of studying
individual differences to better identify the multiple factors
that influence human behavior, and of accommodating these
differences in models of learning and exploration.

Experiment 1

Across our four experiments participants were given a se-
quence of grids composed of 9-by-9 arrays of tiles (see Fig-
ure 1), with each tile corresponding to a possible action. In
this paper, we limit our analysis to the first three grids pre-
sented to participants (out of nine), as the latent task structure
changed after that point. The grids studied here shared a sim-
ilar underlying task structure: they had the same kind of re-
lationship between features and rewards, but details of those
relationships varied. In our experiment an action consists of
selecting an individual tile, which has two features: its hori-
zontal (x), and vertical position (y). Participants had to select
tiles to maximize their cumulative rewards over 20 choices in
each grid. The task presents a classical explore-exploit trade-
off: Succeeding requires carefully balancing between choos-
ing new tiles to learn about the underlying reward structure or
re-selecting tiles that were observed to be rewarding. In Ex-
periment 1, participants received no prior knowledge about
the reward structure of the tasks, nor about whether the tasks
were related to one another in any way.

We predicted participants would be able to generalize from
previous observations and improve by using their growing
knowledge of the underlying task structure to select better
actions. We measure this by looking at whether participants
were able to select more rewarding tiles as they collected
more information, and whether they demonstrated confidence
in their knowledge by repeatedly selecting (i.e., exploiting)
optimal actions. Our second hypothesis was that partici-
pants would be able to re-use knowledge across grids, since
they shared the same structure, and thus improve their perfor-
mance from one grid to the next.

We also studied the distance between participants’ selec-
tions throughout the task to better understand their behavior.
Distance between selections is a useful marker of different
exploration strategies. For example, participants who seek
to reduce uncertainty about the task structure are likely to
select tiles that are far apart from each other, as these tend
to yield more information about the broad shape of the re-
ward function, in addition to having more uncertain rewards
themselves. We call these selections globally informative ac-
tions. In contrast, participants might sample tiles adjacent
to their previous observations, e.g., because they believe they
are close to a maximum or because they want to observe local
gradients. We call this kind of selection local search.

Figure 1: Screenshot of grid presented to participants after 5 ob-
servations. Note that in Experiment 1, the rewards disappear shortly
after a tile has been selected.

Methods We recruited 79 participants using Amazon’s Me-
chanical Turk service. They received $0.75-$1, which was
doubled for participants whose final scores were in the top
10 percent. Following the instructions given to participants,
we excluded participants whose performance was worse than
chance (n = 3). We also excluded participants who failed
to select more than 2 different tiles on the majority of grids
(n = 5), as it showed a lack of engagement with the task.

The three grids analysed here used a reward structure
where one location (xm,ym) was sampled uniformly at ran-
dom in each grid, and the grid’s maximum reward m was
sampled from (N (µ = 200,σ2 = 50)). The reward r for a
given tile location (x,y) was exponentially decreasing with
its Euclidean distance d from that maximum-reward tile:
r(x,y) = C · e−k·d((x,y),(xm,ym)), rounded to the nearest integer.
We chose an exponential relationship between features and
rewards to ensure there would be a clear advantage for partic-
ipants who discovered the maximum-reward tile. We chose
a constant (k = 0.4) that led to large differences between the
maximum and its closest neighbors while making it unlikely
that any tiles would have rewards of zero or one. We used
a random maximum reward in order to make it difficult for
participants to know they had found the most rewarding tile
without knowing the reward structure of the task.

When a tile was selected, the reward was displayed on the
tile for 1.5 seconds and added to the cumulative score on the
current grid. Participants could re-select tiles they had previ-
ously chosen. Participants were given no information about
the underlying structure of the grid prior to the task, and were
not informed that the tasks were related in any way, apart
from a note that there could be patterns behind the rewards.

Results and Discussion For this and all subsequent exper-
iments, we report the normalized scores (between 0 and 1),
by dividing each reward by the maximum reward in that grid.
We were first interested in seeing whether participants were
able to recognize similarities between tasks. We use a gen-
eral linear model (GLM), with the reward as outcome vari-
able. The turn and grid index were used as predictor vari-
ables. Both the turn (b = 0.02,se = 0.001, p < 0.001) and the
grid (b = 0.05,se = 0.005, p < 0.001) were significant fac-
tors. Following our hypothesis, participants selected better
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Figure 2: Each point represents a participant. The y-axis is the
average reward across all three grids. The x-axis is the proportion of
novel selections across all three grids. A value of 1 would mean only
selecting new tiles, 0 only selecting the previously-selected tiles.

tiles over time, suggesting that they were able to exploit the
underlying reward structure. Participants also improved their
performance across grids, suggesting they were able to trans-
fer structural knowledge across tasks (see Figure 3).

As a simple measure of a participant’s propensity to ex-
plore, we used the proportion of actions that selected a
previously-unseen tile (“exploration”) versus re-selecting a
previously-seen tile (“exploitation”). This distinction is more
natural in our tasks than in a traditional stochastic bandit task,
as in the latter it can be informative to re-select previously-
seen tiles to learn about their reward distributions. There
were significant behavioral differences indicated by how peo-
ple traded off between exploration and exploitation among
participants, and in the cumulative rewards they collected
(M = 0.49,SD = 0.30) (see Figure 2).

Twenty-two participants (31 percent) never re-selected
tiles more than twice in the majority of grids. We call these
participants full explore (FE) participants. We call the other
participants (n=49), that traded off exploration and exploita-
tion, Explore-Exploit (EE) participants.

EE participants improved across tasks (b = 0.07,se =
0.006, p < 0.001) (see Figure 3), supporting our hypothesis
that participants who used the underlying task structure to di-
rect their search and maximize reward were able to re-use
what they had learned to a new task.
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Figure 3: Performance of FE participants (n=22) and EE partici-
pants (n=49) in Experiment 1 across all three grids. Error bars in
this and all subsequent plots reflect standard errors of the mean.

Across all participants, the proportion of exploratory selec-
tions correlated negatively with score (r(140) = −0.71, p <
0.001), and FE participants earned lower scores than EE par-
ticipants (t(69) = 5.77, p < 0.001,d = 0.15). Their average

scores barely improved from one grid to the next (Figure 3;
b = 0.02,se = 0.008, p = 0.06).

We used a logistic regression model to evaluate partici-
pants’ ability to find the maximum across grids. More par-
ticipants found the maximum as they went on with the grids,
hinting that they were better at utilising the underlying task
structure (b = 0.64,se = 0.11, p < 0.001). Whether partic-
ipants were engaging in full exploratory or explore-exploit
strategies did not predict if they found the maximum in the
tasks (b < 0.001). Participants were significantly better than
chance at finding the maximua (0.65 of grids, vs. upper bound
chance proportion of 0.25; χ2(1,N = 1174) = 188.1, p <
0.001). Furthermore, participants had overall a strong ‘local
bias’ in their sampling, where they choose tiles close to their
last choice more often than chance given the distribution of
inter-tile distances (t(151) = −50.8, p < 0.001,d = −2.34)
(see Figure 4). This suggests that participants engaged in
local search strategies, rather than globally informative ac-
tions. Both EE and FE groups showed this bias, with adjacent
tiles selected in 49% of FE participants’ exploratory choices
(SD = 0.17) and 39% for EE participants (SD = 0.17).

In conclusion, Experiment 1 showed that some partici-
pants were able to learn the underlying task structure when
it was new and traded off between exploration and exploita-
tion to maximize their rewards. These participants transferred
knowledge across tasks that shared similarities in their under-
lying structure. However, a large proportion of participants
had a strong tendency to explore in circumstances where ex-
ploitation would have yielded much higher scores, preferring
unobserved tiles over known tiles with a high reward value.
FE participants presented some evidence for learning the un-
derlying structure, but this was not reflected in their score.
Why did so many participants adopt such an extreme ex-
ploratory policy? One possibility is that they were motivated
to learn more about the reward structure, or ensure they had
found the maximum possible reward, in line with the inher-
ent curiosity bias observed in people (Kidd & Hayden, 2015;
Gottlieb et al., 2013).
We also observed a locality bias in participants’ choices. This
may have been due to the memory demands of the task. Wu et
al. (2018) presented evidence that participants displayed an
ability to use generalization to direct their search. Unlike the
task used in their study, our task had the rewards disappear
after participants selected a tile. Remembering past observa-
tions when generalizing might be difficult, and could have led
participants to adopt policies that alleviated the complexity of
the task. For example, if participants tracked local gradients
in rewards and followed increasing rewards, this would only
require tracking 2-3 past observations while being less de-
manding than computing a surrogate model over the general
task structure. This would be consistent with the local search
strategies exhibited in other domains such as causal learn-
ing (Bramley et al., 2015) and category learning (Markant
et al., 2016), and the idea that people adapt their high-level
strategies to make the most of limited resources (Lieder et al.,
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2014). For FE participants, the local bias during exploration
could reflect a systematic and memory-efficient policy for ex-
haustively searching a subset of the tiles for a maximum.

Figure 4: Average distance between selections of EE and FE partic-
ipants in Experiment 1 presented with quantiles and kernel density
estimations. We use Euclidian distance between selections, with 0
counting for a re-selection of the previous click. The dotted line rep-
resents the average distance between all tiles in a grid. The shape of
the distribution is drawn using a (normal) Gaussian Kernel Density
Estimate cut at 0.

In Experiment 2, we presented participants with the same
task structure as in Experiment 1, but with changes designed
to understand and potentially reduce their strong tendency to
explore new tiles. These included persistent indicators of ex-
plored tiles’ rewards, checks of participants’ understanding
of the instructions, and different incentives.

Experiment 2
In this experiment, the reward associated with a given tile is
displayed continuously once it has been observed. We hy-
pothesized that with participants observations remaining vis-
ible, the overall reward pattern would be more evident. We
predicted that participants would be able to make more glob-
ally informative actions (i.e. exploratory selections would be
more distant from each other). Because the underlying struc-
ture is made more evident, we also assumed fewer partici-
pants would engage in full exploratory behavior.

Methods We recruited 72 participants using Amazon’s Me-
chanical Turk service identically to Experiment 1. Partic-
ipants all received a base payment of $0.75. The reward
scheme differed from that in Experiment 1: rather than grant-
ing bonuses to the top 10 percent, we gave all participants a
bonus proportional to their cumulative score, up a maximum
of $0.75. We excluded participants who failed to select more
than 2 different tiles on the majority of grids (n = 4). In Ex-
periment 2 when a tile is selected by a participant the reward
is continuously displayed on the tile and is added to the cur-
rent cumulative score on the current grid.

In another change from Experiment 1, tiles’ rewards were
persistently visible after they had been selected, under the
logic that it might improve participants’ ability to learn the
underlying reward structure and increase their ability to find
and exploit the maximum. We also added explicit instruc-
tions that participants could re-select tiles, and added a pre-
task questionnaire to make sure participants understood these
instructions. The questionnaire also required participants to
understand that their goal was to maximize reward (as op-
posed to discovering the underlying pattern, or finding the

maximum. Participants were not allowed to proceed with the
task until they answered all questions correctly.

Results and Discussion Contrary to our predictions that
participants would be less prone to full exploratory behav-
ior, a significantly larger proportion of participants showed
FE behavior in Experiment 2 as compared with Experiment
1 (.47, n = 32 vs. .31, n = 22; χ2(1,N = 139) = 18.6, p <
0.001). As in Experiment 1, the proportion of exploratory
selections correlated negatively with performance (r(134) =
−0.75, p < 0.0001). In Experiment 2, EE participants also
performed significantly better than FE participants (t(66) =
9.31, p< 0.0001,d = 0.23) and improved significantly across
tasks (b = 0.04,se = 0.007, p < 0.0001), whereas FE partici-
pants did not (b = 0.01,se = 0.006, p = 0.14).

1 5 10 15 20
Trial

0.0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

Full Explore participants

1 5 10 15 20

Explore-Exploit participants

Grid 3
Grid 2
Grid 1

Figure 5: Performance of FE participants (n = 49.) vs EE partici-
pants (n = 36).

To understand the effect of having observations available
throughout the task, we compare the performance of EE
participants in Experiment 2 (n=36) to the performance of
EE participants in Experiment 1 (n=49). Overall, EE par-
ticipants in Experiment 2 (M=0.58) did slightly better than
EE participants in Experiment 1 (M=0.56) (b = 0.04,se =
0.008, p < 0.001). This was most pronounced in the first grid
(t(84) = 2.18, p = 0.03,d = 0.08). We conjecture that EE
participants in Experiment 2 learned the reward pattern faster,
and EE participants caught up in subsequent grids. This sup-
ports the hypothesis that visible observations allowed partic-
ipants to generalize better, by supporting more global strate-
gies. To test this idea, we looked at the inter-selection dis-
tances between the first 5 selections of participants. EE par-
ticipants’ choices in Experiment 2 were more global, with
greater distances than EE participants’ choices in Experiment
1 (t(84) =−2.25, p = 0.03,d = 0.66) (see Figure 6).

Figure 6: Comparison of distances between selections of EE par-
ticipants in Experiment 1 and Experiment 2 (see Figure 4 for de-
tails). EE participants in Experiment 2 selected more ”global” ac-
tions (longer distances between selections) during their first actions.

Why did more participants engage in FE behavior in Ex-
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periment 2? We conjectured that participants were more mo-
tivated to observe rewards for new tiles when previous re-
wards remained visible, because the overall pattern – and the
possibility of better understanding it – might have been more
salient to them.

In Experiment 3, we sought to understand why some par-
ticipants might want to select new tiles almost exclusively,
rather than occasionally exploiting what they had learned to
earn greater rewards. After Experiment 1, we hypothesized
that this might have been due to an intrinsic epistemic drive
in participants. Experiment 2 showed that for EE participants
were able to leverage visible observations to conduct more
global exploration, and led to a better overall performance.
However, the observable rewards also seemed to add an in-
centive for many participants to exclusively choose novel ac-
tions, rather than maximising rewards. We hypothesized that
this would only be the case for new tasks when participants
had no prior knowledge about the underlying reward structure
of the tasks, since new observations would not be very infor-
mative if participants had a prior about the underlying reward
structure.

Experiment 3

We designed Experiment 3 to control explicitly for the poten-
tial epistemic drive of FE participants by familiarizing them
with the underlying reward structures prior to the task. By
making the structure clear to participants prior to the tasks,
our primary prediction for Experiment 3 was that fewer par-
ticipants would engage in FE behavior. We presumed the in-
trinsic motivation of observing new observations would be
attenuated when participants did not gain new information
about the task from those observations.

We also hypothesized there would be weaker or no
progress across grids since participants would already be fa-
miliar with the reward structure when they engage with the
first grid. Because of the training, we predicted participants
would be more efficient at finding and re-selecting tiles with
high values, and would thus perform better overall than in
Experiment 1 and 2. Experiment 3 was set up identically to
Experiment 2. Participants were told about the underlying
pattern and given three practice grids so they could learn the
reward structure prior to the task.

Methods We recruited 43 participants using Amazon’s Me-
chanical Turk service, identically to Experiment 2, with the
following changes: Participants were only recruited for three
grids rather than nine, following the same reward pattern dis-
cussed in Experiment 1 and Experiment 2. Because of the
shorter duration, participants were paid a base reward of $0.2.
We used a proportionally larger bonus of $0.6 under the logic
that this would further reduce the effects of epistemic drive.
Apart from the training grids presented prior to the task, in-
structions were identical to Experiment 2. During the train-
ing, participants were told that each grid had one maximum
tile, and the closer a tile is to the maximum the higher the re-
ward. The first training grid had all rewards displayed and

participants were instructed to familiarize themselves with
the nature of the task. The next two grids were similar to
the grids in the actual task (i.e. only observed tiles display
reward values) but participants were encouraged to learn the
pattern as well as they could. Throughout the task, instruc-
tions regarding reward maximisation and the possibility of
reselecting tiles were also displayed. We excluded one par-
ticipant who failed to select more than two different tiles on
the majority of grids and one participant who reported not
following the instructions upon completing the experiment.

Results and Discussion Surprisingly, 37 percent (15 out of
41) of participants engaged in Full Exploration (FE) in Ex-
periment 3. The proportion of FE participants in Experiment
3 was significantly less than the 47 percent we observed in
Experiment 2 (χ2(1,N = 109) = 8.82, p = 0.003), but was
nonetheless a higher proportion than anticipated.

As expected, EE participants in Experiment 3 did not im-
prove significantly across grids, since they had been trained
extensively on the rule before the assessed task started (b =
−0.01,se = 0.008, p = 0.112). The average performance of
EE participants was significantly better than EE participants
in Experiment 2 (t(61) = 2.29, p = 0.03,d = 0.07) and EE
participants in Experiment 1 (t(74) = 3.11, p = 0.003,d =
0.09, suggesting that participants were able to learn the rule
during the training and relied on this knowledge when faced
with new grids in the task.
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Figure 7: Average performance of EE participants (participants
that traded off between exploration and exploitation) across all three
grids in Experiment 1, 2 and 3.

To understand the effect of prior knowledge on partici-
pants’ exploratory patterns, we compared how EE partici-
pants explored compared to EE participants in Experiment 2.
Participants in Experiment 3 were significantly more locally
biased in their initial five selections (t(359), p < 0.001,d =
1.19). Participants in Experiment 3 were already familiar
with the Location rule, and it is probable that they were
able to find the maximum by ascending towards the max-
imum through small incremental steps. EE participants in
Experiment 3 had a significantly lower proportion of res-
elections (0.19 in Experiment 3 vs 0.28 in Experiment 2)
(χ2(1,N = 1367)= 17.16, p< 0.001). Given their higher per-
formance scores, EE participants in Experiment 3 were likely
to have a strategy more adapted to the task than in Experiment
2, where participants were still learning the reward structure.
Indeed, EE participants in Experiment 2 had a tendency to
settle on a sub-optimal tile, finding the maximum tile in 0.62
of grids. EE participants in Experiment 3 took smaller ex-
ploratory steps but found the maximum in 0.81 of the grids
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(χ2(1,N = 185) = 6.69, p = 0.01).

Figure 8: Distance between selections of participants (see Figure 4
for details). EE participants in Experiment 2 had more global obser-
vations than EE participants in Experiment 3. This can be explained
by that fact that they had no prior knowledge about the task structure.

Contrary to our hypothesis, many participants still engaged
in full exploratory behavior. Given this result, we hypothe-
sized that participants might be motivated by observing new
rewards rather than learning the underlying reward structure
per se and that this effect might be emphasized when re-
wards remain visible after having been observed. Indeed, in
Experiment 2, where rewards remained visible, significantly
more participants engaged in full-exploratory behavior than
in Experiment 1. We designed Experiment 4 to account for
these two factors of epistemic motivation: 1) wanting to learn
about the underlying reward structure and 2) wanting to at-
tend novel information.

Experiment 4
Experiment 4 followed the design details of Experiment 3, ex-
cept that rewards were not displayed continuously after they
had been selected - they are displayed on the tile and disap-
pear shortly after, like in Experiment 1.

Our main hypothesis for Experiment 4 was that fewer par-
ticipants would engage in full exploratory behavior, since the
epistemic reward is attenuated by not having the tiles visi-
ble after they have been selected and having training grids
prior to the task. We predicted EE participants would perform
similarly or slightly worse than in Experiment 3, because of
the constraints of not having previous observations visible,
but better than in Experiment 1 and 2. We also predicted we
would observe little or no transfer effect across grids.

Methods 39 participants were recruited using Amazon Me-
chanical Turk. One participant was excluded for failing to
select more than two different tiles, and one was excluded
because their performance was worse than chance.

Results In agreement with our hypothesis, only one partic-
ipant out of 37 engaged in Full Exploration. This was signif-
icantly less than in any other experiment. This supports the
idea that participants’ strategies were driven by an epistemic
drive which was twofold:

First, participants were motivated to reveal the underlying
reward structure, e.g., reducing the entropy about the struc-
ture of the task, or about the location of the maximum. In-
deed, participants were less likely to engage in FE behav-
ior in Experiment 4 (known structure and disappearing ob-

servations) than Experiment 1 (unknown structure and disap-
pearing observations), and significantly less in Experiment 3
(known structure and visible observations) than Experiment
2 (unknown structure and visible observations).

Second, participants were motivated to observe the out-
comes of individual actions. In Experiment 1,2 and 3 a sig-
nificant proportion of FE participants selected the maximum
but consistently opted for selecting novel options rather than
re-selecting a previous maximum observation, with a pref-
erence for actions that were local to their last one. Partic-
ipants’ drive to select novel actions was enhanced by the
fact that information did not need to be kept in working
memory. They were less engaged in FE behavior in Exper-
iment 1 (non-visible observations) than Experiment 2 (visi-
ble observations), and, similarly, less in Experiment 4 (non-
visible observations) than Experiment 3 (visible observa-
tions). Though EE participants in Experiment 3 performed
slightly better than in Experiment 4, this was not significant
(t(61) = 0.93, p = 0.35,d = 0.04). Participants in Experi-
ment 4 improved their average performance slightly across
tasks (b = 0.02,se = 0.007, p = 0.02).

The average distance between the initial five exploratory
selections of EE participants was not significantly different
in Experiment 3 and Experiment 4 (t(309) = −0.90, p =
0.37,d = −0.15). EE participants in Experiment 4 explored
significantly more locally than EE participants in Experiment
1 (t(374) =−2.73, p = 0.007,d = 0.47). Like in Experiment
3, this supports the hypothesis that participants who were fa-
miliar with the underlying structure of the grid were able to
find the maximum by taking local exploratory steps until they
eventually found the maximum.

Conclusion
In this paper, we focused on the behavioural analysis of par-
ticipants across four experiments to study how people learn
to select rewarding actions in a sequence of novel tasks. We
found that some participants were able to learn the under-
lying structure while balancing exploration and exploitation
to maximize their rewards across tasks. They improved their
performance from one task to the next by transferring abstract
knowledge about their environment. However, consistently
across tasks, we observed that a significant proportion of par-
ticipants engaged in purely exploratory behavior, largely ig-
noring the reward incentive. We showed that this behavior
could be manipulated by controlling the availability of infor-
mation as the learner selected actions, and by giving prior
knowledge before participants engaged with the task. We
suggest that people are motivated by two types of epistemic
drives: 1) to reduce uncertainty and learn about the structure
of the task and 2) to observe new evidence, regardless of its
informativeness about the global task structure. The latter
was evident when participants continued valuing new actions
over maximising rewards, even when they were familiar with
the task structure.

Different mechanisms for curiosity have been discussed in
the literature, and could be connected to how people learn
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in new environments when combined with trying to achieve
goals or maximising utility. One such strategy is to entirely
dismiss reward feedback, giving rise to a strong novelty drive.
This novelty search mechanism has been been shown to be
very successful in the context of Evolutionary Strategies for
tasks with tricky reward functions (Lehman & Stanley, 2011).
Some studies have shown that people are biased towards sur-
prise (Gottlieb et al., 2013; Itti & Baldi, 2006). Selecting new
actions would make sense under the assumption of possible
change, or if one believes that the environment is trying to
fool us. Third, the idea of epistemic actions could explain
part of people’s strong drive to select new actions, especially
under the constraint of cognitive load, when storing observa-
tions is expensive or unrealistic. Epistemic actions refer to
actions in the world that help solve problems by changing the
mental state of the agent, as opposed to performing computa-
tions in the head (Kirsh & Maglio, 1994). An example of this
behavior is the use of sticky-notes, or of arranging documents
in a way that makes it easier to retrieve them rather than by
memory alone. In the case of our experiment, observing new
information might have been perceived as much cheaper than
the possibility of generalizing from few observations.

In our study, we highlight that studying individual differ-
ences amongst participants can help us better understand the
complex mechanisms at play during active learning in new
environments. We hope that by pointing out surprising facets
of human behavior, this empirical study can guide the design
of better computational models of human learning and ex-
ploration. We are currently investigating how computational
models of memory, generalization and search (León-Villagrá
et al., 2018; Wu et al., 2018; Lucas et al., 2015) can give
us further insight into people’s representations and strategies
when learning in new environments.
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