
UC Davis
UC Davis Electronic Theses and Dissertations

Title
The Visual System Prioritizes High-Level Scene Properties for Attentional Selection

Permalink
https://escholarship.org/uc/item/18z5c48h

Author
Peacock, Candace Elise

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/18z5c48h
https://escholarship.org
http://www.cdlib.org/


 i 

The Visual System Prioritizes High-Level Scene Properties for Attentional Selection 
 

By 
 

CANDACE ELISE PEACOCK 
 DISSERTATION  

 
Submitted in partial satisfaction of the requirements for the degree of 

 
DOCTOR OF PHILOSOPHY  

 
in 
 

Psychology 
 

in the 
 

OFFICE OF GRADUATE STUDIES 
 

of the 
 

UNIVERSITY OF CALIFORNIA 
 

DAVIS 
 

Approved: 
 

       
John M. Henderson, Chair 

 
       

Joy J. Geng 
 

       
Steven J. Luck 

 
Committee in Charge 

 
2021 

 
 
 

 



 ii 

Acknowledgements 

Research 

I would first like to thank my mentor, John Henderson. I am grateful that he took the care 

and time to develop me as a scientist, for his encouragement to pursue difficult but worthwhile 

projects, and for teaching me to trust my scientific intuition. I would not be where I am today 

without his mentorship. I would also like to thank my committee members, Steve Luck and Joy 

Geng, for helping me navigate graduate school and for encouraging me to be the best scientist I 

can be. I would also like to extend my thanks to Deb Cronin, Jessi Goold, and Gwen Rehrig, who 

are the best collaborators and friends I could ask for. They made Davis an encouraging 

environment and I appreciate their research and practical insights. I would also like to 

acknowledge Taylor Hayes for teaching me that a simple, intuitive analysis is the best analysis. 

Finally, I would like to thank Marian Berryhill for preparing me for graduate school. I would not 

be here without her wisdom and guidance. 

Life 

I am grateful to my partner, Rio, for his steadfast love, support, intelligence, and humor 

during my PhD. His strength and passion for life and knowledge inspires me. Thanks for always 

encouraging me to persevere. I am thankful to my mom for always reminding me of how 

interconnected all the human systems are, to my dad whose intellectual curiosity for the world 

inspires me, and to my sisters, Alyssa and Brianna, for always reminding me that things will 

work out. I am thankful for Rio’s family for their kindness, for nourishing my soul with nature, 

and for teaching me that my best is enough. To all the rest of my friends (Riley, Kevin, Kate, and 

beyond): thanks for being constant reminders of how lucky I am to have friends like you.  

 



 iii 

Table of Contents 

Chapter 1: Introduction ................................................................................................................... 1 

Chapter 2: Meaning Guides Attention During Scene Viewing, Even When It Is Irrelevant .......... 6 

Chapter 3: The Role of Meaning in Attentional Guidance During Free Viewing of Real-World 

Scenes ........................................................................................................................................... 38 

Chapter 4: Meaning and Expected Surfaces Combine to Guide Attention During Visual Search in 

Scenes ........................................................................................................................................... 62 

Chapter 5: Conclusion ................................................................................................................... 94 

References ..................................................................................................................................... 97 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

Abstract 

As we sample the world via shifts in gaze, the visual system filters out irrelevant information to 

prioritize the most relevant visual input. However, there is debate regarding why one source of 

information is selected over another for attention. The literature has suggested that the physical 

salience of image features is a dominant guidance factor in scene perception. However, cognitive 

relevance theory suggests that it is actually scene meaning (our knowledge of the world) that 

guides attention. Because meaning and image salience are correlated but have been represented 

differently in the literature, however, it has previously been impossible to test whether meaning 

or image salience uniquely predict attention when they are represented in the same format. To 

test their unique contributions to attention, Chapters 2 and 3 tested whether attention, as 

operationalized by fixation densities, was more related to meaning maps, which capture the 

spatial distribution of semantic densities in real-world scenes, or to saliency maps, which capture 

the spatial distribution of physically conspicuous features in scenes. Chapter 2 used a task in 

which viewers were instructed to count bright patches in scenes or rate the overall brightness of 

scenes while their eye movements were recorded. This resulted in image salience being task-

relevant and meaning being task-irrelevant. Despite its task-irrelevance, meaning predicted 

fixation densities uniquely whereas image salience did not. A caveat of Chapter 2, however, is 

that the task required that eye movements be directed to scene-dependent information, thereby 

conflating whether the task was truly meaning-independent. To remedy this, Chapter 3 employed 

a free viewing task that did not require participants to attend to meaning or salience. Here, it was 

found that even during free viewing, meaning continued to explain the overall and unique 

patterns of attention significantly better than image salience. Together, these findings suggest 

that the visual system selects meaningful information for attentional selection, as consistent with 
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cognitive relevance theory. Finally, prior work has combined spatial constraint (knowledge of 

where objects are located in scenes) and image salience to predict where fixations are directed 

during visual search. Given that meaning uniquely predicts attention beyond image salience, 

however, Chapter 4 therefore tested whether combining spatial constraint and meaning also 

predicts eye movements during visual search. Here, meaning was represented as meaning maps 

and spatial constraint was represented as surface maps that represented the likely locations of 

target objects as continuous probabilities. The results showed that combining spatial constraint 

and meaning predicted eye movements better than spatial constraint or meaning alone. This 

suggested that the visual system selects meaningful regions that appear on surfaces related to 

visual search targets for fixation. These findings collectively demonstrate that the human visual 

system prioritizes scene regions that contain meaningful content based upon our knowledge of 

the world for attention. This has implications for cognitive relevance theory which describes how 

humans orient attention in the real world and may help inform technologies that reduce 

distractions.  

 

 

 

 

 

 

 

 

 



 1 

Chapter 1: Introduction 

As we sample information in the world via saccadic eye movements, the visual system 

must select and prioritize only the most relevant information for analysis at any one time. 

However, there is debate regarding why the visual system selects one source of information over 

another for attention. Understanding what regions of the world the visual system prioritizes and 

why it prioritizes them may help inform technologies that can reduce distraction. For instance, 

assisted driving might be able to identify and warn drivers about easy-to-miss hazards and virtual 

learning/work interfaces might better be able to emphasize important information and de-

emphasize less important information using the results of this research. This dissertation will 

explore the influences of different scene properties on the guidance of visual attention in real-

world scenes.  

Scene Meaning and Image Salience 

Image salience is defined as a physical property of a stimulus in which a region of low-

level visual features (colors, intensities, orientations) is sufficiently different from its 

surroundings, potentially resulting in that region ‘popping out’ for attention (Itti & Koch, 2001; 

Treisman & Gelade, 1980; Wolfe et al., 1989). Maps of image saliency (‘saliency maps’) 

measure the spatial distribution of physically conspicuous regions in real-world images (Harel et 

al., 2006; Itti & Koch, 2001; Koch & Ullman, 1987). Image salience is thought to be a dominant 

factor guiding visual attention in real-world scenes (Anderson et al., 2015; Borji et al., 2013, 

2014; Harel et al., 2006; Itti et al., 1998; Itti & Koch, 2001; Koch & Ullman, 1987; Parkhurst et 

al., 2002) and has been suggested to be behaviorally important because biological systems need 

to quickly detect threats in their environment (Itti & Koch, 2001).  
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The predictions made by saliency maps are bottom-up in nature—stimulus features, 

rather than higher-order cognitive processes, are the predicted drivers of attention. However, 

information that is relevant to the cognitive system, such as scene meaning (Antes, 1974; 

Castelhano & Henderson, 2007; Henderson, 2017; Mackworth & Morandi, 1967) and task 

(Ehinger et al., 2009; Einhäuser et al., 2008; Torralba et al., 2006), may influence attention above 

and beyond salience. Scene meaning is a guidance factor that describes what scene regions the 

cognitive system predicts will be informative (Mackworth & Morandi, 1967) or recognizable 

(Antes, 1974) based upon our prior knowledge of a scene’s semantic content. Cognitive 

relevance theory suggests attention is directed (or “pushed”) to information that is relevant to the 

cognitive system (e.g., meaningful scene regions) over information that is irrelevant (e.g., 

uninterpreted image features) (Buswell, 1935; Hayhoe & Ballard, 2005; Henderson, 2003, 2017; 

Henderson et al., 2009; Henderson & Hollingworth, 1999; Tatler et al., 2011; Yarbus, 1967). 

This stands at odds with image salience theory which suggests that attention is “pulled” to 

visually salient scene regions without regard to our knowledge of a scene. It could be the case, 

then, that despite the emphasis on image salience in the literature, it is actually scene meaning 

that guides attention rather than image salience.  

Nevertheless, the literature has typically modeled meaning (i.e., manipulating small 

image regions; Brockmole & Henderson, 2008; De Graef et al., 1990; Henderson et al., 1999; 

Loftus & Mackworth, 1978; Võ & Henderson, 2009) in a different format than image salience 

has been modeled (i.e., saliency maps; Harel et al., 2006; Itti et al., 1998; Koch & Ullman, 1987). 

Meaning maps resolve this issue as they represent the spatial distribution of meaning across a 

scene in the same format as saliency maps represent the spatial distribution of image salience 

(Henderson & Hayes, 2017). In an original study, Henderson and Hayes (2017) found that the 
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spatial distribution of eye fixations from aesthetic judgment and memorization tasks were more 

related to meaning than to image salience. When the intercorrelation between meaning and 

image salience was statistically controlled, meaning continued to account for variance whereas 

saliency did not. Although this initial study provided strong evidence that the unique variance in 

attention is captured by meaning but not image salience, the memorization and aesthetic 

judgment tasks used may have biased participants to attend meaningful scene regions, resulting 

in an undue advantage of meaning over saliency. Given this limitation, Chapters 2 and 3 test 

whether there is an advantage of meaning or image salience in tasks that do not bias participants’ 

attention towards meaning.  

Demonstrating an advantage of meaning over image salience in these contexts would 

suggest that viewers cannot help but attend to meaning (rather than image salience) regardless of 

the context/situation. This would allow future research to generate models of scene perception 

that incorporate scene meaning with other top-down forms of knowledge, such as task. It would 

also provide us a better understanding of why the visual system selects certain regions of the 

world for analysis over others which, in turn, could be used in real-world settings to minimize 

the influence of distractors on attention.  

Spatial Constraint 

If we observe an advantage of meaning over saliency on attention regardless of the task 

or context, then a next logical step is to test whether meaning interacts with other top-down 

forms of knowledge, such as spatial constraint, to guide attention. Spatial constraint describes 

our knowledge of the likely locations of objects in scenes. For example, our prior knowledge of 

paintings suggests they will appear in upper scene regions on walls, while garbage bins will most 

likely appear in lower scene regions on the floor. When saliency maps are combined with 
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information about the spatial constraint of a search target object (salient regions with a high 

probability of containing search targets are upweighted relative to regions with a low probability 

of containing search targets), these maps predict visual search fixations significantly better than 

image salience alone (Ehinger et al., 2009; Torralba et al., 2006). Although attention to image 

salience is modulated by spatial constraint, it is unknown whether attention to meaning, which 

outperforms image salience in predicting fixation placement (Hayes & Henderson, 2019; 

Henderson et al., 2018, 2019; Henderson & Hayes, 2017, 2018; Peacock et al., 2019b, 2020; 

Rehrig et al., 2020), is also modulated by spatial constraint. Chapter 4 combines spatial 

constraint and meaning to test whether the visual system selects meaningful regions at target-

relevant locations for attention. 

Knowledge of the relationship between meaning and spatial constraint is important for 

informing theories of visual search that integrate our knowledge of the world with our current 

goals to predict where we will look and why. Because both task (Ehinger et al., 2009; Einhäuser 

et al., 2008; Pereira & Castelhano, 2019; Torralba et al., 2006) and semantics (Antes, 1974; 

Castelhano & Henderson, 2007; Henderson, 2017; Mackworth & Morandi, 1967) independently 

predict where viewers fixate, it seems important to understand how the visual system integrates 

these forms of top-down knowledge to predict where viewers attend. This, in turn, could inform 

technologies that highlight relevant information with regard to our current goals. 

Summary 

This dissertation asks what types of real-world scene information are prioritized for 

attention. Chapters 2 and 3 aim to answer whether meaningful or physically salient scene regions 

are prioritized for attention during tasks in which either image salience is relevant (Chapter 2) or 

during free viewing which introduces no requirement to attend to meaning or salience (Chapter 
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3). Chapter 4 asks whether attention prioritizes meaningful scene regions that appear in target-

relevant locations. These studies will provide a framework to understand what scene properties 

the visual system prioritizes for attentional selection. By understanding why the visual system 

selects some scene properties at the expense of others, we can better understand how humans 

deploy attention in the real world.  
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Chapter 2: Meaning Guides Attention During Scene Viewing, Even When It Is Irrelevant 

The following chapter consists of a manuscript that is published at  

Attention, Perception, and Psychophysics. 

 

Abstract 

During real-world scene viewing, humans must prioritize scene regions for attention. What are 

the roles of low-level image salience and high-level semantic meaning on attentional 

prioritization? A previous study suggested that when salience and meaning are directly 

contrasted in scene memorization and preference tasks, attentional priority is assigned by 

meaning (Henderson & Hayes, 2017). Here we examined the role of meaning on attentional 

guidance using two tasks in which meaning is irrelevant and saliency is relevant: a brightness 

rating task and a brightness search task. Meaning was represented by meaning maps that 

captured the spatial distribution of semantic features. Meaning was contrasted with image 

salience represented by saliency maps. Critically, both maps were represented similarly, allowing 

us to directly compare how meaning and salience influenced the spatial distribution of attention 

as measured by fixation density maps. Our findings suggest that even in tasks for which meaning 

is irrelevant and salience is relevant, meaningful scene regions are prioritized for attention over 

salient scene regions. These results support theories in which scene semantics play a dominant 

role in attentional guidance in scenes.   
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 Because we can only attend to a small portion of the visual information available to us, 

we have to select some regions of the visual scene for preferential analysis at the expense of 

others via attention. It is therefore important to understand the mechanisms by which we guide 

our attention through real-world scenes. A good deal of work on attentional guidance in scenes 

has focused on the idea that attention is driven by bottom-up, low-level image features such as 

color, luminance, and edge orientation that are combined into saliency maps (Borji, Parks, & Itti, 

2014; Borji, Sihite, & Itti, 2013; Harel, Koch, & Perona, 2006; Itti & Koch, 2001). Saliency 

maps are appealing because they are computationally tractable and neurobiologically plausible 

(Henderson, 2007, 2017).  

At the same time, there is strong evidence that visual attention is influenced by cognitive 

factors such as the semantic informativeness of objects and entities within a scene (Antes, 1974; 

Henderson, 2017; Henderson, Brockmole, Castelhano, & Mack, 2007; Mackworth & Morandi, 

1967), along with the viewer’s task and current goal (Buswell, 1935; Hayhoe & Ballard, 2005; 

Hayhoe, Shrivastava, Mruczek, & Pelz, 2003; Henderson, 2007, 2017; Henderson & 

Hollingworth, 1999; Navalpakkam & Itti, 2005, 2007; Rothkopf, Ballard, & Hayhoe, 2016; 

Tatler, Hayhoe, Land, & Ballard, 2011; Yarbus, 1967). Yet much of the research on attentional 

guidance has continued to focus solely on image salience. One reason for the popularity of image 

salience is that it is relatively straightforward to compute and represent. In contrast, it has been 

less clear how to generate and represent the spatial distribution of semantic features across a 

scene. To directly compare image salience to semantic informativeness, it is necessary to 

represent scene meaning in a format equivalent to that of image salience.   

To address this issue, we have recently introduced the concept of meaning maps as a way 

to represent the spatial distribution of scene semantics (Henderson & Hayes, 2017). To generate 



 8 

meaning maps, Henderson and Hayes (2017) used crowd-sourced responses in which naïve 

participants rated the meaning of image patches from real-world scenes. Specifically, 

photographs of scenes were divided into a dense array of objectively defined circular 

overlapping patches at a coarse and a fine spatial scale. These patches were then shown to raters 

who rated how informative or recognizable each patch was (see also Antes, 1974; Mackworth & 

Morandi, 1967). Finally, meaning maps of each scene were created by interpolating the ratings at 

each spatial scale and averaging across the two scales.   

Meaning maps provide a pixel-by-pixel prediction of semantic content across a scene just 

as saliency maps provide a pixel-by-pixel prediction of saliency across a scene. Since meaning 

maps are represented in the same format as saliency maps, their predictions for visual attention 

can be directly compared to saliency maps using the methods that have typically been used to 

compare the relationship between saliency maps and attention (Carmi & Itti, 2006; Itti, Koch, & 

Niebur, 1998; Parkhurst, Law, & Niebur, 2002; Torralba, Oliva, Castelhano, & Henderson, 

2006). In this way, meaning maps and saliency maps together provide a way to compare how 

meaning and salience influence visual attention during real-world scene viewing. 

 Henderson and Hayes (2017) investigated the degree to which meaning maps and 

saliency maps predicted visual attention in real-world scenes during memorization and aesthetic 

judgment tasks. In that study, attention maps were created based on the locations of eye 

fixations. The results showed that meaning maps and saliency maps were highly correlated, and 

both were able to predict the spatial distribution of attention in scenes. Importantly, in both tasks 

meaning accounted for significantly more of the variance in attention than image salience. 

Further, when the variance due to salience was controlled, meaning accounted for significantly 

more of the remaining variance in attention, but when meaning was controlled, no additional 
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variance in attention was accounted for by salience. These results held across the entire viewing 

time. Henderson and Hayes (2018) replicated this pattern of results using attention maps 

constructed from duration-weighted fixations, and Henderson, Hayes, Rehrig, and Ferreira 

(2018) showed that the results extended to scene description tasks. In total, the findings showed 

that meaning (rather than image salience) was the main driver of visual attention.  

 Although the data favoring meaning over image salience have been clear, it could be 

argued that the viewing tasks used to compare meaning and image salience were biased toward 

meaning. That is, it might be that memorization, aesthetic preference, and scene description tasks 

require the viewer to focus on the semantic features of scenes. If this is true, then it may be that 

the advantage for meaning over salience is restricted to viewing tasks that specifically require 

analysis of meaning. To address this hypothesis, the current study investigated whether attention 

continues to be guided by meaning during scene viewing even when saliency is relevant, and 

meaning is irrelevant to the viewer’s task.  

Specifically, in the present study we used two tasks that were designed to emphasize 

salience and eliminate the need for meaning in attentional guidance: a brightness rating task in 

which participants rated scenes for overall brightness, and a brightness search task in which 

participants counted the number of bright patches within scenes (Figure 2.1). Critically, these 

tasks were designed to make meaning task-irrelevant and salience task-relevant. If the use of 

meaning to guide attention is task-based, then the relationship between meaning and attention 

found in our earlier studies should no longer be observed in these conditions. On the other hand, 

if the use of meaning to guide attention during scene viewing is a fundamental property of the 

attention system, then we should continue to observe a relationship between meaning and 

attention even when only salience is relevant to the task.  
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Method 

Eye-tracking  

 Participants. Thirty University of California, Davis undergraduate students with normal 

or corrected-to-normal vision participated in the experiment (25 females, average age = 20.84). 

All participants were naïve concerning the purpose of the experiment and provided verbal 

consent. The eye-movement data from each participant were filtered for excessive track losses 

due to blinks or loss of calibration. Following Henderson & Hayes (2017), we averaged the 

percent signal ([number of good samples / total number of samples] x 100) for each trial and 

participant using custom MATLAB code. The percent signal for each trial was then averaged for 

each subject and compared to an a priori 75% criterion for signal. Overall, all participants had 

greater than 75% signal resulting in no removed subjects.   

 Apparatus. Eye movements were recorded using an EyeLink 1000+ tower mount 

eyetracker (spatial resolution 0.01° rms) sampling at 1000 Hz (SR Research, 2010b). Participants 

sat 85 cm away from a 21” monitor, so that scenes subtended approximately 26.5° x 20° of 

visual angle at 1024 x 768 pixels. Head movements were minimized by using a chin and 

forehead rest. Although viewing was binocular, eye movements were recorded from the right 

eye. The experiment was controlled with SR Research Experiment Builder software (SR 

Research, 2010a). 

 Stimuli. Stimuli consisted of the 40 digitized photographs (1024 x 768 pixels) of indoor 

and outdoor real-world scenes. Scenes were luminance matched across the scene set by 

converting the RGB image of the scene to LAB space and scaling the luminance channel of all 

scenes from 0 to 1. All instruction, calibration, and response screens were luminance matched to 

the average luminance (M = 0.45) of the scenes.     
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Procedure. Each participant completed two scene-viewing conditions in a within-subject 

design: a brightness rating task and a brightness search task (Figure 2.1). During the brightness 

rating task, participants were instructed to rate the overall brightness of the scene on a scale from 

1 to 6 (1 = very dark; 2 = dark; 3 = somewhat dark; 4 = somewhat bright; 5 = bright; 6 = very 

bright). During the brightness search task, participants were instructed to count the number of 

bright patches within the scene. Because the goal of this study was to assess whether we could 

eliminate the relationship between meaning and attention in tasks that did not require the use of 

meaning, we emphasized speed and accuracy during both tasks. Participants were given a 

maximum scene-viewing time of 12 s (as done in Henderson & Hayes, 2017), but had the option 

to terminate the scene and continue to the response screen earlier by pressing a key on a button 

box (RESPONSEPixx; VPixx Technologies, Saint-Bruno, CA). We included the early 

termination option so that could focus on task-relevant eye movement behavior. Following their 

button press or the maxiumun 12 s of scene presentation, participants were shown a response 

screen in which the number 0 was enclosed in a square (Figure 2.1). Then, participants used left 

and right buttons on the button box to respectively increase or decrease the value of the number 

until it matched their rating or patch count for that scene. They then pressed the center key to 

continue to the next scene.   

Before starting the experiment, participants completed two practice trials in which they 

were familiarized with each condition and the button-box. After the practice trials, a 13-point 

calibration procedure was performed to map eye position to screen coordinates. Successful 

calibration required an average error of less than 0.49° and a maximum error of less than 0.99°. 

Presentation of each scene was preceded by a drift correction procedure, and the eye-tracker was 
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recalibrated when the calibration was not accurate. The calibration was also repeated between 

task blocks.   

The 40 scene stimuli were randomly divided into two scene sets (set A and set B), each 

composed of 20 scenes, and for each subject each set was assigned to one task. Task order and 

scene set assignment was fully counterbalanced across all participants. Additionally, scenes 

within each set were presented in a randomized order for each participant in each condition.   

 

 
Figure 2.1. Trial structure for the two tasks. The trial structure for (a) the brightness rating task 
and (b) the brightness search task. 
 

Analysis 

All analyses were chosen a priori and based on our previous work (Henderson & Hayes, 

2017, 2018; Henderson et al., 2018). 

Data Segmentation and Outliers 

Fixations and saccades were segmented with EyeLink’s standard algorithm using velocity 

and acceleration thresholds (30°/s and 9500°/s2; SR Research, 2010b). Eye movement data were 

imported offline into Matlab using the EDFConverter tool. The first fixation on each scene, 

always located at the center of the display as a result of the pretrial fixation marker, was 
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eliminated from analysis. Additionally, any fixations that were shorter than 50ms and longer than 

1500ms were eliminated as outliers. This outlier removal process resulted in loss of 3.94% of the 

data. 

Attention Maps 

 Attention maps were generated as described in Henderson and Hayes (2017). Briefly, a 

fixation frequency matrix based on the locations (x,y coordinates) of all fixations was generated 

across participants for each scene. A Gaussian low-pass filter with a circular boundary and a 

cutoff frequency of -6dB was applied to each matrix to account for foveal acuity and eyetracker 

error (Figure 2.2).  The spatial extent of the low pass filter was 236 pixels in diameter.  

Meaning Maps 

Meaning maps were generated as per Henderson and Hayes (2017). Because the nature of 

our tasks resulted in peripheral fixations, we used both unbiased and center-biased meaning maps 

(Figure 2.2). Overall, the unbiased maps provided better predictive power than the center-biased 

maps. However, we included analyses from both because center-biased maps are standard in the 

literature and thus provide a basis for comparison with previous studies. The center-biased 

meaning maps were generated by applying a multiplicative center bias operation to the meaning 

maps using the same center bias present in the saliency maps. 

Subjects. Scene patches were rated by 165 subjects on Amazon Mechanical Turk. 

Participants were recruited from the United States, had a HIT (human intelligence task) approval 

rate of 99% and 500 HITs approved, and were only allowed to participate in the study once. 

Participants were paid $0.50 cents per assignment, and all participants provided informed 

consent. 
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Stimuli. Stimuli consisted of the 40 digitized photographs used in the current experiment. 

Each scene was decomposed into a series of partially overlapping and tiled circular patches at 

coarse and fine spatial scales. The full patch stimulus set consisted of 12,000 unique fine patches 

and 4,320 unique coarse patches for a total of 16,320 scene patches.  

Procedure. Each participant rated 300 random scene patches extracted from the scenes. 

Participants were instructed to assess the meaningfulness of each patch based on how 

informative or recognizable they thought it was. During the instruction period, participants were 

provided with examples of two low-meaning and two high-meaning scene patches to make sure 

they understood the task. They then rated the meaningfulness of test patches on a six-point Likert 

scale (‘very low’, ‘low’, ‘somewhat low’, ‘somewhat high’, ‘high’, ‘very high’). Patches were 

presented in random order and without scene context, so ratings were based on context-

independent judgments. Each unique patch was rated three times by three independent raters for 

a total of 48,960 ratings. However, owing to the high degree of overlap across patches, each fine 

patch contained rating information from 27 independent raters, and each coarse patch from 63 

independent raters.  

Meaning maps were generated from the ratings by averaging, smoothing and combining 

the fine and coarse maps from the corresponding patch ratings. The ratings for each pixel at each 

scale in each scene were averaged, producing an average fine and coarse rating map for each 

scene. The average fine and coarse rating maps were then smoothed using thin-plate spline 

interpolation based on the center of each patch (MATLAB ‘fit’ using the ‘thinplateinterp’ 

method). Finally, the smoothed fine and coarse maps were averaged to produce the meaning map 

for each scene. 
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Saliency Maps 

Saliency maps for each scene were computed using the Graph-Based Visual Saliency 

(GBVS) toolbox with default settings (Harel et al., 2006). GBVS is a prominent saliency model 

that combines maps of low-level image features to create image-based saliency maps (Figure 

2.2).   

 Center bias is a natural feature of the GBVS saliency maps. To compare to unbiased 

meaning maps, we also generated GBVS maps without center bias (Figure 2.2). These maps 

were created using a whitening method (Rahman & Bruce, 2015), a 2-step normalization 

approach in which each saliency map is normalized to have 0 mean and unit variance. After this, 

a second pixel-wise normalization is performed so each pixel location across all the saliency 

maps has 0 mean and unit variance. 

 Histogram matching. Following Henderson and Hayes (2017), meaning and saliency 

maps were normalized to a common scale using image histogram matching with the fixation 

density map for each scene serving as the reference image for the corresponding meaning and 

saliency maps. This was accomplished by using the Matlab function ‘imhistmatch’ from the 

Image Processing Toolbox. 

 

a Rating fixations

e Center-biased meaning f Unbiased meaning g Center-biased saliency h Unbiased saliency

b Rating density map c Search fixations d Search density map
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Figure 2.2. An example scene with the associated maps for each task. (a) is an example scene 
with fixation locations from all participants in the rating task aggregated and overlaid. (b) is the 
fixation density map representing the example scene and fixation locations for the rating task. (c) 
is the example scene with fixations from the search task overlaid and (d) is the fixation density 
map representing the example scene and fixation locations in the search task. (e) is the center-
biased meaning map and (f) is the unbiased meaning map for the example scene. (g) is the 
center-biased saliency map and (h) is the unbiased saliency map for the example scene. 
 

Results 

Task Comparisons 

 Scene viewing. Because we gave participants the option to terminate each presentation 

trial early, we began by comparing the average scene-viewing (scene onset to response) time for 

each scene during each condition as well as the number of fixations per scene in each task 

(Figure 2.3). The average scene viewing time for the brightness rating task was 5262.55ms (SD = 

3141.39) with 15.56 fixations (SD = 9.84), and for the brightness search task was 10726.52ms 

(SD = 2420.55) with 32.28 fixations (SD = 8.20). Because the distributions were not normal 

(Figure 2.3), Wilcoxon rank sum tests were conducted and showed that the scene viewing times 

and number of fixations were significantly different between the rating and search tasks: Z’s > 

5.50; p’s < 0.001. These results showed that participants tended to view scenes during the rating 

task for shorter durations than the search task, with participants much more likely to use the 

entire 12s in the search compared to the rating task. The finding that the rating task produced 

significantly shorter viewing durations than the search task suggests that participants only 

viewed the scenes for the amount of time necessary to complete each task. Given that the 

viewing times and number of fixations were very different between the tasks, we treated the two 

tasks separately in the following analyses.  
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Figure 2.3. Scene-viewing times and number of fixations per trial for the brightness rating and 
brightness search tasks. Distributions are shown for the scene viewing times of (a) the brightness 
rating and (b) brightness search tasks, and the number of fixations per trial of (c) the brightness 
rating and (d) brightness search tasks. Black dotted vertical lines represent the mean for each 
task. 
 

Response agreement. To verify that subjects were staying on task and attending to 

brightness during the study, we examined response agreement in the rating and search tasks. If 

subjects were on-task, then their responses should vary as a function of scene and be consistent 

within scenes. That is, subjects should generally agree in their judgements of brightness in the 

rating task and the number of bright regions in the search task. On the other hand, if subjects 

were simply attending to scene content rather than following instructions, then responses should 

be unsystematic across scenes and subjects. As can be seen in Figure 2.4, the former was true, 

suggesting that subjects were indeed following instructions. 
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Figure 2.4. Response variability as a function of scene. The average participant response and 
standard error of responses as a function of scene for (a) the brightness rating task and (b) the 
patch count task.  
 
Overall Scene Analyses 

Following Henderson and Hayes (2017), we used squared linear and semi-partial 

correlations to quantify the degree to which meaning maps and saliency maps accounted for 

shared and unique variance in the attention maps. Specifically, we conducted two-tailed, two-

sample t-tests for the correlations across scenes to statistically compare the relative ability of 

meaning and salience to predict attentional guidance. 

For comparison to the literature, we tested how well traditional center-biased meaning 

and saliency maps could account for attention. In addition, because the center bias was 

substantially reduced in the brightness search task compared to the brightness rating task (Figure 
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2.5), we also conducted analyses using unbiased meaning and saliency maps that excluded a 

center bias.  

 
Figure 2.5. Center biased maps. Fixation density maps aggregated across subjects and scenes are 
shown for (a) the brightness rating task and (b) the brightness search task.  
 

Brightness rating task. Using the center-biased maps, for squared linear correlations on 

average across all 40 scenes, meaning accounted for 55% of the variance in fixation density (M = 

0.55, SD = 0.12) and salience accounted for 33% of the variance in fixation density (M = 0.33, 

SD = 0.14) (Figure 2.6). This difference between meaning and saliency maps was significant: 

t(78)= 7.31, p < 0.001, 95% CI = [0.16, 0.28]. Similarly, for squared semi-partial correlations, 

meaning accounted for 24% of the variance in fixation density (M = 0.24, SD = 0.13) controlling 

for salience, but salience accounted for only 3% of the variance in fixation density controlling for 

meaning (M = 0.03, SD = 0.03) (Figure 2.6). This difference was again significant: t(78)= 10.57, 

p < 0.001, 95% CI = [0.17, 0.25]. This pattern of results did not change when using the unbiased 

meaning and saliency maps (linear: t(78) = 8.79, p < 0.001, 95% CI = [0.16, 0.25]; semi-partial: 

t(78)= 9.62, p < 0.001, 95% CI = [0.16, 0.25]) (Figure 2.6). These findings suggest that meaning 

played a dominant role in the guidance of attention even though meaning was irrelevant and 

salience was central to the brightness rating task.   
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Figure 2.6. Squared linear correlation and semi-partial correlation by scene for the brightness 
rating task. Line plots show (a) the squared linear and (b) semi-partial correlations between the 
fixation density maps and meaning (red circles) and salience (blue squares) using center-biased 
meaning and saliency maps. Line plots also show (c) the squared linear and (d) semi-partial 
correlations using unbiased meaning and saliency maps. The scatter plots on the right show the 
grand mean (black horizontal line), 95% confidence intervals (colored boxes), and 1 standard 
deviation (black vertical line) for meaning and salience across all 40 scenes for each analysis.   
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Brightness search task. Using the center-biased maps, meaning accounted for 22% of 

the variance in fixation density (M = 0.22, SD = 0.13) and salience accounted for 24% of the 

variance in fixation density (M = 0.24, SD = 0.12) (Figure 2.7). This difference was not 

significant: t(78)= -0.33, p = 0.74, 95% CI = [-0.07, 0.05]. Similarly, for the semi-partial 

correlations, meaning accounted for 5% of the variance in fixation density controlling for 

salience (M = 0.05, SD = 0.07) and salience accounted for 6% of the variance in fixation density 

controlling for meaning (M = 0.06, SD = 0.07) (Figure 2.7). Again, this difference was not 

significant: t(78)= -0.59, p = 0.56, 95% CI = [-0.04, 0.02]. Importantly, however, this pattern of 

results changed when using the unbiased meaning and saliency maps (Figure 2.7). Using the 

unbiased maps, meaning accounted for 22% of the overall variance in attention (M = 0.22, SD = 

0.11) whereas salience explained only 4% of the variance (M = 0.04, SD = 0.05) for the linear 

correlations, t(78)= 6.42, p < 0.001, 95% CI = [0.10, 0.18]. Similarly, for the semi-partial 

correlations, meaning accounted for 18% of the total variance in attention (M = 0.18, SD = 0.11) 

whereas salience explained only 1% of the variance (M = 0.04, SD = 0.04), t(78)= 7.42, p < 

0.001, 95% CI = [0.10, 0.18]. These findings suggest that when the more distributed nature of 

attention away from scene centers and to scene peripheries in the brightness search task was 

taken into account, meaning influenced attentional guidance more than salience even though 

meaning was irrelevant and saliency was central to the task.  
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Figure 2.7. Squared linear correlation and semi-partial correlation by scene for the brightness 
search task. The line plots show (a) the linear and (b) semi-partial correlations between fixation 
density and meaning (red circles) and salience (blue squares) for the search task using the center-
biased meaning and saliency maps. Line plots also show (c) the linear and (d) semi-partial 
correlations for the search task using the unbiased meaning and saliency maps. The scatter plots 
on the right show the corresponding grand mean (black line), 95% confidence intervals (colored 
box), and one standard deviation (black vertical line) for meaning and salience across all scenes.   
 
Fixation by Fixation Analyses 
 

Previously, it has been posited that attention during scene viewing might initially be 

guided by salience, but that as time progresses, meaning begins to play an increasing role 
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(Anderson, Donk, & Meeter, 2016; Anderson, Ort, Kruijne, Meeter, & Donk, 2015; Henderson 

& Ferreira, 2004; Henderson & Hollingworth, 1999; Parkhurst et al., 2002). On the other hand, 

in two studies investigating the roles of meaning and salience in memorization and scene 

description tasks, we did not observe this change from guidance by salience to guidance by 

meaning (Henderson & Hayes, 2017; Henderson et al., 2018). Instead, meaning was found to 

guide attention from the first saccade. Because the current tasks were designed to make meaning 

irrelevant and salience central, they provide another opportunity to test this hypothesis.  

We conducted a temporal time-step analysis in which a series of attention maps were 

generated from each sequential fixation (1st fixation, 2nd fixation, 3rd fixation, etc.) for each scene 

in each task. We then correlated each attention map for each fixation and scene using both the 

center-biased and unbiased meaning and saliency maps to calculate the squared linear and semi-

partial correlations. Then the correlations for each scene and fixation were averaged across 

scenes to assess how meaning and image salience predicted attention on a fixation by fixation 

basis. The prediction of the salience first hypothesis is that the correlation between saliency and 

attention maps should be greater for earlier than later fixations, with salience dominating 

meaning in the earliest fixations.  

Brightness rating task. Using the center-biased maps, meaning accounted for 34%, 

23%, and 17% of the variance in the first 3 fixations whereas salience accounted for 8%, 12%, 

and 11% of the variance in the first 3 fixations, respectively, for the linear correlations (Figure 

2.8). Two-sample, two-tailed t-tests compared meaning and salience for all 8 initial fixations 

using p-values corrected for multiple comparisons using a false discovery rate (FDR) correction 

(Benjamini & Hochberg, 1995). Overall, this confirmed the advantage for meaning over salience 

for all 8 fixations (all FDR ps < 0.05). Similarly, for the semi-partial correlations, meaning 
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accounted for 28%, 14%, and 9% of the variance in the first 3 fixations and salience accounted 

for 2%, 3%, and 3% of the variance in the first 3 fixations (Figure 2.8). Again, meaning 

predicted attention significantly better than salience for all 8 initial fixations (all FDR ps < 

0.001). Using the unbiased maps, this overall pattern of results did not change (linear and semi-

partial correlations: all FDR ps < 0.001) (Figure 2.8).  These results do not support the 

hypothesis that the influence of meaning on attentional guidance was delayed to later fixations.  
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Figure 2.8. Fixation by fixation time-step analyses for the brightness rating task. The line plots 
show (a) the squared linear and (b) semi-partial correlations between fixation density and 
meaning (red circles) and salience (blue squares) as a function of fixation number collapsed 
across scenes for the rating task using the center-biased maps. Line plots also show (c) the 
squared linear and (d) semi-partial correlations between fixation density and meaning (red 
circles) and salience (blue squares) as a function of fixation order using the unbiased maps. Error 
bars represent the standard error of the mean. 
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Brightness search task. Using the center-biased maps, meaning accounted for 30%, 

14%, and 7% of the variance in the first 3 fixations and salience accounted for 11%, 16%, and 

14% in the first 3 fixations, respectively, for the linear correlations (Figure 2.9). Here, meaning 

produced an advantage over salience on the first fixation (FDR p < 0.001) but not fixations 2 

through 8 (FDR p > 0.05). For the semi-partial correlations, meaning explained 22%, 8%, and 

3% of the variance in the first 3 fixations and salience accounted for 3%, 10%, and 10% in the 

first 3 fixations (Figure 2.9). A significant advantage for meaning was observed on the first 

fixation (FDR p < 0.001) and for salience on the third fixation (FDR p < 0.05), with no other 

comparisons reaching significance (FDR ps > 0.05).  

Using the unbiased meaning and saliency maps, the pattern of results changed. For the 

linear correlations, meaning accounted for 5%, 6%, and 4% of the variance and salience 

accounted for 1%, 4%, and 5% of the variance in attention in the first 3 fixations. Turning to the 

semi-partial correlations, meaning accounted for 5%, 6%, and 3% of the variance and salience 

accounted for 0.1%, 3%, and 4% of the variance in attention in the first 3 fixations. Meaning still 

produced an advantage over salience for the first fixation (linear and semi-partial FDR p < 0.05) 

with all other fixations nonsignificant (linear and semi-partial FDR p > 0.05). The advantage for 

saliency over meaning for the third fixation seen in the center-biased maps was not observed 

with the unbiased maps.  

The fixation by fixation analyses were not consistent with the salience first hypothesis. In 

the analyses using both the center-biased and unbiased maps, meaning was more important than 

salience at the first fixation. Using the center-biased maps, salience was stronger in the third 

fixation. This result, however, was not true using the unbiased maps, suggesting that the 

advantage for saliency in the center-biased maps was driven by the center bias rather than 
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saliency itself. Overall, the results are not consistent with the hypothesis that attentional guidance 

transitions from salience to meaning over time. 

 
Figure 2.9. Fixation by fixation time-step analyses for the brightness search task. The line plots 
show (a) the squared linear and (b) semi-partial correlations between fixation density and 
meaning (red circles) and salience (blue squares) as a function of fixation number collapsed 
across scenes for the search task using the center-biased maps. Line plots also show (c) the 
squared linear and (d) semi-partial correlations between fixation density and meaning (red 
circles) and salience (blue squares) as a function of fixation order using the unbiased maps. Error 
bars represent the standard error of the mean. 
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Saccade Amplitude Analyses 

In the analyses thus far, fixations following both shorter and longer saccades were 

included. It could be that meaning guides attention within local scene regions, whereas salience 

guides attention as it moves from one scene region to another. To test this hypothesis, we 

analyzed the role of meaning on attentional guidance as a function of saccade amplitude. If 

meaning plays a greater role for local (e.g., within-object) shifts of attention, then meaning 

should be more related to attentional selection following shorter saccades versus longer saccades. 

Such a pattern might be more likely in the case of the current study because meaning was not 

relevant to the tasks. To investigate this hypothesis, we assessed how meaning and salience 

related to attention following saccades of shorter to longer amplitudes (Figure 2.10). 

Specifically, saccade amplitudes were binned by decile, and fixation density maps were created 

for each saccade amplitude decile. Meaning and salience maps were then correlated with the 

fixation density maps for each decile. We conducted these analyses using both the center-biased 

and unbiased meaning and saliency maps. The saccade amplitude average for the rating task was 

5.37° (SD = 3.41) and for the search task was 4.61° (SD = 3.51).   

Brightness rating task. For the brightness rating task, using the center-biased maps, 

meaning produced an advantage over salience for saccade amplitude deciles 1 through 7 and 9 

(FDR p < 0.05) but not deciles 8 and 10 (FDR p > 0.05). For the semi-partial correlations, 

meaning explained significantly more of the variance in fixation density than salience for all 10 

saccade amplitude deciles (all FDR ps < 0.05). When using the unbiased meaning and saliency 

maps, this pattern of results became stronger as meaning produced an advantage over saliency 

across all deciles in both the linear and semi-partial correlations (FDR p < 0.05).   
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Brightness search task. For the brightness search task, using the center-biased maps, 

there were no significant differences between meaning and salience for any saccade amplitude 

deciles in either the linear or semi-partial correlations (all FDR ps > 0.05). When using the 

unbiased maps, on the other hand, this pattern of results changed as meaning produced an 

advantage over saliency for saccade amplitude deciles 1 through 9 (FDR p < 0.05) but not 10 

(FDR p > 0.05).  

Overall, it appears that meaning was used to guide attention for both short and long shifts 

of attention, though there was some evidence that this influence was reduced when the scene 

peripheries were removed from the analyses (i.e., with the center-biased maps) and for the 

longest shifts of attention.   
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Figure 2.10. Squared linear correlation and squared semi-partial correlation as a function of 
saccade amplitude to fixation. The saccade amplitude results for the rating task are shown in the 
first column (a through e) in which (a) shows a histogram of saccade amplitude frequencies and 
average saccade amplitude (black dotted line), (b) and (d) show the squared linear and (c) and (e) 
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show the semi-partial correlations between meaning (red circles) and saliency (blue squares) and 
fixation density as a function of saccade amplitude percentiles prior to fixation for the center-
biased maps (b and d) and the unbiased maps (c and e). The second column (f through j) shows 
the saccade amplitude results for the search condition in which (d) shows a histogram of saccade 
amplitude frequencies and the average saccade amplitude (black dotted line), (g) and (i) show the 
squared linear correlations and (h) and (j) show the semi-partial correlations between meaning 
(red circles) and saliency (blue squares) with fixation density as a function of saccade amplitude 
percentiles using the center-biased maps (g and h) and the unbiased maps (i and j). Data points 
are averaged across all 40 scenes at each decile. Error bars represent standard error of the mean.   
 

General Discussion 
 
 Past research has emphasized image salience as a key basis for attentional selection 

during real-world scene viewing (Borji et al., 2014; Borji et al., 2013; Harel et al., 2006; Itti & 

Koch, 2001; Koch & Ullman, 1985; Parkhurst et al., 2002). Although this previous work has 

provided an important framework for understanding attentional guidance in scenes, it downplays 

the fact that attention is strongly guided by cognitive factors related to semantic features that are 

relevant to understanding the scene in the context of the task (Buswell, 1935; Hayhoe & Ballard, 

2005; Hayhoe et al., 2003; Henderson, Brockmole, Castelhano, & Mack, 2007; Henderson, 

Malcolm, & Schandl, 2009; Land & Hayhoe, 2001; Rothkopf et al., 2016; Yarbus, 1967). With 

the development of meaning maps, which capture the spatial distribution of semantic content in 

scenes in the same format that saliency maps capture the spatial distribution of image salience, it 

has become possible to directly compare the influence of meaning and image salience on 

attention in scenes (Henderson & Hayes, 2017).  

In prior studies comparing meaning and image salience during scene viewing, meaning 

has better explained the spatial and temporal patterns of attention (Henderson & Hayes, 2017, 

2018; Henderson et al., 2018). However, those studies used memorization, aesthetic judgement, 

and scene description viewing tasks, and it could be argued that those tasks were biased towards 

attentional guidance by meaning. The current study sought to determine whether the influence of 
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meaning on attention would be eliminated in tasks that do not require any semantic analysis of 

the scenes. To test this hypothesis, we used two viewing tasks designed to eliminate the need for 

attending to meaning: a brightness rating task in which participants rated the overall brightness 

of scenes, and a brightness search task in which participants counted the number of bright areas 

in scenes.  

 For the brightness rating task, we found that meaning better explained the spatial 

distribution of attention than image salience. This result was observed both overall and when the 

correlation between meaning and image salience was statistically controlled, and held for early 

scene viewing, for short and long saccades, and using center-biased and unbiased meaning and 

saliency maps. For the brightness search task, using center-biased meaning and saliency maps, 

there were no differences between meaning and salience overall or when controlling for their 

correlation. However, the center-biased maps did not capture the fact that during the search task, 

the center bias in attention was greatly attenuated because attention was distributed much more 

uniformly over the scenes. Meaning and saliency maps with center bias over-weight scene 

centers and ignore scene peripheries, opposite to the attention maps actually observed. When the 

attention maps were analyzed using meaning and saliency maps that did not include center bias, 

the results were similar to those of the brightness rating task: meaning explained the variance in 

attention better than salience both overall and after statistically controlling for the correlation 

between meaning and salience. This pattern held for short and long saccades, and for the first 

saccade. 

 Overall, the results provide strong evidence that the meaning of a scene plays an 

important role in guiding attention through real-world scenes even when meaning is irrelevant 

and image salience is relevant to the task. Converging evidence across two viewing tasks that 
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focused on an image property related to image salience showed that meaning accounted for more 

variance in attentional guidance than salience, and critically, that when the correlation between 

meaning and salience was controlled, only meaning accounted for significant unique variance.  

These results indicate that the guidance of attention by meaning is not restricted to viewing tasks 

that focus on encoding the meaning of the scene, strongly suggesting a fundamental role of 

meaning in attentional guidance in scenes.  

Although the main pattern of results was clear and generally consistent across the two 

tasks, a few points are worth additional comment. First, our results suggest that tasks can differ 

in the degree to which center bias is present. Here, center bias was much greater when judging 

overall scene brightness than when searching for bright scene regions. These differences in 

center bias for the rating and search tasks likely occurred due to differences in the requirements 

of the tasks. The rating task simply required participants to rate the overall brightness of scenes, 

so there was no particular reason for viewers to direct attention away from the centers and to the 

peripheries of the scenes. In comparison, the search task required participants to count individual 

bright regions, many of which appeared away from the scene centers and in the peripheries. This 

resulted in fewer central fixations and more peripheral fixations in the brightness search task than 

the brightness rating task. Because there were more peripheral fixations in the search task, the 

center-biased meaning and saliency maps did not have the same predictive power to capture the 

relationship between meaning, salience, and attention as they did for the brightness rating task. 

Indeed, for this reason neither meaning nor saliency maps did a particularly good job of 

predicting attention when center-bias was included in the maps. However, when the center bias 

was removed from the two prediction maps, meaning maps were significantly better than 

saliency maps in accounting for attention.   
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The difference between the center-biased and unbiased maps was also evident in the 

analysis focusing on the earliest eye movements. According to the “salience first” hypothesis, we 

should have seen an initial bias of attention toward salient regions followed by a shift to 

meaningful regions. In our prior studies, we instead observed that meaning guided attention from 

the very first eye movement (Henderson & Hayes, 2018, Henderson et al., 2018). In the present 

study, when center-bias was included in the meaning and saliency maps in the brightness search 

task, meaning initially guided attention in the first eye movement, but there was a tendency for 

salience to take over for a few saccades before meaning again dominated. This pattern might 

offer some small support for salience first. However, as noted, viewers were much less likely to 

attend to scene centers and more likely to move their eyes to the edges of the scenes in the 

brightness search task. When the unbiased maps were used in the search task analysis, the trend 

from meaning to salience over the first few fixations was not observed. At best, then, there is a 

hint that when the viewer’s task is explicitly to find and count salient scene regions, they may be 

slightly more biased early on to attend to regions that are more salient. However, this result is 

weak at best given it appeared only in the third fixation and disappeared in the unbiased map 

analysis. Overall, even in a task that explicitly focused on salience and in which meaning was 

completely irrelevant, meaning played a stronger role in attentional guidance from the very 

beginning of viewing.  

The type of meaning studied in the current work is what we refer to as context-free 

meaning, in that it is based on ratings of the recognizability and informativeness of isolated scene 

patches shown to raters independently of the scenes from which they are derived and 

independently of any task or goal besides the rating itself. Other types of meaning may be of 

interest in future studies. For example, we can consider contextualized meaning in which 



 35 

meaning is determined based on how important a scene patch is with respect to its global scene 

context. Additionally, the role of task may affect meaning as well. For example, meaning within 

a scene may change depending on a viewer’s current tasks or goals. Because meaning can be 

defined in so many ways, it is necessary that we understand how these variants influence 

attentional guidance. The meaning map approach provides a method for pursuing these important 

questions.  

Conclusion 
 
 We investigated the relative importance of meaning and image salience on attentional 

guidance in scenes using tasks that do not require semantic analysis and in which salience plays a 

critical role. Overall, the results strongly suggested that viewers can’t help but attend to meaning 

(Greene & Fei-Fei, 2014). These findings are most consistent with cognitive control theories of 

scene viewing in which attentional priority is assigned to scene regions based on semantic 

properties rather than image properties.  
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Chapter 3: The Role of Meaning in Attentional Guidance During Free-Viewing of Real-

world Scenes 

The following chapter consists of a manuscript that is published at  

Acta Psychologica. 

 

Abstract 

In real-world vision, humans prioritize the most relevant visual information at the expense of 

other information via attentional selection. The current study sought to understand the role of 

semantic features and image features on attentional selection during free viewing of real-world 

scenes. We compared the ability of meaning maps generated from ratings of isolated, context-

free image patches and saliency maps generated from the Graph-Based Visual Saliency model to 

predict the spatial distribution of attention in scenes as measured by eye movements. 

Additionally, we introduce new contextualized meaning maps in which scene patches were rated 

based upon how informative or recognizable they were in the context of the scene from which 

they derived. We found that both context-free and contextualized meaning explained 

significantly more of the overall variance in the spatial distribution of attention than image 

salience. Furthermore, meaning explained early attention to a significantly greater extent than 

image salience, contrary to predictions of the ‘saliency first’ hypothesis. Finally, both context-

free and contextualized meaning predicted attention equivalently. These results support theories 

in which meaning plays a dominant role in attentional guidance during free viewing of real-

world scenes.  
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During real-world scene viewing, we are constantly inundated by visual information 

competing for our attention. It is therefore important to understand how we prioritize and guide 

attention to important objects and elements within a scene. However, the exact mechanism by 

which the human brain prioritizes one aspect of a visual scene over another for analysis remains 

unclear.  

A substantial amount of research on attentional guidance in scenes has focused on image-

based guidance models in which the salience of basic image features within a scene are used to 

control attentional guidance (Borji, Parks, & Itti, 2014; Borji, Sihite, & Itti, 2013; Harel, Koch, 

& Perona, 2006; Itti & Koch, 2001; Itti, Koch, & Niebur, 1998; Koch & Ullman, 1987; 

Parkhurst, Law, & Niebur, 2002). Image-based saliency models are popular because they are 

both computationally tractable and neurobiologically plausible (Henderson, 2007, 2017). At the 

same time, it is also well established that attentional guidance in scenes is influenced by semantic 

content (Henderson, 2007). For example, viewers attend to semantically informative scene 

regions (Antes, 1974; Buswell, 1935; Loftus & Mackworth, 1978; Mackworth & Morandi, 1967; 

Wu, Wick, & Pomplun, 2014; Yarbus, 1967), and to scene regions that are meaningful in the 

context of the current task (Castelhano, Mack, & Henderson, 2009; Einhäuser, Rutishauser, & 

Koch, 2008; Foulsham & Underwood, 2007; Hayhoe & Ballard, 2014; Neider & Zelinsky, 2006; 

Rothkopf, Ballard, & Hayhoe, 2007; Tatler, Hayhoe, Land, & Ballard, 2011; Torralba, Oliva, 

Castelhano, & Henderson, 2006; Turano, Geruschat, & Baker, 2003; Yarbus, 1967). We note 

that although there have been relevant attempts to integrate higher-level features into saliency 

maps (Chen & Zelinsky, 2019, Navalpakkam & Itti, 2005; Torralba, Oliva, Castelhano, & 

Henderson, 2006), these types of models continue to place much of the explanatory weight on 
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the concept of salience, with cognitive representations serving only to modulate the influence of 

salience on attention.  

It has been difficult to directly compare the influences of image salience and meaning on 

attentional guidance in scenes, because saliency maps represent the spatial distribution of 

salience across a scene in a way that has been challenging to reproduce for scene semantics. 

Given this challenge, studies of meaning-based guidance have typically focused on 

manipulations of one or at most a small number of specific scene regions or objects that do not 

allow a direct comparison of image salience and semantic informativeness across the entire scene 

(Brockmole & Henderson, 2008; De Graef, Christiaens, & d’Ydewalle, 1990; Henderson, 

Weeks, & Hollingworth, 1999; Loftus & Mackworth, 1978; Võ & Henderson, 2009). 

To address this challenge, Henderson and Hayes (2017) introduced meaning maps as a 

semantic analog of saliency maps. Specifically, meaning maps were designed to capture the 

spatial distribution of semantic features in a scene in the same format that saliency maps use to 

capture the spatial distribution of image features. The key idea of a meaning map is that it 

represents the spatial distribution of semantic informativeness over a scene in the same format as 

a saliency map represents the spatial distribution of image salience. Inspired by two classic scene 

viewing studies (Antes, 1974; Mackworth & Morandi, 1967), meaning maps are created using 

crowd-sourced ratings given by large numbers of naïve subjects. These subjects rate the 

meaningfulness of individual scene patches taken from dense arrays of objectively defined 

circular overlapping patches at two spatial scales (Figure 3.1). Meaning maps are then 

constructed for each scene by averaging these ratings and smoothing the results (Figure 3.2). 

Meaning maps represent the spatial distribution of meaning across the scene, providing a means 

for directly comparing meaning and image salience and their relationships with attentional 
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guidance. Research based on meaning maps has shown that meaning is a better predictor of 

attentional guidance than image salience across several active viewing tasks including scene 

memorization, aesthetic judgment (Henderson & Hayes, 2017, 2018), and scene description 

(Henderson, Hayes, Rehrig, & Ferreira, 2018).  

Because previous viewing tasks (i.e., memorization, aesthetic judgment, scene 

description) comparing saliency maps and meaning maps may have drawn on semantic analysis, 

it is possible that they biased viewers to attend to meaning over image salience. In contrast, in 

many studies that have investigated image salience, the focus has been on the free viewing of 

scenes in which no specific task is imposed on viewers (Itti, Koch, & Niebur, 1998; Parkhurst et 

al., 2002). Furthermore, saliency models are typically benchmarked using free viewing 

(Bylinskii, Judd, Borji, Itti, Durand, Oliva, & Torralba, 2015; Itti et al., 1998; Parkhurst et al., 

2002). One major goal of the current study was therefore to extend the investigation of meaning 

maps and saliency maps to free viewing in order to compare the influences of meaning and 

saliency on attention under benchmark viewing conditions. Specifically, we used a free viewing 

task in which participants freely viewed scenes with no experimenter-defined task. We 

hypothesized that if our past studies biased attention toward meaning by their viewing tasks, and 

if free viewing is by comparison meaning-neutral because it introduces no top-down task biases 

(Einhäuser, Rutishauser, & Koch, 2008; Parkhurst et al., 2002), then we should observe an 

advantage of saliency over meaning in the free viewing task. On the other hand, if the meaning 

advantage we have observed in prior studies is a general phenomenon, then we should continue 

to see it in the free viewing task. 

 The present study also provided us the opportunity to investigate a secondary question. In 

meaning map research to date, meaning maps were generated based on informativeness and 
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recognizability ratings of isolated scene patches and thus were context-free (Henderson & Hayes, 

2017, 2018). However, the meaning of an object or local element is often influenced by the scene 

context in which that element appears (Henderson, Weeks, & Hollingworth, 1999; Loftus & 

Mackworth, 1978; Spotorno, Tatler, & Faure, 2013; Võ & Henderson, 2009). Therefore, it could 

be that meaning in the context of the scene (which we will refer to as contextualized meaning) is 

more related than context-free meaning to the distribution of attention in a scene. To examine 

this hypothesis, in the current study we generated new contextualized meaning maps and directly 

compared the relationships of our previous context-free meaning maps and the new 

contextualized meaning maps with the spatial distribution of attention during real-world scene 

viewing.  

 In summary, the current work sought to replicate and extend our prior research in two 

ways. First, we used a free viewing task in which participants viewed real-world scenes as they 

naturally would in their daily lives. The free viewing task does not introduce any particular 

requirement to attend to semantic features, and so provides an unbiased test of meaning versus 

image salience. Second, we introduced the concept of contextualized meaning maps in which 

scene patches were rated in the context of the scenes from which they came. Contextualized 

meaning maps were compared to the original context-free meaning maps to investigate whether 

contextualized meaning provides any additional advantage over context-free meaning in 

predicting attentional guidance.  

Method 

Eye-tracking 

 Participants. Thirty-two University of California, Davis, undergraduate students with 

normal to corrected-to-normal vision participated in the experiment (24 females, average age = 
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20.91). All participants were naïve to the purpose of the study and provided verbal consent. The 

eye movement data were inspected for excessive artifacts due to blinks or loss of calibration. 

Following Henderson and Hayes (2017), we averaged the percent signal ([number of good 

samples / total number of samples] x 100) for each trial and participant using custom MATLAB 

code. The percent signal for each trial was then averaged for each participant and compared to an 

a priori 75% criterion for signal. Outlier removal was then conducted by trial and participant. If 

a trial had less than 75% signal, it was excluded from analysis. Furthermore, if a participant’s 

average percent signal was less than 75%, that entire participant was excluded from analysis. In 

total, no individual trials were excluded based on these criteria. Because two participants had 

lower than 75% signal, their data were excluded from analyses, resulting in a total of 30 

participants/datasets analyzed. The number of participants used in the current study (N = 30) was 

derived from previous meaning map studies using 30 participants (Henderson et al., 2018; 

Peacock et al., 2019).  

Apparatus. Eye movements were recorded using an EyeLink 1000+ tower mount 

eyetracker (spatial resolution 0.01° rms) sampling at 1000 Hz (SR Research, 2010b). Participants 

sat 85 cm away from a 21” monitor, so that scenes subtended approximately 26.5° x 20° of 

visual angle at 1024x768 pixels. Head movements were minimized by using a chin and forehead 

rest. Although viewing was binocular, eye movements were recorded from the right eye. The 

experiment was controlled with SR Research Experiment Builder software (SR Research, 

2010a). Fixations and saccades were segmented with EyeLink’s standard algorithm using 

velocity and acceleration thresholds (30°/s and 9500°/s2; SR Research, 2010b). Eye movement 

data were imported offline into Matlab using the EDFConverter tool. The first fixation, always 

located at the center of the display as a result of the pretrial fixation marker, was eliminated from 
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analysis. Additionally, fixations that landed off the screen, and any fixations that were less than 

50ms and greater than 1500ms were eliminated as outliers. Occasionally, saccade amplitudes are 

not segmented correctly by EyeLink’s standard algorithm, resulting in large values. Given this, 

saccade amplitudes > 25° were also excluded. Fixations corresponding to these saccades were 

included as long as they met the other exclusion criteria. This outlier removal process resulted in 

loss of 5.84% of the data across all subjects. 

Stimuli. Stimuli consisted of 20 digitized photographs (1024x768 pixels) of indoor and 

outdoor real-world scenes. Scenes were luminance matched across the scene set by converting 

the RGB image of the scene to LAB space and scaling the luminance channel of all scenes from 

0 to 1. Luminance matching was done to ensure that there were no overly bright or dark scenes 

in the experiment and does not change the relative ranking of salience within a scene. All 

instruction, calibration, and response screens were luminance matched to the average luminance 

(M = 0.45) of the scenes.     

Procedure. Before starting the experiment, participants completed two practice trials in 

which they were familiarized with the task. Here, participants were instructed that a real-world 

scene would appear on the screen for 8 seconds. During this time, they were instructed to view 

each scene, naturally, as they would in their daily lives. Given the free viewing nature of this 

task, we did not require participants to provide any responses.  

After the practice trials, a 13-point calibration procedure was performed to map eye 

position to screen coordinates. Successful calibration required an average error of less than 0.49° 

and a maximum error of less than 0.99°. Presentation of each scene was preceded by a drift 

correction procedure, and the eyetracker was recalibrated when the calibration was not accurate.  
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Each participant viewed all 20 scene stimuli during the task. Scenes were presented in a 

randomized order for each participant.  

Map Creation 

Context-free meaning maps. For this study we used a subset of the meaning maps 

created by Henderson and Hayes (2017). To create those maps, scene-patch ratings were 

performed by 84 participants on Amazon Mechanical Turk. Participants were recruited from the 

United States, had a hit approval rate of 99% and 500 hits approved, and were allowed to 

participate in the study only once. Participants were paid $0.50 per assignment, and all 

participants provided informed consent. Rating stimuli were 20 digitized (1,024 × 768 pixels) 

photographs of real-world scenes depicting a variety of indoor and outdoor environments used in 

the eyetracking portion of the experiment. Each scene was decomposed into a series of partially 

overlapping (tiled) circular patches at two spatial scales (Figure 3.1). The full patch stimulus set 

consisted of 6,000 unique fine patches (87-pixel diameter) and 2,160 unique coarse patches (205-

pixel diameter), for a total of 8,160 scene patches. 

Each participant rated 300 random patches extracted from 20 scenes. Participants were 

instructed to assess the meaningfulness of each patch based on how informative or recognizable 

it was. They were first given examples of two low-meaning and two high-meaning scene 

patches, to make sure they understood the rating task, and then they rated the meaningfulness of 

scene patches on a 6-point Likert scale (very low, low, somewhat low, somewhat high, high, 

very high). Patches were presented in random order and without scene context, so ratings were 

based on context-free judgments. Each unique patch was rated three times by three independent 

raters for a total of 19,480 ratings. However, due to the high degree of overlap across patches, 

each patch contained rating information from 27 independent raters for each fine patch and 63 
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independent raters for each coarse patch. Meaning maps were generated from the ratings by 

averaging, smoothing, and then combining fine and coarse maps from the corresponding patch 

ratings. The ratings for each pixel at each scale in each scene were averaged, producing an 

average fine and coarse rating map for each scene. The average rating maps were then smoothed 

using thin-plate spline interpolation (fit using the thinplateinterp method in MATLAB; 

MathWorks, Natick, MA). Finally, the smoothed maps were combined using a simple average. 

This procedure was used to create a meaning map for each scene.  

We previously estimated the optimal meaning-map grid density for each patch size by 

simulating the recovery of known image properties (i.e., luminance, edge density, and entropy as 

reported in Henderson and Hayes 2018). Here we briefly summarize this procedure with respect 

to luminance; application to other scene properties and procedural details can be found in the 

original report. The first step in the recovery simulation was to generate the ground-truth 

luminance image for each scene for a given patch size, which sets an upper limit on the 

luminance resolution that can be recovered. Then the patch-density grid (simulating patch 

ratings) was systematically varied from 50 to 1,000 patches (fine patches) and 40 to 200 (coarse 

patches), and recovery of the ground truth was performed for each potential grid. Using this 

method, simulated recovery of known scene properties suggested that the underlying known 

property could be recovered well (98% of the variance explained) using the fine and coarse 

spatial scales with patch overlap adopted for rating. 

Finally, we added a center bias to the meaning maps. The tendency to fixate centrally is a 

behavioral phenomenon that occurs during scene viewing, and modeling this center bias is 

necessary to understand visual behavior (Clarke & Tatler, 2014). Given center bias in viewing, 

most saliency models contain center bias in their maps to enhance prediction accuracy, including 
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the Graph-based Visual Saliency (GBVS) model used in this study (Harel et al., 2006). Since 

meaning maps do not naturally include a center bias, we added the GBVS center bias so that the 

centers of the saliency and meaning maps were equally weighted. Note that alternatively we 

could delete the center bias from GBVS maps, but removing center bias from GBVS changes the 

assumptions of that model. To create meaning maps with center-bias, we applied a multiplicative 

center bias operation to the meaning maps using the center bias present in the GBVS saliency 

maps. To do so, we inverted the ‘invCenterBias.mat’ (i.e., inverted the inverse) included in the 

GBVS package as an estimate of center bias. From here, we multiplied the resulting center bias 

and the raw meaning maps to create meaning maps with center bias. 

Contextualized meaning maps. Contextualized meaning maps were generated using the 

identical method as the context-free meaning maps (Henderson and Hayes, 2017) with the 

following exceptions. For contextualized maps, we instructed participants to rate how 

‘meaningful’ a patch was based on how informative or recognizable it was in the context of the 

larger scene (Figure 3.1). Additionally, for each rating, the patch was circled in green in the 

context scene. Other than these changes, the rating methods were identical. Importantly, the 

patches were identical to those used for context-free mapping, allowing direct comparison of the 

meaning mapping methods. In their raw form without center bias added, the resulting 

contextualized maps were significantly correlated with the context free maps, (M = 0.67, SD = 

0.09): t(19) = 34.69, p < 0.001, 95% CI = [0.63, 0.71]. This correlation increased with center bias 

applied (M = 0.88, SD = 0.05): t(19) = 76.59, p < 0.001, 95% CI = [0.85, 0.90]. 
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Figure 3.1. Rating Patch Examples. Examples of a low meaning fine patch (a) and a high 
meaning fine patch (b) shown alongside the scene from which each patch derived. Patch 
locations are circled in green in each scene. Example patches and their grids for a fine grid (c) 
and a coarse grid (d).  
 

Saliency maps. Saliency maps for each scene were generated using the Graph-Based 

Visual Saliency (GBVS) toolbox with default settings (Harel et al., 2006). GBVS is a prominent 

saliency model that combines maps of low-level image features to create saliency maps (Figure 

3.2). 

Fixation density maps. Fixation density maps were generated from the eye movement 

data as described in Henderson and Hayes (2017). A fixation frequency matrix based on the 

locations (x,y coordinates) of all fixations was generated across participants for each scene. A 

Gaussian low-pass filter with a circular boundary and a cutoff frequency of −6dB (a window size 

of approximately 2° of visual angle) was applied to each matrix to account for foveal acuity and 

eyetracker error. The Gaussian low-pass function is from the MIT Saliency Benchmark code 

(https://github.com/cvzoya/saliency/blob/master/code_forMetrics/antonioGaussian.m).  
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Histogram matching. Following Henderson and Hayes (2017), meaning and saliency 

maps were normalized to a common scale using image histogram matching with the fixation 

density map for each scene serving as the reference image for the corresponding meaning and 

saliency maps. Image histogram matching is desirable because it normalizes an input image to a 

reference image, ensuring that the distribution of “power” in the two images is similar. In this 

study, we normalized both the saliency and meaning maps to the ground-truth fixation density 

maps so we could directly compare the meaning and saliency maps.  Image histogram matching 

was accomplished by using the Matlab function ‘imhistmatch’ from the Image Processing 

Toolbox. 

 
Figure 3.2. Map Examples. The panels show an example scene overlaid with fixation locations 
(a), the fixation density map (b), the contextualized (c) and context-free meaning maps (d), and 
the GBVS saliency map (e) for the example scene.  
 

Results 

Whole Scene Analyses 

We used linear (i.e., Pearson) correlation (Bylinskii, Judd, Oliva, Torralba, & Durand, 

2019) to test the degree to which the two prediction maps (meaning and saliency) accounted for 

the variance in the fixation density maps. There are many ways in which the prediction maps can 

be compared to the fixation density maps, and no method is perfect (Bylinskii et al., 2019). We 

chose linear correlation because it is sensitive to small differences in predictors, makes relatively 

few assumptions, is intuitive, can be visualized, generally balances the various positives and 

negatives of different analysis approaches, and allows us to tease apart variance due to salience 
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and meaning (Bylinskii et al., 2019). It also provides a basis for comparing against our prior 

meaning map results.  

To calculate the Pearson correlation, we used the CC.m function from the MIT saliency 

benchmark code set (https://github.com/cvzoya/saliency/blob/master/code_forMetrics/CC.m). 

The CC.m function has been used to evaluate the various metrics included in the MIT saliency 

benchmark (Bylinskii et al., 2019). The function works by first normalizing the to-be-correlated 

maps. It then converts the two-dimensional map arrays to one-dimensional vectors and correlates 

these vectors. The output of the function is then squared to calculate the shared variance 

explained by meaning and saliency. We used two-tailed, paired t-tests to statistically test the 

relative ability of the prediction maps (saliency, context-free meaning, and contextualized 

meaning) to predict the fixation density maps. We also report 95% confidence intervals (CI) that 

indicate the range of values that are 95% certain to contain the true mean of the population. 

Because our primary research question concerned the ability of meaning and salience to 

independently account for variance in fixations, we used semi-partial correlations. Semi-partial 

correlations capture the amount of total variance in the fixation density maps that can be 

accounted for with the residuals from each of the predictors (meaning and salience) after 

removing the correlation between those predictors. In other words, the semi-partial correlations 

indicate the total variance in the fixation density maps that can be accounted for by the meaning-

independent variance in salience and the salience-independent variance in meaning. Two-tailed 

one-sample t-tests were used to compare the unique variance in attention explained by each map 

type against zero. The same 95% CI accompany these results. 

Context-free meaning vs. image salience. For the squared linear correlation, context-

free meaning explained 39% of the variance in fixation density (M = 0.39, SD = 0.14) and image 
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salience explained 24% of the variance (M = 0.24, SD = 0.14), t(19) = 7.08, p < 0.001, 95% CI = 

[0.10, 0.19] (Figure 3.3). For the semi-partial correlations, context-free meaning explained a 

unique 16% of the variance in fixation density controlling for salience (M = 0.16, SD = 0.07): 

t(19) = 9.52, p < 0.001, 95% CI = [0.13, 0.20], whereas salience uniquely explained only a 

unique 2% of the variance in fixation density controlling for meaning (M = 0.02, SD = 0.03): 

t(19) = 2.37, p = 0.03, 95% CI = [0.002, 0.03].   

These results replicate and extend to a free viewing task the previous context-free 

meaning map results from memorization, aesthetic judgment, and scene description tasks 

(Henderson & Hayes, 2017; Henderson et al., 2018). Once again, meaning was a better predictor 

of the spatial distribution of attention than image salience.  

Contextualized meaning vs. context-free meaning. For our secondary question, we 

investigated whether contextualized and context-free meaning maps would produce similar 

results. For the squared linear correlation, contextualized meaning explained 40% of the variance 

in fixation density (M = 0.40, SD = 0.14) and context-free meaning explained 39% of the 

variance in fixation density (M = 0.39, SD = 0.14), t(19) = 1.44, p = 0.17, 95% CI = [−0.007, 

0.04] (Figure 3.3). When the variance explained by context-free meaning was statistically 

controlled, contextualized meaning uniquely explained 4% of the variance in fixation density (M 

= 0.04, SD = 0.03): t(19) = 5.74, p < 0.001, 95% CI = [0.03, 0.05]. When the variance explained 

by contextualized meaning was statistically controlled, context-free meaning uniquely explained 

2% of the variance in fixation density (M = 0.02, SD = 0.02): t(19) = 4.27, p = 0.0004, 95% CI = 

[0.02, 0.03]. These results demonstrate that the two types of meaning largely account for the 

same variance in the distributions of fixations over scenes. 
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Figure 3.3. Squared Linear and Semi-Partial Correlations by Scene. Line plots show the squared 
linear (a) and semi-partial correlations (b, c) between the fixation density maps, contextualized 
meaning (green triangles), context-free meaning (red circles), and image salience (blue squares). 
The scatter plots show the grand mean (black horizontal line), 95% confidence intervals (colored 
boxes), and one standard deviation (black vertical line), for contextualized meaning, context-free 
meaning, and salience across all 20 scenes for each analysis.  
 
Ordinal Fixation Analyses 

It has been suggested that when a scene first appears, attention might initially be guided 

by image salience, with meaning playing a larger role as viewing unfolds (Anderson & Donk, 

2017; Anderson et al., 2015; Henderson & Ferreira, 2004; Henderson & Hollingworth, 1999). 

This hypothesis predicts that the correlation between image salience and fixation density maps 
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should be greater for earlier than later fixations, with salience dominating meaning in the earliest 

fixations. Alternatively, it could be that meaning guides attention from scene onset due to rapid 

gist apprehension (Oliva & Torralba, 2006; Potter et al., 2014) and the use of schema to activate 

memory representations of where likely objects will be located in the scene (Henderson, 2003; 

Henderson & Hollingworth, 1999; Torralba et al., 2006) for attentional prioritization. This 

hypothesis predicts that meaning should account for attentional guidance at the earliest moments 

of scene viewing. To test these competing hypotheses in the free viewing task, we conducted an 

ordinal fixation analysis for the first three fixations, in which density maps were generated for 

each sequential fixation for each scene. The analyses focused on the first three of these fixations 

(1st fixation, 2nd fixation, and 3rd fixation) and proceeded as in the main analyses, with p-values 

corrected for multiple comparisons using the Bonferroni correction.  

Context-free meaning vs. image salience. For the squared linear correlations, context-

free meaning accounted for 38%, 31%, and 20% of the variance in the first three fixations 

whereas salience accounted for 10%, 15%, and 11% of this variance (Figure 3.4), with all three 

ordinal fixation meaning versus salience comparisons significant (fixation 1: t(19) = 7.71, 

Bonferroni-corrected p < 0.001, 95% CI = [0.20, 0.36]; fixation 2: t(19) = 5.48, Bonferroni-

corrected p < 0.001, 95% CI = [0.10, 0.22]; fixation 3: t(19) = 3.06, Bonferroni-corrected p = 

0.02, 95% CI = [0.03, 0.15]). For the semi-partial correlations, meaning accounted for 30%, 

19%, and 12% of the unique variance in the first three fixations (fixation 1: t(19) = 8.92, 

Bonferroni-corrected p < 0.001, 95% CI = [0.23, 0.37]; fixation 2: t(19) = 7.06, Bonferroni-

corrected p < 0.001, 95% CI = [0.14, 0.25]; fixation 3: t(19) = 4.65, Bonferroni-corrected p = 

0.001, 95% CI = [0.07, 0.17]) and image salience accounted for 2%, 3%, and 3% of this variance 

(fixation 1: t(19) = 3.00, Bonferroni-corrected p = 0.04, 95% CI = [0.005, 0.03]; fixation 2: t(19) 
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= 4.51, Bonferroni-corrected p = 0.001, 95% CI = [0.02, 0.05]; fixation 3: t(19) = 4.06, 

Bonferroni-corrected p < 0.004, 95% CI = [0.02, 0.05]), (Figure 3.4).1 

Overall, the ordinal fixation analysis comparing context-free meaning and image salience 

showed that meaning was a better predictor than salience early in free scene viewing, contrary to 

the salience first hypothesis. This effect is consistent with and extends our past work on early 

influences of meaning (Henderson & Hayes, 2017; Henderson et al., 2018; Peacock et al., 2019). 

 
Figure 3.4. Ordinal Fixation Analysis. The line plots show the squared linear correlations (a) and 
semi-partial correlations (b) between the fixation density maps, contextualized meaning (green 
triangles), context-free meaning (red circle), and image salience (blue square) as a function of 
fixation number collapsed across scenes. Analyses focused on the first three fixations and fifteen 
fixations are displayed for comparison. Error bars represent the standard error of the mean. 
 

General Discussion 

The current study was designed to assess several questions related to understanding the 

roles of meaning and image salience in predicting attentional guidance in real-world scenes. The 

 
1 As in the main analyses, contextualized and context-free meaning produced identical results 
across the first three fixations (all Bonferroni corrected ps > 0.05).  
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main question was whether the previously observed advantage for meaning over image salience 

would extend to a free viewing task that does not impose any specific top-down task constraints. 

Earlier comparisons of meaning and image salience have used explicit viewing tasks (Henderson 

& Hayes, 2017, 2018; Henderson et al., 2018; Peacock et al., 2019). However, it is common to 

use free viewing with no explicit task in the saliency literature, and indeed saliency model 

benchmarks are based on free viewing (Bylinskii et al., 2015), so it was important to extend the 

previous results to free viewing. The present results using free viewing were consistent with 

previous studies that have compared meaning and image salience: meaning accounted for 

significantly more of the overall variance in the spatial distribution of fixation density than 

salience. Furthermore, when the variance explained by meaning was statistically controlled, 

salience explained no more of the unique variance in fixation density, but when the variance 

explained by salience was controlled, meaning continued to explain substantial unique variance. 

In addition, contrary to the idea that image salience plays a major role during early scene 

viewing, these results held for the earliest fixations.2 This pattern of results replicates the 

previous findings and extends them to free viewing. We note that when we weighted the 

fixations by duration to produce duration-weighted fixation density maps, all of the results held, 

consistent with Henderson and Hayes (2018). 

The current results are consistent with the results of recent research suggesting that 

meaning continues to strongly influence attentional guidance in scenes even when meaning is not 

directly relevant to the viewer’s task. Peacock et al. (2019) used tasks in which participants were 

 
2 We note that in the ordinal fixation analyses, the correlations decline as a function of fixation. 
This is an artifact of using center-biased maps to predict fixations. When using prediction maps 
that do not contain center bias, this artificial bump in meaning is not observed, as has been 
shown in previous meaning map studies (Peacock et al., 2019).  
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cued to either count bright patches within a scene or rate scenes for their overall brightness. 

Despite the fact that salience was task-relevant and meaning was task-irrelevant, meaning 

continued to guide attention. The convergence of the findings reported by Peacock et al. (2019) 

and the current study suggests that the influence of meaning over salience on attention is robust 

and not readily influenced by tasks designed to minimize attention to meaning nor tasks designed 

to reduce top-down influences of task on attention. 

To date, meaning maps have been based on context-free meaning in the sense that the 

maps have been created from ratings of scene patches that are presented to raters without their 

scenes (Henderson & Hayes, 2017, 2018; Henderson et al., 2018). The present study expanded 

the concept of meaning maps to contextualized meaning generated from ratings of scene patches 

that are presented in the context of their scenes. The question was whether meaning maps that 

reflected local meaning assessed in the context of the overall scene would better predict fixation 

density than context-free meaning maps. The results showed that the contextualized meaning 

maps were significantly correlated with and predicted fixation density similarly to context-free 

meaning maps. This convergence suggests that our original results were not due to peculiarities 

of the specific way meaning ratings were obtained. This result also shows that the context-free 

meaning maps do not seem to be losing much critical semantic information despite the fact that 

sometimes only parts of large objects and scene regions are shown in the rated patches.  

An interesting issue is why the contextualized and context-free meaning maps were 

similarly related to attention. One possibility is that local scene meaning ratings are not 

significantly affected by global scene context in the absence of object-scene inconsistencies. 

Indeed, studies using scenes containing local object manipulations find that objects contain 

greater meaning when they are inappropriate (versus appropriate) to the global context of the 
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scene which influences attention (Henderson et al., 1999; Loftus & Mackworth, 1978; Võ & 

Henderson, 2009). The literature has also shown that scene gist (Oliva & Torralba, 2006; Potter 

et al., 2014) and schema representations guide our expectations of what local objects will appear 

in a scene given its global context (Henderson, 2003; Henderson & Hollingworth, 1999; Torralba 

et al., 2006). Given the importance of global scene context on attention, future conceptions of 

contextualized meaning maps will need to be made with scenes containing object-scene 

inconsistencies to fully predict how global scene context influences the meaning of local 

elements and attention to those elements.  

There are a few other reasons why the contextualized and context-free meaning maps 

maps similarly predicted attention. The first is that the two maps were highly correlated with 

each other, and that the shared variance in meaning across the two map types did most of the 

work in guiding attention. The second is that the current study used a passive viewing task, 

whereas studies showing an effect of scene context on eye movements have used active tasks 

such as change blindness (Spotorno et al., 2013; Stirk & Underwood, 2007), memorization, and 

search (Henderson et al., 1999; Võ & Henderson, 2009). To better understand how global scene 

context influences attention to local scene elements, future studies may wish to use active 

viewing tasks in conjunction with scenes containing object-scene inconsistencies.   

Conclusion 

The current work used a free viewing task in scenes to investigate the relationships 

between meaning and image salience on attention, as operationalized by fixation density, without 

introducing additional top-down task biases. We found that meaning was more related to 

attention than image salience both when assessing the overall spatial distribution of attention and 

when focusing only on the early guidance of attention. Additionally, the concept of 
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contextualized meaning maps was introduced and compared to previously used context-free 

meaning maps. Contextualized meaning maps capture the spatial distribution of semantic 

features based on how informative or recognizable scene patches are in the context of the scenes 

from which they derive. We found that contextualized and context-free meaning maps predicted 

attention equally well. In total, these findings show that meaning plays a dominant role in real-

world attentional guidance in free viewing, with little influence from image salience. 
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Chapter 4: Meaning and Expected Surfaces Combine to Guide Attention During Visual 

Search in Scenes  

The following chapter consists of a manuscript that is under review at  

Journal of Vision. 

 

Abstract 

How do spatial constraints and meaningful scene regions interact to control overt attention 

during visual search for objects in real-world scenes? To answer this question, we combined 

novel surface maps of the likely locations of target objects with maps of the spatial distribution 

of scene semantic content. The surface maps captured likely target surfaces as continuous 

probabilities. Meaning was represented by meaning maps highlighting the distribution of 

semantic content in local scene regions and objects. Attention was indexed by eye movements 

during search for target objects that varied in the likelihood they would appear on specific 

surfaces. The interaction between surface maps and meaning maps was analyzed to test whether 

fixations were directed to meaningful scene regions on target-related surfaces. Overall, 

meaningful scene regions were more likely to be fixated if they appeared on target-related 

surfaces than if they appeared on target-unrelated surfaces. These findings suggest that the visual 

system prioritizes meaningful scene regions on target-related surfaces during visual search in 

scenes.  

 
 
 
 
 
 
 
 



 63 

Due to processing limitations, the visual system must select and prioritize only the most 

relevant visual information from moment to moment during real world visual search. This 

selection process is accomplished via eye movements. However, it is unclear why some aspects 

of the world are prioritized over others for analysis. Previous work has found influences of target 

features (Malcolm & Henderson, 2009; Navalpakkam & Itti, 2005; Vickery et al., 2005; Wolfe & 

Horowitz, 2017; Zelinsky, 2008), scene context/spatial constraint (Castelhano & Witherspoon, 

2016; Neider & Zelinsky, 2006; Pereira & Castelhano, 2014, 2019), memory (Draschkow et al., 

2014; Võ & Wolfe, 2013), and interactions among these sources (Bahle et al., 2018; Bahle & 

Hollingworth, 2019; Castelhano & Heaven, 2010; Ehinger et al., 2009; Malcolm & Henderson, 

2010; Torralba et al., 2006; Wolfe & Horowitz, 2017; Zelinsky et al., 2006; Zelinsky et al., 

2020). Although recent work has independently demonstrated that the visual system may also 

prioritize scene regions high in meaning for fixation during search (Hayes & Henderson, 2019; 

Peacock et al., under review), it is unknown how scene meaning interacts with other known 

sources of search guidance. The present study therefore aimed to understand how meaning 

interacts with one of these known sources of guidance, spatial constraint (i.e., scene regions 

likely to contain the search target; Brockmole & Henderson, 2006; Brockmole & Võ, 2010; 

Ehinger et al., 2009; Neider & Zelinsky, 2006; Pereira & Castelhano, 2019; Torralba et al., 

2006). To investigate this question, we developed continuously graded surface maps representing 

the likely locations of a search target, and paired these with meaning maps representing semantic 

densities in scenes (Henderson & Hayes, 2017).  

Surfaces as constraints on search in scenes 

The semantic representation of an object in the context of a given scene guides attention 

during visual search (Biederman, Mezzanotte, & Rabinowitz, 1982; Henderson et al., 2007; 
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Henderson, Malcolm, & Schandl, 2009; Henderson, Weeks, & Hollingworth, 1999; Loftus & 

Mackworth, 1978). Viewers searching for an object, such as a pillow, will first fixate 

semantically appropriate locations (e.g., bed) over inappropriate locations (e.g., table), 

suggesting that these expected spatial constraints efficiently direct attention to task- and 

semantically-relevant information (Brockmole & Henderson, 2006; Brockmole & Võ, 2010; 

Ehinger et al., 2009; Henderson et al., 1999; Loftus & Mackworth, 1978; Neider & Zelinsky, 

2006; Pereira & Castelhano, 2019; Torralba et al., 2006). 

Spatial constraint has been modeled in different ways. Torralba et al. (2006) successfully 

predicted the likely locations participants would search for an object in a scene using horizontal 

bands that represented where a given target object was most likely to be located given the global 

physical structure of that scene. These bands were learned from a large number of scene 

exemplars. An issue with this approach, however, is that the predicted spatial constraints were 

coarse and were not tied to surfaces or objects in a particular scene. Indeed, when participants in 

Torralba and colleagues’ study searched for coffee mugs, they sometimes looked at specific 

surfaces associated with coffee mugs outside of the region predicted by the horizontal band.  

This was remedied by Pereira & Castelhano (2019) who operationalized spatial constraint 

as the upper (e.g., ceilings, walls), middle (e.g., countertops, tables), and lower (e.g., floors) 

horizontal surface regions associated with target objects within a scene. A limitation of the 

Pereira & Castelhano (2019) approach, however, was that their method generated binary spatial 

constraints: only surfaces within a given horizontal surface region were taken to be predictive of 

target object location whereas other scene regions were not predictive. Furthermore, all of the 

surfaces within a given horizontal band were equally predictive of target object location. 

However, it seems likely that there is a continuous distribution of surface constraints for many 
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target objects (e.g., garbage bins might be more likely to appear on the sidewalk than in the road 

even though both sidewalks and roads appear in lower scene regions). In the present study we 

offer an approach to spatial constraint based on scene surfaces that provides a continuum of 

constraint.  

To generate continuous surface maps, we first parsed scenes into their constituent 

elements (objects and surfaces) and had a group of participants assign labels to those elements. 

We then asked a separate group of participants to rank the labels of the elements in each scene 

based upon the degree to which those elements could serve as the location for each of three 

search targets (garbage bins, drinking glasses, and paintings). For example, for a drinking glass, 

“table” would likely be ranked higher than “ceiling”. Scene elements were ranked in a generic 

scene-independent manner: we presented the targets and surface elements using labels without a 

visual scene (Figure 4.2). The element rankings were then mapped back onto scenes to capture 

target-surface relationships in a continuous fashion. Because surfaces in the foreground occlude 

background surfaces, we used image-computable three-dimensional depth information (Laina et 

al., 2016) to account for occlusion. Finally, we accounted for the tendency of objects to extend 

above the tops of surfaces by generating a target object height constant for each object and its 

highly ranked surface elements. The height constant reflected how tall a given target object 

would appear at a given depth. The resulting surface maps continuously represented the likely 

locations of search target objects in scenes while taking into account depth from the viewer.  

Meaning as a constraint on search in scenes 

Meaning maps represent the continuous spatial distribution of local semantic densities in 

scenes (Henderson & Hayes, 2017), allowing direct study of how semantics influence attention 

during visual search.  Recent studies show that meaning predicts eye movements during letter 
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search (Hayes & Henderson, 2019) and during common object search (Peacock et al., under 

review). Meaning maps provide a framework to test how the spatial distribution of semantic 

densities interact with other known sources of guidance (e.g., spatial constraint) during visual 

search. Despite the utility of meaning maps, visual search models have not yet incorporated 

meaning maps as a source of guidance.  

Combining Meaning and Surfaces 

Spatial constraint interacts with image salience to guide attention during visual search 

(Ehinger et al., 2009; Torralba et al., 2006). Given the correlation between image salience and 

meaning in real-world scenes (Elazary & Itti, 2008; Henderson, 2003; Henderson et al., 2007; 

Henderson & Hayes, 2017, 2018; Rehrig et al., 2020; Tatler et al., 2011) and the finding that 

meaning accounts for most if not all of the unique variance in predicting eye fixations when the 

intercorrelation between meaning and saliency is controlled (Hayes & Henderson, 2019; 

Henderson & Hayes, 2017, 2018; Peacock et al., under review, 2019b, 2019a, 2020; Rehrig et 

al., 2020), spatial constraint might also interact with meaning to guide eye movements.   

In previous research, spatial constraint has been represented using image-based bands 

that are not tied to a specific scene surfaces (Torralba et al., 2006), or to surfaces in a binary 

fashion (Pereira & Castelhano, 2019). Here we represented spatial constraint related to surfaces 

as a continuum associated with a given target object. Given that meaning predicts attention 

during visual search (Hayes & Henderson, 2019; Peacock et al., under review) and that eye 

movements are restricted to meaningful information on surfaces associated with target objects 

(Castelhano & Heaven, 2011; Castelhano & Henderson, 2003; Castelhano & Witherspoon, 2016; 

Pereira & Castelhano, 2019), we examined the combined role of target-related surfaces and 
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meaningful scene regions on eye movements during visual search for objects in real-world 

scenes (Figure 4.1).  

 
Figure 4.1. Schematic of surface map model. If the goal is to find a painting in a media room (a),  
the probability that a painting will appear on one surface (walls) over another surface (floors) 
will drive attention to the more probable region (b). Analogously, meaningful (informative) 
scene regions are more likely to guide attention than those that are less meaningful (c). Surfaces 
may inform meaning in that meaningful features on highly predictive surfaces are more likely to 
be prioritized for attention (white) than those on non-predictive surfaces (black) (d).  
 

Methods 

Eyetracking 

Participants. The sample size was set with an a priori stopping rule of 30 acceptable 

participants based on prior experiments using these methods (Peacock et al., 2019b, 2019a, 

2020). To reach 30 acceptable participants, 37 University of California, Davis, undergraduate 

students with normal to corrected-to-normal vision initially participated in the experiment (28 

females, average age = 20.51).  All participants were naïve to the purpose of the study and 

provided consent. Eye movement data from each participant were inspected for excessive 

artifacts due to blinks or loss of calibration. Following Henderson and Hayes (2017), we 

averaged the percent signal ([number of good samples / total number of samples] x 100) for each 
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trial using custom MATLAB code. The percent signal across trials was averaged for each 

participant and compared to an a priori 75% criterion for signal. Overall, 0 participants were 

excluded based on this criterion of poor eyetracking quality. Individual trials that had less than 

75% eyetracking signal were also excluded. Only 10 total trials (0.44% of the total data) were 

excluded based upon this criterion. 

Participants were also excluded if they did not correctly do the task. The percentage of 

target absent trials in which each participant erroneously indicated there were targets (even 

though the scene was target absent) was calculated. If this occurred on over 25% of trials, that 

participant was excluded, resulting in removal of 7 participants. These criteria resulted in 

analyses based on a total of 30 acceptable participants as per the stopping rule. 

Apparatus. Eye movements were recorded using an EyeLink 1000+ tower mount 

eyetracker (spatial resolution 0.01° rms) sampling at 1000 Hz (SR Research, 2010b). Participants 

sat 85 cm away from a 21” monitor, so that the scenes subtended approximately 26.5° x 20° of 

visual angle at 1024x768 pixels. Head movements were minimized using a chin and forehead 

rest. Viewing of the scenes was binocular, but eye movements were recorded from the right eye. 

The experiment was controlled using SR Research Experiment Builder software (SR Research 

2010a). Fixations and saccades were segmented with EyeLink’s standard algorithm using 

velocity and acceleration thresholds (30°/s and 9500°/s2; SR Research, 2010b). Resulting 

segmented eye movement data were imported offline into Matlab using the EDFConverter tool. 

The first fixation, always located at the center of the display as a result of the pretrial fixation 

marker, was eliminated from analysis. Given that we were interested in search activity and not 

target decision processes, we only analyzed data from target absent trials.  
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Fixations that landed off the screen, and any fixations that were less than 50ms or greater 

than 1500ms were eliminated as outliers. Occasionally, saccade amplitudes are not segmented 

correctly by EyeLink’s standard algorithm, resulting in large values. Given this, saccade 

amplitudes > 25° were also excluded. Fixations corresponding to these saccades were included 

as long as they met the other exclusion criteria. This outlier removal process resulted in loss of 

2.22% of the data. 

Stimuli. 105 digitized photographs (1024 x 768 pixels) of indoor and outdoor real-world 

scenes were selected for this study, with 35 scenes dedicated to each target object (i.e., 35 scenes 

for garbage bins, 35 scenes for drinking glasses, 35 scenes for paintings). Ten scenes from each 

target set were target present and 25 scenes from each set were target absent. Target present 

scenes had one or more target objects in the scene and served as fillers to ensure that participants 

explored each scene fully. Data analysis focused on target absent scenes so that influences of the 

target itself on eye movements would be excluded. All instruction, calibration, and response 

screens were luminance matched to the average luminance (M = 0.43 L) of the scenes. 

Procedure. Each run of the experiment consisted of six practice trials and 105 

randomized experimental trials split into three counterbalanced target object blocks (35 trials in 

each block). In each trial, a central fixation was shown on the screen for 400ms to orient 

participants to the center of the screen where a word cue would appear. Then, a word cue was 

presented for 800ms indicating the search target for that scene. Following the word cue, the 

central fixation cross re-appeared for 400ms prior to the search phase of the experiment. The 

search scene was then presented for 10s (Torralba et al., 2006). While the search scene was 

present on the screen, participants were instructed to count the number of target objects in the 

scene and to press “Enter” on a keyboard when all of the objects were found. Possible answers 
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were either “zero targets” or “one or more targets”. Participants were instructed that there could 

be multiple targets present in the scene to encourage them to fully explore the scene. At the end 

of each trial, participants used the button box to indicate how many targets were present in the 

scene. Two practice trials (one target present and one target absent) were administered before the 

experiment for each target object (a total of six practice trials), providing participants an 

opportunity to ask any questions they had before beginning the experimental trials. 

After the practice trials, a 9-point calibration procedure was performed to map the 

participants’ eye positions to screen locations. Successful calibration required an average error of 

less than 0.49° and a maximum error of 0.99°. In order to maintain calibration throughout the 

experiment, a calibration check screen preceded each trial. If the calibration error exceeded 

1.00°, the eye tracker was recalibrated.  

Surface Maps 

Participants. Ninety-six University of California, Davis, undergraduate students who did 

not participate in the eye-tracking study participated across three survey studies (garbage bin N = 

34, drinking glass N = 32, painting N = 30). All participants were naïve to the purpose of the 

study and provided informed consent. The sample size was set with an a priori stopping rule of 

30 acceptable participants for each rating study (90 participants total after the a priori participant 

exclusion criterion was applied). Participants were removed if they were guessing: if a 

participant did not include either of the top two rankings from the rest of the participants in their 

study in more than 25% of trials, they were excluded from analysis. This resulted in minimal 

participant loss (4 participants from the garbage bin task, 2 participants from the drinking glass 

task, and 0 participants from the painting task).  
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Scene labeling and segmentation. All scene elements that were present in any of the 

105 scenes were first identified to form a set of all possible scene element labels. Elements were 

defined as objects (e.g., pencil), groups of densely overlapping objects (e.g., pencils), and 

surfaces (e.g., desk, wall) within a scene. Then, from this global set of labels, each label was 

mapped to an individual element or elements within each scene using the Computer Vision 

Annotation Tool (CVAT, https://github.com/opencv/cvat) (Figure 4.2a).  

Labels corresponding to the segmented elements were used to generate surface rankings 

for each target in each scene. Only unique and singular labels from the segmented scenes were 

used for the ranking task for each scene. Any repeated or plural labels were subsequently re-

added during analysis and given the same weight as the unique and singular labels, respectively. 

Labels that were synonyms of the unique singular label were also excluded from the ranking 

task. For the target “painting”, the following labels were excluded: drawing, drawings, picture, 

pictures, painting, paintings, poster, posters. For the target “drinking glass”, the following labels 

were excluded: glass, glasses, cup, cups, mug, mugs. For the target, “garbage bin”, the following 

labels were excluded: trashcan, dumpster, trash bin, bin. 

Procedure. Separate on-line surveys were administered for each target object via 

Qualtrics. For example, for “drinking glass”, participants were instructed to indicate the degree 

to which each element label named a surface that a drinking glass could be placed upon. 

Participants were asked to drag and drop the labels into a provided box on the computer screen, 

and to rank order them based upon how likely a drinking glass would be to appear on that given 

surface (Figure 4.2b). Participants were instructed not to rank (i.e., not to drag into the box) 

labels that were not surfaces a drinking glass would appear upon. Before beginning the survey, 

participants were given an example ranking question (Figure 4.2b). For drinking glass, the 
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example labels were counter, plant, and chair. Participants were instructed that drinking glasses 

could be found on a counter and a chair. However, because drinking glasses are more likely to 

appear on a counter than a chair, counter should be ranked higher than chair. In this example, 

participants were told that plant should be left out of the box because drinking glasses do not 

appear on plants. The instructions for garbage bins and paintings were the same except the most 

likely surface in each example ranking question was modified. For garbage bins, “counter” was 

replaced with “floor” and for paintings, “counter” was replaced with “wall”.  

For each target object, there were 35 ranking trials corresponding to the 35 scenes for that 

target object category, presented in a random order for each participant. The labels 

corresponding to a given scene were provided in a randomized order to the left of the ranking 

column (Figure 4.2b).  

Generating surface weights. We first generated weights corresponding to each label’s 

ranking for each participant in each scene. To calculate each label’s weight, first the total number 

of labels that each participant ranked was summed for each scene. Then, a proportion was 

computed to serve as the ranking. If a label was placed first out of 21 ranked labels for a given 

scene, it would receive a participant-level weighting of 21/21 (Figure 4.2c). If a label was placed 

second out of 21 ranked labels, it would be given a participant-level weighting of 20/21. If a 

label was unranked, it would be given a participant-level weight of zero.  If a given participant’s 

rankings for a given scene did not include one of the top two ranked labels from the rest of the 

participants for that scene, then that participant’s data for that scene was excluded. This resulted 

in loss of 4.29% of the data from the garbage bins, 1.91% of the data from the drinking glasses, 

and 4.29% of the data from the paintings. To compute the final weight for each label, we 
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averaged each label’s weight across participants. This process resulted in a single weight for 

each label corresponding to each element in each scene.   

Eliminating small and non-predictive elements. Because our primary question asked 

whether target-related surfaces guide attention to meaningful scene regions on those surfaces, it 

was necessary to exclude smaller elements that were not predictive of target object location, but 

that were located on larger elements. For example, a spoon is a small element that might be 

found on a table, but because a drinking glass is not likely to appear on a spoon, the spoon rating 

creates a “hole” in the table map. It was therefore necessary to exclude small elements that were 

also non-predictive.  

To eliminate small elements, we compared the size of each element to a size threshold for 

each target object category [size = area of element in pixels / area of scene in pixels]. The size 

threshold was the mean size of the most predictive elements (i.e., elements with surface weights 

greater than or equal to 0.4) for each target object category: garbage threshold = 0.14, painting 

threshold = 0.19, glass threshold = 0.09 (Figure 4.2d). If a given element’s size was less than the 

size threshold then it was tagged for possible deletion.  

To eliminate non-predictive element ratings from predictive elements in a principled 

manner, we first ranked each element in descending order by scene based upon its surface 

weighting on the X axis and plotted the weighting (Figure 4.2d) on the Y axis, respectively. We 

then fit an exponential function [y = e(-x)] to the weighting data (Figure 4.2d). Elements that were 

under the weight asymptote for a given scene were tagged for possible deletion.  

If a given element was under both the weight and size thresholds for a given scene, it was 

excluded from the resulting surface map. However, if it was under one or the other but not both, 
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it was included in the resulting surface map. This method allowed us to eliminate elements that 

were small but also non-predictive.  

Above-surface constant. Because objects tend to extend in space above the 

surfaces/elements they sit on, we added a height constant to the most predictive horizontal 

support surfaces to account for the regions that target objects occupy above these surfaces.  

To generate the value of the above-surface constant, seven undergraduate research 

assistants that were naïve to the purpose of the study indicated how tall an average sized target 

would appear on either the front or back edge of highly predictive surface elements 

(corresponding to labels weighted 0.5 or greater) in each scene (Figure 4.2e). We then estimated 

how tall a given target object would be from the back to the front of the surface elements using 

linear interpolation (Figure 4.2f). We separated the segmentation for a given surface element into 

10 slices based upon the y dimension and expanded the coordinates based upon how tall the 

target object was estimated to be at that slice (Figure 4.2g). Both the expanded coordinates and 

the original coordinates were added to the resulting surface map as participants were predicted to 

look on and above predictive surfaces (Figure 4.2h).  

Depth maps. Because surfaces in the foreground occlude background surfaces, we used 

image-computable depth maps (Laina et al., 2016) to account for occlusion of surface elements 

in the surface maps described below. Depth maps provide a measure of the predicted depth of 

each pixel within an image and therefore allowed us to estimate how deep a given surface 

element was within a scene. With this information, we were able to add deeper (and likely 

occluded) surfaces into a scene first and later add in closer (and likely non-occluded) elements.  

Surface map generation. After finalizing the weights and constants for each surface 

element, we generated empty surface maps by first creating a 768 x 1024 array of zeros. We then 
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replaced the existing values on the surface map with each element’s weighting based upon that 

element’s spatial location and depth relative to the other elements in the scene to account for 

foreground elements occluding background elements (Figure 4.2h). Here, elements were added 

from the back (deepest) to the front (shallowest) based upon each element’s median depth 

generated from the depth maps described above (Laina et al., 2016). Constant values for 

elements corresponding to highly predictive surfaces were added at the same depth as the 

respective element. A Gaussian low-pass filter with a circular boundary and a cutoff frequency 

of −6dB (a window size of approximately 2° of visual angle) was applied to each map. The 

Gaussian low-pass function is from the MIT Saliency Benchmark code3.  

 
3 https://github.com/cvzoya/saliency/blob/master/code_forMetrics/antonioGaussian.m 
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Figure 4.2. Surface map generation. After images were segmented and labeled (a), participants 
ranked labels independent of scenes by how likely a given target object would be to appear on 
that surface (b). Surface weightings were then generated (c) and small / unlikely surfaces were 
removed. Surface constants were generated by linearly interpolating participant generated size 
predictions from the back to front edges of elements. Maps were made by adding polygons filled 
with weightings from the back/deepest scene region to the front of the scene (h). A gaussian blur 
was added to generate the final surface map (i). 
 
Meaning Maps 

We used the meaning map technique developed by Henderson and Hayes (2017) (see 

https://osf.io/654uh/ for code and instructions). To create meaning maps, scene-patch ratings 

were performed by 434 participants on Amazon Mechanical Turk. Participants were recruited 

from the United States, had a hit approval rate of 99% and 500 hits approved, and were allowed 
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to participate in the study only once. Participants were paid $0.50 per assignment, and all 

participants provided informed consent. Rating stimuli were the same 105 digitized (1,024 × 768 

pixels) photographs of real-world scenes used for the visual search task. Each scene was 

decomposed into a series of partially overlapping (tiled) circular patches at two spatial scales. 

The full patch stimulus set consisted of 31,500 unique fine patches (87-pixel diameter) and 

11,340 unique coarse patches (205-pixel diameter), for a total of 42,840 scene patches. The 

optimal meaning-map grid density for each patch size was previously determined by simulating 

the recovery of known image properties as reported in Henderson & Hayes (2018).  

Each participant rated 300 random patches extracted from 105 scenes. Participants were 

instructed to assess the meaningfulness of each patch based on how informative or recognizable 

it was. They were first given examples of two low-meaning and two high-meaning scene 

patches, to make sure they understood the rating task, and then they rated the meaningfulness of 

scene patches on a 6-point Likert scale (very low, low, somewhat low, somewhat high, high, 

very high). Patches were presented in random order and without scene context, so ratings were 

based on context-free judgments. Each unique patch was rated three times by independent raters 

for a total of 128,520 ratings. However, due to the large degree of overlap across patches, each 

patch contained rating information from 27 independent raters for each fine patch and 63 

independent raters for each coarse patch. The ratings for each pixel at each scale in each scene 

were averaged, producing an average fine and coarse rating map for each scene. The average fine 

and course rating maps were then combined into a single map using the simple average and a 

light Gaussian filter was applied using the MATLAB function ‘imgaussfilt.m’ set at 10.  
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Center Proximity Map  

A center proximity map served as a global representation of how close each location in 

the scene image was from the scene center (Figure 4.4d). Specifically, it measured the inverted 

Euclidean distance from the center pixel of the scene to all other pixels in the scene image. The 

center proximity measure was used in the mixed-effects models described below to account for 

and control the role of center bias, the tendency to fixate centrally (Bindemann, 2010; Hayes & 

Henderson, 2021; Tatler, 2007; Tseng et al., 2009) (Figure 4.4d). 

 
Figure 4.3. Map examples. The figure shows an example of each map type for drinking glasses 
(a), paintings (b), and garbage bins (c). Each column represents an example scene with fixated 
(green) vs. non-fixated (cyan) regions for a single participant (d), with each respective surface 
map (e) meaning map (f), and hypothesized visualization of the surface by meaning interaction. 
 
Eyetracking Search Analysis 

To test whether surfaces and meaning interact to predict fixated and non-fixated regions 

while also taking center proximity and scene-by-scene variation into account, we used a general 

linear mixed effects (GLME) model with the link logit (‘binomial’) distribution (Hayes & 
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Henderson, 2021; Nuthmann et al., 2017). We focused analyses on the eye movement data 

corresponding to target absent scenes since we were interested in search behavior with regard to 

expected target locations as opposed to actual target features. Before submitting the data to the 

GLME, we z-normalized surface maps and meaning maps within each target object category to a 

common scale. Analyses were conducted separately for each target object because each of the 

targets is found in different scene regions, and the surfaces they reside upon are different sizes 

(e.g., floor surfaces are much larger than countertops). The center proximity map was z-

normalized as well. 

For each fixation, we computed the mean map values by taking the average over a 3-

degree window (113-pixels in diameter) around each fixation in the surface map (Figure 4.4b), 

meaning map (Figure 4.4c), and center proximity map (Figure 4.4d). To represent scene features 

that were not associated with overt attention for each participant, we randomly sampled an equal 

number of scene locations where each particular participant did not look in each scene they 

viewed. The only constraint for the random sampling of the non-fixated scene regions was that 

the non-fixated 3-degree windows could not overlap with any of the 3-degree windows of the 

fixated locations.  

The dependent variable was whether a region was fixated or not. The fixed effects were 

the meaning values, the surface values, and the center proximity value. Although the primary 

effect of interest was the interaction between surfaces and meaning, we modeled the three-way 

interaction between surfaces, meaning, and center proximity to ensure that any effects were not 

due to center bias. Additionally, we included a random intercept of scene. Including a random 

intercept of participant did not account for any variance so this was excluded from each model. 

We hypothesized that both meaning and surfaces would influence probability of fixation, with 
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highly meaningful scene regions appearing on highly predictive surfaces with the highest 

probability (Figure 4.4e). 

 
Figure 4.4. Analysis and predictions. The figure shows an example scene (a), surface map (b), 
meaning map (c), and center proximity map (d) with hypothetical fixated (green) versus non-
fixated (cyan) windows. Predicted results (e) shows that meaningful scene regions have a higher 
probability of fixation if these regions overlap with highly predictive surfaces. If meaningful 
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scene regions do not overlap with highly predictive surfaces, these regions are less likely to be 
fixated.  
 

Results 

Our primary question asked whether fixations are directed to meaningful scene regions 

that occur on target-related surfaces during search in scenes. Figure 4.5 summarizes the primary 

data. The plots show that all three variables were related to fixations during search for all three 

targets, with fixations more likely to be directed to the scene centers, relevant surfaces, and 

meaningful regions. To analyze these data, we used the GLME model described above with fixed 

effects of meaning, surfaces, and center proximity predicting whether a region was fixated or 

not. The primary effect of interest was the surfaces by meaning interaction. We also modeled the 

three-way interaction between surfaces, meaning, and center proximity to control for the effect 

of center bias.  

 
Figure 4.5. Summary plots of the raw eye movement data. Raincloud plots show the center 
proximity, surface, and meaning z-normalized feature values on fixated (blue) and non-fixated 
(pink) scene regions for garbage bins (a), paintings (b), and drinking glasses (c). For each box 
plot, the whiskers refer to the minimum (25% quartile – 1.5*interquartile range) and maximum 
(75% quartile + 1.5*interquartile range) feature values, the box refers to the 25% and 75% 
quantiles, and the central, vertical line refers to the median. Each dot corresponds to the average 
feature value for a given fixated or non-fixated window.  
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The GLME model results for meaning are visualized in Figure 4.6 and Table 4.1. For 

drinking glasses, there was a significant three-way interaction between meaning, surfaces, and 

center proximity; for garbage bins there was a marginal three-way interaction; for paintings there 

was no significant three-way interaction. For all three target objects there was a significant two-

way interaction between meaning and surfaces, which was the primary interaction of interest.  

 
Figure 4.6. Model fits. The odds ratios (left column) and marginal effects (right column) for the 
garbage (a), painting (b), and drinking glass (c) models are shown. An odds ratio of 1 indicates 
that neither positive or negative values of a predictor are likely to occur with fixated regions. An 
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odds ratio of greater than 1 (blue) indicates that positive values of a predictor are more associated 
with fixated regions whereas an odds ratio of less than 1 (red) indicates that negative values of a 
predictor are associated with fixated regions. Marginal effects plots (right column) show the 
probability of fixation for each fixed effect as a function of z-score. Error bands reflect 95% 
confidence intervals. 
 

Before interpreting the two-way interaction for drinking glasses and garbage bins, we 

examined the three-way interactions to ensure center proximity was not modulating the meaning 

by surface effects (Figure 4.7). If the meaning by surface interaction was driven by center 

proximity, we would expect high meaning and surface values to be fixated at scene centers due 

to scene-independent viewing biases with no surface by meaning interaction in scene peripheries. 

For all target objects, meaning values were more likely to be fixated if surface values were 

greater at scene centers (Figure 4.7a, 4.7d, 4.7g). However, this effect did not change as a 

function of center proximity: for fixations further from center (Figure 4.7b 4.7e, 4.7h) and in 

scene peripheries (Figure 4.7c, 4.7f, 4.7i), higher meaning regions were more likely to be fixated 

if the corresponding surface values were higher. The three-way interaction for garbage cans 

appears to be the result of the lack of an asymptote in the low probability surfaces (red curves in 

Figure 4.6) at high meaning values compared to the medium and high probability surfaces (blue 

and green curves respectively), which may have been due to fewer high-meaning regions on 

surfaces likely to contain garbage cans (e.g., floors). This result is consistent with the notion that 

target-related surfaces constrain eye movements to meaningful scene regions irrespective of 

scene independent viewing biases.  
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Figure 4.7. Three-way meaning x surfaces x center proximity interaction. This figure shows the 
probability that meaningful scene regions were fixated on surfaces that were not predictive of 
target object locations (red), moderately predictive (blue), and highly predictive of target location 
(green) at scene centers (a, d, g), farther from center (b, e, h), and in scene peripheries (c, f, i) for 
garbage bins (a, b, c), paintings (d, e, f), and drinking glasses (g, h, i). Error bands reflect 95% 
confidence intervals. 
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Table 4.1. Meaning x surface x center proximity GLME results for each target object. Beta estimates (β), 
95% confidence intervals (CI), standard errors (SE), z-values, and p-values (p) for each fixed effect, and 
standard deviations (SD) for the scene random effect. 
Garbage 

  Fixed Effects Random 
Effects, SD 

Predictors β 95% CI SE Z-value P By-scene 
Intercept -0.51 [-0.93, -0.08] 0.21 -2.42 0.02 1.04 
Meaning 1.79 [1.73, 1.85] 0.03 60.58 <0.001   
Center proximity 0.43 [0.40, 0.47] 0.02 22.98 <0.001   
Surfaces  1.05 [1.01, 1.09] 0.02 48.70 <0.001   
Meaning x center proximity -0.16 [-0.20, -0.11] 0.02 -7.08 <0.001   
Meaning x surfaces 0.71 [0.66, 0.76] 0.03 27.61 <0.001   
Center proximity x surfaces  -0.10 [-0.14, -0.05] 0.02 -4.46 <0.001   
Meaning x center proximity 
x surfaces 

-0.06 [-0.11, 0.001] 0.03 -2.01 0.05   

 
Painting  

  Fixed Effects Random 
Effects, SD 

 

Predictors β 95% CI SE Z-value P By-scene  

Intercept -0.36 [-0.72, -0.004] 0.18 -2.06 0.04 0.88 
 

Meaning 1.59 [1.54, 1.64] 0.03 60.52 <0.001   
 

Center proximity 0.19 [0.15, 0.23] 0.02 9.83 <0.001   
 

Surfaces  0.97 [0.94, 1.01] 0.02 48.60 <0.001   
 

Meaning x center proximity 0.04 [-0.004, 0.08] 0.02 1.78 0.08   
 

Meaning x surfaces 0.39 [0.35, 0.44] 0.02 17.22 <0.001   
 

Center proximity x surfaces  -0.12 [-0.16, -0.08] 0.02 -5.92 <0.001   
 

Meaning x center proximity 
x surfaces 

-0.003 [-0.05, 0.04] 0.02 -0.13 0.90   
 

Glass  

  Fixed Effects Random 
Effects, SD 

 

Predictors β 95% CI SE Z-value P By-scene  

Intercept -0.51 [-0.83, -0.19] 0.16 -3.27 0.001 0.78 
 

Meaning 1.79 [1.74, 1.84] 0.03 69.35 <0.001   
 

Center proximity 0.35 [0.31, 0.38] 0.02 18.21 <0.001    
Surfaces  0.48 [0.44, 0.52] 0.02 25.54 <0.001    
Meaning x center proximity 0.13 [0.08, 0.17] 0.02 5.70 <0.001    
Meaning x surfaces 0.31 [0.26, 0.36] 0.03 12.31 <0.001    
Center proximity x surfaces  -0.15 [-0.19, -0.11] 0.02 -7.44 <0.001    
Meaning x center proximity 
x surfaces 

0.11 [0.06, 0.16] 0.03 4.22 <0.001    

 

 

 



 86 

Discussion 

The present study tested how spatial constraints related to the expected surfaces 

associated with a target object interact with meaningful scene regions to control eye movements 

during visual search in real-world scenes. To this end, we generated surface maps that 

represented the likely locations of three target objects (garbage bins, drinking glasses, and 

paintings). The surface maps took three-dimensional depth information into account and 

represented the likely locations of target objects probabilistically. Surface maps were combined 

with meaning maps representing the distribution of semantic content across each scene 

(Henderson & Hayes, 2017). We then examined whether surfaces and meaning interacted to 

account for fixations in a visual search task in which participants searched for the target objects. 

The results showed that both likely target surfaces and meaningful regions were more likely to 

be fixated, with meaningful regions within likely target surfaces most likely to be fixated. This 

effect persisted regardless of how close to center a given fixation was, suggesting that the effect 

was not due to scene-independent viewing biases. Our findings provide the first evidence that the 

visual system constrains search for real-world objects in scenes to meaningful scene regions that 

are most likely to contain those objects.  

Objects that we use and search for daily are constrained by surfaces in different ways, 

and our surface maps successfully accounted for these differences. Garbage bins and paintings 

are found on large structural surfaces (floors and walls) that are invariant across scene categories, 

whereas drinking glasses are found on surfaces that change with scene category (tables/counters 

in kitchens, desks in offices). Paintings are typically found on vertical surfaces while drinking 

glasses and garbage bins are typically found on horizontal support surfaces. Finally, target object 

size and affordances limit where a target object is likely to appear (Castelhano & Witherspoon, 
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2016). For target objects conforming to these constraints, surface maps bolstered predictions 

made by meaning maps, thereby suggesting that the surface map method of identifying spatial 

constraint is sufficiently robust to account for target objects with different properties.   

Prior work testing the influences of spatial constraint and image salience on eye 

movements during visual search shows that combining the two sources of information accounts 

for fixations significantly better than image salience alone (Ehinger et al., 2009; Torralba et al., 

2006). Given that meaning and image salience are correlated yet meaning predicts attention 

better than image salience during visual search in scenes when this correlation is controlled 

(Hayes & Henderson, 2019; Peacock et al., under review), a major goal of the current study was 

to understand whether spatial constraint interacts with meaning to control eye movements. In the 

same way that the visual system constrains eye movements to physically salient scene regions 

within a target-defined region of space (Ehinger et al., 2006; Torralba et al., 2006), we found that 

the visual system also constrains eye movements to meaningful scene regions on target-related 

surfaces. 

Another contribution of the current work is the concept of continuous surface maps. 

Previous studies have modeled spatial constraint using a single horizontal band (Torralba et al., 

2006) or a single horizontal surface representing where a particular object is most likely to be 

located (Pereira & Castelhano, 2019). The current study introduced graded probabilistic surface 

maps to account for objects like drinking glasses that may be found on many different surfaces. 

These surface maps were then combined with meaning maps to predict search eye movements. 

Combining surfaces and meaning predicted search eye movements significantly better than either 

source of information alone. This novel combination of surfaces and meaning provides a 

powerful framework to understand what controls attention during visual search.  
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Scenes are three-dimensional yet the way we study them is with two-dimensional 

photographs. Although studies have found ways to deal with nuisances of using two-dimensional 

photos in the past (e.g., by using non-occluding objects (Nuthmann et al., 2020; Nuthmann & 

Henderson, 2010), summing representations of occluding objects (Hayes & Henderson, 2021), or 

by using chimera scenes (Castelhano et al., 2018; Man & Castelhano, 2018), the ability to model 

scene elements at varying depths is an important variable that should be taken into account in 

models of scene perception. To account for depth in the present study, we used image-

computable depth maps to iteratively layer surface predictions based upon depth into our maps. 

This method allowed us to continuously model the probabilities of surfaces, even if they were 

occluded by other surfaces in the scene. We also accounted for the extent to which target objects 

extend above surfaces at different depths by generating a target object height constant for each 

object and its highly ranked surface elements. The resulting surface maps were able to 

continuously represent the likely locations of search target objects in scenes while taking into 

account each surface’s depth from the viewer and the depth-dependent height of the target 

object, in a way that has not been previously done before. 

Our findings are consistent with Pereira and Castelhano (2019) who used an attentional 

capture paradigm to test whether letter or object distractors that rapidly appeared on target-

relevant or irrelevant surfaces were more likely to capture attention. They found that distractors 

were more likely to be fixated if they appeared on target-relevant surfaces and that this effect 

was stronger for object distractors. Similarly, we found that meaningful scene regions were more 

likely to be fixated when they were located on target-related surfaces even when those 

meaningful regions did not contain the target. Together, this suggests that the visual system may 

specifically use target-relevant surfaces to constrain search.  



 89 

Previous work has shown that the gist of the scene is rapidly acquired within ~50ms of 

scene onset (Castelhano & Henderson, 2008; Greene & Fei-Fei, 2014; Oliva & Torralba, 2001, 

2006; Potter, 1975; Potter et al., 2014) and that scene gist can be used to determine which scene 

regions are most relevant to search (Castelhano & Henderson, 2003). Indeed, past research has 

found that spatial constraint allows us to make predictions about what scene regions will be most 

task- or semantically-relevant for attentional prioritization (Brady et al., 2017; Brockmole & 

Henderson, 2006; Brockmole & Võ, 2010; Ehinger et al., 2009; Neider & Zelinsky, 2006; 

Torralba et al., 2006). The current results suggest that we may similarly use scene gist to pull out 

target-relevant surface information.  

Conclusions  

The present work made two major advances to the visual search literature. The first is the 

introduction of continuous surface maps, which capture constraints related to the likely locations 

of target objects in real-world scenes while taking depth information into account. The second 

major advancement is the novel combination of spatial constraint and meaning. The results show 

that during visual search, the visual system prioritizes meaningful scene regions on highly 

predictive surfaces over meaningful scene regions on target-unrelated surfaces.  
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Chapter 5: Conclusion 

The goal of this dissertation was to explore the influences of different scene properties on 

the guidance of visual attention in real-world scenes. Unlike previous work that used tasks which 

may have encouraged participants to attend to meaningful scene regions (Henderson & Hayes, 

2017, 2018), Chapters 2 and 3 aimed to answer whether meaningful or physically salient scene 

regions were prioritized for attention during tasks in which either image salience was task-

relevant and meaning was task-irrelevant (Chapter 2) or during a free viewing task that did not 

require attention to either salience or meaning (Chapter 3). Across the experiments described in 

Chapters 2 and 3, it was found that even in tasks that do not require attention to meaning, the 

overall and unique variance in attention was significantly more related to meaning than to image 

salience.  

While the overall and unique variance in attention was significantly more related to 

meaning than to image salience, there is shared variance between meaning and image salience 

that guides attention. This means that the visual system might occasionally select a salient region 

over a meaningful region, even if on average meaningful regions were more likely to be selected. 

Although this is a possibility, the present data do not suggest that this is true. When the shared 

variance between meaning and image salience was removed, meaning explained substantial 

unique variance whereas image salience did not. So, while it is possible that salience drives 

attention to regions that are both meaningful and salient, it seems more likely (given meaning’s 

better predictive power) that meaning is driving attention all of the time. It could also be the case 

that meaning and saliency work together to guide attention to certain regions. Because meaning 

is powerful enough to guide attention to regions not predicted by image salience yet the same is 
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not true for image salience, it appears that meaning is the key predictor of attention, but saliency 

is not.  

Previous studies have demonstrated that the visual system prioritizes physically salient 

information in target-relevant regions during visual search (Ehinger et al., 2009; Torralba et al., 

2006). However, because the unique variance in attention was attributed to meaning but not 

salience in Chapters 2 and 3, Chapter 4 tested whether the visual system selects meaningful 

regions on target-relevant surfaces for attention. This was found to be true: attention prioritized 

meaningful scene regions on target-relevant surfaces but not those on target-irrelevant surfaces. 

This dissertation collectively demonstrates that the human visual system selects scene regions 

that contain meaningful content based upon our knowledge of the world for attention. 

Image salience has been emphasized as a dominant factor in attentional guidance (Borji 

et al., 2013, 2014; Harel et al., 2006; Itti et al., 1998; Itti & Koch, 2001; Koch & Ullman, 1987). 

This stands at odds with cognitive relevance theory which proposes that the cognitive system 

will direct attention to information that is anticipated to be semantically relevant to its current 

goals and the context of the scene rather than be passively pulled to semantically uninterpreted 

image features (Buswell, 1935; Hayhoe & Ballard, 2005; Henderson, 2003, 2017; Henderson et 

al., 1999, 2009; Tatler et al., 2011; Yarbus, 1967). The findings of this dissertation support 

cognitive relevance theory. Across the three studies presented here, we found that attention was 

directed to scene regions that the cognitive system predicted to be informative based upon world 

knowledge of semantic content rather than passively pulled by uninterpreted image features 

(Buswell, 1935; Hayhoe & Ballard, 2005; Henderson, 2003, 2017; Henderson et al., 1999, 2009; 

Tatler et al., 2011; Yarbus, 1967). Furthermore, Chapter 4 demonstrated that top-down forms of 
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knowledge interact, as the cognitive system selects meaningful regions in locations that are task-

relevant for attention.  

The finding that attention prioritizes semantic content regardless of the setting suggests 

that models of meaning could be used to solve a variety of real-world attentional guidance 

problems. For instance, in virtual reality, a computer could use the meaning map model to fully 

render semantically dense regions that users will likely attend whereas regions that are not 

semantically rich (e.g., sky) could be represented at a lower resolution. These findings could also 

be imported into applications, such as driving. If computers can infer where a driver should 

attend (the road, mirrors), then they could highlight meaningful regions in task-relevant locations 

to keep drivers focused. This, in turn, would reduce the likelihood of errors and accidents.  

Semantic-Based Guidance of Attention 

Together, the findings here support a model of attention in which the visual system 

makes use of world knowledge to orient attention. Overall, this dissertation demonstrates that 

regardless of the situation, attention is directed to semantically rich information in our 

environments with respect to our task and goals, supporting cognitive relevance theory (Buswell, 

1935; Hayhoe & Ballard, 2005; Henderson, 2003, 2017; Henderson et al., 1999, 2009; Tatler et 

al., 2011; Yarbus, 1967). The findings provide a better understanding of why the visual system 

selects certain regions of the world for analysis which could be used in real-world settings to 

highlight only the most relevant information for attention.  
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