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RESEARCH ARTICLE

Striatum-Centered Fiber Connectivity Is
Associated with the Personality Trait of
Cooperativeness
Xuemei Lei1, Chuansheng Chen2*, Chunhui Chen3, Qinghua He4, Robert K. Moyzis5,

Gui Xue3, Qi Dong3*
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Behavior, University of California, Irvine, California, United States of America, 3 National Key Laboratory of
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Southwest University, Beibei, Chongqing, China, 5 Department of Biological Chemistry, School of Medicine,
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Abstract
Cooperativeness is an essential behavioral trait evolved to facilitate group living. Social and

cognitive mechanisms involved in cooperation (e.g., motivation, reward encoding, action

evaluation, and executive functions) are sub-served by the striatal-projected circuits,

whose physical existence has been confirmed by animal studies, human postmortem stud-

ies, and in vivo human brain studies. The current study investigated the associations

between Cooperativeness and fiber connectivities from the striatum to nine subcortical and

cortical regions, including the amygdala, hippocampus, medial orbitofrontal cortex, lateral

orbitofrontal cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, posterior

cingulate cortex/retrosplenial cortex, dorsal cingulate cortex, and rostral cingulate cortex.

Results showed that Cooperativeness was negatively correlated with fiber connectivity for

the cognitive control system (from the dorsal caudate to the rostral cingulate cortex and

ventrolateral prefrontal cortex), but not with fiber connectivity for the social cognitive system

(e.g., connectivity with the medial prefrontal cortex and amygdala). These results partially

supported Declerck et al.’s (2013) cognitive neural model of the role of cognitive control

and social cognition in cooperation.

Introduction

Human being is a highly cooperative species. Researchers have investigated both cognitive and
neural mechanisms involved in cooperative behaviors. Relevant cognitive processes include
motivation, reward encoding, action evaluation, and executive functions in the context of social
interactions [1–3]. The neural bases of these cognitive functions have been localized to the stri-
atum and striatum-connected circuits [4–6]. For example, the amygdala and orbitofrontal cor-
tex have been found to be responsible for the processing of economic and social reward,
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emotion, and motivation [7–15], the anterior cingulate cortex for processing others’ versus
one’s own rewards [16], the dorsal anterior cingulate cortex for processing the intentions and/
or mind state of other individuals in social cooperative behaviors [17, 18], and the lateral and
dorsal prefrontal cortex for executive functions such as cognitive control and inhibitory control
[19].
Recently, Declerck and colleges [20] integrated previous research and proposed a model of

the neural basis of pro-social decisionmaking. According to [20], two cognitive neural systems
are involved in cooperative behaviors: the cognitive control system that processes extrinsic
cooperative incentives and is sub-servedby the lateral prefrontal cortex and anterior cingulate
cortex, and the social cognition system that processes trust and/or threat signals and is sub-
served by the medial prefrontal cortex and amygdala [20]. The cognitive control system has
modulatory effects on reward processing via the signaling of extrinsic (dis)incentives (e.g.
long-term benefits, building reputation, sanction and social norm, fear of punishment), and
the social cognition system has modulatory effects on reward processing via the signaling of
trust or threat (e.g. friend or foe, collaborator or competitor, compassion and empathy or
aggression) [20].
Althoughmuch is known about the neural basis of cooperative behaviors as reviewed above,

the previous studies focused on cooperative behaviors in experimental settings (as measured
with Prisoner’s DilemmaGame or the Public Goods task) [11, 12, 21], much less is known
about the neuroanatomical basis of human cooperativeness as a personality trait. Human
Cooperativeness was constructed as a pro-social and altruistic character in Cloninger’s bio-psy-
chosocialmodel of personality [22, 23]. It has been linked to one’s adaptation to external and
complex social contexts. Cooperativeness can bemeasured with the subscale of the same name
using the well-established Temperament and Character Inventory-Revised [22, 23]. People
with high scores in Cooperativeness are other-regarding, and have been found to be empathetic,
tolerant, compassionate, supportive, fair, and principled. People with low scores in Coopera-
tiveness are self-regarding, self-absorbed, intolerant, critical, unhelpful, revengeful, and
opportunistic.
These individual differences in Cooperativeness may reflect differential reliance on the two

systems proposed by Declerck et al. [20]. Self-regarding individuals are more sensitive to
extrinsic cooperative incentives and thus rely relatively more on cognitive control to make
decisions about cooperation, whereas other-regarding individuals are more sensitive to trust
signals to avoid betrayal and thus rely relatively more on the social cognition system [20].
Their differential reliance on the two systems may be linked to individual differences in fiber
connectivities between the striatum (responsible for the reward processing system) and the two
neural systems, either due to the neuroplasticity of long-term use of the systems or due to pre-
existing individual differences in neuroanatomy.
In the current study, we examined the associations betweenCooperativeness and striatum-

projected fiber connectivity. Based on previous research as mentioned above, the striatum was
chosen as the seed region and other nine subcortical and cortical regions were chosen as target
regions, including the medial orbitofrontal cortex (mOFC), lateral orbitofrontal cortex (lOFC),
ventrolateral prefrontal cortex (vlPFC), dorsolateral prefrontal cortex (dlPFC), posterior cingu-
late cortex/retrosplenial cortex (PCC), rostral cingulate cortex (rostral CC), dorsal cingulate
cortex (dorsal CC), hippocampus, and amygdala. These striatum-projected fiber connections
have been confirmed by animal studies, human post-mortem studies, and in vivo human brain
studies [24, 25]. The striatum and nine target masks (see S1 Fig for anatomical locations of
these masks) for each hemisphere were created based on the automated anatomical labeling
template [26] and previous studies [27, 28]. Based on the neural mechanisms of cooperative
behaviors [20], we hypothesized that Cooperativeness would be negatively correlated with
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anatomical connections from the striatum to the cognitive control regions, such as the rostral
CC, vlPFC and dlPFC (Hypothesis 1), and positively correlated with anatomical connections
from the striatum to the social cognition system such as medial prefrontal and orbitofrontal
regions (Hypothesis 2). In addition, we included connectivities from the striatum to the hippo-
campus and PCC because the involvement of long-termmemory and self-processing in social
interactions [29, 30]. No specific hypotheses were proposed for them.

Materials and Methods

Participants

Fifty male and 79 female college students (mean age = 20.10 yrs, ranging from 19 to 22 yrs)
were recruited from Beijing Normal University. All participants were Han Chinese with nor-
mal or corrected-to-normal vision and no neurological or psychiatric history. They also passed
the physical and clinical examinations for all freshmen administered by the University. All par-
ticipants were asked to complete the Temperament and Character Inventory-Revised (TCI-R)
[22, 23]. Participants were all right-handed based on the EdinburghHandedness Inventory
[31]. Age and handedness did not differ betweenmales and females. Participants were scanned
for diffusion tensor and high-resolution 3D anatomical images. They all gave informedwritten
consents and the study was approved by the BeijingNormal University’s Institutional Review
Board.

Image acquisition

Participants were scanned on a Siemens Trio 3T scanner with an eight-channel head coil in the
BeijingNormal University Imaging Center for Brain Research. The diffusion-weighteddata
were acquired using a twice-refocusedspin-echo EPI sequence with the following parameters:
TR/TE = 7200ms/104ms, 49 transverse slices, field-of-view= 230�230mm, matrix = 128�128,
slice thickness = 2.5mm, 1 directionwith b-value = 0s/mm2, 64 directions with b-value =
1000s/mm2. The final voxel size was 1.8mm×1.8mm×2.5mm. In addition, a high-resolution
3D anatomical image was obtained using T1-weightedMP-RAGE sequence with the following
parameters: TR/TE/FA = 2530ms/3.75ms/7°, FOV = 220�220mm, matrix = 256�256, slice
thickness = 1mm, 128 sagittal slices). Scanning lasted 18 minutes for each participant.

Image preprocessing

Diffusion tensor images (DTI) were processed using the FMRIB’s DiffusionToolbox (FDT 2.0)
[32] from the FMRIB’s Software Library (FSL, version 5.0.5; www.fmrib.ox.ac.uk/fsl) [33–35].
The standard pre-processing procedure was used for the probabilistic tractography of DTI data
[36, 37]. Correction of the diffusion data for eddy currents and head motion was performed
through the affine alignment to the no-diffusion-weighted reference volume (b-value = 0) [38].
Then, fitting of diffusion tensor was performed by using the DTIfit program implemented in
FMRIB’s diffusion toolbox. Diffusion-weighted images were spatially normalized into the
Montreal Neurological Institute (MNI) standard space with FMRIB's Linear Image Registra-
tion Tool (FLIRT) [39, 40] and FMRIB's Nonlinear Image Registration Tool (FNIRT) by indi-
viduals’ high-resolution T1-weighted structural image. Registrationwas confirmed by visual
inspection. Then, transformation matrix and warp field from individual participants’ diffusion
space to theMNI standard space, as well as inversed transformation matrix from theMNI stan-
dard space to individuals’ diffusion space, were acquired by the “convert_xfm” and “invwarp”
commands.

Cooperativeness and Striatum-Projected Fiber Connectivity
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Seed brain region and target brain regions

We created one seedmask and nine target masks for each hemisphere from the automated ana-
tomical labeling template [26] and previous studies [27, 28]. These masks included the follow-
ing regions (the numbers in parentheses refer to AAL map values and correspond to the left
hemisphere; subtract 1 for the right hemisphere; also note that somemasks were combined):
the striatum (72, 74), medial orbitofrontal cortex (mOFC;28, 6, 26), lateral orbitofrontal cortex
(lOFC;10, 16), ventrolateral prefrontal cortex (vlPFC;14), dorsolateral prefrontal cortex
(dlPFC; 14), posterior cingulate cortex/retrosplenial cortex (PCC; 68), rostral cingulate cortex
(rostral CC, 32), dorsal cingulate cortex (dorsal CC,34), hippocampus (38), and amygdala (42).
S1 Fig (see S1 Dataset for the brain masks) shows the anatomical locations of these brain
masks. Due to the fact that probabilistic tractography must be conducted in individual partici-
pants’ diffusion space using the FMRIB Diffusion Toolbox, all masks in the MNI standard
space were transformed to individuals’ diffusion space by using transformation matrix and
warp field produced in the previous step and voxels within masks were assigned the value of 1
and outside voxels were assigned the value of 0. Finally, volumes of these ten masks in individ-
uals’ diffusion space were obtained. The total intracranial volume (ICV) was obtained from
high-resolution T1-weighted anatomical image by using the Freesurfer segmentation software
package (http://surfer.nmr.mgh.harvard.edu/) [41].

Tractography and seed-based classification

Tractography and seed-basedclassificationmethods were used in the current study following
the well-validated protocol used in previous diffusion tensor imaging studies [27, 42–44]. For
each participant, Bayesian estimation of diffusion parameters was conducted with a dual-fiber
model allowing for crossing fibers by using the BedpostX program implemented in FMRIB’s
diffusion toolbox [43]. Probabilistic tractography was performed from the striatum to nine tar-
get regions (mOFC, lOFC, dlPFC, vlPFC, rostral CC, dorsal CC, hippocampus, and amygdala)
in individuals’ diffusion space by using PROBTRACKS program implemented in FMRIB’s dif-
fusion toolbox [43]. Five thousand tract-following samples were initiated in each voxel of the
striatum, and tracked to the nine target regions, which resulted in nine probabilistic maps of
fiber connectivity (tractographic images) for the nine target regions. The value of each voxel in
the tractographic image represented the number of the tracking to the target region (connectiv-
ity between the voxel in the striatum to all voxels in the target region). These nine images were
thresholded by at least 10 tracking in each voxel. All images passed the threshold. The value of
each voxel was then converted to proportional ratio by dividing it by the voxel’s total tracking
number to all regions. The resulting nine images were transformed back to the MNI standard
space for group statistical analyses. The final spatial resolution was 1 mm3. All preprocessing
was done separately for each hemisphere. In the final step, tractographic images in the MNI
standard space from the two hemispheres were combined and later used to examine correla-
tions betweenCooperativeness and striatum-projected fiber connectivity in general linear
models.
The group-averaged tractographic image for each target region was obtained by averaging

individual tractographic images across subjects, yielding nine group-averaged tractographic
images. The seed-based classification image of the striatum was created by coloring each voxel
in the striatum based on the group-averaged fiber connectivity.

Statistical Analysis

Independent sample t test in SPSS was used to examine gender differences in age, handedness,
personality traits, and ICV. Gender differences in volumes of the ten brain regions were
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analyzed by linear regression model with gender and ICV as predictors. Correlation analysis
among seven temperament and character factors was also performed.We also examined
whether gender interacted with the volumes of brain regions on Cooperativeness. We included
de-meaned gender, volumes of seed and target regions (striatum, rostral CC, dorsal CC, dlPFC,
vlPFC, lOFC, mOFC, PCC, hippocampus, and amygdala), total intracranial volume (ICV), and
interaction items of gender×brain volumes as predictors.
To find sub-regions of the striatum where fiber connectivitieswith target regions showed

significant correlations with Cooperativeness, we conducted voxel-wise analysis with the gen-
eral linear model by using the “randomize” program in FSL [45]. In the general linear model
(GLM), the Cooperativeness score was the covariate of interest, and gender and ICV were the
confounding variables. The permutation-based non-parametricmethod with the Threshold-
Free Cluster Enhancement (TFCE) [46, 47] was used to find significant clusters. We further
extracted the average value of fiber connectivity within significant regions for each participant
to visualize the correlations betweenCooperativeness and fiber connectivity within the specific
regions, and examined the interaction of gender×fiber connectivity on Cooperativeness.

Results

Correlations among the seven factors/dimensions in TCI-R were consistent with previous stud-
ies [48, 49]. Cooperativeness was positively correlated with Reward Dependence (r = 0.455,
p< 0.01) and Self-directedness (r = 0.413, p< 0.01), and negatively correlated withHarm
Avoidance (r = ‒0.311, p< 0.01).
Gender differences in temperaments, characters, volumes of the ten brain regions (e.g.

mOFC, lOFC, dlPFC, vlPFC, rostral CC, dorsal CC, PCC, hippocampus, and amygdala; see S1
Fig for anatomical locations of these regions), and ICV are shown in Table 1 (see S1 Table for
dataset). There were no significant gender differences in age, handedness, temperaments, and
characters (ps> 0.05). Males had larger ICV compared to females.With and without control-
ling the ICV, males consistently showed significantly larger brain regions than did females.
Regressionmodel with de-meanedCooperativeness, gender, volumes of the ten brain regions,
ICV, and gender × brain interaction did not reach significance (F(23, 128) = 1.197, p = 0.264),
which suggested no significantmain effects or interactions between gender and volumes of the
brain regions.
Tracts into the striatum from each target regions are shown in Fig 1 (see S2 Dataset for nine

group-average tractographic images). Apparently, different sub-regions of the striatum were
differentially connected to the nine target regions. Clear anterior-posterior, medial-lateral, and
dorsal-ventral connectivity patterns were observed,with the ventral and medial striatum show-
ing stronger connectionswith rostral CC,mOFC, and lOFC, whereas the dorsal and lateral stri-
atum showing stronger connections with dorsal CC, dlPFC, and vlPFC. The most posterior
putamen was connectedwith the amygdala and hippocampus, whereas the posterior caudate
was connectedwith PCC. These results were consistent with the segmentation pattern reported
in previous studies [27, 50–52], which confirmed the validity of probabilistic tracking of diffu-
sion tensor images in the current study.
General linear analysis in the “randomize” models for the whole sample revealed significant

negative correlations betweenCooperativeness and fiber connectivity from the caudate pro-
jected to rostral CC and vlPFC (Fig 2 and Table 2). There were no significant associations
betweenCooperativeness and fiber connectivities from the striatum to the amygdala, hippo-
campus, PCC, dACC, dlPFC,mOFC, and lOFC (see S3 Dataset for statistic maps of nine
target regions). As shown on the right side of Fig 2, Cooperativeness was negatively correlated
with caudate-rostral CC fiber connectivity (r = ‒0.355, p = 0.0004) and caudate-vlPFC fiber
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connectivity (r = ‒0.354, p = 0.00004). The sub-region of the caudate that was connected to the
rostral CC was located to the interface of the head of the caudate and posterior caudate,
whereas the sub-region of the caudate connected to the vlPFC was located in the posterior cau-
date. Individuals with weaker fiber connectivities from the caudate to rostral CC and vlPFC
had higher scores on Cooperativeness.
Fiber connectivitieswere extracted from the caudate where fiber connectivity to the rostral

CC and vlPFC showed significant correlations with Cooperativeness. The regression model
with demeaned gender, extracted caudate-rostral CC and caudate-vlPFC fiber connectivities,
and gender × fiber connectivity interactions items as predictors was used to examine gender
effects. The regression model was significant (F(5, 128) = 6.492, p< 0.0001, R2 = 0.209). As
expected, the main effects of extracted caudate-rostral CC fiber connectivity (Beta = ‒0.303,
t = ‒2.74, p = 0.007) and caudate-vlPFC fiber connectivity (Beta = ‒0.298, t = ‒3.47, p = 0.001)
on Cooperativeness were significant. There were no other significantmain effects of gender
(p = 0.658), and no significant gender × connectivity interaction (for rostral CC, p = 0.93; for
the vlPFC, p = 0.98). These results suggested no confounding effects from gender on the corre-
lations betweenCooperativeness and both caudate-rostral CC fiber connectivity and caudate-

Table 1. Descriptive statistics and gender differences in demographical, behavioral, and brain measures.

All (N = 129) Male (N = 50) Female (N = 79) Statistics

Variables Mean SD Mean SD Mean Mean T p

Demographic variables

Age 19.93 0.95 20.10 1.00 19.80 0.94 1.67 0.15

Handednessa 90.99 11.02 90.28 11.34 91.44 10.04 -0.61 0.54

Temperaments and Characters

Cooperativeness 125.49 12.85 124.22 13.88 126.29 12.17 -0.89 0.37

Novelty seeking 101.53 11.41 99.20 12.56 103.00 10.43 -1.86 0.07

Reward dependence 99.08 10.99 96.72 9.96 100.57 11.40 -1.96 0.06

Persistence 114.11 14.77 116.68 15.83 112.48 13.92 1.58 0.12

Harm avoidance 97.71 15.51 98.18 16.05 97.42 15.25 0.27 0.79

Self-directedness 124.34 16.34 123.72 15.95 124.73 16.66 -0.34 0.73

Self-transcendence 75.70 11.94 77.28 12.04 74.70 11.84 1.12 0.23

Volumes of Brainb

dlPFC 101601.8 11576.5 107762.7 11174.7 97702.5 10086.9 -4.71 <.0001

vlPFC 28315.1 4851.6 30336.4 4809.9 27035.8 4451.5 -3.41 0.001

lOFC 32133.7 3217.6 33755.7 3277.2 31107.2 2736.5 -4.51 <.0001

mOFC 30932.9 3566.8 33020.1 3100.7 29611.9 3205.8 -5.27 <.0001

Rostral CC 16046.1 2607.6 17262.9 2613.4 15276.0 2306.0 -3.74 <.0001

Dorsal CC 25764.2 2483.0 27156.9 2375.5 24882.7 2131.2 -5.03 <.0001

PCC 42031.1 4901.4 44869.1 4624.3 40234.9 4190.3 -5.08 <.0001

Amygdala 2841.3 371.3 3042.7 369.2 2713.9 313.3 -5.09 <.0001

Hippocampus 11770.0 896.6 12343.5 929.0 11407.0 657.8 -6.03 <.0001

Striatum 23843.3 2325.4 25192.8 1930.8 22989.2 2150.8 -5.04 <.0001

ICV 1459216.8 231556.24 1543662.4 207768.4 1405770.2 231098.4 -3.43 0.001

Abbreviations: ICV, intracranial volume; dlPFC, the dorsolateral prefrontal cortex; vlPFC, the ventrolateral prefrontal cortex; mOFC, the medial orbitofrontal

cortex; lOFC, the lateral orbitofrontal cortex; rostral CC, the rostral cingulate cortex; dorsal CC, the dorsal cingulate cortex; PCC, the posterior cingulate

cortex/retrosplenial cortex.
aDetermined using Edinburgh Inventory [31]; Scores greater than 0 indicate right-handedness. A score of 100 indicates strong right-handedness.
b For specific regions, ICV was controlled for.

doi:10.1371/journal.pone.0162160.t001
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vlPFC fiber connectivity. Together, fiber connectivities from the caudate to the rostral CC and
vlPFC accounted for 20.9% of variance of Cooperativeness.

Discussion

The current study used the noninvasive diffusion tensor imaging technique to investigate the
associations betweenCooperativeness and fiber connectivity from the striatum to nine
target regions including the PCC, dorsal CC, rostral CC, mOFC, lOFC, dlPFC, vlPFC, hippo-
campus, and amygdala. Based on Declerck et al.’s model [20], we proposed two hypotheses:
Cooperativeness would be negatively correlated with anatomical connections from the striatum
to the cognitive control regions including dorsal CC, rostral CC, vlPFC, and dlPFC (Hypothesis
1), and positively correlated with anatomical connections from the striatum to the social cogni-
tion system including the amygdala, mOFC, and lOFC (Hypothesis 2).
Consistent with our Hypothesis 1, results showed that individuals with stronger fiber con-

nectivity from the caudate to rostral CC and vlPFC had lower scores in Cooperativeness. Fiber

Fig 1. Tracts into the striatum from each target region. The color value at each voxel indicates the proportion of tracts

that begin at that voxel and end in the specified target region, compared to the total number of tracts that begin at the

voxel and end in any of the target regions. Only voxels with at least 5% target-ending tracts are displayed. Fig 1 is

modified from one of author’s published articles, which used the same tracking analysis [26]. Abbreviations: mOFC, the

medial orbitofrontal cortex; lOFC, the lateral orbitofrontal cortex; vlPFC, the ventrolateral prefrontal cortex; dlPFC, the

dorsolateral prefrontal cortex; PCC, the posterior cingulate cortex/retrosplenial cortex; dorsal CC, the dorsal cingulate

cortex; rostral CC, the rostral cingulate cortex; Amy, amygdala; Hipp, hippocampus; CO, Cooperativeness.

doi:10.1371/journal.pone.0162160.g001
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connectivities from the caudate to the vlPFC and rostral CC together accounted for 20.9% of
the variance of Cooperativeness. Strong and efficient functional coupling between the caudate
and lateral prefrontal cortex has been associated with better cognitive control [53], which,
according to Declerck et al. [20], is needed for self-regarding individuals (i.e., low altruistic
cooperativeness) to cooperate. Consistently, studies found that most individuals need to make
an effort to overcome selfish impulse in social decisionmaking [54], whereas self-regarding
individuals (low Cooperativeness) need a greater effort (i.e., increased activity in the cognitive
control system) to achieve the same level of behavioral performance [55]. Our results also
implied that anatomical connections from the caudate to rostral CC and vPFCmight be

Fig 2. Fiber tracking from the caudate to the rostral CC and vlPFC predicted Cooperativeness. The

coordinates in Fig 2 are the peaks within the significant regions. Tract strengths on the right side of Fig 2 are

the average values extracted from the significant sub-regions of caudate shown on the left side of Fig 2.

Abbreviations: rostral CC, the rostral cingulate cortex; vlPFC, ventrolateral prefrontal cortex; CO,

Cooperativeness.

doi:10.1371/journal.pone.0162160.g002

Table 2. Significant associations between Cooperativeness and fiber connectivity.

Fiber-originating Regions Fiber-terminating Regions Cluster Volume/mm3 Tmax MNI Coordinates r pa

All individuals (N = 129)

Rostral CCb Left caudate 1923 3.92 [-15, 24, 2] - 0.355 .0004

vlPFCc Left caudate 318 3.97 [-19, 1, 24] - 0.354, .00004

aSignificance level was adjusted for multiple tests of nine target regions (p = 0.05/9 = 0.004).
brostral CC, the rostral cingulate cortex
cvlPFC, the ventrolateral prefrontal cortex

doi:10.1371/journal.pone.0162160.t002
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positively associated with the selfishness trait, which is opposite to the altruisticCooperative-
ness. It should be noted that no significant associations were observed for the dorsal CC and
dlPFC. One explanation is that these areas have other specialized functions beyondmonitoring
social interactions. Specifically, compared to the rostral CC, the dorsal CC has been linked to
other functions such as motor control, pain perception, and error detection [56]. The dlPFC
has been found to represent relationships betweenmore complex/abstract rules for action and
desired outcomes [57–59].
Contrary to our Hypothesis 2, results showed no significant associations betweenCoopera-

tiveness and connections from the striatum to the social cognition regions, including the amyg-
dala, mOFC, and lOFC. The orbitofrontal cortex has been implicated in nearly every function
known to cognitive neuroscience and in most neuropsychiatric diseases [9]. Its functional het-
erozygosity might blunt the potential associations betweenCooperativeness and connectivity
from the striatum and orbitofrontal cortex. The amygdala, on the other hand, is specialized in
all aspects of emotion processing [7]. Its relations to interpersonal cooperation need further
research.
In addition to testing the two model-basedhypotheses, we investigated the association

betweenCooperativeness and connections from the striatum to PCC and hippocampus, and
found no significant results. The hippocampus and PCC are responsible for general memory
and self- processing, which are necessarily involved in social interactions [29, 30], but these
regions may play a less central role in cooperation as compared to other brain regions.
The current study had several limitations that should be noted. First, Cooperativeness as

measured in the current study refers to a character that reflects one’s inclination to cooperate
kindly and altruistically with others. It has all the limitations associated with a self-reportmea-
sure. Future research should combine both trait and behavioral measures (e.g., iterated Prison-
er’s DilemmaGame) of Cooperativeness. Second, although there were no significant gender
differences observed in the current study, gender differences should be further examined in
future studies. One previous VBM study found positive correlations betweenCooperativeness
and gray matter volumes in the frontal regions for females, but not for males [48]. The frontal
regions also showed significant gender differences in gray matter volumes [48]. Thus, there are
likely gender differences in the anatomical neural correlates of Cooperativeness. Third, the cur-
rent study focused only on fiber connectivity without directly examining the functions of the
relevant brain regions or functional connectivity among them. Future research in this area
should integrate more brain measures. Finally, the voxels in the current DTI dataset were
anisotropic, which did not allow for easy detection of specific smaller and bendier tracts [60,
61], that might be important for personality traits.
In summary, with probabilistic tracking of diffusion tensor images, the current study inves-

tigated the associations betweenCooperativeness and fiber connectivity between the striatum
and subcortical and cortical regions. After controlling for confounding factors such as gender
and the proportional volume of gray matter relative to the total intracranial volume, results
showed negative correlations betweenCooperativeness and fiber connectivity from the caudate
to the rostral CC and vlPFC. These findings provided support for the involvement of striatum-
projected networks in Cooperativeness.
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